JP2010111599A - Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid - Google Patents

Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid Download PDF

Info

Publication number
JP2010111599A
JP2010111599A JP2008283659A JP2008283659A JP2010111599A JP 2010111599 A JP2010111599 A JP 2010111599A JP 2008283659 A JP2008283659 A JP 2008283659A JP 2008283659 A JP2008283659 A JP 2008283659A JP 2010111599 A JP2010111599 A JP 2010111599A
Authority
JP
Japan
Prior art keywords
ionic liquid
anion
power storage
compound
imidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008283659A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kai
裕之 甲斐
Hiroteru Fujita
弘輝 藤田
Yoshinori Taio
良則 對尾
Kazuo Takimiya
和男 瀧宮
Eigo Miyazaki
栄吾 宮碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Hiroshima University NUC
Original Assignee
Mazda Motor Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Hiroshima University NUC filed Critical Mazda Motor Corp
Priority to JP2008283659A priority Critical patent/JP2010111599A/en
Publication of JP2010111599A publication Critical patent/JP2010111599A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ionic liquid that is low viscous and excellently flame-retardant and a power storage apparatus using the same. <P>SOLUTION: The ionic liquid is composed of a cation having imidazole represented by general formula (1) as a main skeleton, and an anion (A<SP>-</SP>). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、イオン液体およびその製造方法、並びにこのイオン液体を用いた蓄電装置に関する。   The present invention relates to an ionic liquid, a manufacturing method thereof, and a power storage device using the ionic liquid.

イオン液体は、難燃性、イオン伝導性、不揮発性、高極性、溶解性などの種々の特性を併せ持ち、有機合成化学の分野では特殊反応媒体や難溶解物質の溶解剤としての利用、例えばクラウンエーテルのような相間移動触媒などの特異的触媒としての利用などがなされている。また、イオン液体は、キャパシタ、リチウムイオン電池などの二次電池の非水電解質材や、色素増感型太陽電池、電界効果トランジスタ、有機メモリ、有機アクチュエータなどの電子デバイス関連分野への利用が可能であり、近年、注目を集めている(例えば特許文献1,2)。このようなイオン液体は、それ単独で利用される場合もあるが、他の化合物を添加した形態での利用も可能である。
特開2005−239580号公報 特開2002−3478号公報 Christian P. Mehnert et al., “Biphasic hydroformylation catalysis in ionic liquid media” Polyhedron 23 (2004) 2679-2688
Ionic liquids have various properties such as flame retardancy, ion conductivity, non-volatility, high polarity, and solubility, and in the field of organic synthetic chemistry, they are used as a special reaction medium or as a solubilizer for hardly soluble substances, such as crowns. It is used as a specific catalyst such as a phase transfer catalyst such as ether. In addition, ionic liquids can be used in non-aqueous electrolyte materials for secondary batteries such as capacitors and lithium ion batteries, and electronic device-related fields such as dye-sensitized solar cells, field effect transistors, organic memories, and organic actuators. In recent years, it has attracted attention (for example, Patent Documents 1 and 2). Such an ionic liquid may be used alone, but may be used in a form to which other compounds are added.
JP 2005-239580 A JP 2002-3478 A Christian P. Mehnert et al., “Biphasic hydroformylation catalysis in ionic liquid media” Polyhedron 23 (2004) 2679-2688

イオン液体は、上記した種々の特性のうちでも、他の化合物の溶解性を向上させるために、あるいは二次電池の電解質などのような電気的利用である場合には低抵抗化するために低粘度(例えば、500cP程度以下)であることが求められているとともに、特に安全性の観点で上記のいずれの利用分野においても難燃性(熱により分解され難いこと)を向上させることが要望されている。   Among the various characteristics described above, the ionic liquid is low in order to improve the solubility of other compounds, or to reduce resistance in the case of electrical use such as an electrolyte of a secondary battery. In addition to being required to have a viscosity (for example, about 500 cP or less), particularly in view of safety, it is desired to improve flame retardancy (that is difficult to be decomposed by heat) in any of the above fields of use. ing.

ところで、BF やPF 等のアニオンを含むイオン液体の製法は、非特許文献1に示されているようにカウンターアニオンの原料としてカリウム(K)やナトリウム(Na)等アルカリ金属の塩を用いるのが一般的である。また、特許文献2では、所望のイオン液体を得る前段階の中間体としてブロモ体(BF やPF 等のアニオンが入るべき位置にBrが入っているもの)を使用している。しかし、特許文献2について詳細に検討したところ、ブロモ体を得たところまでは記載されているが、実際にBrをBF 又はPF 等に置換するにあたってどのような原料を用い、どのような操作を行なったのかが不明である。しかも、特許文献2に示されているイオン液体は、例えば表5に示されているMeImC,MeImCOC,MeImCOCであり、[MeImCOC[A](本願発明のイオン液体)については記されていない。イオン液体に係る当業者にとって炭素数1つ違いでその前後の炭素数を持つ化合物の製造方法が適用できないことが多々あることが知られている。そこで本願発明者は非特許文献1を基に上記アニオン成分を含むアルカリ金属塩を原料とし、これをブロム体に対してカウンターアニオン交換を行ったところ、工業的には成り立たないレベルに収率が極めて低かった。 Incidentally, BF 4 - or PF 6 - ionic liquids containing anions such method, the non-patent potassium as a raw material of a counter anion as shown in Document 1 (K) and sodium (Na) and the like alkali metal salts Is generally used. In Patent Document 2, a bromo compound as an intermediate body before obtaining a desired ionic liquids using (BF 4 - as of the anion is positioned Br is entered should enter - and PF 6). However, was examined in detail Patent Document 2, although far got bromo compound is described, actually Br BF 4 - or PF 6 - using any material when substituting the like, which It is unclear whether such an operation was performed. Moreover, the ionic liquid shown in Patent Document 2 is, for example, MeImC 4 , MeImC 2 OC 1 , MeImC 1 OC 1 shown in Table 5, and [MeImC 3 OC 1 ] + [A] (this application) The ionic liquid of the invention is not described. It is known that those skilled in the art relating to ionic liquids often cannot apply a method for producing a compound having one carbon number different from that before and after that. Therefore, the present inventor made an alkali metal salt containing the anion component based on Non-Patent Document 1 as a raw material, and carried out counter anion exchange on the bromide, and the yield was not industrially valid. It was very low.

そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、低粘度であり優れた難燃性を備えたイオン液体およびこれを用いた蓄電装置を提供することにある。   Therefore, the present invention has been made in view of the above points, and an object of the present invention is to provide an ionic liquid having a low viscosity and excellent flame retardancy, and a power storage device using the ionic liquid. is there.

また、上記イミダゾールを主骨格とするカチオンとアニオン(A)とから構成されるイオン液体を製造するに当たり、その効率的な製造方法を提供することを目的とする。 Another object of the present invention is to provide an efficient production method for producing an ionic liquid composed of a cation having an imidazole as a main skeleton and an anion (A ).

本発明のイオン液体は、下記一般式(1)で示されるイミダゾールを主骨格とするカチオンとアニオン(A)とから構成される。 The ionic liquid of the present invention is composed of a cation having an imidazole as a main skeleton represented by the following general formula (1) and an anion (A ).

Figure 2010111599
Figure 2010111599

このイオン液体は、低粘度であり優れた難燃性を備えている。その理由は次の通りであると推測される。   This ionic liquid has a low viscosity and excellent flame retardancy. The reason is estimated as follows.

