JP2010112554A - Linear motion bearing with rotary bearing - Google Patents

Linear motion bearing with rotary bearing Download PDF

Info

Publication number
JP2010112554A
JP2010112554A JP2009235211A JP2009235211A JP2010112554A JP 2010112554 A JP2010112554 A JP 2010112554A JP 2009235211 A JP2009235211 A JP 2009235211A JP 2009235211 A JP2009235211 A JP 2009235211A JP 2010112554 A JP2010112554 A JP 2010112554A
Authority
JP
Japan
Prior art keywords
bearing
linear motion
rolling element
cylindrical body
rotary bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009235211A
Other languages
Japanese (ja)
Other versions
JP2010112554A5 (en
Inventor
Fumihiko Ozaki
文彦 尾崎
Takaki Okawara
恭樹 大川原
Eiichi Koseki
栄一 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hephaist Seiko Co Ltd
Original Assignee
Hephaist Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hephaist Seiko Co Ltd filed Critical Hephaist Seiko Co Ltd
Priority to JP2009235211A priority Critical patent/JP2010112554A/en
Publication of JP2010112554A publication Critical patent/JP2010112554A/en
Publication of JP2010112554A5 publication Critical patent/JP2010112554A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C31/00Bearings for parts which both rotate and move linearly
    • F16C31/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motion bearing with a rotary bearing which can be manufactured easily and make the linear movement and/or the rotary movement of the axial body with a high degree of accuracy. <P>SOLUTION: The linear motion bearing with a rotary bearing includes a linear motion bearing (13) which accommodates the axial body (12) in a cylinder (11) non-rotatably and non-slidably and a plurality of rotary bearings (14) installed with at intervals along the longitudinal direction of the cylinder around the cylinder. The diameter of the peripheral face of the above cylinder is constant in the longitudinal direction of the cylinder, and the above rolling bearing comprises a circumferential groove (11a) formed on the outer peripheral face of the cylinder, a plurality of rolling bodies (15) arranged on this circumferential groove, an annular rolling body retainer (16) rotatably retaining the rolling bodies with part of them projecting to the outer peripheral side, an annular body (17) equipped with a peripheral groove (17a) to accommodate the part of the rolling body part projecting from the retainer on an inner circumference face. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品をプリント配線板の表面に装着する電子部品装着装置の部品として有利に用いることができる回転軸受付き直動軸受に関する。   The present invention relates to a linear motion bearing with a rotary bearing that can be advantageously used as a component of an electronic component mounting apparatus that mounts an electronic component on the surface of a printed wiring board.

従来より、プリント配線板の上方に、下端に電子部品を吸着させたノズルを備える軸体を配置して、この軸体を電子部品が所定の角度で配置されるように周方向に回転移動させ、次いで前記軸体を下方に(プリント配線板の側に)直線移動(滑動)させることにより、電子部品を所定の角度でプリント配線板の表面の所定の位置に装着する電子部品装着装置が知られている。   Conventionally, a shaft body having a nozzle with an electronic component adsorbed on the lower end is arranged above the printed wiring board, and the shaft body is rotated and moved in the circumferential direction so that the electronic component is disposed at a predetermined angle. Next, there is known an electronic component mounting apparatus for mounting an electronic component at a predetermined position on the surface of the printed wiring board at a predetermined angle by linearly moving (sliding) the shaft body downward (to the printed wiring board side). It has been.

上記軸体の直線移動と回転移動とを実現するため、直動軸受と回転軸受とが組み合わされた構成の回転軸受付き直動軸受が用いられている。   In order to realize the linear movement and the rotational movement of the shaft body, a linear motion bearing with a rotary bearing having a combination of a linear motion bearing and a rotary bearing is used.

特許文献1には、ボールねじ溝とボールスプライン溝とを有するボールねじ軸(軸体)に、ボールねじナットとボールスプラインナット(筒体)とが複数のボールを介して嵌め合わされた構成のボールねじ装置が開示されている。   In Patent Document 1, a ball having a configuration in which a ball screw nut and a ball spline nut (tubular body) are fitted via a plurality of balls to a ball screw shaft (shaft body) having a ball screw groove and a ball spline groove. A screw device is disclosed.

上記筒体の内部には軸体が筒体に対して非回転にて滑動可能に収容されている。この軸体を収容する筒体は直動軸受として機能する。筒体の周囲には筒体の長さ方向に互いに間隔をあけて一対の周溝が形成されている。筒体の周囲には、各周溝に配置された複数のボールを介して、上記各ボールを収容する一対の周溝を内周面に備えるハウジングが嵌め合わされている。筒体はハウジングの内部に回転可能に支持されている。この筒体の一対の周溝、周溝に配置された複数のボール、およびハウジングは回転軸受として機能する。   A shaft body is accommodated in the cylinder so as to be slidable with respect to the cylinder. The cylindrical body that accommodates the shaft functions as a linear motion bearing. A pair of circumferential grooves are formed around the cylindrical body at intervals in the longitudinal direction of the cylindrical body. Around the cylindrical body, a housing having a pair of circumferential grooves for accommodating the balls on the inner circumferential surface is fitted via a plurality of balls arranged in the circumferential grooves. The cylinder is rotatably supported inside the housing. The pair of circumferential grooves, the plurality of balls arranged in the circumferential grooves, and the housing function as a rotary bearing.

特許文献2には、前記のボールねじ装置と同様の構成のボールねじ装置が開示されている。特許文献2のボールねじ装置のボールスプラインナット(筒体)には、その内周面から外周面の内輪溝(周溝)に通じる転動体挿入孔が形成されている。各々のボールは、筒体の内周面側から上記転動体挿入孔に挿入され、この挿入孔を通って筒体の外周面の周溝に配置される。   Patent Document 2 discloses a ball screw device having the same configuration as the above-described ball screw device. The ball spline nut (cylinder) of the ball screw device of Patent Document 2 is formed with a rolling element insertion hole that communicates from the inner peripheral surface to the inner ring groove (circumferential groove) on the outer peripheral surface. Each ball is inserted into the rolling element insertion hole from the inner peripheral surface side of the cylinder, and is disposed in a peripheral groove on the outer peripheral surface of the cylinder through the insertion hole.

実開平4−97150号公報(第1図)Japanese Utility Model Publication No. 4-97150 (FIG. 1) 実開平4−110255号公報(第1図)Japanese Utility Model Publication No. 4-110255 (Fig. 1)

前記各文献の装置では、回転軸受に支持された直動軸受を回転移動することにより、直動軸受の筒体に収容された軸体を回転移動させることができる。しかしながら、直動軸受の回転移動に伴って、筒体の各周溝に配置された複数のボールが周溝の長さ方向に回転しながら移動(転動)すると、周溝の内部にて互いに隣接するボールが接触する。各ボールは周溝の内部で互いに同じ向きに回転するため、両者のボールの接触部においては、各ボールの表面が互いに逆向きに移動しながら強く擦り合わされる。このため前記接触によるボールの摩耗、このボールの摩耗による軸体の直線移動及び/又は回転移動の精度の低下が問題になることがある。   In the devices described in the above documents, the shaft body accommodated in the cylindrical body of the linear motion bearing can be rotationally moved by rotationally moving the linear motion bearing supported by the rotary bearing. However, when the plurality of balls arranged in each circumferential groove of the cylindrical body move (roll) while rotating in the length direction of the circumferential groove along with the rotational movement of the linear motion bearing, Adjacent balls touch. Since each ball rotates in the same direction inside the circumferential groove, the surface of each ball is strongly rubbed while moving in the opposite direction at the contact portion of both balls. For this reason, the wear of the ball due to the contact, and the accuracy of the linear movement and / or rotational movement of the shaft due to the wear of the ball may be problematic.

