JP2010114031A - Material recycling method of fuel cell mea - Google Patents
Material recycling method of fuel cell mea Download PDFInfo
- Publication number
- JP2010114031A JP2010114031A JP2008287556A JP2008287556A JP2010114031A JP 2010114031 A JP2010114031 A JP 2010114031A JP 2008287556 A JP2008287556 A JP 2008287556A JP 2008287556 A JP2008287556 A JP 2008287556A JP 2010114031 A JP2010114031 A JP 2010114031A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte membrane
- mea
- peeled
- diffusion layer
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000000463 material Substances 0.000 title claims abstract description 23
- 239000000446 fuel Substances 0.000 title claims abstract description 12
- 238000004064 recycling Methods 0.000 title claims description 23
- 239000012528 membrane Substances 0.000 claims abstract description 78
- 239000003792 electrolyte Substances 0.000 claims abstract description 75
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 59
- 238000009792 diffusion process Methods 0.000 claims abstract description 42
- 239000002245 particle Substances 0.000 claims abstract description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims description 15
- 238000007654 immersion Methods 0.000 abstract description 7
- 239000003960 organic solvent Substances 0.000 abstract description 4
- 238000013019 agitation Methods 0.000 abstract 1
- 239000007772 electrode material Substances 0.000 description 24
- 238000011084 recovery Methods 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910002848 Pt–Ru Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、燃料電池の膜・電極接合体(MEA)の材料リサイクル方法に関する。 The present invention relates to a material recycling method for a membrane / electrode assembly (MEA) of a fuel cell.
MEAの電解質膜やバインダにはフッ素系樹脂が使用されているため、加熱によるPGM(白金触媒)回収時にフッ酸が発生し、大規模施設における乾式精練、小規模施設における焼却濃縮を容易に実施することができない。 Since MEA electrolyte membranes and binders use fluororesin, hydrofluoric acid is generated when PGM (platinum catalyst) is recovered by heating, and dry scouring in large facilities and incineration concentration in small facilities are easily implemented. Can not do it.
また、MEAから直接、王水等により湿式法でPGMを溶解しようとすると、電極材を被覆しているフッ素ポリマーが障害となり、理想的な溶出が困難となる。さらに、現状においては、1枚のMEAに使用されるフッ化物高分子膜はPGM並に高く、リサイクルの際にはフッ化物高分子膜の回収も念頭におくことも必要である。 Moreover, when it is going to melt | dissolve PGM with a wet method etc. directly from MEA with aqua regia etc., the fluoropolymer which coat | covers the electrode material will become an obstacle, and ideal elution becomes difficult. Furthermore, under the present circumstances, the fluoride polymer film used for one MEA is as high as PGM, and it is also necessary to keep in mind the recovery of the fluoride polymer film during recycling.
以上のような理由から、リサイクルをする際には、MEAから事前にPGMと高分子膜を分離する必要がある。MEAから電解質膜あるいは電極材を回収する技術としては、溶解や燃焼などによる化学的手法と、固−固分離技術による物理的手法とに2分される。 For the above reasons, when recycling, it is necessary to separate the PGM and the polymer membrane from the MEA in advance. Techniques for recovering the electrolyte membrane or electrode material from the MEA are divided into two parts: a chemical technique based on dissolution and combustion, and a physical technique based on a solid-solid separation technique.
代表的化学的手法の1つとしては、アルコール類等の溶媒中室温〜270℃の範囲でオートクレーブによる加圧下で電解質膜を溶解、その後、不溶成分の電極材からPGMを回収、溶解した電解質膜は、再び電解質膜やバインダの原料として利用する方法がある(特許文献1参照「固体高分子型燃料電池用材料の回収および再利用方法」)。 One of the typical chemical methods is to dissolve the electrolyte membrane under pressure by an autoclave in a solvent such as alcohol in the range of room temperature to 270 ° C., and then recover PGM from the insoluble component electrode material and dissolve the electrolyte membrane Is used again as a raw material for electrolyte membranes and binders (see Patent Document 1 “Recovery and Reuse Method for Polymer Electrolyte Fuel Cell Materials”).