すなわち、上記一般式(1)で示される構造のカチオンは、イミダゾールを主骨格としているので表面積が小さく平面性の高い構造であり、分子同士の接触面積が小さくなって分子間の相互作用が小さくなる。また、このカチオンは、イミダゾールの1位および3位にメチル基およびメトキシプロピル基がそれぞれ導入されており、置換基の長さが短く抑えられている。このように短い置換基が導入されたカチオンは、他の分子との絡み合いに起因する分子間の相互作用がさらに小さくなる。このようなカチオンを有するイオン液体は、上記した通り分子間の相互作用が小さいので低粘度となる。   That is, since the cation having the structure represented by the general formula (1) has imidazole as a main skeleton, the cation has a small surface area and a high planarity, and a contact area between molecules is reduced and interaction between molecules is reduced. Become. In addition, in this cation, a methyl group and a methoxypropyl group are introduced at the 1-position and 3-position of imidazole, respectively, and the length of the substituent is kept short. In such a cation introduced with a short substituent, the interaction between molecules due to entanglement with other molecules is further reduced. The ionic liquid having such a cation has a low viscosity because the interaction between molecules is small as described above.

しかも、一方の置換基であるメチル基よりも適度に長いメトキシプロピル基が他方の置換基として導入されているので、このカチオンは、上記した分子間の相互作用を抑えつつ、適度な非対称性が付与されている。これにより、このカチオンを有するイオン液体は室温で液体となり、さらにイオン液体特有の静電的な相互作用に由来する低い蒸気圧により熱に対して安定となるため難燃性を示す。   In addition, since a methoxypropyl group that is moderately longer than the methyl group that is one of the substituents is introduced as the other substituent, this cation has moderate asymmetry while suppressing the interaction between the molecules described above. Has been granted. As a result, the ionic liquid having the cation becomes liquid at room temperature, and further becomes stable against heat due to the low vapor pressure derived from the electrostatic interaction unique to the ionic liquid, and thus exhibits flame retardancy.

前記アニオンは、フッ素を含むものが例示でき、特にBF またはPF であるのが好ましい。 Examples of the anion include fluorine, and BF 4 or PF 6 is particularly preferable.

本発明の蓄電装置は、上記のいずれかに記載のイオン液体を有機電解質として含むものである。上記イオン液体は低粘度であり優れた難燃性を備えているので、これを有機電解質として含む蓄電装置は、電気抵抗が低く耐熱性が優れるという特性を併せ持っている。   The power storage device of the present invention includes any one of the above ionic liquids as an organic electrolyte. Since the ionic liquid has a low viscosity and excellent flame retardancy, a power storage device including the ionic liquid as an organic electrolyte has the characteristics of low electrical resistance and excellent heat resistance.

また、本願発明のイオン液体の好ましい製造方法は、イミダゾールを主骨格とするカチオン成分とハロゲンアニオン成分から構成される化合物と、六フッ化リン酸水溶液又は四フッ化ホウ酸水溶液との反応を経由することである。この製造方法に係わる詳細は、後述する実施例1の説明で明らかにする。   In addition, a preferred method for producing the ionic liquid of the present invention is through a reaction between a compound composed of a cation component having imidazole as a main skeleton and a halogen anion component, and a hexafluorophosphoric acid aqueous solution or a tetrafluoroboric acid aqueous solution. It is to be. Details concerning this manufacturing method will be clarified in the description of Example 1 described later.

さらに、本願発明のイオン液体の別の好ましい製造方法は、イミダゾールを主骨格とする化合物とオキソニウムテトラフルオロボレート又はオキソニウムヘキサフルオロホスフェートとの反応を経由することである。この製造方法に係わる詳細は、後述する実施例2の説明で明らかにする。   Furthermore, another preferred method for producing the ionic liquid of the present invention is via a reaction between a compound having imidazole as the main skeleton and oxonium tetrafluoroborate or oxonium hexafluorophosphate. Details concerning this manufacturing method will be clarified in the description of Example 2 described later.

以上のように、本発明のイオン液体は、低粘度であり優れた難燃性を備えているので、上記した種々の利用分野に用いることができる。特に、本発明のイオン液体を有機電解質として用いることにより、低粘度化に伴う電気抵抗の低い蓄電装置を得ることができる。また、上記製造方法によれば、比較的簡便でありながら高い収率で所望のイオン液体を得ることができる。   As described above, since the ionic liquid of the present invention has a low viscosity and excellent flame retardancy, it can be used in the various fields described above. In particular, by using the ionic liquid of the present invention as an organic electrolyte, a power storage device having a low electrical resistance accompanying a reduction in viscosity can be obtained. Moreover, according to the said manufacturing method, a desired ionic liquid can be obtained with a high yield, although it is comparatively simple.

以下、本発明の一実施形態について詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail.

<イオン液体>
本実施形態にかかるイオン液体は、下記一般式(1)で示されるカチオンとアニオン(A)とから構成されている。
<Ionic liquid>
The ionic liquid according to the present embodiment is composed of a cation represented by the following general formula (1) and an anion (A ).

Figure 2010111599
Figure 2010111599

カチオンは、上記一般式(1)に示すようにイミダゾールを主骨格とし、このイミダゾールの1位および3位にメチル基およびメトキシプロピル基がそれぞれ導入されたものである(N1-(3-Methoxypropyl)-N3-methylimidazolium cation)。 As shown in the above general formula (1), the cation has imidazole as the main skeleton, and a methyl group and a methoxypropyl group are introduced into the 1-position and 3-position of the imidazole (N 1- (3-Methoxypropyl), respectively. ) -N 3 -methylimidazolium cation).

アニオン(A)としては、フッ素を含むものを用いるのが好ましい。フッ素を含むアニオンとしては、例えばトリフルオロメチルスルホン酸アニオン、ビストリフルオロメチルスルホニルアミドアニオン(TFSI)、ビスペンタフルオロエチルスルホニルアミドアニオン(BETI)、四フッ化硼素アニオン(BF )、六フッ化リンアニオン(PF )などが挙げられる。 As the anion (A ), one containing fluorine is preferably used. Examples of the anion containing fluorine include trifluoromethylsulfonate anion, bistrifluoromethylsulfonylamide anion (TFSI), bispentafluoroethylsulfonylamide anion (BETI), boron tetrafluoride anion (BF 4 ), and hexafluoride. Examples thereof include phosphorus anion (PF 6 ).

これらの中でもアニオンとしては、四フッ化硼素アニオン(BF )および六フッ化リンアニオン(PF )のいずれかであるのがより好ましい。これらのアニオンを有するイオン液体は低粘度で優れた難燃性を備え、蓄電装置の有機電解質として用いた場合には大きな放電容量が得られる。 Among these, the anion is more preferably either a boron tetrafluoride anion (BF 4 ) or a phosphorus hexafluoride anion (PF 6 ). An ionic liquid having these anions has low viscosity and excellent flame retardancy, and when used as an organic electrolyte of a power storage device, a large discharge capacity can be obtained.

<蓄電装置>
図1は、本発明の第1の実施形態にかかる蓄電装置1の構成を示す概略図である。図1に示すように、蓄電装置1は、電解液16と、この電解液16に浸漬された正極10および負極12と、これらの正極10と負極12の間に設けられたセパレータ材14とを備えている。
<Power storage device>
FIG. 1 is a schematic diagram illustrating a configuration of a power storage device 1 according to the first embodiment of the present invention. As shown in FIG. 1, the power storage device 1 includes an electrolytic solution 16, a positive electrode 10 and a negative electrode 12 immersed in the electrolytic solution 16, and a separator material 14 provided between the positive electrode 10 and the negative electrode 12. I have.

電解液16は、有機電解質を含む非水電解液である。有機電解質としては上記実施形態のイオン液体を用いている。電解液16は、有機電解質を溶解するための溶媒を含んでいてもよい。溶媒としては、例えばプロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)などが例示できる。   The electrolytic solution 16 is a nonaqueous electrolytic solution containing an organic electrolyte. As the organic electrolyte, the ionic liquid of the above embodiment is used. The electrolytic solution 16 may contain a solvent for dissolving the organic electrolyte. Examples of the solvent include propylene carbonate (PC) and ethyl methyl carbonate (EMC).