本発明の課題は、製造が容易で、そして軸体を高精度で直線移動及び/又は回転移動させることができる回転軸受付き直動軸受を提供することにある。   An object of the present invention is to provide a linear motion bearing with a rotary bearing that is easy to manufacture and that can linearly move and / or rotate a shaft body with high accuracy.

本発明は、筒体の内部に軸体を非回転にて滑動可能に収容してなる直動軸受、および筒体の周囲に筒体の長さ方向に沿って互いに間隔をあけて装着された二以上の回転軸受からなる回転軸受付き直動軸受であって、上記筒体の外周面の直径が筒体の長さ方向に一定であって、そして上記各回転軸受が、筒体の上記外周面に形成された周溝と、この周溝に配置された複数の転動体と、各転動体の一部を外周側に突き出させた状態で回転可能に保持している環状転動体保持器と、この転動体保持器から突き出された各転動体部分を収容している周溝を内周面に備える環状体とから構成されていることを特徴とする回転軸受付き直動軸受にある。   The present invention is a linear motion bearing in which a shaft body is slidably accommodated in a non-rotating manner inside a cylindrical body, and is mounted around the cylindrical body at intervals from each other along the length direction of the cylindrical body. A linear motion bearing with a rotary bearing comprising two or more rotary bearings, wherein a diameter of an outer peripheral surface of the cylindrical body is constant in a length direction of the cylindrical body, and each rotary bearing is connected to the outer periphery of the cylindrical body A circumferential groove formed on the surface, a plurality of rolling elements arranged in the circumferential groove, and an annular rolling element holder that holds the rolling elements rotatably in a state in which a part of each rolling element protrudes to the outer circumferential side. The linear motion bearing with a rotary bearing is characterized in that it is composed of an annular body provided on the inner peripheral surface with a circumferential groove that accommodates each rolling element portion protruding from the rolling element cage.

本発明の回転軸受付き直動軸受の好ましい態様は、次の通りである。
(1)各回転軸受の環状体が互いに連結されて外筒を構成している。
(2)環状体の内周面の直径と筒体の外周面の直径との差が、転動体の直径の1.2〜1.95倍の範囲内の長さにある。
(3)各回転軸受の環状転動体保持器が、上記各転動体を保持する複数の透孔が形成された上記筒体と同軸に配置された周壁を備えていて、一方の回転軸受の転動体保持器の周壁には、その各透孔から他方の回転軸受の側の端面に到達する複数のスリットが形成されていて、前記他方の回転軸受の転動体保持器の周壁には、その各透孔から前記一方の回転軸受の側の端面に到達する複数のスリットが形成されていて、そして各転動体保持器の各スリットの幅が転動体の直径の0.7〜0.95倍の範囲内の長さにある。
The preferable aspect of the linear motion bearing with a rotary bearing of this invention is as follows.
(1) The annular bodies of the rotary bearings are connected to each other to form an outer cylinder.
(2) The difference between the diameter of the inner peripheral surface of the annular body and the diameter of the outer peripheral surface of the cylindrical body is a length in the range of 1.2 to 1.95 times the diameter of the rolling element.
(3) The annular rolling element cage of each rotary bearing includes a peripheral wall arranged coaxially with the cylindrical body in which a plurality of through holes for holding the respective rolling elements are formed, and the rolling bearing of one rotary bearing is provided. A plurality of slits reaching the end surface of the other rotary bearing from each through hole is formed in the peripheral wall of the moving body cage, and each of the peripheral walls of the rolling body cage of the other rotary bearing is A plurality of slits reaching the end surface of the one rotary bearing from the through hole are formed, and the width of each slit of each rolling element cage is 0.7 to 0.95 times the diameter of the rolling element. The length is within the range.

なお、本明細書で云う前記「筒体の外周面の直径が筒体の長さ方向に一定である」とは、例えば、安全性の確保のために行なわれる筒体の端部の面取りにより生じる筒体の外周面の直径の変動、筒体を製造する際の機械加工により必然的に生じる微細な凹凸に基づく筒体の外周面の直径の変動、筒体の通常の製造誤差(筒体の外周面の直径の±1%以下)に基づく筒体の外周面の直径の変動、あるいは回転軸受付き直動軸受の機能とは無関係に筒体の外周面に形成した凹凸に基づく筒体の外周面の直径の変動を排除することを意味するものではない。   In the present specification, the phrase “the diameter of the outer peripheral surface of the cylinder is constant in the length direction of the cylinder” refers to, for example, chamfering the end of the cylinder that is performed to ensure safety. Variations in the diameter of the outer peripheral surface of the cylinder, fluctuations in the diameter of the outer peripheral surface of the cylinder based on fine irregularities that are inevitably generated by machining when manufacturing the cylinder, and normal manufacturing errors of the cylinder (cylinder Of the cylindrical body based on the irregularities formed on the outer peripheral surface of the cylindrical body regardless of the fluctuation of the diameter of the outer peripheral surface of the cylindrical body based on the diameter of the outer peripheral surface of It does not mean that the fluctuation of the diameter of the outer peripheral surface is excluded.

本発明の回転軸受付き直動軸受では、回転軸受の各々の転動体が環状転動体保持器に保持されているため、筒体の各周溝の内部にて互いに隣接するボールの接触が防止される。このため、ボールの接触(衝突)によるボールの摩耗、このボールの摩耗による軸体の直線移動及び/又は回転移動の精度の低下が抑制される。また、本発明の回転軸受付き直動軸受は、その筒体の外周面の直径が筒体の長さ方向に一定とされている。このため筒体を極めて容易に作製することができる。そして、この筒体の外周面に周溝を形成し、この周溝を利用して筒体の周囲に回転軸受を装着することにより、本発明の回転軸受付き直動軸受を極めて容易に製造することができる。   In the linear motion bearing with a rotary bearing according to the present invention, each rolling element of the rotary bearing is held by the annular rolling element cage, thereby preventing contact between adjacent balls inside each circumferential groove of the cylindrical body. The For this reason, the wear of the ball due to the contact (collision) of the ball and the reduction in the accuracy of the linear movement and / or the rotational movement of the shaft body due to the wear of the ball are suppressed. In the linear motion bearing with a rotary bearing according to the present invention, the diameter of the outer peripheral surface of the cylindrical body is constant in the length direction of the cylindrical body. For this reason, a cylinder can be produced very easily. Then, by forming a circumferential groove on the outer peripheral surface of the cylindrical body and mounting the rotary bearing around the cylindrical body using the circumferential groove, the linear motion bearing with the rotary bearing of the present invention is manufactured very easily. be able to.