また、400〜600℃、23〜30MPaの高温高圧下で、超臨界状態の水と酸素からなる反応流体中にMEAを投入し、電解質膜等を酸化溶解させる方法もある(特許文献2参照「臨界超過水反応物による有機物質−貴金属組成物からの貴金属の回収」)。 There is also a method in which MEA is introduced into a reaction fluid composed of water and oxygen in a supercritical state under high temperature and high pressure of 400 to 600 ° C. and 23 to 30 MPa to oxidize and dissolve the electrolyte membrane or the like (see “Patent Document 2”). "Recovery of precious metals from organic matter-noble metal compositions by supercritical water reactants").
PGMの焼却濃縮時に発生するフッ化水素ガスを安価で効率的に固定する方法(特許文献3参照「廃棄物からの貴金属回収方法および装置」)では、MEAを粉末状のアルカリ金属等とともに粉砕・混練し、焼成し発生する有害ガスをフッ素含有固形物とする。その後、焼成残渣から王水により貴金属を抽出するが、電解質膜成分は廃棄される。 In a method for efficiently fixing hydrogen fluoride gas generated at the time of PGM incineration at low cost (see Patent Document 3, “Method and apparatus for recovering precious metal from waste”), MEA is pulverized together with powdered alkali metal, etc. The harmful gas generated by kneading and firing is made into a fluorine-containing solid. Thereafter, noble metal is extracted from the firing residue with aqua regia, but the electrolyte membrane component is discarded.
一方、物理的手法としては、水溶性粘着シートにより電極材を剥がし取り、その後、粘着シートは所定の溶媒により溶解し、電解質膜は溶解して原料として再利用する方法がある(特許文献4参照「触媒回収方法」)。 On the other hand, as a physical method, there is a method in which the electrode material is peeled off with a water-soluble pressure-sensitive adhesive sheet, and then the pressure-sensitive adhesive sheet is dissolved with a predetermined solvent, and the electrolyte membrane is dissolved and reused as a raw material (see Patent Document 4). "Catalyst recovery method").
ドライアイス粒子を噴射する方法(特許文献5参照「触媒回収方法と触媒回収装置」)では、電解質膜または拡散層の表面の電極材に対し、1〜50μm程度のドライアイス粒子を噴射し、その衝撃により電極材を破片状に剥離する。ドライアイスにより電極材は低温になって脆くなり、剥離の効率を向上させる。また、衝突後、ドライアイスは気化して電極材のみが回収できるものである。しかし、これらは、電解質膜を1枚ずつ処理する方法で、小型MEA処理には不向きと考えられる。 In the method of injecting dry ice particles (refer to Patent Document 5 “Catalyst Recovery Method and Catalyst Recovery Device”), dry ice particles of about 1 to 50 μm are injected to the electrode material on the surface of the electrolyte membrane or diffusion layer. The electrode material is peeled off into pieces by impact. With dry ice, the electrode material becomes low temperature and becomes brittle, and the efficiency of peeling is improved. In addition, after the collision, the dry ice is vaporized and only the electrode material can be recovered. However, these are methods for processing the electrolyte membranes one by one, and are considered unsuitable for small MEA processing.
一方、MEAを液体に浸漬させ電極材の剥離を促進させる方法は、小型MEAにも適用可能と考えられる(特許文献6参照「燃料電池の電解質膜回収方法およびその装置」)。MEAをメタノール等に10分ほど浸漬すると電解質膜内の水がメタノールに置換されて膨潤、さらに電解質膜と電極の接合物が溶解し、両者が容易に分離できるようになる。その後、分離した電解質膜を水に浸しメタノールと置換したのち、過酸化水素水で洗浄するものである。しかし、この方法では、電解質膜の変形や皺の発生などからその再利用は難しいという指摘もある。 On the other hand, it is considered that the method of immersing MEA in a liquid and promoting the peeling of the electrode material can be applied to a small MEA (see Patent Document 6 “Method for recovering electrolyte membrane of fuel cell and its device”). When the MEA is immersed in methanol or the like for about 10 minutes, the water in the electrolyte membrane is replaced with methanol and swells, and the joined product of the electrolyte membrane and the electrode dissolves, so that both can be easily separated. Thereafter, the separated electrolyte membrane is immersed in water and replaced with methanol, and then washed with hydrogen peroxide. However, it is pointed out that this method is difficult to reuse due to deformation of the electrolyte membrane and generation of wrinkles.