正極10は、集電体2とこの集電体2上に形成された導電性材料層6とを備えている。同様に、負極12は集電体4とこの集電体4上に形成された導電性材料層8とを備えている。集電体2,4としては例えばステンレス鋼からなるメッシュなどが用いられる。導電性材料層6,8は、例えばグラファイト、活性炭などにより構成されている。活性炭は全比表面積(1nm〜50nmの孔径を有する細孔に係る全比表面積)が1500m/g以上であること、及び上記全比表面積のうち、2nm以上3nm未満の範囲のメソ細孔に係る比表面積が360m/g以上であることが好ましい。それは、本願イオン液体を含め、イミダゾールを主骨格としてC1〜C4のCH基を有するものはそのイオン半径が概ね5Å以下であり、このイオン半径の場合には2nm以上3nm未満の範囲のメソ細孔表面に吸着/脱離するのが容易となり、電池容量アップに繋がるためである。 The positive electrode 10 includes a current collector 2 and a conductive material layer 6 formed on the current collector 2. Similarly, the negative electrode 12 includes a current collector 4 and a conductive material layer 8 formed on the current collector 4. As the current collectors 2 and 4, for example, a mesh made of stainless steel is used. The conductive material layers 6 and 8 are made of, for example, graphite or activated carbon. The activated carbon has a total specific surface area (total specific surface area related to pores having a pore diameter of 1 nm to 50 nm) of 1500 m 2 / g or more, and mesopores in the range of 2 nm to 3 nm of the total specific surface area. The specific surface area is preferably 360 m 2 / g or more. The ionic radius including the ionic liquid of the present invention and having a C1-C4 CH group having imidazole as the main skeleton is approximately 5 mm or less, and in the case of this ionic radius, mesopores in the range of 2 nm to less than 3 nm. This is because it becomes easy to adsorb / desorb on the surface, leading to an increase in battery capacity.

セパレータ材14としては、例えばポリプロピレン、ポリエチレンなどが用いられる。具体的には、セパレータ材14としては、例えば宇部興産社製「UP3093」などを用いることができる。   For example, polypropylene or polyethylene is used as the separator material 14. Specifically, as the separator material 14, for example, “UP3093” manufactured by Ube Industries, Ltd. can be used.

図2は、本実施形態にかかる蓄電装置1の動作を説明するための概念図である。図2に示すように、正極10と負極12の間に電圧を印加すると、電解液16中に存在する上記カチオンが負極12の導電性材料層の表面に吸着する。一方、正極10においては、電解液16中のフッ素を含むアニオンが、主にグラファイトの結晶層間に侵入する、いわゆるインターカレーションが起きる。そして、このようなカチオンおよびアニオンの吸着およびインターカレーションが進行することにより、蓄電装置1に対する充電が行われる。   FIG. 2 is a conceptual diagram for explaining the operation of the power storage device 1 according to the present embodiment. As shown in FIG. 2, when a voltage is applied between the positive electrode 10 and the negative electrode 12, the cations present in the electrolytic solution 16 are adsorbed on the surface of the conductive material layer of the negative electrode 12. On the other hand, in the positive electrode 10, so-called intercalation in which the anion containing fluorine in the electrolytic solution 16 mainly enters between the crystal layers of graphite occurs. Then, the power storage device 1 is charged by such adsorption and intercalation of cations and anions.

一方、充電された蓄電装置1を放電させると、両電極10,12からカチオンまたはアニオンが脱離されるに伴って、蓄電装置1の正極10および負極12に電気的に接続された負荷に電力が供給され、両電極10,12間の電圧が緩やかに降下する。   On the other hand, when the charged power storage device 1 is discharged, power is applied to the load electrically connected to the positive electrode 10 and the negative electrode 12 of the power storage device 1 as the cations or anions are desorbed from the electrodes 10 and 12. Supplied, the voltage between the electrodes 10 and 12 gradually drops.

上記実施形態にかかるイオン液体は、上記一般式(1)で示されるイミダゾールを主骨格とするカチオンとアニオン(A)とから構成されるので、低粘度であり優れた難燃性を備えている。 The ionic liquid according to the embodiment is composed of a cation having an imidazole as a main skeleton represented by the general formula (1) and an anion (A ), and thus has low viscosity and excellent flame retardancy. Yes.

また、上記実施形態にかかる蓄電装置は、上記イオン液体を有機電解質として含むものであるので、電気抵抗が低く耐熱性が優れるという特性を併せ持っている。   In addition, since the power storage device according to the embodiment includes the ionic liquid as an organic electrolyte, the power storage device has a characteristic that electric resistance is low and heat resistance is excellent.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、上記実施形態では、イオン液体を構成するアニオンとしてBF 、PF などのフッ素を含むものを用いて説明したが、これらは本発明のイオン液体を構成するアニオンの一例に過ぎず、他のアニオンを用いることもできる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the anion constituting the ionic liquid has been described using an anion containing fluorine such as BF 4 and PF 6 , but these are merely examples of the anion constituting the ionic liquid of the present invention. Other anions can also be used.

なお、上記実施形態では、イオン液体を蓄電装置に用いる場合を例に挙げて説明したが、本発明のイオン液体は、蓄電装置の他、反応媒体、難溶解物質の溶解剤、相間移動触媒などの特異的触媒などに用いることでき、さらにキャパシタ、リチウムイオン電池などの二次電池の非水電解質材や、色素増感型太陽電池、電界効果トランジスタ、有機メモリ、有機アクチュエータなどの電子デバイス関連分野などにも適用できる。   In the above-described embodiment, the case where the ionic liquid is used for the power storage device has been described as an example. However, the ionic liquid of the present invention is not limited to the power storage device, the reaction medium, the poorly soluble substance solubilizer, the phase transfer catalyst, In addition to non-aqueous electrolyte materials for secondary batteries such as capacitors and lithium ion batteries, electronic device-related fields such as dye-sensitized solar cells, field effect transistors, organic memories, and organic actuators It can also be applied.

−実施例−
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
-Example-
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to a following example.

[実施例1]
<N1-(3-Methoxypropyl)-N3-methylimidazolium Bromideの合成>
窒素雰囲気下、還流冷却器を付けた200mLの三口フラスコにN−メチルイミダゾール(14.5g,176mmol)とテトラヒドロフラン(THF)124mLを加えた後、ハロゲンアニオン成分を含むものとして1-bromo-3-methoxypropane(27.0g,176mmol)を加えた。これをオイルバス中で5時間加熱還流させた後、室温まで冷却した。ついで、減圧下で溶媒を留去し、残渣を真空下、150℃で加熱乾燥を行うことにより、下記スキームに示す化合物3の構造を有する淡黄色液体のN1-(3-Methoxypropyl)-N3-methylimidazolium Bromideを得た(36.6g,収率88%)。
[Example 1]
<N 1 - Synthesis of (3-Methoxypropyl) -N 3 -methylimidazolium Bromide>
Under a nitrogen atmosphere, N-methylimidazole (14.5 g, 176 mmol) and 124 mL of tetrahydrofuran (THF) were added to a 200 mL three-necked flask equipped with a reflux condenser, and then 1-bromo-3- (3-bromo-3- (3-bromo-3-methyl) -containing anion containing a halogen anion component was added. Methoxypropane (27.0 g, 176 mmol) was added. This was heated to reflux in an oil bath for 5 hours and then cooled to room temperature. Subsequently, the solvent was distilled off under reduced pressure, and the residue was heated and dried at 150 ° C. under vacuum to obtain a light yellow liquid N 1- (3-Methoxypropyl) -N having the structure of Compound 3 shown in the following scheme. 3- Methylimidazolium Bromide was obtained (36.6 g, yield 88%).