本発明の回転軸受付き直動軸受の構成例を示す一部切り欠き正面図である。It is a partially notched front view which shows the structural example of the linear motion bearing with a rotary bearing of this invention. 図1に記入した切断線II−II線に沿って切断した回転軸受付き直動軸受10の拡大断面図である。It is an expanded sectional view of the linear motion bearing 10 with a rotary bearing cut | disconnected along the cutting line II-II line entered in FIG. 図2に示す環状転動体保持器16を図の手前側から見た図である。It is the figure which looked at the annular rolling element holder | retainer 16 shown in FIG. 2 from the near side of the figure. 図3に記入した切断線IV−IV線に沿って切断した環状転動体保持器16の断面図である。It is sectional drawing of the annular rolling element holder | retainer 16 cut | disconnected along the cutting line IV-IV line entered in FIG. 図1の回転軸受付き直動軸受10の使用の態様を示す図である。It is a figure which shows the mode of use of the linear motion bearing 10 with a rotary bearing of FIG. 本発明の回転軸受付き直動軸受の別の構成例を示す一部切り欠き正面図である。It is a partially notched front view which shows another structural example of the linear motion bearing with a rotary bearing of this invention.

本発明の回転軸受付き直動軸受を添付の図面を用いて説明する。図1は、本発明の回転軸受付き直動軸受の構成例を示す一部切り欠き正面図である。図2は、図1に記入した切断線II−II線に沿って切断した回転軸受付き直動軸受10の拡大断面図である。図3は、図2に示す環状転動体保持器16を図の手前側から見た図である。そして図4は、図3に記入した切断線IV−IV線に沿って切断した環状転動体保持器16の断面図である。   A linear motion bearing with a rotary bearing according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partially cutaway front view showing a configuration example of a linear motion bearing with a rotary bearing according to the present invention. FIG. 2 is an enlarged cross-sectional view of the linear motion bearing 10 with a rotary bearing cut along the cutting line II-II entered in FIG. FIG. 3 is a view of the annular rolling element holder 16 shown in FIG. 2 as viewed from the front side of the figure. 4 is a cross-sectional view of the annular rolling element holder 16 cut along the cutting line IV-IV entered in FIG.

図1〜図4に示す回転軸受付き直動軸受10は、筒体11の内部に軸体12を非回転にて滑動可能に収容してなる直動軸受13、および筒体11の周囲に筒体11の長さ方向に沿って互いに間隔をあけて装着された二個の回転軸受14から構成されている。そして、この回転軸受付き直動軸受10は、上記筒体11の外周面の直径が筒体11の長さ方向に一定であって、各回転軸受14が、筒体11の外周面に形成された周溝11aと、周溝11aに配置された複数の転動体15と、各転動体15の一部を外周側に突き出させた状態で回転可能に保持している環状転動体保持器16と、保持器16から突き出された各転動体部分を収容している周溝17aを内周面に備える環状体17とから構成されていることに特徴がある。   A linear motion bearing 10 with a rotary bearing shown in FIG. 1 to FIG. 4 includes a linear motion bearing 13 in which a shaft body 12 is slidably accommodated in a cylindrical body 11 in a non-rotatable manner, and a cylinder around the cylindrical body 11. It consists of two rotary bearings 14 mounted at intervals along the length direction of the body 11. In the linear motion bearing 10 with a rotary bearing, the diameter of the outer peripheral surface of the cylindrical body 11 is constant in the length direction of the cylindrical body 11, and each rotary bearing 14 is formed on the outer peripheral surface of the cylindrical body 11. A circumferential groove 11a, a plurality of rolling elements 15 arranged in the circumferential groove 11a, and an annular rolling element holder 16 that rotatably holds a part of each rolling element 15 protruding to the outer peripheral side. The annular member 17 is provided with a circumferential groove 17a that houses each rolling element portion protruding from the cage 16 on the inner peripheral surface.

本発明の回転軸受付き直動軸受10では、前記のように直動軸受13の筒体11の外周面の直径が筒体11の長さ方向に一定とされている。このため筒体11を極めて容易に作製することができる。そして、この筒体11の外周面に周溝11aを形成し、この周溝11aを利用して筒体11の周囲に回転軸受14を装着することにより、回転軸受付き直動軸受10を極めて容易に製造することができる。   In the linear motion bearing 10 with the rotary bearing of the present invention, the diameter of the outer peripheral surface of the cylindrical body 11 of the linear motion bearing 13 is constant in the length direction of the cylindrical body 11 as described above. For this reason, the cylinder 11 can be produced very easily. Then, a circumferential groove 11a is formed on the outer peripheral surface of the cylindrical body 11, and the rotary bearing 14 is mounted around the cylindrical body 11 using the circumferential groove 11a. Can be manufactured.

筒体11の内周面には、各々筒体11の長さ方向に延びる複数本の溝21が形成されている。そして軸体12の外周面には、各々筒体11の各溝21と対向する位置にて軸体12の長さ方向に延びる複数本の溝22が形成されている。そして、筒体の溝21と、この溝21と対向する軸体の溝22との間には、溝の長さ方向に沿って複数の球体25が配置されている。   A plurality of grooves 21 each extending in the length direction of the cylindrical body 11 are formed on the inner peripheral surface of the cylindrical body 11. A plurality of grooves 22 extending in the length direction of the shaft body 12 are formed on the outer peripheral surface of the shaft body 12 at positions facing the grooves 21 of the cylindrical body 11. A plurality of spheres 25 are arranged along the length direction of the groove between the cylindrical groove 21 and the shaft groove 22 facing the groove 21.

筒体11、軸体12、および球体25は、例えば、鋼や銅合金に代表される金属材料から形成される。   The cylindrical body 11, the shaft body 12, and the spherical body 25 are formed of, for example, a metal material typified by steel or a copper alloy.

筒体11と軸体12との間には、互いに隣接する球体25の接触(衝突)を防止するため筒状転動体保持器26が配設されている。筒状転動体保持器26は、複数の透孔26aを備えており、そして各々の透孔26aの内部に、前記の球体25を回転可能な状態にて保持している。   A cylindrical rolling element holder 26 is disposed between the cylindrical body 11 and the shaft body 12 in order to prevent contact (collision) between the spherical bodies 25 adjacent to each other. The cylindrical rolling element holder 26 includes a plurality of through holes 26a, and holds the spherical body 25 in a rotatable state inside each through hole 26a.