本発明に係るMEAの材料リサイクル方法は、主としてモバイル用途の小型燃料電池を念頭に、そのフッ素系高分子膜とPGM触媒の双方の回収を目的とするものであり、MEAを液体に浸漬させ電極材の剥離を促進させる従来方法(特許文献6)に準じた方法であるが、浸漬媒体である有機溶剤に、よりマイルドな25%以下のエタノール水溶液を用いるとともに、拡散層の剥離とPGMの剥離を2段階で実施することにより、白金触媒を回収しつつ電解質膜を変形のない状態で回収し、再利用を可能にすることを課題とする。 The MEA material recycling method according to the present invention is mainly intended for the recovery of both the fluoropolymer membrane and the PGM catalyst with a small fuel cell for mobile use in mind. Although it is a method according to the conventional method (Patent Document 6) for promoting the peeling of the material, a milder 25% or less ethanol aqueous solution is used for the organic solvent as the immersion medium, and the diffusion layer and the PGM are peeled off. By carrying out the above in two stages, it is an object to recover the platinum catalyst while recovering the platinum membrane without deformation and to enable reuse.
本発明は上記課題を解決するために、燃料電池のMEAから、電解質膜に付着した白金触媒を担持した炭素粒子から成る電極剤粒子と電解質膜を回収するMEAの材料リサイクル方法であって、1段階目において、攪拌によりMEAの電解質膜から拡散層を剥離し拡散層ごと電極剤粒子を回収し、2段階目において、拡散層を剥離したMEAの電解質膜から、超音波照射により電極剤粒子を剥離して回収するとともに、電解質膜を回収することを特徴とするMEAの材料リサイクル方法を提供する。 [MEANS TO SOLVE THE PROBLEM] This invention is the material recycling method of MEA which collects the electrode agent particle | grains which consist of the carbon particle which carry | supported the platinum catalyst adhering to the electrolyte membrane, and electrolyte membrane from MEA of a fuel cell in order to solve the said subject, In the second stage, the diffusion layer is peeled off from the MEA electrolyte membrane by stirring and the electrode agent particles are collected together with the diffusion layer. In the second stage, the electrode agent particles are removed by ultrasonic irradiation from the MEA electrolyte membrane from which the diffusion layer has been peeled off. Provided is a MEA material recycling method characterized by peeling and collecting and collecting an electrolyte membrane.
前記1段階目の処理は、25%以下のエタノール水溶液中又は水中で、攪拌により電解質膜から拡散層を剥離することが好ましい。 In the first stage treatment, the diffusion layer is preferably peeled off from the electrolyte membrane by stirring in an aqueous solution of ethanol of 25% or less or in water.
前記2段階目の処理は、25%以下のエタノール水溶液中又は水中で、超音波照射により電解質膜から電極剤粒子を剥離することが好ましい。 In the second stage treatment, the electrode agent particles are preferably peeled off from the electrolyte membrane by ultrasonic irradiation in a 25% or less ethanol aqueous solution or water.
本発明は上記課題を解決するために、燃料電池のMEAから、電解質膜に付着した白金触媒を担持した炭素粒子から成る電極剤粒子と電解質膜を回収するMEAの材料リサイクル方法であって、1段階目において、25%以下のエタノール水溶液中又は水中で、攪拌により電解質膜から拡散層を剥離し拡散層ごと電極剤粒子を回収し、2段階目において、拡散層を剥離したMEAの電解質膜から、25%以下のエタノール水溶液中又は水中で、超音波照射により電解質膜から電極剤粒子を剥離し回収することを特徴とするMEAの材料リサイクル方法を提供する。 [MEANS TO SOLVE THE PROBLEM] This invention is the material recycling method of MEA which collects the electrode agent particle | grains which consist of the carbon particle which carry | supported the platinum catalyst adhering to the electrolyte membrane, and electrolyte membrane from MEA of a fuel cell in order to solve the said subject, In the second stage, in a 25% or less ethanol aqueous solution or in water, the diffusion layer is peeled off from the electrolyte membrane by stirring to collect the electrode agent particles together with the diffusion layer. In the second stage, from the MEA electrolyte film from which the diffusion layer has been peeled off An MEA material recycling method is provided in which electrode agent particles are peeled off and collected from an electrolyte membrane by ultrasonic irradiation in an aqueous ethanol solution of 25% or less or in water.