Figure 2010111599
Figure 2010111599

得られた化合物3の構造確認は1H-NMR測定により行った。結果を以下に示す。
1H-NMR(270MHz,CDCl3)δ10.54(1H,s,2位), 7.40(1H,s,4位), 7.34(1H,s,5位), 4.46(2H,t,J=7.4Hz), 4.14(3H,s), 3.44(2H,t,J=6.3Hz), 3.34(3H,s), 2.22(2H,q,J=6.3Hz)
The structure of the obtained compound 3 was confirmed by 1 H-NMR measurement. The results are shown below.
1 H-NMR (270 MHz, CDCl 3 ) δ 10.54 (1H, s, 2nd), 7.40 (1H, s, 4th), 7.34 (1H, s, 5th), 4.46 (2H, t, J = 7.4Hz), 4.14 (3H, s), 3.44 (2H, t, J = 6.3Hz), 3.34 (3H, s), 2.22 (2H, q, J = 6.3Hz)

また、精製に用いたカラムを以下に示す。
TLC Rf=0.25(アセトニトリル/Al
The column used for purification is shown below.
TLC Rf = 0.25 (acetonitrile / Al 2 O 3 )

<N1-(3-Methoxypropyl)-N3-methylimidazolium Hexafluorophosphateのイオン液体の調製>
50mLのプラスチック容器に上記で得られた化合物3(21.4g,91.1mmol)とイオン交換水(75mL)を加えた後、65%六弗化リン酸水溶液(1.66g,7.4mmol)を滴下した。これを室温で一晩撹拌した後、イオン交換水を加えた。この反応溶液を塩化メチレン(10mL)で抽出し、得られた有機層をイオン交換水(20mL)で洗浄した。この抽出、洗浄操作を反応溶液に対して3回行った。得られた有機層を集めた後、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。残渣を塩化メチレン(300mL)に溶解させ、活性炭(薬さじ一杯)を加え、2時間室温で撹拌した。この溶液を濾過して活性炭を取り除き溶媒を留去した後に、塩化メチレン−酢酸エチル混合溶媒を用いてアルミナカラムクロマトグラフィーを行い、上記スキームに示す化合物1の構造を有する淡黄色液体のN1-(3-Methoxypropyl)-N3-methylimidazolium Hexafluorophosphateを得た(18.2g,収率69%)。
<Preparation of ionic liquid of N 1- (3-Methoxypropyl) -N 3 -methylimidazolium Hexafluorophosphate>
After adding Compound 3 (21.4 g, 91.1 mmol) obtained above and ion-exchanged water (75 mL) to a 50 mL plastic container, 65% hexafluorophosphoric acid aqueous solution (1.66 g, 7.4 mmol) Was dripped. After stirring this overnight at room temperature, ion exchange water was added. This reaction solution was extracted with methylene chloride (10 mL), and the obtained organic layer was washed with ion-exchanged water (20 mL). This extraction and washing operation was performed 3 times on the reaction solution. The obtained organic layer was collected and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was dissolved in methylene chloride (300 mL), activated carbon (one spoonful of medicine) was added, and the mixture was stirred for 2 hours at room temperature. The solution was filtered to remove the activated carbon and the solvent was distilled off, followed by alumina column chromatography using a mixed solvent of methylene chloride-ethyl acetate, and a light yellow liquid N 1- having the structure of Compound 1 shown in the above scheme. (3-Methoxypropyl) -N 3 -methylimidazolium Hexafluorophosphate was obtained (18.2 g, yield 69%).

得られた化合物1の構造確認は1H-NMR測定により行った。結果を以下に示す。また、化合物1のNMRチャートを図3に示す。
1H-NMR(270MHz,CDCl3)δ8.65(1H,s,2位), 7.25(1H,t,J=1.7Hz,4位), 7.22(1H,t,J=1.7Hz,5位), 4.31(2H,t,J=7.7Hz), 3.96(3H,s), 3.42(2H,t,J=6.8Hz), 3.33(3H,s), 2.12(2H,q,J=6.8Hz)
The structure of the obtained compound 1 was confirmed by 1 H-NMR measurement. The results are shown below. The NMR chart of Compound 1 is shown in FIG.
1 H-NMR (270MHz, CDCl 3) δ8.65 (1H, s, 2 -position), 7.25 (1H, t, J = 1.7Hz, 4 -position), 7.22 (1H, t, J = 1.7Hz, 5 -position ), 4.31 (2H, t, J = 7.7Hz), 3.96 (3H, s), 3.42 (2H, t, J = 6.8Hz), 3.33 (3H, s), 2.12 (2H, q, J = 6.8Hz )

また、精製に用いたカラムを以下に示す。
TLC Rf=0.17(塩化メチレン:酢酸エチル=2:1/Al
The column used for purification is shown below.
TLC Rf = 0.17 (methylene chloride: ethyl acetate = 2: 1 / Al 2 O 3 )

なお、六弗化リン酸水溶液に代えて四フッ化ホウ酸水溶液を用いると、N1-(3-Methoxypropyl)-N3-methylimidazolium Tetrafluoroborateが得られる。 When a tetrafluoroboric acid aqueous solution is used instead of the hexafluorophosphoric acid aqueous solution, N 1- (3-Methoxypropyl) -N 3 -methylimidazolium tetrafluoroborate is obtained.

[実施例2]
<N1-(3-Methoxypropyl)imidazoleの合成>
窒素雰囲気下、200mLの三口フラスコにイミダゾール(2.02g,29.7mmol)とTHF(90mL)を入れた。これを−78℃に冷却した後に、1.65M n−ブチルリチウムヘキサン溶液(19.8mL,32.7mmol)を滴下し、−78℃で45分間撹拌した。これに1-Bromo-3-methoxypropane(5.0g,32.7mmol)のTHF(10mL)溶液を滴下した後に、昇温させて一晩加熱還流させた。ついで、室温まで冷却した後、水を加えて水層を塩化メチレン(100mL)で抽出し、得られた有機層を集めた後、飽和食塩水(100mL)で洗浄した。この抽出、洗浄操作を溶液に対して3回行った。得られた有機層を集めた後、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去することにより、下記スキームに示す化合物4の構造を有する淡黄色液体のN1-(3-Methoxypropyl)imidazoleを得た(3.67g,収率88%)。
[Example 2]
<N 1 - Synthesis of (3-Methoxypropyl) imidazole>
Under a nitrogen atmosphere, imidazole (2.02 g, 29.7 mmol) and THF (90 mL) were placed in a 200 mL three-necked flask. After cooling to -78 ° C, a 1.65M n-butyllithium hexane solution (19.8 mL, 32.7 mmol) was added dropwise, and the mixture was stirred at -78 ° C for 45 minutes. A solution of 1-Bromo-3-methoxypropane (5.0 g, 32.7 mmol) in THF (10 mL) was added dropwise thereto, and the mixture was heated and refluxed overnight. Then, after cooling to room temperature, water was added and the aqueous layer was extracted with methylene chloride (100 mL). The resulting organic layer was collected and washed with saturated brine (100 mL). This extraction and washing operation was performed 3 times on the solution. The obtained organic layer was collected, dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a light yellow liquid N 1- (3-Methoxypropyl having the structure of compound 4 shown in the following scheme. ) imidazole was obtained (3.67 g, 88% yield).