筒状転動体保持器26は、例えば、金属材料や樹脂材料から形成される。金属材料としては、機械加工による透孔26aの形成が容易な金属材料、例えば、真鍮やステンレス鋼を用いることが好ましい。樹脂材料としては、機械的強度の大きな樹脂材料、例えば、ポリアセタール樹脂、ポリフェニレンスルフィド(PPS)樹脂、あるいはポリエーテルエーテルケトン(PEEK)樹脂を用いることが好ましい。   The cylindrical rolling element holder 26 is made of, for example, a metal material or a resin material. As the metal material, it is preferable to use a metal material, for example, brass or stainless steel, which can easily form the through holes 26a by machining. As the resin material, it is preferable to use a resin material having high mechanical strength, for example, a polyacetal resin, a polyphenylene sulfide (PPS) resin, or a polyether ether ketone (PEEK) resin.

また、軸体12が直線移動したときに、筒状転動体保持器26が球体25と共に筒体11の外に出ないように、筒体11の各々の端部の内周面に形成された周溝11bには、スナップリング(止め輪)27が嵌め合わされている。   Moreover, it was formed in the inner peripheral surface of each edge part of the cylinder 11 so that the cylindrical rolling element holder | retainer 26 may not come out of the cylinder 11 with the spherical body 25, when the shaft body 12 moves linearly. A snap ring (retaining ring) 27 is fitted in the circumferential groove 11b.

前記のように、筒体11の溝21と軸体12の溝22との間には球体25が配置されているため、軸体12は、筒体11の内部にて周方向に回転することはできない。その一方で、軸体12の長さ方向に力が加わると、各々の球体25が、筒体11の溝21と軸体12の溝22との間にて溝の長さ方向に沿って転動するため、軸体12は、筒体11の内部にて長さ方向に滑動(直線移動)することができる。   As described above, since the spherical body 25 is disposed between the groove 21 of the cylindrical body 11 and the groove 22 of the shaft body 12, the shaft body 12 rotates in the circumferential direction inside the cylindrical body 11. I can't. On the other hand, when a force is applied in the length direction of the shaft body 12, each spherical body 25 rolls along the length direction of the groove between the groove 21 of the cylindrical body 11 and the groove 22 of the shaft body 12. Therefore, the shaft body 12 can slide (linearly move) in the length direction inside the cylinder body 11.

直動軸受としては、筒体の内部に軸体が非回転にて滑動可能に収容されている公知の直動軸受(一般に、直動案内装置と呼ばれることもある)を用いることができる。   As the linear motion bearing, a publicly known linear motion bearing (generally called a linear motion guide device) in which a shaft body is slidably accommodated in a non-rotating manner can be used.

このような直動軸受の例としては、筒体及び軸体の対向面の一方の面に長さ方向に沿って溝を形成し、そして他方の面に前記溝と嵌め合いとなる突起を形成することにより前記の筒体と軸体とを係合させ、これにより軸体を周方向に非回転とし、そして長さ方向に滑動可能とした直動軸受が挙げられる。   As an example of such a linear bearing, a groove is formed along the length direction on one of the opposing surfaces of the cylindrical body and the shaft body, and a protrusion that fits into the groove is formed on the other surface. By doing so, there is a linear motion bearing in which the cylindrical body and the shaft body are engaged, thereby making the shaft body non-rotating in the circumferential direction and slidable in the length direction.

別の例としては、筒体及び軸体の対向面の各々に長さ方向に沿って溝を形成し、そして筒体の溝と軸体の溝との間に複数の転動体を配置することにより前記の筒体と軸体とを転動体を介して係合させ、これにより軸体を周方向に非回転とし、そして長さ方向に滑動可能とした直動軸受(代表例、図1に示す直動軸受13)が挙げられる。   As another example, a groove is formed along the length direction on each of the opposing surfaces of the cylinder and the shaft, and a plurality of rolling elements are disposed between the groove of the cylinder and the groove of the shaft. The cylindrical body and the shaft body are engaged with each other through a rolling element, thereby making the shaft body non-rotating in the circumferential direction and slidable in the length direction (typical example, in FIG. 1). The linear bearing 13) shown is mentioned.

更に別の例としては、軸体の外周面に長さ方向に沿って溝を形成し、この溝に複数の転動体を配置することにより前記の軸体を長さ方向に滑動可能とし、その一方で、前記の複数の転動体を筒体と軸体との間にて循環させる軌道を持つ筒状転動体保持器を筒体の内部に固定することにより前記の筒体と軸体とを筒状転動体保持器、そして転動体を介して係合させ、これにより軸体を周方向に非回転とした直動軸受が挙げられる。   As yet another example, a groove is formed in the outer circumferential surface of the shaft body along the length direction, and a plurality of rolling elements are arranged in the groove so that the shaft body can slide in the length direction. On the other hand, the cylindrical body and the shaft body are fixed by fixing a cylindrical rolling body holder having a track for circulating the plurality of rolling bodies between the cylindrical body and the shaft body. Examples thereof include a cylindrical rolling element cage and a linear motion bearing that is engaged via the rolling element, thereby making the shaft body non-rotating in the circumferential direction.

直動軸受の構成は周知であるため、これ以上の説明は省略する。   Since the structure of the linear bearing is well known, further explanation is omitted.

前記のように、本発明の回転軸受付き直動軸受10の各回転軸受14は、筒体11の外周面に形成された周溝11aと、周溝11aに配置された複数の転動体(球体)15と、各転動体15の一部分を外周側に突き出させた状態で回転可能に保持している環状転動体保持器16と、保持器16から突き出された各転動体部分を収容している周溝17aを内周面に備える環状体17とから構成されている。   As described above, each rotary bearing 14 of the linear motion bearing 10 with a rotary bearing according to the present invention includes a circumferential groove 11a formed on the outer peripheral surface of the cylindrical body 11, and a plurality of rolling elements (spheres) arranged in the circumferential groove 11a. 15), an annular rolling element holder 16 that rotatably holds a part of each rolling element 15 protruding to the outer peripheral side, and each rolling element portion protruding from the holder 16. It is comprised from the annular body 17 provided with the circumferential groove 17a in an internal peripheral surface.

そして、例えば、前記の直動軸受13の軸体12を周方向に回転させると、この軸体12を非回転の状態にて収容している筒体11もまた周方向に回転する。筒体11の回転に伴い、各々の回転軸受14の複数の転動体15が筒体11の周溝11aに沿って転動する。このため、直動軸受13は、二個の回転軸受14に支持された状態で円滑に回転することができる。上記回転軸受14の転動体としては、ころ(ローラー)を用いることもできる。   For example, when the shaft body 12 of the linear motion bearing 13 is rotated in the circumferential direction, the cylindrical body 11 that accommodates the shaft body 12 in a non-rotating state also rotates in the circumferential direction. Along with the rotation of the cylinder 11, the plurality of rolling elements 15 of each rotary bearing 14 roll along the circumferential groove 11 a of the cylinder 11. For this reason, the linear motion bearing 13 can rotate smoothly while being supported by the two rotary bearings 14. As the rolling elements of the rotary bearing 14, rollers (rollers) can be used.