本発明に係るMEAの材料リサイクル方法によれば、浸漬媒体である有機溶剤に、よりマイルドな25%以下のエタノール水溶液を用いるとともに、拡散層の剥離とPGMの剥離を2段階で実施するので、白金触媒を回収しつつ電解質膜(フッ素系高分子膜)を変形のない状態で回収し、再利用を可能にすることができる。 According to the MEA material recycling method according to the present invention, a milder 25% or less ethanol aqueous solution is used for the organic solvent as the immersion medium, and the diffusion layer and the PGM are peeled in two stages. While recovering the platinum catalyst, the electrolyte membrane (fluorine polymer membrane) can be recovered without deformation and can be reused.
本発明に係るMEAの材料リサイクル方法を実施するための最良の形態を実施例に基づいて図面を参照して、以下に説明する。 The best mode for carrying out the MEA material recycling method according to the present invention will be described below with reference to the drawings based on the embodiments.
図1は、モバイル機器用小型燃料電池のMEA1を示す平面図及び断面図である。電解質膜2の表面に正極3(炭素粒子及びPt−Ruを含む)及び拡散層4が順次、積層されており、電解質膜2の裏面に負極5(炭素粒子及びPtを含む)及び拡散層6が順次、積層されている。 FIG. 1 is a plan view and a cross-sectional view showing an MEA 1 of a small fuel cell for a mobile device. A positive electrode 3 (including carbon particles and Pt—Ru) and a diffusion layer 4 are sequentially laminated on the surface of the electrolyte membrane 2, and a negative electrode 5 (including carbon particles and Pt) and a diffusion layer 6 are stacked on the back surface of the electrolyte membrane 2. Are sequentially stacked.
本発明は、このような白金触媒を含む正極及び負極の電極材3、5と、電解質膜2を個別に回収する方法であり、その特徴は、マイルドな希薄エタノールを用いて、電解質膜2の変形や劣化を最小限にしつつ、電極材3、5を回収することである。 The present invention is a method of individually collecting the positive and negative electrode materials 3 and 5 containing the platinum catalyst and the electrolyte membrane 2, and is characterized by the use of mild dilute ethanol. The electrode materials 3 and 5 are collected while minimizing deformation and deterioration.
(電解質膜の変形を最小限にとどめるエタノール濃度)
本発明の方法では、エタノール濃度は、きわめて重要な要件である。エタノールは有機溶剤の中でもそれ自体溶解性、反応性が低いが、これらを水で希釈し、電解質膜2の変形が最小限となる濃度を求めた。
(Ethanol concentration that minimizes deformation of electrolyte membrane)
In the method of the present invention, ethanol concentration is a very important requirement. Ethanol itself has low solubility and reactivity among organic solvents, but these were diluted with water to obtain a concentration at which deformation of the electrolyte membrane 2 was minimized.
図2は、エタノールあるいは水で浸漬後の電解質膜2を90分間水に浸し、さらに乾燥させ、未処理並びに浸漬時間5分並びに10分における膜厚/高さ比を示したものである。未処理のものでも電解質膜2は完全な平面ではなく膜厚/高さ比は1.75(12試料の平均値)となった。 FIG. 2 shows the film thickness / height ratio when the electrolyte membrane 2 immersed in ethanol or water is immersed in water for 90 minutes, further dried, and untreated, and immersed for 5 minutes and 10 minutes. The electrolyte membrane 2 was not a perfect plane even when it was untreated, and the film thickness / height ratio was 1.75 (average value of 12 samples).
一方、水あるいは10%や25%エタノールに電解質膜2を浸漬後、水に置換し乾燥させたものでは、膜厚/高さ比は5倍程度に増大、さらに50%〜原液エタノールでは比が8倍〜10倍まで大きくなる。すなわち、湾曲(変形)の程度は、水及び濃度25%以下のエタノールでほぼ一定となる。 On the other hand, when the electrolyte membrane 2 is immersed in water or 10% or 25% ethanol and then replaced with water and dried, the film thickness / height ratio is increased by about 5 times. 8 times to 10 times larger. That is, the degree of bending (deformation) is substantially constant with water and ethanol with a concentration of 25% or less.