Figure 2010111599
Figure 2010111599

得られた化合物4の構造確認は1H-NMR測定により行った。結果を以下に示す。
1H-NMR(270MHz,CDCl3)δ7.45(1H,s,2位), 7.07(1H,s,5位), 6.92(1H,s,4位), 4.07(1H,t,J=6.5Hz), 3.34(3H,s), 3.31(2H,t,J=5.9Hz), 2.00(2H,q,J=5.9Hz)
The structure of the obtained compound 4 was confirmed by 1 H-NMR measurement. The results are shown below.
1 H-NMR (270MHz, CDCl 3) δ7.45 (1H, s, 2 -position), 7.07 (1H, s, 5 -position), 6.92 (1H, s, 4 -position), 4.07 (1H, t, J = 6.5Hz), 3.34 (3H, s), 3.31 (2H, t, J = 5.9Hz), 2.00 (2H, q, J = 5.9Hz)

また、精製に用いたカラムを以下に示す。
TLC Rf=0.17(塩化メチレン:酢酸エチル=2:1/Al
The column used for purification is shown below.
TLC Rf = 0.17 (methylene chloride: ethyl acetate = 2: 1 / Al 2 O 3 )

<N1-(3-Methoxypropyl)-N3-methylimidazolium Tetrafluoroborateのイオン液体の調製>
窒素雰囲気下、100mLの三口フラスコに上記で得られた化合物4(3.60g,25.7mmol)とジエチルエーテル(11mL)を加えた。これにトリメチルオキソニウムテトラフロオロボレート(3.45g,23.3mmol)を少しずつ加えた。室温で一晩撹拌した後、上記スキームに示す化合物2を分離した。得られた化合物2をジエチルエーテル(10mL)で3回洗浄し、真空下で乾燥した。残渣をアセトニトリルに溶解させた後、ヘキサンで洗浄し、活性炭(0.75g)を加えて2時間室温で撹拌を行い、活性炭を取り除いた後に溶媒を留去することにより化合物2の構造を有する淡黄色液体のN1-(3-Methoxypropyl)-N3-methylimidazolium Tetrafluoroborateを得た(4.23g,収率75%)。
<Preparation of ionic liquid of N 1- (3-Methoxypropyl) -N 3 -methylimidazolium Tetrafluoroborate>
Under a nitrogen atmosphere, Compound 4 (3.60 g, 25.7 mmol) obtained above and diethyl ether (11 mL) were added to a 100 mL three-necked flask. To this was added trimethyloxonium tetrafluoroborate (3.45 g, 23.3 mmol) little by little. After stirring overnight at room temperature, compound 2 shown in the above scheme was isolated. The resulting compound 2 was washed 3 times with diethyl ether (10 mL) and dried under vacuum. The residue was dissolved in acetonitrile, washed with hexane, added with activated carbon (0.75 g), stirred for 2 hours at room temperature, and after removing the activated carbon, the solvent was distilled off to obtain a light compound having the structure of Compound 2. A yellow liquid N 1- (3-Methoxypropyl) -N 3 -methylimidazolium Tetrafluoroborate was obtained (4.23 g, yield 75%).

得られた化合物2の構造確認は1H-NMR測定により行った。結果を以下に示す。また、化合物2のNMRチャートを図4に示す。
1H-NMR(270MHz,CDCl3)δ8.85(1H,s,2位), 7.27(2H,s,4,5位), 4.32(2H,t,J=7.0Hz), 3.95(3H,s), 3.42(2H,t,J=5.6Hz), 3.33(3H,s), 2.14(2H,q,J=3.9Hz)
Structure confirmation of the obtained compound 2 was carried out by 1 H-NMR measurement. The results are shown below. The NMR chart of Compound 2 is shown in FIG.
1 H-NMR (270 MHz, CDCl 3 ) δ 8.85 (1H, s, 2nd position), 7.27 (2H, s, 4, 5th position), 4.32 (2H, t, J = 7.0 Hz), 3.95 (3H, s), 3.42 (2H, t, J = 5.6Hz), 3.33 (3H, s), 2.14 (2H, q, J = 3.9Hz)

また、精製に用いたカラムを以下に示す。
TLC Rf=0.84(アセトニトリル/Al
The column used for purification is shown below.
TLC Rf = 0.84 (acetonitrile / Al 2 O 3 )

なお、トリメチルオキソニウムテトラフロオロボレートに代えてトリメチルオキソニウムヘキサフルオロホスフェートを添加すると、N1-(3-Methoxypropyl)-N3-methylimidazolium Hexafluorophosphateが得られる。 When trimethyloxonium hexafluorophosphate is added instead of trimethyloxonium tetrafluoroborate, N 1- (3-Methoxypropyl) -N 3 -methylimidazolium Hexafluorophosphate is obtained.

−比較例−
[比較合成例]
窒素雰囲気下、還流冷却器を付けた200mLの三口フラスコにN−メチルイミダゾール(2.97g,36.1mmol)とTHF(25mL)を加えた後、1-iodo-3-methoxypropane(7.23g,36.1mmol)を加えた。これを4時間加熱還流させた後、室温まで冷却した。ついで、減圧下で溶媒を留去することにより化合物5(N1-(3-Methoxypropyl)-N3-methylimidazolium Iodide)を黄色オイルとして得た(9.15g,収率90%)。
-Comparative example-
[Comparative synthesis example]
Under a nitrogen atmosphere, N-methylimidazole (2.97 g, 36.1 mmol) and THF (25 mL) were added to a 200 mL three-necked flask equipped with a reflux condenser, and then 1-iodo-3-methoxypropane (7.23 g, 36.1 mmol) was added. This was heated to reflux for 4 hours and then cooled to room temperature. Subsequently, the solvent was distilled off under reduced pressure to obtain Compound 5 (N 1- (3-Methoxypropyl) -N 3 -methylimidazolium Iodide) as a yellow oil (9.15 g, yield 90%).

次に、50mLのナス型フラスコに化合物5とイオン交換水を加えた後、四弗化ホウ酸カリウムを加えた。これを室温で一晩撹拌したが、少量の白色固体が得られたのみで、上記化合物2は得られなかった。   Next, after adding Compound 5 and ion-exchanged water to a 50 mL eggplant-shaped flask, potassium tetrafluoroborate was added. This was stirred overnight at room temperature, but only a small amount of white solid was obtained, and the compound 2 was not obtained.

上記で得られた各イオン液体を用いて、以下に示す試験によりその性能を評価した。その結果を表1に示す。   Using each of the ionic liquids obtained above, the performance was evaluated by the following tests. The results are shown in Table 1.

[試験例]
実施例1,2でそれぞれ得られたイオン液体(化合物1および化合物2)について、後述する方法により耐熱性(Tg)の評価を行った。なお、実施例1,2との比較のために、下記比較例1および比較例3のイオン液体についても実施例1,2と同様の評価を行った。また、参考としてイオン液体ではない下記比較例2についても実施例1,2と同様の評価を行った。
[Test example]
The ionic liquids (Compound 1 and Compound 2) obtained in Examples 1 and 2 were evaluated for heat resistance (Tg) by the method described later. For comparison with Examples 1 and 2, the same evaluations as in Examples 1 and 2 were performed for the ionic liquids of Comparative Example 1 and Comparative Example 3 below. For reference, the same evaluation as in Examples 1 and 2 was performed for Comparative Example 2 which is not an ionic liquid.

また、実施例1,2および比較例1のイオン液体、比較例2の溶液について、下記の方法により粘度、電池抵抗および初期放電容量をそれぞれ測定した。   Further, with respect to the ionic liquids of Examples 1 and 2 and Comparative Example 1 and the solution of Comparative Example 2, the viscosity, battery resistance and initial discharge capacity were measured by the following methods, respectively.