各回転軸受14の環状体17と筒体11との間には、環状転動体保持器16が配設されている。環状転動体保持器16は、図3及び図4に示すように複数の透孔16aを備えており、そして各透孔16aの内部に前記転動体15を回転可能な状態で保持している。このため、互いに隣接する転動体15の接触が防止される。従って、転動体15の摩耗が抑制され、直動軸受13の筒体11が複数の転動体15を介して環状体17に緊密に支持されるため、直動軸受13の筒体11に収容された軸体12の高精度での回転移動が実現される。更には、環状体17と筒体11との軸方向への相対的な微動の発生が抑制されるため、直動軸受13の筒体11に収容された軸体12の高精度での直線移動が実現される。   An annular rolling element cage 16 is disposed between the annular body 17 and the cylinder 11 of each rotary bearing 14. As shown in FIGS. 3 and 4, the annular rolling element holder 16 includes a plurality of through holes 16 a, and holds the rolling elements 15 in a rotatable state inside each through hole 16 a. For this reason, the contact of the adjacent rolling elements 15 is prevented. Therefore, the wear of the rolling element 15 is suppressed, and the cylindrical body 11 of the linear motion bearing 13 is tightly supported by the annular body 17 via the plurality of rolling elements 15, so that it is accommodated in the cylindrical body 11 of the linear motion bearing 13. Further, the rotational movement of the shaft body 12 with high accuracy is realized. Further, since the occurrence of relative fine movement in the axial direction between the annular body 17 and the cylindrical body 11 is suppressed, the linear movement with high accuracy of the shaft body 12 accommodated in the cylindrical body 11 of the linear motion bearing 13 is achieved. Is realized.

図1〜図4に示すように、環状転動体保持器16は、上記各転動体15を保持する複数の透孔16aが形成された上記筒体11と同軸に配置された周壁16bを備えていて、一方(図1にて上側)の回転軸受14の転動体保持器16の周壁16bには、その各透孔16aから他方(図1にて下側)の回転軸受14の側の端面に到達する複数のスリット16cが形成されていて、前記他方(下側)の回転軸受14の転動体保持器16の周壁16bには、その各透孔16aから前記一方(上側)の回転軸受14の側の端面に到達する複数のスリット16cが形成されていて、そして各転動体保持器16の各スリット16cの幅(W1)が転動体15の直径(図2:D3)の0.7〜0.95倍の範囲内の長さにあることが好ましい。なお、転動体として、ころ(ローラー)を用いる場合、前記の「転動体の直径」とは、ころの中心軸に垂直な断面における直径(但し、ころの直径が軸方向に変動する場合には最大の直径)を意味する。 As shown in FIGS. 1 to 4, the annular rolling element holder 16 includes a peripheral wall 16 b disposed coaxially with the cylindrical body 11 in which a plurality of through holes 16 a for holding the rolling elements 15 are formed. Then, the peripheral wall 16b of the rolling element cage 16 of the rotary bearing 14 of one side (upper side in FIG. 1) extends from each through hole 16a to the end surface of the rotary bearing 14 side of the other side (lower side in FIG. 1). A plurality of reaching slits 16c are formed, and the peripheral wall 16b of the rolling element holder 16 of the other (lower) rotary bearing 14 is connected to the one (upper) rotary bearing 14 from each through hole 16a. A plurality of slits 16c reaching the end face on the side are formed, and the width (W 1 ) of each slit 16c of each rolling element holder 16 is 0.7 of the diameter (FIG. 2: D 3 ) of the rolling element 15. It is preferable that the length is in a range of ˜0.95 times. In addition, when using a roller (roller) as a rolling element, the above-mentioned "diameter of a rolling element" is a diameter in a cross section perpendicular to the central axis of the roller (however, when the diameter of the roller varies in the axial direction) Means the largest diameter).

環状転動体保持器16は、環状体17の周溝17aと筒体11の周溝11aとの間に複数の転動体15を配置したのち、環状体17の一方の端部の側から環状体17と筒体11との間に挿入される。環状転動体保持器16を環状体17と筒体11との間に挿入する際に、各々の転動体15が透孔16aの内部に収容される。   The annular rolling element retainer 16 has a plurality of rolling elements 15 disposed between the circumferential groove 17 a of the annular body 17 and the circumferential groove 11 a of the cylindrical body 11, and then the annular body from one end side of the annular body 17. 17 and the cylinder 11 are inserted. When the annular rolling element holder 16 is inserted between the annular body 17 and the cylindrical body 11, each rolling element 15 is accommodated in the through hole 16a.

図3及び図4に示すように、環状転動体保持器16の各スリット16cの透孔16aの側とは逆側の端部の幅(W2)は、前記の幅(W1)よりも拡大されていることが好ましい。これにより、前記端部から転動体15がスリット16cに進入し易くなるため、環状転動体保持器16の透孔16aの内部に転動体15を収容することが更に容易になる。スリット16cの透孔16aの側とは逆側の端部の幅(W2)は、前記の幅(W1)の1.05〜2倍(特に、1.05〜1.5倍)の範囲内にあることが好ましい。 As shown in FIGS. 3 and 4, the width (W 2 ) of the end of each slit 16 c of the annular rolling element holder 16 opposite to the through hole 16 a side is larger than the width (W 1 ). It is preferably enlarged. Thereby, since the rolling element 15 easily enters the slit 16c from the end portion, it is further easy to accommodate the rolling element 15 in the through hole 16a of the annular rolling element holder 16. The width (W 2 ) of the end of the slit 16c opposite to the through hole 16a is 1.05 to 2 times (particularly 1.05 to 1.5 times) the width (W 1 ). It is preferable to be within the range.

環状転動体保持器16の周壁16bのスリット16cが形成されている側とは逆側の端部には、この端部周縁から内周側に延びる環状の突出部16dが備えられていることが好ましい。これにより、環状転動体保持器16の機械的強度が大きくなる。   An end of the peripheral wall 16b of the annular rolling element retainer 16 opposite to the side where the slit 16c is formed is provided with an annular protrusion 16d extending from the periphery of the end toward the inner periphery. preferable. Thereby, the mechanical strength of the annular rolling element holder 16 is increased.

回転軸受14の環状体17及び転動体15は、直動軸受13の筒体11及び球体25の場合と同様に、例えば、鋼や銅合金に代表される金属材料から形成される。環状転動体保持器16は、筒状転動体保持器26の場合と同様に金属材料や樹脂材料から形成される。   The annular body 17 and the rolling element 15 of the rotary bearing 14 are made of, for example, a metal material typified by steel or a copper alloy, as in the case of the cylindrical body 11 and the spherical body 25 of the linear motion bearing 13. The annular rolling element holder 16 is formed of a metal material or a resin material as in the case of the cylindrical rolling element holder 26.