また、電解質膜2の湾曲の状態は図3に示すように2つの形態をとる。水及びエタノールの濃度25%以下で起こる湾曲は、図3(b)のように、ちょうど紙を丸めたときのように一方向に緩やかに丸まるだけであり、上下から平らな面で押しつければ容易に平面に戻る。 Moreover, the curved state of the electrolyte membrane 2 takes two forms as shown in FIG. The curve that occurs when the concentration of water and ethanol is 25% or less, as shown in FIG. 3 (b), is only gently rounded in one direction as when the paper is rolled up, and if it is pressed on a flat surface from above and below Easily return to the plane.
一方、エタノールの濃度50%以上では図3(c)のように、電解質膜2は、X−Y片面の両軸に亘って馬鞍状に湾曲する。この状態では上下から平らな面に押しつけても平面に戻らず、仮に膜自体の化学的機能に支障がなかったとしても電解質膜2として再利用することは困難となる。 On the other hand, when the ethanol concentration is 50% or more, as shown in FIG. 3C, the electrolyte membrane 2 is curved like a horseshoe over both axes of the XY single side. In this state, even if pressed against a flat surface from above and below, it does not return to a flat surface, and it is difficult to reuse it as the electrolyte membrane 2 even if there is no problem in the chemical function of the membrane itself.
以上の結果から、電解質膜2の変形を最小限に止めるには、水あるいはエタノール濃度25%以下で処理を行うことが重要である。 From the above results, in order to minimize the deformation of the electrolyte membrane 2, it is important to perform the treatment with water or ethanol concentration of 25% or less.
(リサイクル方法の回収プロセス)
次に、本発明に係るMEAの材料リサイクル方法の回収プロセスについて、その全体工程を示す図6を参照して説明する。
(Recycling process collection process)
Next, the recovery process of the MEA material recycling method according to the present invention will be described with reference to FIG.
(1)第1段処理(拡散層の剥離)(図6(ア)参照)
MEAを溶剤に浸漬して電極材3、5を剥離するには、まずは拡散層4、6であるカーボンペーパーを剥離することが必要である。種々の剥離条件において、拡散層4、6が剥離するまでの時間を図4に示す。
(1) First stage processing (diffusion layer peeling) (see FIG. 6A)
In order to detach the electrode materials 3 and 5 by immersing the MEA in a solvent, it is necessary to first peel off the carbon paper as the diffusion layers 4 and 6. FIG. 4 shows the time required for the diffusion layers 4 and 6 to peel off under various peeling conditions.
撹拌のみの場合、水中では拡散層4、6の剥離は遅く約6分を要するが、10%のエタノールでは約50秒、25%のエタノールでは約20秒で剥離した。一方、撹拌時に超音波を照射しても、撹拌だけの場合と比べほとんど変化がない。さらに、撹拌を行わず、超音波だけを照射すると10%のエタノールでは30分経っても拡散層4、6は剥離しなかった。 In the case of stirring alone, the diffusion layers 4 and 6 were slowly peeled off in water and required about 6 minutes, but 10% ethanol peeled off in about 50 seconds and 25% ethanol in about 20 seconds. On the other hand, even if ultrasonic waves are irradiated during stirring, there is almost no change compared to the case of stirring alone. Furthermore, when stirring was not performed and only ultrasonic waves were applied, the diffusion layers 4 and 6 did not peel even after 30 minutes with 10% ethanol.
以上の結果から、拡散層4、6の剥離は、エタノールによる浸漬と高速撹拌による剪断により実現する。なお、超音波は、撹拌と同時に照射しても剥離の妨害因子にはならないものの、それ単独ではほとんど剥離の効果をもたらさない。 From the above results, separation of the diffusion layers 4 and 6 is realized by immersion with ethanol and shearing by high-speed stirring. In addition, although the ultrasonic wave does not become a hindrance to peeling even if it is irradiated simultaneously with stirring, it hardly brings about the peeling effect by itself.