比較例1のイオン液体としては、下記構造式(2)で示される市販の化合物を用いた。比較例2の溶液としては、プロピレンカーボネートとエチルメチルカーボネートを溶媒とした六弗化リン酸テトラエチルアンモニウムの溶液((C2H54N+PF6 -/(PC+EMC))を用いた。比較例3のイオン液体としては、下記構造式(3)で示される市販の化合物(1-Ethyl-3-methyl-imidazolium tetrafluoroborate)を用いた。 As the ionic liquid of Comparative Example 1, a commercially available compound represented by the following structural formula (2) was used. As the solution of Comparative Example 2, a solution of tetraethylammonium hexafluorophosphate using propylene carbonate and ethylmethyl carbonate as solvents ((C 2 H 5 ) 4 N + PF 6 / (PC + EMC)) was used. . As the ionic liquid of Comparative Example 3, a commercially available compound (1-Ethyl-3-methyl-imidazolium tetrafluoroborate) represented by the following structural formula (3) was used.

Figure 2010111599
Figure 2010111599

Figure 2010111599
Figure 2010111599

<Tgの測定方法>
実施例1,2および比較例1,3のイオン液体、比較例2の溶液について、Tg/DTG測定装置(セイコーインスツル社製「EXSTAR6000」)を用いて各液体の分解温度を測定した。Tgの測定条件は以下の通りである。結果を図5に示す。
<Measurement method of Tg>
For the ionic liquids of Examples 1 and 2 and Comparative Examples 1 and 3 and the solution of Comparative Example 2, the decomposition temperature of each liquid was measured using a Tg / DTG measuring device (“EXSTAR6000” manufactured by Seiko Instruments Inc.). The measurement conditions for Tg are as follows. The results are shown in FIG.

サンプル量:10mg
温度範囲:30℃〜600℃
昇温速度:10℃/分
Sample amount: 10mg
Temperature range: 30 ° C to 600 ° C
Temperature increase rate: 10 ° C / min

図5のTGデータは、温度と各サンプルの質量変化を示すものである。即ち、高い温度域まで質量変化の少ないものが耐熱性が高いと考えてよい。その結果については後述する。   The TG data in FIG. 5 shows temperature and mass change of each sample. That is, it may be considered that a material having a small mass change up to a high temperature range has high heat resistance. The result will be described later.

<粘度の測定方法>
図6に示すように、セパレータ材(宇部興産社製「UP3093」)で被覆した平らなガラス板21を30度傾けて設置する。このガラス板21の表面に各試料(イオン液体または溶液)5mLを静かに垂らし、60秒の間に流れ落ちた移動距離を測定し、距離−粘度換算表と照合して粘度を算出した。
<Measurement method of viscosity>
As shown in FIG. 6, a flat glass plate 21 covered with a separator material (“UP3093” manufactured by Ube Industries, Ltd.) is inclined by 30 degrees and installed. 5 mL of each sample (ionic liquid or solution) was gently dropped on the surface of the glass plate 21, the movement distance that flowed down during 60 seconds was measured, and the viscosity was calculated by collating with a distance-viscosity conversion table.

なお、距離−粘度換算表は、数種類の市販のイオン液体を用いて、ガラス板上の移動距離とJIS規格の測定方法により測定された粘度値を基にして作成した。   The distance-viscosity conversion table was prepared using several types of commercially available ionic liquids based on the moving distance on the glass plate and the viscosity value measured by the measuring method of JIS standard.

<電池抵抗の測定方法>
各試料をそれぞれ電解液に用いて、正極および負極ともに活性炭(宝泉社製)から構成したキャパシタ系半開放セルを作製し、インピーダンスアナライザー(北斗電工製IVIUMSTAT)を用いて各電池の抵抗値を測定した。電池抵抗の測定条件は以下の通りである。なお、測定に用いた宝泉社製活性炭は、宝泉社製(AG−1)である。
<Measurement method of battery resistance>
Using each sample as an electrolyte, a positive electrode and a negative electrode are both made of activated carbon (made by Hosen Co., Ltd.) and a capacitor-type semi-open cell is made. Using an impedance analyzer (Hokuto Denko IVIUMSTAT), the resistance value of each battery is measured. It was measured. The measurement conditions for battery resistance are as follows. The activated carbon manufactured by Hosen Co., Ltd. used for measurement is manufactured by Hosen Co., Ltd. (AG-1).

周波数:100kHz〜1Hz
AC amplitude:200mV
DC Potential:0V
Interval:10
Frequency: 100 kHz to 1 Hz
AC amplified: 200 mV
DC Potential: 0V
Interval: 10

<放電容量の測定方法>
各試料をそれぞれ電解液に用いて、正極および負極ともに活性炭(宝泉社製)から構成したキャパシタ系半開放セルを作製し、充放電測定装置(岩通計測社製)を用いて各電池の初期放電容量を測定した。なお、測定に用いた宝泉社製活性炭(AG−1)は、全比表面積が約2230m/gである。この全比表面積については1500m/g以上であること、及び1nm〜50nm以下の径を有する細孔に係る全比表面積のうち、2nm以上3nm未満の範囲のメソ細孔に係る比表面積が360m/g以上であることが好ましい。それは、本願イオン液体を含め、イミダゾールを主骨格としてC1〜C4のCH基を有するものはそのイオン半径が概ね5Å以下であり、このイオン半径の場合には2nm以上3nm未満の範囲のメソ細孔表面に吸着/脱離するのが容易となり、電池容量アップに繋がるためである。
<Measurement method of discharge capacity>
Each sample was used as an electrolyte solution, and a positive electrode and a negative electrode were both made of activated carbon (made by Hosen Co., Ltd.), and a capacitor-type semi-open cell was prepared. The initial discharge capacity was measured. The activated carbon (AG-1) manufactured by Hosen Co., Ltd. used for the measurement has a total specific surface area of about 2230 m 2 / g. The total specific surface area is 1500 m 2 / g or more, and among the total specific surface areas related to pores having a diameter of 1 nm to 50 nm or less, the specific surface area related to mesopores in the range of 2 nm to less than 3 nm is 360 m. in is preferably 2 / g or more. The ionic radius including the ionic liquid of the present invention and having a C1-C4 CH group having imidazole as the main skeleton is approximately 5 mm or less, and in the case of this ionic radius, mesopores in the range of 2 nm to less than 3 nm. This is because it becomes easy to adsorb / desorb on the surface, leading to an increase in battery capacity.

電圧範囲:0V〜2.5V
定電流:1mA
温度:25℃
Voltage range: 0V to 2.5V
Constant current: 1 mA
Temperature: 25 ° C

次に、性能試験装置について図7を用いて説明する。図7において、性能試験装置20の内部には蓄電装置1が組み込まれている。まず、蓄電装置1用の正極10および負極12を作製する。当実施形態において、正極10および負極12は活性炭に、導電材としてのアセチレンブラック(AB)と、バインダーとしてのポリテトラフルオロエチレン(PTFE)とを、活性炭:AB:PTFE=90:5:5(質量比)となるように加え、エタノールを若干量滴下しながら混合する。そして、このようにして得られた混合物を、集電体4としてのステンメッシュ上に塗布し、プレス機にて5MPa程度の圧力を加えることにより両者を圧着する。その後、真空中で約80℃程度に加熱し、その状態で2時間以上乾燥させる。以上の工程により、正極10および負極12の作製が完了する。   Next, the performance test apparatus will be described with reference to FIG. In FIG. 7, the power storage device 1 is incorporated in the performance test apparatus 20. First, the positive electrode 10 and the negative electrode 12 for the power storage device 1 are manufactured. In the present embodiment, the positive electrode 10 and the negative electrode 12 are made of activated carbon, acetylene black (AB) as a conductive material, and polytetrafluoroethylene (PTFE) as a binder, activated carbon: AB: PTFE = 90: 5: 5 ( (Mass ratio) and mixing while adding a small amount of ethanol dropwise. And the mixture obtained in this way is apply | coated on the stainless mesh as the electrical power collector 4, and both are crimped | bonded by applying a pressure of about 5 MPa with a press. Then, it heats to about 80 degreeC in a vacuum, and it is made to dry in that state for 2 hours or more. Through the above steps, the production of the positive electrode 10 and the negative electrode 12 is completed.