環状体17の内周面の直径(図2:D1)と筒体11の外周面の直径(図2:D2)との差は、転動体15の直径(図2:D3)の1.2〜1.95倍の範囲内の長さにあることが好ましい。これにより、環状体17を筒体11の径方向に移動させることによって、環状体17と筒体11との間に大きな隙間が形成される。この隙間から、上記複数の転動体15を環状体17と筒体11との間に容易に挿入することが可能になる。 The difference between the diameter of the inner peripheral surface of the annular body 17 (FIG. 2: D 1 ) and the diameter of the outer peripheral surface of the cylindrical body 11 (FIG. 2: D 2 ) is the diameter of the rolling element 15 (FIG. 2: D 3 ). The length is preferably in the range of 1.2 to 1.95 times. Thus, a large gap is formed between the annular body 17 and the cylinder 11 by moving the annular body 17 in the radial direction of the cylinder 11. From the gap, the plurality of rolling elements 15 can be easily inserted between the annular body 17 and the cylindrical body 11.

環状体17の内周面の直径と筒体11の外周面の直径との差が転動体15の直径の1.2倍以上の長さであると、上記隙間が大きくなるため転動体15の挿入が容易である。その一方で、環状体17の内周面の直径と筒体11の外周面の直径との差が転動体15の直径の1.95倍以下であると、環状体17及び筒体11の各々の周溝の深さを十分に大きくすることができるため、両周溝の間からの転動体15の脱落の発生が抑制される。   If the difference between the diameter of the inner peripheral surface of the annular body 17 and the diameter of the outer peripheral surface of the cylindrical body 11 is 1.2 or more times the diameter of the rolling element 15, the gap becomes larger, so that the rolling element 15 Easy to insert. On the other hand, when the difference between the diameter of the inner peripheral surface of the annular body 17 and the diameter of the outer peripheral surface of the cylindrical body 11 is 1.95 times or less the diameter of the rolling element 15, each of the annular body 17 and the cylindrical body 11 Since the depth of the circumferential groove can be sufficiently increased, the rolling element 15 is prevented from falling off between the circumferential grooves.

環状体17の内周面の直径と筒体11の外周面の直径との差は、転動体15の直径の1.3〜1.8倍の範囲内の長さにあることが好ましく、1.3〜1.7倍の範囲内にあることが更に好ましく、1.3〜1.6倍の範囲内にあることが特に好ましい。   The difference between the diameter of the inner peripheral surface of the annular body 17 and the diameter of the outer peripheral surface of the cylindrical body 11 is preferably a length in the range of 1.3 to 1.8 times the diameter of the rolling element 15. More preferably within the range of 3 to 1.7 times, and particularly preferably within the range of 1.3 to 1.6 times.

本発明の回転軸受付き直動軸受10では、回転軸受14の複数の転動体15の軌道として、直動軸受13の筒体11の外周面に形成された周溝11aを利用している。このような周溝11aは、例えば、旋盤や円筒研削盤などを用いた機械加工により、周溝11aの中心軸(すなわち回転軸受14の中心軸)と、筒体11の中心軸(すなわち直動軸受13の中心軸)とを正確に一致させた状態で形成することが容易である。そして、この筒体11の外周面の周溝11aに複数の転動体15を配置して回転軸受14を組み立てることにより、回転軸受14の中心軸を直動軸受13の中心軸と容易に一致させることができる。このため、本発明の回転軸受付き直動軸受10は、組み立ての精度を考慮することなく、軸体12の高精度での直線移動及び/又は回転移動を安定に実現することができる。   In the linear motion bearing 10 with a rotary bearing of the present invention, the circumferential groove 11 a formed on the outer peripheral surface of the cylindrical body 11 of the linear motion bearing 13 is used as the raceway of the plurality of rolling elements 15 of the rotary bearing 14. Such a circumferential groove 11a is formed by, for example, machining using a lathe or a cylindrical grinding machine, and the central axis of the circumferential groove 11a (that is, the central axis of the rotary bearing 14) and the central axis of the cylindrical body 11 (that is, linear motion). It is easy to form in a state where the center axis of the bearing 13 is exactly matched. Then, by arranging a plurality of rolling elements 15 in the circumferential groove 11 a on the outer peripheral surface of the cylindrical body 11 and assembling the rotary bearing 14, the central axis of the rotary bearing 14 is easily aligned with the central axis of the linear motion bearing 13. be able to. For this reason, the linear motion bearing 10 with a rotary bearing of the present invention can stably realize linear movement and / or rotational movement of the shaft body 12 with high accuracy without taking assembly accuracy into consideration.

また、回転軸受付き直動軸受10は、回転軸受14の複数の転動体15の軌道として、直動軸受13の筒体11の外周面に形成された周溝11aを利用するため、その直径方向のサイズを小さくすることが容易である。   Moreover, since the linear motion bearing 10 with a rotation bearing uses the circumferential groove 11a formed in the outer peripheral surface of the cylindrical body 11 of the linear motion bearing 13 as a track | orbit of the some rolling element 15 of the rotation bearing 14, the diameter direction It is easy to reduce the size.

なお、直動軸受13の筒体11の周囲に装着する回転軸受の数は、二個以上である限り特に制限はないが、組み立てが容易であることから二〜四個の範囲内にあることが好ましく、二個であることが特に好ましい。   The number of rotary bearings to be mounted around the cylindrical body 11 of the linear motion bearing 13 is not particularly limited as long as it is two or more, but it is within a range of two to four because it is easy to assemble. Is preferable, and two is particularly preferable.

図5は、図1の回転軸受付き直動軸受10の使用の態様を示す図である。図5には、電子部品をプリント配線板の表面に装着する装置の要部が示されている。   FIG. 5 is a diagram showing a mode of use of the linear motion bearing 10 with a rotary bearing in FIG. 1. FIG. 5 shows a main part of an apparatus for mounting electronic components on the surface of a printed wiring board.

図5に示すように、回転軸受付き直動軸受10は、例えば、支柱51に固定された筒状の容器52の内部に収容固定された状態にて用いられる。この筒状容器52は、本体52aと、本体52aの上部にネジ止め可能な蓋52bとから構成されている。本体52aの内側には、各々の回転軸受14の環状体17の揺動を防止する筒状のスペーサ53が嵌め合わされている。   As shown in FIG. 5, the linear motion bearing 10 with a rotary bearing is used, for example, in a state of being housed and fixed in a cylindrical container 52 fixed to a support column 51. This cylindrical container 52 is comprised from the main body 52a and the lid | cover 52b which can be screwed to the upper part of the main body 52a. A cylindrical spacer 53 that prevents the annular body 17 of each rotary bearing 14 from swinging is fitted inside the main body 52a.