拡散層4、6剥離後、PGM(白金族金属)は電解質膜2の表面と拡散層4、6の表面にほぼ同量が付着した状態となる。拡散層4、6に付着のPGMは拡散層4、6ごと回収すれば良い。 After the diffusion layers 4 and 6 are peeled, almost the same amount of PGM (platinum group metal) is attached to the surface of the electrolyte membrane 2 and the surfaces of the diffusion layers 4 and 6. The PGM adhered to the diffusion layers 4 and 6 may be recovered together with the diffusion layers 4 and 6.
(2)第2段処理(電極材の剥離及び電解質膜の回収)(図6(イ)、(ウ)参照)
上記のとおり、拡散層4、6を剥離後、PGM(白金族金属)は電解質膜2の表面と拡散層4、6の表面にほぼ同量が付着した状態となる。拡散層4、6に付着のPGMは拡散層4、6ごと回収すれば良いが、既述の理由から、電解質膜2に付着のPGMは、電解質膜2からPGMの含まれた電極材3、5を分離しなければPGMが回収できない。よって、電極材3、5の剥離が必要となる。
(2) Second-stage treatment (peeling of electrode material and recovery of electrolyte membrane) (see FIGS. 6 (a) and (c))
As described above, after peeling off the diffusion layers 4 and 6, PGM (platinum group metal) is in a state where the same amount of PGM (platinum group metal) is attached to the surface of the electrolyte membrane 2 and the surfaces of the diffusion layers 4 and 6. The PGM adhering to the diffusion layers 4 and 6 may be recovered together with the diffusion layers 4 and 6, but for the reasons already described, the PGM adhering to the electrolyte membrane 2 is changed from the electrolyte membrane 2 to the electrode material 3 containing PGM, PGM cannot be recovered unless 5 is separated. Therefore, peeling of the electrode materials 3 and 5 is required.
PGMの含まれた電極材3、5(PGM担持炭素粒子)の剥離は、第1段処理において拡散層4、6を剥離した状態を出発試料とし、10%のエタノール溶液中で60分処理して行う(図6(イ)参照)。これにより、電極材3、5(PGM担持炭素粒子)を回収するとともに、電極材3、5の剥離した残りとして、電解質膜2を回収する(図6(ウ)参照)。 Peeling of the electrode materials 3 and 5 (PGM-supporting carbon particles) containing PGM is performed for 60 minutes in a 10% ethanol solution using the state in which the diffusion layers 4 and 6 are peeled off in the first stage treatment as a starting sample. (See FIG. 6A). As a result, the electrode materials 3 and 5 (PGM-supporting carbon particles) are recovered, and the electrolyte membrane 2 is recovered as the remaining electrode materials 3 and 5 are peeled off (see FIG. 6C).
PGMの含まれた電極材3、5の剥離状態について、電極材3、5を剥離後、電解質膜2を脱イオン水中に90分浸漬して乾燥し、透過式濁度計により全透過率を測定した(図5)。電解質膜2はほぼ透明、電極材3、5(PGM担持炭素粒子)は黒色であることから、透過率が高いほど電極材3、5の剥離が相対的に進行していることを意味する。なお、図5中、未処理とは、第1段処理で拡散層4、6剥離直後の状態を示している。 About the peeling state of the electrode materials 3 and 5 containing PGM, after peeling the electrode materials 3 and 5, the electrolyte membrane 2 is immersed in deionized water for 90 minutes and dried, and the total transmittance is measured by a transmission turbidimeter. Measured (FIG. 5). Since the electrolyte membrane 2 is almost transparent and the electrode materials 3 and 5 (PGM-supporting carbon particles) are black, the higher the transmittance is, the more the peeling of the electrode materials 3 and 5 is relatively advanced. In FIG. 5, “untreated” indicates a state immediately after the diffusion layers 4 and 6 are peeled in the first stage treatment.
PGM剥離の傾向は第1段の拡散層4、6の場合と異なり、撹拌<撹拌+超音波<超音波となる。すなわち、電極材3、5の剥離では撹拌より超音波照射の方が効果があり、また、両者を併用すると超音波照射の効果が撹拌により阻害される。 The tendency of PGM peeling is different from the case of the first-stage diffusion layers 4 and 6, and stirring <stirring + ultrasonic wave <ultrasonic wave. That is, in the peeling of the electrode materials 3 and 5, ultrasonic irradiation is more effective than stirring, and when both are used together, the effect of ultrasonic irradiation is hindered by stirring.