次に、このようにして得られた正極10および負極12を、性能試験装置20内で組み立てることにより、二極式半開放型セルを作製する。これら各電極10,12の組み立ては、Ar(アルゴン)雰囲気のグローブボックス内で行う。   Next, the positive electrode 10 and the negative electrode 12 obtained in this way are assembled in the performance test apparatus 20 to produce a bipolar half-open cell. These electrodes 10 and 12 are assembled in a glove box in an Ar (argon) atmosphere.

具体的には、まず負極12を、その集電体4側の面が収納容器22の底面に接触する状態で当該容器22内に収納する。そして、負極12の導電性材料層側の面(図例では上面)に今回の電解液を滴下し、その上にガラス繊維ろ紙(例えばアドバンテック社製、FILTER PAPER GA−100)を載置する。   Specifically, the negative electrode 12 is first accommodated in the container 22 with the current collector 4 side surface in contact with the bottom surface of the storage container 22. And this time electrolyte solution is dripped at the surface by the side of the conductive material layer of the negative electrode 12 (upper surface in the example), and a glass fiber filter paper (for example, FILTER PAPER GA-100 manufactured by Advantech Co., Ltd.) is placed thereon.

次いで、上記ガラス繊維ろ紙の上に、セパレータ材14(例えばADVANTEC製、ガラスファイバー)を載置する。そして、収納容器22の凹部22aにプラスチック容器24を嵌合させ、その底面を利用して上記セパレータ材14を収納容器22内に押し付けることにより、上記負極12とセパレータ材14とを電解液16およびガラス繊維ろ紙を介して相互に密着させる。   Next, a separator material 14 (for example, glass fiber manufactured by ADVANTEC) is placed on the glass fiber filter paper. Then, the plastic container 24 is fitted into the recess 22a of the storage container 22, and the separator material 14 is pressed into the storage container 22 using the bottom surface thereof, whereby the negative electrode 12 and the separator material 14 are connected to the electrolyte 16 and Adhere to each other through glass fiber filter paper.

次いで、上記セパレータ材14の上に上記と同様のガラス繊維ろ紙を載置するとともに電解液を滴下し、その上から、上記正極10を、導電性材料層側の面が上記セパレータ材14側に向く状態で載置する。そして最後に、蓋部材26をプラスチック容器24にねじ込み、蓋部材26の下面を正極10の集電体2に押し付けることにより、上記正極10とセパレータ材14とを電解液16およびガラス繊維ろ紙を介して相互に密着させる。以上の工程により、蓄電装置を含んだ性能試験装置20が完成する。   Next, the same glass fiber filter paper as described above is placed on the separator material 14 and an electrolytic solution is dropped. From above, the positive electrode 10 is placed so that the surface on the conductive material layer side faces the separator material 14. Place it face up. Finally, the lid member 26 is screwed into the plastic container 24, and the lower surface of the lid member 26 is pressed against the current collector 2 of the positive electrode 10, so that the positive electrode 10 and the separator material 14 are passed through the electrolytic solution 16 and the glass fiber filter paper. And stick to each other. Through the above steps, the performance test apparatus 20 including the power storage device is completed.

このようにして製造された性能試験装置20において、その内部の蓄電装置1に対し充電を行うには、正極10と負極12との間の電圧値を0Vから2.5Vまで徐々に上昇させ、かつ両者の間の電流値を1mAに維持しながら、上記両電極10,12の間に所定時間にわたって電圧を印加する。   In the performance test apparatus 20 manufactured as described above, in order to charge the power storage device 1 inside, the voltage value between the positive electrode 10 and the negative electrode 12 is gradually increased from 0V to 2.5V, In addition, a voltage is applied between the electrodes 10 and 12 for a predetermined time while maintaining the current value between them at 1 mA.

上記イオン液体の粘度、電池抵抗、並びに初期放電容量の測定結果を下表1に示す。   Table 1 shows the measurement results of the viscosity, battery resistance, and initial discharge capacity of the ionic liquid.

Figure 2010111599
Figure 2010111599

表1および図5から、比較例1は、粘度および電池抵抗が大きく、初期放電容量が小さく、耐熱性も低い結果となり、いずれの特性についても他よりも劣っていた。また、イオン液体ではない比較例2は、粘度および電池抵抗は小さいが、初期放電容量の点で不十分な結果となり、特に耐熱性が低いので蓄電装置などの各種用途への利用は困難であることがわかる。比較例3は、図5に示すように耐熱性の点で満足できる結果は得られなかった。   From Table 1 and FIG. 5, Comparative Example 1 resulted in a large viscosity and battery resistance, a small initial discharge capacity, and a low heat resistance, and was inferior to the other in all characteristics. Further, Comparative Example 2, which is not an ionic liquid, has low viscosity and battery resistance, but is insufficient in terms of initial discharge capacity, and is particularly difficult to be used for various applications such as a power storage device because of its low heat resistance. I understand that. In Comparative Example 3, as shown in FIG. 5, a satisfactory result was not obtained in terms of heat resistance.

一方、実施例1および実施例2は、粘度および電池抵抗が低く、初期放電容量が大きく、しかもTG測定の結果より耐熱性が非常に優れていることがわかる。実施例2の耐熱性は、実施例1よりも若干劣るものの、比較例1〜3よりも優れていた。このように比較例1〜3よりも優れた結果が得られたのは、カチオンの差によるものであると考えられる。   On the other hand, it can be seen that Example 1 and Example 2 have low viscosity and battery resistance, a large initial discharge capacity, and excellent heat resistance from the results of TG measurement. Although the heat resistance of Example 2 was slightly inferior to Example 1, it was superior to Comparative Examples 1-3. Thus, it was thought that it was based on the difference of a cation that the result superior to Comparative Examples 1-3 was obtained.

本発明の一実施形態にかかる蓄電装置の構成を示す概略図である。It is the schematic which shows the structure of the electrical storage apparatus concerning one Embodiment of this invention. 本実施形態にかかる蓄電装置の動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of the electrical storage apparatus concerning this embodiment. 実施例1において合成した化合物1(PF塩)のNMRチャートである。2 is an NMR chart of Compound 1 (PF 6 salt) synthesized in Example 1. FIG. 実施例2において合成した化合物2(BF塩)のNMRチャートである。Is an NMR chart of the synthesized Compound 2 (BF 4 salt) in Example 2. 試験例において測定した熱分析データ(TG)を示すグラフである。It is a graph which shows the thermal analysis data (TG) measured in the test example. イオン液体の粘度を測定する方法を示す概略図である。It is the schematic which shows the method of measuring the viscosity of an ionic liquid. 蓄電装置の性能を測定するための性能試験装置を示す概略図である。It is the schematic which shows the performance test apparatus for measuring the performance of an electrical storage apparatus.