回転軸受付き直動軸受10の軸体12の上端部には、排気管54を軸体12の透孔(図1:12a)に接続する接続部材55が固定されている。排気管54及び接続部材55の気体通路55aを介して、軸体12の透孔の内部をポンプなどで排気することにより、軸体12の下端部に電子部品を吸着させることができる。この軸体12の下端部には、電子部品を吸着するノズルを付設することもできる。なお、ノズルに排気管が接続され、ノズル単独で電子部品の吸着が可能である場合には、軸体12に透孔(図1:12a)を設ける必要はない。   A connecting member 55 for connecting the exhaust pipe 54 to the through hole (FIG. 1: 12a) of the shaft body 12 is fixed to the upper end portion of the shaft body 12 of the linear motion bearing 10 with a rotary bearing. By exhausting the inside of the through hole of the shaft body 12 with a pump or the like through the exhaust pipe 54 and the gas passage 55 a of the connection member 55, the electronic component can be adsorbed to the lower end portion of the shaft body 12. A nozzle for attracting an electronic component can be attached to the lower end portion of the shaft body 12. When an exhaust pipe is connected to the nozzle and the electronic component can be adsorbed by the nozzle alone, it is not necessary to provide a through hole (FIG. 1: 12a) in the shaft body 12.

軸体12の上端部には、前記の接続部材55を介して、回転駆動装置56aが接続されている。そして回転駆動装置56aを作動させ、軸体12(すなわち直動軸受13の全体)を回転させることにより、軸体12の下端部に吸着した電子部品を所定の角度で回転させることができる。   A rotation driving device 56 a is connected to the upper end portion of the shaft body 12 via the connection member 55. Then, by operating the rotation drive device 56a and rotating the shaft body 12 (that is, the entire linear motion bearing 13), the electronic component attracted to the lower end portion of the shaft body 12 can be rotated at a predetermined angle.

また、回転駆動装置56aは、支柱51に設置された回転駆動装置56bに送りねじ57を介して接続されている。送りねじ57は、ねじ軸57aとナット57bとから構成されている。そして回転駆動装置56bを作動させ、送りねじ57のナット57bを、ナット57bに固定された回転駆動装置56a及び軸体12と共に上下方向に移動させることにより、軸体12の下端部に吸着した電子部品を昇降させることができる。   The rotation drive device 56 a is connected to a rotation drive device 56 b installed on the support column 51 via a feed screw 57. The feed screw 57 includes a screw shaft 57a and a nut 57b. Then, the rotation drive device 56b is operated, and the nut 57b of the feed screw 57 is moved in the vertical direction together with the rotation drive device 56a fixed to the nut 57b and the shaft body 12, so that the electrons adsorbed on the lower end portion of the shaft body 12 are absorbed. Parts can be raised and lowered.

従って、回転軸受付き直動軸受10の軸体12の下端部に電子部品を吸着させ、例えば、この軸体12を電子部品が所定の角度で配置されるように回転させ、次いで下降させることにより、電子部品をプリント配線板の表面に装着することができる。   Accordingly, an electronic component is attracted to the lower end portion of the shaft body 12 of the linear motion bearing 10 with a rotary bearing, and, for example, the shaft body 12 is rotated so that the electronic component is arranged at a predetermined angle, and then lowered. The electronic component can be mounted on the surface of the printed wiring board.

なお、直動軸受13の筒体11の上端部に筒状の接続部品を付設し、この筒状接続部品を回転させることにより、筒状接続部品に接続された筒体11を軸体12と共に回転させることもできる。すなわち、軸体12を回転させる回転駆動装置を筒状接続部品を介して筒体11に、そして軸体12を直線移動させる送りねじ及び回転駆動装置(あるいは直動駆動装置)を軸体12に、それぞれ独立に接続することもできる。   A cylindrical connecting part is attached to the upper end portion of the cylindrical body 11 of the linear motion bearing 13, and the cylindrical connecting part is rotated together with the shaft body 12 by rotating the cylindrical connecting part. It can also be rotated. That is, a rotary drive device that rotates the shaft body 12 is connected to the cylinder body 11 through the cylindrical connecting part, and a feed screw and a rotary drive device (or a linear drive device) that linearly moves the shaft body 12 are connected to the shaft body 12. They can also be connected independently.

図6は、本発明の回転軸受付き直動軸受の別の構成例を示す一部切り欠き正面図である。   FIG. 6 is a partially cutaway front view showing another configuration example of the linear motion bearing with a rotary bearing of the present invention.

図6の回転軸受付き直動軸受60の構成は、直動軸受13の筒体11の周囲に装着された各々の回転軸受14の環状体が互いに連結されて外筒67を構成していること以外は図1の直動軸受10と同様である。   In the configuration of the linear motion bearing 60 with a rotary bearing in FIG. 6, the annular bodies of the rotary bearings 14 mounted around the cylindrical body 11 of the linear motion bearing 13 are connected to each other to form an outer cylinder 67. Except for this, it is the same as the linear motion bearing 10 of FIG.

回転軸受付き直動軸受60は、その外筒67が揺動し難いため、軸体12を更に高精度にて直線移動及び/又は回転させることができる。   Since the outer cylinder 67 is less likely to swing in the linear motion bearing 60 with a rotary bearing, the shaft body 12 can be linearly moved and / or rotated with higher accuracy.

10 回転軸受付き直動軸受
11 筒体
11a、11b 周溝
12 軸体
12a 透孔
13 直動軸受
14 回転軸受
15 転動体
16 環状転動体保持器
16a 透孔
16b 周壁
16c スリット
16d 環状の突出部
17 環状体
17a 周溝
21 筒体11の溝
22 軸体12の溝
25 球体
26 筒状転動体保持器
26a 透孔
27 スナップリング
51 支柱
52 筒状の容器
52a 本体
52b 蓋
53 筒状のスペーサ
54 排気管
55 接続部材
55a 気体通路
56a、56b 回転駆動装置
57 送りねじ
57a ねじ軸
57b ナット
60 回転軸受付き直動軸受
67 外筒
1 環状体17の内周面の直径
2 筒体11の外周面の直径
3 転動体15の直径
1 スリット16cの幅
2 スリット16cの透孔16aの側とは逆側の端部の幅
DESCRIPTION OF SYMBOLS 10 Linear motion bearing with rotary bearing 11 Cylindrical body 11a, 11b Circumferential groove 12 Shaft body 12a Through-hole 13 Linear motion bearing 14 Rotary bearing 15 Rolling body 16 Annular rolling element holder 16a Through hole 16b Peripheral wall 16c Slit 16d Annular protrusion 17 Annular body 17a Circumferential groove 21 Groove of cylindrical body 22 Groove of shaft body 12 25 Sphere 26 Cylindrical rolling element cage 26a Through hole 27 Snap ring 51 Post 52 Cylindrical container 52a Main body 52b Lid 53 Cylindrical spacer 54 Exhaust Pipe 55 Connecting member 55a Gas passage 56a, 56b Rotation drive device 57 Feed screw 57a Screw shaft 57b Nut 60 Linear motion bearing with rotary bearing 67 Outer cylinder D 1 Diameter of inner peripheral surface of annular body D 2 Outer surface of cylindrical body 11 Diameter D 3 diameter of rolling element 15 W 1 slit 16c width W 2 slit 16c end width opposite to through hole 16a side

Claims (4)