超音波照射のみ実施した場合、電解質膜2上に残留するPGMは9.7%であり、90.3%のPGMが回収された(図6(ウ)参照)。剥離された電極材3、5(PGM担持炭素粒子)の粒径は30μm〜150μmの間に分布しており、スクリーンあるいは浮選等により、容易に分離、回収可能である(図6(ウ)参照)。 When only ultrasonic irradiation was performed, PGM remaining on the electrolyte membrane 2 was 9.7%, and 90.3% PGM was recovered (see FIG. 6C). The particle diameters of the peeled electrode materials 3 and 5 (PGM-supporting carbon particles) are distributed between 30 μm and 150 μm, and can be easily separated and collected by a screen or flotation (FIG. 6C). reference).
また、回収された電解質膜2を用いて作製したMEAと、新品の電解質膜2を用いたMEAについて、I−V特性を比較した結果、新品から作成したMEAと同等の性能を有することが確認できた。 Moreover, as a result of comparing the IV characteristics of the MEA produced using the recovered electrolyte membrane 2 and the MEA using the new electrolyte membrane 2, it was confirmed that the MEA has the same performance as the MEA produced from the new one. did it.
なお、再生電解質膜2からMEAを製造する際、新たに電極剤(PGM触媒)を塗布するため、電解質膜2に若干残るPGMは、MEAのPGM含有量に若干のばらつきを生む他は大きな障害とはならない。 In addition, when manufacturing MEA from the regenerative electrolyte membrane 2, a new electrode agent (PGM catalyst) is applied, so that the PGM remaining in the electrolyte membrane 2 is a major obstacle except that the PGM content of the MEA slightly varies. It will not be.
以上、本発明に係るMEAの材料リサイクル方法を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。 As described above, the best mode for carrying out the MEA material recycling method according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and is described in the claims. It goes without saying that there are various embodiments within the technical scope.
本発明に係るMEAの材料リサイクル方法は、以上のような構成であるから、特に、モバイル用途の小型燃料電池の電解質膜とPGM触媒の双方の回収に適用可能である。 Since the MEA material recycling method according to the present invention is configured as described above, it is particularly applicable to the recovery of both the electrolyte membrane and the PGM catalyst of a small fuel cell for mobile use.
1 MEA
2 電解質膜
3 表面に正極
4 拡散層
5 負極
6 拡散層
1 MEA
2 Electrolyte membrane 3 Positive electrode on surface 4 Diffusion layer 5 Negative electrode 6 Diffusion layer
Claims (4)
1段階目において、攪拌によりMEAの電解質膜から拡散層を剥離し拡散層ごと電極剤粒子を回収し、
2段階目において、拡散層を剥離したMEAの電解質膜から、超音波照射により電極剤粒子を剥離して回収するとともに、電解質膜を回収することを特徴とするMEAの材料リサイクル方法。 An MEA material recycling method for recovering electrode agent particles composed of carbon particles carrying a platinum catalyst attached to an electrolyte membrane and an electrolyte membrane from an MEA of a fuel cell,
In the first stage, the diffusion layer is peeled off from the MEA electrolyte membrane by stirring, and the electrode agent particles are collected together with the diffusion layer.
In the second step, the MEA material recycling method is characterized in that the electrode agent particles are peeled off and collected by ultrasonic irradiation from the MEA electrolyte membrane from which the diffusion layer has been peeled, and the electrolyte membrane is collected.
1段階目において、25%以下のエタノール水溶液中又は水中で、攪拌により電解質膜から拡散層を剥離し拡散層ごと電極剤粒子を回収し、
2段階目において、拡散層を剥離したMEAの電解質膜から、25%以下のエタノール水溶液中又は水中で、超音波照射により電解質膜から電極剤粒子を剥離し回収することを特徴とするMEAの材料リサイクル方法。 An MEA material recycling method for recovering electrode agent particles composed of carbon particles carrying a platinum catalyst attached to an electrolyte membrane and an electrolyte membrane from an MEA of a fuel cell,
In the first stage, the diffusion layer is peeled off from the electrolyte membrane by stirring in an aqueous ethanol solution of 25% or less or in water, and the electrode agent particles are recovered together with the diffusion layer.