符号の説明Explanation of symbols

1 蓄電装置
10 正極
12 負極
14 セパレータ材
16 電解液
DESCRIPTION OF SYMBOLS 1 Power storage device 10 Positive electrode 12 Negative electrode 14 Separator material 16 Electrolyte

Claims (6)

下記一般式(1)で示されるイミダゾールを主骨格とするカチオンとアニオン(A)とから構成されるイオン液体。
Figure 2010111599
An ionic liquid composed of a cation having an imidazole as a main skeleton represented by the following general formula (1) and an anion (A ).
Figure 2010111599
前記アニオンはフッ素を含む、請求項1に記載のイオン液体。   The ionic liquid according to claim 1, wherein the anion contains fluorine. 前記アニオンはBF またはPF である、請求項1又は2に記載のイオン液体。 The anion is BF 4 - or PF 6 - a is an ionic liquid according to claim 1 or 2. 請求項1乃至3のいずれかに記載のイオン液体を有機電解質として含む蓄電装置。   A power storage device comprising the ionic liquid according to any one of claims 1 to 3 as an organic electrolyte. 請求項1乃至3のいずれかに記載のイオン液体を製造する方法であって、
イミダゾールを主骨格とするカチオン成分とハロゲンアニオン成分から構成される化合物と、六フッ化リン酸水溶液又は四フッ化ホウ酸水溶液との反応を経由することを特徴とするイオン液体の製造方法。
A method for producing an ionic liquid according to any one of claims 1 to 3,
A method for producing an ionic liquid, comprising a reaction between a compound comprising a cation component having imidazole as a main skeleton and a halogen anion component and a hexafluorophosphoric acid aqueous solution or a tetrafluoroboric acid aqueous solution.
請求項1乃至3のいずれかに記載のイオン液体を製造する方法であって、
イミダゾールを主骨格とする化合物とオキソニウムテトラフルオロボレート又はオキソニウムヘキサフルオロホスフェートとの反応を経由することを特徴とするイオン液体の製造方法。
A method for producing an ionic liquid according to any one of claims 1 to 3,
A method for producing an ionic liquid, characterized by passing through a reaction between a compound having imidazole as a main skeleton and oxonium tetrafluoroborate or oxonium hexafluorophosphate.
JP2008283659A 2008-11-04 2008-11-04 Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid Pending JP2010111599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283659A JP2010111599A (en) 2008-11-04 2008-11-04 Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283659A JP2010111599A (en) 2008-11-04 2008-11-04 Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid

Publications (1)

Publication Number Publication Date
JP2010111599A true JP2010111599A (en) 2010-05-20

Family

ID=42300461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283659A Pending JP2010111599A (en) 2008-11-04 2008-11-04 Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid

Country Status (1)

Country Link
JP (1) JP2010111599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132813A (en) * 2013-12-13 2015-07-23 日本化薬株式会社 Light wavelength conversion element including ionic liquid and article including light wavelength conversion element
CN110416609A (en) * 2019-07-03 2019-11-05 珠海市赛纬电子材料股份有限公司 A kind of non-aqueous electrolyte for lithium ion cell and the lithium ion battery comprising the electrolyte

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245918B1 (en) * 1998-05-29 2001-06-12 Institut Francais Du Petrole Preparation of a molten salt from trialkyloxonium anion and amine
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
JP2002201153A (en) * 2000-10-27 2002-07-16 Celanese Chemicals Europe Gmbh Process of telomerizing conjugated diene
JP2005514033A (en) * 2002-01-14 2005-05-19 ポスコ Enzyme coated with ionic liquid, method for producing the same, and method for producing optical isomers
JP2006089379A (en) * 2004-09-21 2006-04-06 Sanyo Chem Ind Ltd Method for producing electrolyte for electrolytic solution
JP2006232713A (en) * 2005-02-24 2006-09-07 Yamaguchi Univ New method for synthesizing ionic liquid
JP2007070293A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method for synthesizing ionic liquid and the ionic liquid
CN101058560A (en) * 2007-05-16 2007-10-24 中国科学院新疆理化技术研究所 Acidic ionic liquid based on 1-methyl-3-benzyl imidazole cation, synthetic method and use
JP2007277110A (en) * 2006-04-03 2007-10-25 Stella Chemifa Corp Method for producing tetrafluoroborate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245918B1 (en) * 1998-05-29 2001-06-12 Institut Francais Du Petrole Preparation of a molten salt from trialkyloxonium anion and amine
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
JP2002201153A (en) * 2000-10-27 2002-07-16 Celanese Chemicals Europe Gmbh Process of telomerizing conjugated diene
JP2005514033A (en) * 2002-01-14 2005-05-19 ポスコ Enzyme coated with ionic liquid, method for producing the same, and method for producing optical isomers
JP2006089379A (en) * 2004-09-21 2006-04-06 Sanyo Chem Ind Ltd Method for producing electrolyte for electrolytic solution
JP2006232713A (en) * 2005-02-24 2006-09-07 Yamaguchi Univ New method for synthesizing ionic liquid
JP2007070293A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method for synthesizing ionic liquid and the ionic liquid
JP2007277110A (en) * 2006-04-03 2007-10-25 Stella Chemifa Corp Method for producing tetrafluoroborate
CN101058560A (en) * 2007-05-16 2007-10-24 中国科学院新疆理化技术研究所 Acidic ionic liquid based on 1-methyl-3-benzyl imidazole cation, synthetic method and use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GREEN CHEMISTRY 2007, 9, 1170-1179, JPN6013027518, ISSN: 0002549946 *
GREEN CHEMISTRY 2008, 10, 214-224, JPN6013027523, ISSN: 0002549948 *
GREEN CHEMISTRY 2008, 10, 47-58, JPN6013027520, ISSN: 0002549947 *
JOURNAL OF FLUORINE CHEMISTRY 2006, 127, 1261-1264, JPN6013027526, ISSN: 0002549949 *
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY 2008, 21, 622-629, JPN6013027516, ISSN: 0002549945 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132813A (en) * 2013-12-13 2015-07-23 日本化薬株式会社 Light wavelength conversion element including ionic liquid and article including light wavelength conversion element
CN110416609A (en) * 2019-07-03 2019-11-05 珠海市赛纬电子材料股份有限公司 A kind of non-aqueous electrolyte for lithium ion cell and the lithium ion battery comprising the electrolyte
CN110416609B (en) * 2019-07-03 2022-02-11 珠海市赛纬电子材料股份有限公司 Non-aqueous electrolyte of lithium ion battery and lithium ion battery comprising same

Similar Documents

Publication Publication Date Title
JP6002807B2 (en) Ionic liquid
Zarrougui et al. 1-Allyl-3-methylimidazolium-based ionic liquids employed as suitable electrolytes for high energy density supercapacitors based on graphene nanosheets electrodes
Lin et al. Capacitive energy storage from− 50 to 100 C using an ionic liquid electrolyte
US11270850B2 (en) Ultracapacitors with high frequency response
US20080204972A1 (en) Electric Double Layer Capacitor
CN105378871A (en) Methods of enhancing electrochemical double layer capacitor (EDLC) performance and EDLC devices formed therefrom
US7342769B2 (en) Electric double-layer capacitor
Orita et al. Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes
Nanbu et al. Physical and electrochemical properties of quaternary ammonium bis (oxalato) borates and their application to electric double-layer capacitors
TW200844047A (en) Activated carbon and process for producing the same
Khan et al. Fluorine-free ionic liquid-based electrolyte for supercapacitors operating at elevated temperatures
JP2012094862A (en) Electrolyte, electrolytic solution and electrochemical element
Jain et al. Nonhalogenated surface-active ionic liquid as an electrolyte for supercapacitors
JP2010272610A (en) Electrolytic solution using imidazolium salt electrolyte, and electrochemical element
TW201312615A (en) Electrolyte synthesis for ultracapacitors
JP6049205B2 (en) Electrolyte synthesis for ultracapacitors
JP2010111599A (en) Ionic liquid and manufacturing method of the same, and power storage apparatus using the ionic liquid
JP2013519672A (en) Low viscosity ionic liquid
Nguyen et al. Size Effect of Electrolyte Ions on the Electric Double-Layer Structure and Supercapacitive Behavior
Pal et al. Insights into the charge storage mechanism of binder-free electrochemical capacitors in ionic liquid electrolytes
JP2008016560A (en) Electric double-layer capacitor
JP2010153560A (en) Electrolyte using quaternary ammonium salt electrolyte, and electrochemical element
JP5116654B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
TW201423790A (en) Electrolyte synthesis for ultracapacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015