筒体の内部に軸体を非回転にて滑動可能に収容してなる直動軸受、および筒体の周囲に該筒体の長さ方向に沿って互いに間隔をあけて装着された二以上の回転軸受からなる回転軸受付き直動軸受であって、
上記筒体の外周面の直径が該筒体の長さ方向に一定であって、そして上記各回転軸受が、筒体の上記外周面に形成された周溝と、該周溝に配置された複数の転動体と、各転動体の一部を外周側に突き出させた状態で回転可能に保持している環状転動体保持器と、該転動体保持器から突き出された各転動体部分を収容している周溝を内周面に備える環状体とから構成されていることを特徴とする回転軸受付き直動軸受。
A linear motion bearing in which a shaft body is slidably accommodated in a non-rotating manner inside a cylindrical body, and two or more mounted around the cylindrical body at intervals from each other along the length direction of the cylindrical body A linear motion bearing with a rotary bearing comprising a rotary bearing,
The diameter of the outer peripheral surface of the cylindrical body is constant in the length direction of the cylindrical body, and the rotary bearings are arranged in a circumferential groove formed in the outer peripheral surface of the cylindrical body, and the circumferential groove. Accommodates a plurality of rolling elements, an annular rolling element holder rotatably holding a part of each rolling element protruding to the outer peripheral side, and each rolling element portion protruding from the rolling element holder A linear motion bearing with a rotary bearing, comprising: an annular body having a circumferential groove on an inner peripheral surface thereof.
各回転軸受の環状体が互いに連結されて外筒を構成している請求項1に記載の回転軸受付き直動軸受。   The linear motion bearing with a rotary bearing according to claim 1, wherein the annular bodies of the rotary bearings are connected to each other to form an outer cylinder. 環状体の内周面の直径と筒体の外周面の直径との差が、転動体の直径の1.2〜1.95倍の範囲内の長さにある請求項1もしくは2のうちのいずれかの項に記載の回転軸受付き直動軸受。   The difference between the diameter of the inner peripheral surface of the annular body and the diameter of the outer peripheral surface of the cylindrical body lies in a length within a range of 1.2 to 1.95 times the diameter of the rolling element. A linear motion bearing with a rotary bearing according to any one of the items. 各回転軸受の環状転動体保持器が、上記各転動体を保持する複数の透孔が形成された上記筒体と同軸に配置された周壁を備えていて、一方の回転軸受の転動体保持器の周壁には、その各透孔から他方の回転軸受の側の端面に到達する複数のスリットが形成されていて、前記他方の回転軸受の転動体保持器の周壁には、その各透孔から前記一方の回転軸受の側の端面に到達する複数のスリットが形成されていて、そして各転動体保持器の各スリットの幅が転動体の直径の0.7〜0.95倍の範囲内の長さにある請求項1乃至3のうちのいずれかの項に記載の回転軸受付き直動軸受。   An annular rolling element cage of each rotary bearing includes a peripheral wall arranged coaxially with the cylindrical body in which a plurality of through holes for holding the rolling elements are formed, and the rolling element cage of one rotary bearing A plurality of slits that reach the end surface of the other rotary bearing from the respective through holes are formed in the peripheral wall of the other rotary bearing, and the peripheral wall of the rolling element cage of the other rotary bearing is formed from the respective through holes. A plurality of slits reaching the end surface on the one rotary bearing side are formed, and the width of each slit of each rolling element holder is in the range of 0.7 to 0.95 times the diameter of the rolling element. The linear motion bearing with a rotary bearing according to any one of claims 1 to 3, wherein the linear motion bearing is in length.
JP2009235211A 2008-10-10 2009-10-09 Linear motion bearing with rotary bearing Pending JP2010112554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235211A JP2010112554A (en) 2008-10-10 2009-10-09 Linear motion bearing with rotary bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008264219 2008-10-10
JP2009235211A JP2010112554A (en) 2008-10-10 2009-10-09 Linear motion bearing with rotary bearing

Publications (2)

Publication Number Publication Date
JP2010112554A true JP2010112554A (en) 2010-05-20
JP2010112554A5 JP2010112554A5 (en) 2012-06-28

Family

ID=42301253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235211A Pending JP2010112554A (en) 2008-10-10 2009-10-09 Linear motion bearing with rotary bearing

Country Status (1)

Country Link
JP (1) JP2010112554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412920A (en) * 2022-02-24 2022-04-29 西安航天动力研究所 Multi-row ball linear rotation composite stroke bearing with play structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142021A (en) * 1982-02-16 1983-08-23 Hiroshi Teramachi Ball spline with support bearing
WO2000068587A1 (en) * 1999-05-10 2000-11-16 Nsk Ltd. Rolling bearing
JP2006125433A (en) * 2004-10-26 2006-05-18 Nsk Ltd Deep groove ball bearing and combined ball bearing
JP2006207684A (en) * 2005-01-27 2006-08-10 Nachi Fujikoshi Corp Rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142021A (en) * 1982-02-16 1983-08-23 Hiroshi Teramachi Ball spline with support bearing
WO2000068587A1 (en) * 1999-05-10 2000-11-16 Nsk Ltd. Rolling bearing
JP2006125433A (en) * 2004-10-26 2006-05-18 Nsk Ltd Deep groove ball bearing and combined ball bearing
JP2006207684A (en) * 2005-01-27 2006-08-10 Nachi Fujikoshi Corp Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412920A (en) * 2022-02-24 2022-04-29 西安航天动力研究所 Multi-row ball linear rotation composite stroke bearing with play structure
CN114412920B (en) * 2022-02-24 2024-02-09 西安航天动力研究所 Multi-row ball linear rotation composite stroke bearing with play structure

Similar Documents

Publication Publication Date Title
JP5955309B2 (en) Electric linear actuator and electric motor thereof
TWI644038B (en) Actuator
JP2009287587A (en) Ultrathin cross-roller bearing
KR20020044083A (en) Guide device for linear motion
JP2009014205A (en) Synthetic resin cage and angular ball bearing
JP5487924B2 (en) Corospline and ball screw with corospline
JP5496633B2 (en) Linear motion guide device with rotating bearing
JP2010112554A (en) Linear motion bearing with rotary bearing
JP5410948B2 (en) Linear motion guide device
JP5644407B2 (en) Ball-climbing structure of linear motion device
JP2007255438A (en) Feeding screw device
JP2013238276A (en) Linear motion bearing
JP3978893B2 (en) Linear motion bearing device
JP2009024840A (en) Spherical bearing
JP2009068650A (en) Linear motion actuator
JP2007155036A (en) Linear bush, and its manufacturing method
JP2011112206A (en) Ball screw with ball spline
JP2009052582A (en) Rolling bearing device
JP2005344889A (en) Planetary roller screw device
JP2008232396A (en) Linear motion device
JP2009191939A (en) Tapered roller bearing
JP2010281344A (en) Linear motion bearing with rotary bearing
JP2010281416A (en) Linear motion bearing with rotary bearing
JP2011163505A (en) Feed screw with linear motion bearing
JP5794756B2 (en) Ball screw with direct acting bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130329