In the second stage, the MEA material is characterized in that the electrode agent particles are peeled off from the electrolyte membrane by ultrasonic irradiation in an ethanol aqueous solution of 25% or less or in water from the MEA electrolyte membrane from which the diffusion layer has been peeled off. Recycling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008287556A JP5334102B2 (en) | 2008-11-10 | 2008-11-10 | Fuel cell MEA material recycling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008287556A JP5334102B2 (en) | 2008-11-10 | 2008-11-10 | Fuel cell MEA material recycling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010114031A true JP2010114031A (en) | 2010-05-20 |
JP5334102B2 JP5334102B2 (en) | 2013-11-06 |
Family
ID=42302433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008287556A Active JP5334102B2 (en) | 2008-11-10 | 2008-11-10 | Fuel cell MEA material recycling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5334102B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105648469A (en) * | 2014-11-24 | 2016-06-08 | 中国科学院大连化学物理研究所 | Recycling method of solid polymer electrolyte water electrolysis bath membrane electrode |
JP2016195027A (en) * | 2015-03-31 | 2016-11-17 | 株式会社住化分析センター | Method for removing solid electrolyte membrane from membrane-electrode assembly of fuel cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171922A (en) * | 1994-12-15 | 1996-07-02 | Toyota Motor Corp | Electrolytic membrane recovery method for fuel cell and its device |
-
2008
- 2008-11-10 JP JP2008287556A patent/JP5334102B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171922A (en) * | 1994-12-15 | 1996-07-02 | Toyota Motor Corp | Electrolytic membrane recovery method for fuel cell and its device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105648469A (en) * | 2014-11-24 | 2016-06-08 | 中国科学院大连化学物理研究所 | Recycling method of solid polymer electrolyte water electrolysis bath membrane electrode |
CN105648469B (en) * | 2014-11-24 | 2018-08-21 | 中国科学院大连化学物理研究所 | A kind of recoverying and utilizing method of solid polymer electrolyte water electrolytic cell membrane electrode |
JP2016195027A (en) * | 2015-03-31 | 2016-11-17 | 株式会社住化分析センター | Method for removing solid electrolyte membrane from membrane-electrode assembly of fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP5334102B2 (en) | 2013-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI357930B (en) | Method for recovery of noble metals | |
US7713502B2 (en) | Process for recycling fuel cell components containing precious metals | |
EP3459138A1 (en) | Method for recycling electrode materials of a lithium battery | |
EP3825425B1 (en) | Method for recovering material that constitutes fuel cell stack | |
AU2006240364A1 (en) | Process for recycling components of a PEM fuel cell membrane electrode assembly | |
JP2007297655A (en) | Method for collecting noble metal from membrane/electrode assembly (mea) | |
JPH11288732A (en) | Method for recovering and reusing material for solid high polymer fuel cell | |
JP5334102B2 (en) | Fuel cell MEA material recycling method | |
JP2011154833A (en) | Aluminum foil and positive electrode active material separating method | |
EP3574122B1 (en) | Process for the recovery of platinum and cobalt from fuel cells | |
Tao et al. | Recent progress and future prospects of silicon solar module recycling | |
CN101130192B (en) | Method for recycling catalyzer from membrane electrode | |
JP2007134358A (en) | Method for recovering solar battery cell and/or reinforced glass from solar cell module | |
JP2011001570A (en) | Method for extracting noble metal component in electrode material | |
Oki et al. | Recovery of platinum catalyst and polymer electrolyte from used small fuel cells by particle separation technology | |
JP6514940B2 (en) | Method of removing a solid electrolyte membrane from a membrane-electrode assembly of a fuel cell | |
JP2005235511A (en) | Catalyst collection method | |
JP2010100908A (en) | Method for treating electrode material | |
JP2006339062A (en) | Manufacturing method for electrode structure for fuel cell | |
JP5540548B2 (en) | Method for recovering catalytic metal from fuel cell | |
JP2005289001A (en) | Reusing method and recycling device for fluorine- containing polymer | |
CN116043025B (en) | Method for recovering noble metal on surface of sodium salt soaking stripping cavity part | |
JP5354305B2 (en) | Precious metal recovery method | |
JP2009176731A (en) | Method of recovering precious metal from electrode material for fuel cell | |
JP2011001571A (en) | Method for treating electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5334102 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |