JP2010111026A - Method of manufacturing foam molded article using porous material - Google Patents

Method of manufacturing foam molded article using porous material Download PDF

Info

Publication number
JP2010111026A
JP2010111026A JP2008285889A JP2008285889A JP2010111026A JP 2010111026 A JP2010111026 A JP 2010111026A JP 2008285889 A JP2008285889 A JP 2008285889A JP 2008285889 A JP2008285889 A JP 2008285889A JP 2010111026 A JP2010111026 A JP 2010111026A
Authority
JP
Japan
Prior art keywords
thermosetting resin
porous material
molded product
mold
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008285889A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujita
浩行 藤田
Minoru Furuya
稔 古谷
Hiroaki Ago
博明 吾郷
Yukio Mishima
幸夫 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F TATSUKURU KK
Tatsukuru Kk F
Hyogo Prefectural Government
Original Assignee
F TATSUKURU KK
Tatsukuru Kk F
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F TATSUKURU KK, Tatsukuru Kk F, Hyogo Prefectural Government filed Critical F TATSUKURU KK
Priority to JP2008285889A priority Critical patent/JP2010111026A/en
Publication of JP2010111026A publication Critical patent/JP2010111026A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a foamed molded article having good dimension stability by manufacturing the foamed molded article incorporated with a fiber reinforcing material by irradiation with a microwave, wherein bending strength is excellent and reinforcing effect by a fiber reinforcing material is sufficiently demonstrated by setting forth a fiber reinforcing material around a surface layer of a foamed molded article. <P>SOLUTION: A method of manufacturing the foamed molded article includes a first process of preparing wet porous material, a second process of impregnating a thermosetting resin into the wet porous material, a third process of sealing the porous material 5 impregnated with the thermosetting resin and fiber reinforcing materials 3a, 3b into a molding die, a fourth process of irradiating a microwave from an outside of the molding die so as to foam, cure and mold the thermosetting resin to form a foamed molded article after the third process, and a fifth process of taking out the foamed molded article from the molding die. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波を照射することで成形型内で熱硬化性樹脂の発泡・硬化及び成形を行うことによる発泡成形品の製造方法、及び、それにより得た発泡成形品に関する。   The present invention relates to a method for producing a foamed molded product by foaming, curing and molding a thermosetting resin in a mold by irradiating microwaves, and a foamed molded product obtained thereby.

フェノール樹脂又は繊維強化フェノール樹脂は優れた耐熱性と汎用性により車両用部材や建材など様々な用途に使用され、その需要は増加している。このような構造材料としては、さらに軽量性や、機械的強度、難燃性、断熱性、耐久性等により優れた材料が求められているが、これらの課題を解消した材料として、発泡フェノール樹脂を中心材として、その表面に、繊維強化プラスチックシートや、樹脂化粧板、木材突き板、合板といった外皮部材を接着剤等で貼り合わせたサンドイッチ構造体が提供されている。さらに、高付加価値化のためにデザイン性を生かした材料開発が求められており、意匠性に優れた織物や皮革などを成形体表面に接着することも考えられている。   Phenolic resins or fiber-reinforced phenolic resins are used in various applications such as vehicle members and building materials due to their excellent heat resistance and versatility, and their demand is increasing. As such a structural material, a material superior in lightness, mechanical strength, flame retardancy, heat insulation, durability, etc. is required. As a central material, a sandwich structure is provided in which an outer skin member such as a fiber reinforced plastic sheet, a resin decorative board, a wood veneer, or a plywood is bonded to the surface thereof with an adhesive or the like. Furthermore, there is a demand for the development of materials that make use of design for high added value, and it is also considered to bond fabrics and leathers with excellent design properties to the surface of the molded body.

しかしながら、中心材となる発泡フェノール樹脂は、通常では機械的強度が弱く、脆くてそのまま外皮部材と接着させると、接着不良が生じたり、中心材と外皮部材の特性の相違により機械的強度等の物性が低下するという問題があった。また、接着工程が別途必要になるため製造上煩雑であり、さらに成形品が曲面形状を持つ場合その接着操作に高い技術力が要求されるという問題もあった。   However, the foamed phenol resin used as the central material is usually weak in mechanical strength and is brittle. If it is directly bonded to the outer skin member, adhesion failure may occur or the mechanical strength may be reduced due to the difference in properties between the central material and the outer skin member. There was a problem that physical properties deteriorated. In addition, since a separate bonding step is required, the manufacturing process is complicated. Further, when the molded product has a curved surface shape, there is a problem that a high technical force is required for the bonding operation.

特許文献1では、繊維強化プラスチック層、木材突き板、樹脂化粧板等の外皮層をあらかじめ型の内面に配置し、その内部に、フェノール樹脂を含むペースト状の樹脂を塗布して型を締めた後、マイクロ波を照射し、前記ペースト樹脂を発泡・硬化せしめ、表面にスキン層を持った発泡フェノール成形品を成形する方法が記載されている。   In Patent Document 1, an outer skin layer such as a fiber reinforced plastic layer, a wood veneer, or a resin decorative board is arranged in advance on the inner surface of a mold, and a paste-like resin containing a phenol resin is applied to the inside to tighten the mold. Thereafter, there is described a method of irradiating microwaves to foam and cure the paste resin to form a foamed phenol molded product having a skin layer on the surface.

特許文献2では、型内に、面状の繊維強化材を配置しフェノール樹脂混和物を流し込んだ後、型締めをし、マイクロ波加熱によりフェノール樹脂混和物を発泡させることによって、フェノール樹脂混和物を面状の繊維強化材中に浸透させ、発泡層とともに硬化させて発泡フェノール成形品を一体に形成する方法が記載されている。   In Patent Document 2, a planar fiber reinforcing material is placed in a mold, a phenol resin mixture is poured into the mold, and then the mold is clamped, and the phenol resin mixture is foamed by microwave heating. Is described in which a foamed phenol molded product is integrally formed by infiltrating into a planar fiber reinforcement and curing it together with a foamed layer.

これらの方法は樹脂に含まれる水を、マイクロ波照射による内部加熱によって極めて短時間で水蒸気に変化させることによって、水蒸気による発泡を行うと同時に、その熱で樹脂を硬化させて成形品を製造するものである。得られる成形品は1μm程度の無数の気泡を持つ多孔質構造を有しており、軽量で断熱性に優れた材料である。   These methods change the water contained in the resin to water vapor in a very short time by internal heating by microwave irradiation, thereby foaming with water vapor and simultaneously curing the resin with the heat to produce a molded product. Is. The obtained molded article has a porous structure having countless bubbles of about 1 μm, and is a material that is lightweight and excellent in heat insulation.

以上の製造工程はわずか数分〜10分程度で完了し、従来の外部加熱による熱伝導方式による発泡成形方法と比較するときわめて短時間で進行するので、省エネルギー、低コストでの発泡成形が可能になる。また、水を利用した発泡形式であるため、フロンガスや炭化水素ガスといった環境上問題がある発泡剤を使用しなくとも材料の多孔質化が可能である。さらには、15cm以上の厚みのある材料であっても成形が可能であり、複雑な形状の成形も容易である。   The above manufacturing process can be completed in just a few minutes to 10 minutes, and the process proceeds in a very short time compared to the conventional foaming method using a heat conduction method by external heating, enabling foaming molding at low energy and cost. Become. Moreover, since it is a foaming type using water, the material can be made porous without using a foaming agent having environmental problems such as chlorofluorocarbon gas or hydrocarbon gas. Furthermore, even a material having a thickness of 15 cm or more can be molded, and a complex shape can be easily molded.

特許文献2に記載された繊維強化材は、それ自体が高い引張強度を持ち、樹脂を内部に含浸することで高い補強効果を発揮する。また、この繊維強化材を発泡成形品の外形に沿うように表面層に配置することで、より高い剛性を持つ発泡成形品を得ることができる。しかしながら、繊維強化材の厚み方向に対しては連続性がないため、発泡成形品に大きな曲げ荷重が与えられると水平方向に亀裂が入って、破壊されやすいという欠点があった。   The fiber reinforcing material described in Patent Document 2 itself has a high tensile strength, and exhibits a high reinforcing effect by impregnating resin inside. Moreover, a foam molded product having higher rigidity can be obtained by arranging the fiber reinforcement in the surface layer so as to follow the outer shape of the foam molded product. However, since there is no continuity with respect to the thickness direction of the fiber reinforcement, there is a drawback in that when a large bending load is applied to the foamed molded product, it cracks in the horizontal direction and is easily broken.

また、マイクロ波照射による内部加熱では内部圧力が急激に上昇するために、繊維強化材が蛇行したり、発泡成形品の表面層ではなく内部に配置されたりした状態で成形されることもあり、この場合、十分な補強効果を発揮できない。さらに、曲面形状を持つ成形品を製造する際には、繊維強化材が成形型の曲面部分の形状に沿わずに成形されやすいという問題もある。特にガラスクロスやガラスマットなど剛直な繊維強化材を使用する場合にこの問題が生じやすい。繊維強化材が曲面部分の形状に沿わなかった箇所では強化材による補強が不十分であるため、破壊されやすく、また、表面にクラックが発生しやすい。   In addition, because the internal pressure suddenly rises in the internal heating by microwave irradiation, the fiber reinforcement may meander, or may be molded in a state where it is placed inside instead of the surface layer of the foam molded product, In this case, a sufficient reinforcing effect cannot be exhibited. Furthermore, when manufacturing a molded product having a curved shape, there is also a problem that the fiber reinforcement is easily molded without following the shape of the curved portion of the mold. This problem is particularly likely to occur when using rigid fiber reinforcements such as glass cloth and glass mats. Where the fiber reinforcing material does not follow the shape of the curved surface portion, reinforcement with the reinforcing material is insufficient, so that the fiber reinforcing material is easily broken and cracks are likely to occur on the surface.

さらには、発泡・硬化時の内部圧力は型の内部で均一に上昇せずに、不均一に上昇する傾向があり、型内の中央部において内部圧力が高くなる結果、成形型の中央部が変形して、発泡成形品の寸法安定性に問題が生じる問題もあった。
特開平7−148851号公報 特開平11−20029号公報
Furthermore, the internal pressure at the time of foaming / curing does not increase uniformly inside the mold, but tends to increase non-uniformly. There is also a problem that the deformation causes a problem in the dimensional stability of the foam molded product.
Japanese Patent Laid-Open No. 7-148851 Japanese Patent Laid-Open No. 11-20029

本発明は、上記現状に鑑み、マイクロ波を照射することで繊維強化材と一体化した発泡成形品を製造するにあたって、曲げ強度に優れており、繊維強化材が発泡成形品の表面層付近に配置されることで繊維強化材による補強効果が十分に発揮され、かつ、良好な寸法安定性を有する発泡成形品を製造することを目的とする。   In view of the above situation, the present invention is superior in bending strength in producing a foam molded product integrated with a fiber reinforcement by irradiating microwaves, and the fiber reinforcement is in the vicinity of the surface layer of the foam molded product. An object of the present invention is to produce a foamed molded article that sufficiently exhibits the reinforcing effect of the fiber reinforcing material and has good dimensional stability.

本発明者らは、上記課題を解決すべく鋭意検討した結果、熱硬化性樹脂を多孔質材料に含浸させ、これと繊維強化材を一体成形することで前記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by impregnating a porous material with a thermosetting resin and integrally molding this with a fiber reinforcing material. It came to complete.

すなわち本発明は、湿潤状態の多孔質材料を準備する第一工程、前記湿潤状態の多孔質材料に、熱硬化性樹脂を含浸させる第二工程、成形型内に、熱硬化性樹脂を含浸した多孔質材料、及び、繊維強化材を封入する第三工程、第三工程の後、前記成形型の外側からマイクロ波を照射して、前記熱硬化性樹脂の発泡・硬化及び成形を行うことで、発泡成形品を形成する第四工程、及び、前記成形型から前記発泡成形品を取り出す第五工程を含む、発泡成形品の製造方法である。   That is, the present invention includes a first step of preparing a wet porous material, a second step of impregnating the wet porous material with a thermosetting resin, and impregnating the thermosetting resin in a mold. After the third step and the third step of encapsulating the porous material and the fiber reinforcement, by applying microwaves from the outside of the mold, the thermosetting resin is foamed, cured and molded. And a fourth step of forming the foam molded product, and a fifth step of taking out the foam molded product from the mold.

また本発明は、前記製造方法により得られた発泡成形品でもある。   The present invention is also a foam molded article obtained by the above production method.

本発明の製造方法によれば、マイクロ波を照射することで繊維強化材と一体化した発泡成形品を製造するにあたって、曲げ強度に優れており、繊維強化材が発泡成形品の表面層付近に配置されることで繊維強化材による補強効果が十分に発揮され、かつ、良好な寸法安定性を有する発泡成形品を製造することができる。   According to the production method of the present invention, in producing a foam molded product integrated with a fiber reinforcement by irradiating microwaves, the bending strength is excellent, and the fiber reinforcement is in the vicinity of the surface layer of the foam molded product. By arranging the foamed molded article, the reinforcing effect of the fiber reinforcement can be sufficiently exerted, and good dimensional stability can be produced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る製造方法は、湿潤状態の多孔質材料を準備する第一工程、前記湿潤状態の多孔質材料に、熱硬化性樹脂を含浸させる第二工程、成形型内に、熱硬化性樹脂を含浸した多孔質材料、及び、繊維強化材を封入する第三工程、第三工程の後、前記成形型の外側からマイクロ波を照射して、前記熱硬化性樹脂の発泡・硬化及び成形を行うことで、発泡成形品を形成する第四工程、及び、前記成形型から前記発泡成形品を取り出す第五工程を含む。   The manufacturing method according to the present invention includes a first step of preparing a wet porous material, a second step of impregnating the wet porous material with a thermosetting resin, and a thermosetting resin in the mold. After the third step and the third step of encapsulating the porous material impregnated with the fiber reinforcing material, the microwave is irradiated from the outside of the molding die to foam, cure and mold the thermosetting resin. It includes a fourth step of forming a foamed molded product and a fifth step of taking out the foamed molded product from the mold.

本発明における多孔質材料としては、内部に多数の細孔を有し、柔軟性を有する材料であって、液体にひたすことで細孔内の空気と置換される形で液体を吸い取ることができる吸水性の材料を使用することができる。また、発泡成形時の高熱に耐性を有することが求められるので、耐熱性を有する材料が好ましい。具体例としては、スポンジ、立体織物、立体編物等が挙げられる。好ましくはスポンジであり、なかでも、パルプ由来のセルロースに、亜麻や綿等の天然繊維を複合化して製造された100%の天然材料であるセルローススポンジが最も好ましい。熱硬化性樹脂の含浸性が良好であり、マイクロ波の吸収能も高く、さらに耐熱性や強度にも優れているからである。   The porous material in the present invention is a flexible material having a large number of pores inside, and can absorb the liquid in such a way that it is substituted for the air in the pores by being immersed in the liquid. Water-absorbing materials can be used. Moreover, since it is calculated | required to have resistance to the high heat at the time of foam molding, the material which has heat resistance is preferable. Specific examples include a sponge, a three-dimensional woven fabric, and a three-dimensional knitted fabric. A sponge is preferred, and among them, a cellulose sponge, which is a 100% natural material produced by combining pulp-derived cellulose with natural fibers such as flax and cotton, is most preferred. This is because the impregnation property of the thermosetting resin is good, the ability to absorb microwaves is high, and the heat resistance and strength are also excellent.

多孔質材料としては、所期の発泡成形品の形状を考慮して適切な形状に成形したものを用いる。   As the porous material, a material formed into an appropriate shape in consideration of the shape of the desired foamed molded product is used.

第一工程では、湿潤状態にある多孔質材料を準備する。湿潤状態にある多孔質材料は、多孔質材料が水を含有するものであればよい。水はマイクロ波照射により加熱され水蒸気に変化することによって発泡剤としての役割を果たす成分である。乾燥状態ではなく湿潤状態にある多孔質材料に対して熱硬化性樹脂を含浸させることで、熱硬化性樹脂を均一に多孔質材料に含浸させることが可能になる。これは、多孔質材料が湿潤状態にあると、浸透圧の関係から、樹脂が多孔質材料内の繊維内部へ容易に移動できるためと考えられる。   In the first step, a porous material in a wet state is prepared. The porous material in a wet state may be any material as long as the porous material contains water. Water is a component that plays a role as a foaming agent by being heated by microwave irradiation and changing to water vapor. By impregnating the porous material in a wet state, not a dry state, with the thermosetting resin, the porous material can be uniformly impregnated with the thermosetting resin. This is presumably because when the porous material is in a wet state, the resin can easily move into the fibers in the porous material because of the osmotic pressure.

湿潤状態にある多孔質材料を準備するには、乾燥状態にある多孔質材料に対して水を吸水させた後、水を絞り出すことによって水の吸水量を調整すればよい。水の使用量は少ないほど、マイクロ波照射後の加熱速度が大きくなり好ましい。   In order to prepare a porous material in a wet state, the water absorption amount may be adjusted by squeezing water after water is absorbed into the porous material in a dry state. The smaller the amount of water used, the higher the heating rate after microwave irradiation, which is preferable.

第二工程では、第一工程で準備した湿潤状態の多孔質材料に、熱硬化性樹脂を含浸させる。   In the second step, the wet porous material prepared in the first step is impregnated with a thermosetting resin.

前記熱硬化性樹脂としては、マイクロ波照射により発生する水蒸気等のガスによって発泡し、その際の内部温度で硬化し得る樹脂を使用することができる。具体的には、フェノール樹脂、エポキシ樹脂、ビニルエステル樹脂、ユリア樹脂等の、損失係数の大きな液状樹脂が挙げられるが、得られる発泡成形品の物性に優れていることから、フェノール樹脂が好ましく、特にレゾール型のフェノール樹脂が好ましい。   As the thermosetting resin, a resin that can be foamed by a gas such as water vapor generated by microwave irradiation and can be cured at an internal temperature at that time can be used. Specifically, liquid resins with a large loss factor such as phenol resin, epoxy resin, vinyl ester resin, urea resin, etc. are mentioned, but phenol resin is preferred because of excellent physical properties of the obtained foamed molded product, In particular, a resol type phenol resin is preferred.

熱硬化性樹脂とともに、その硬化に必要な成分、例えば硬化剤や硬化触媒を適宜配合する。例えば、フェノール樹脂を用いる場合には、フェノール樹脂専用の硬化剤(具体的には酸)を併用することが好ましい。   Along with the thermosetting resin, components necessary for the curing, for example, a curing agent and a curing catalyst are appropriately blended. For example, when a phenol resin is used, it is preferable to use a curing agent (specifically, an acid) dedicated to the phenol resin.

そのほか、従来公知の整泡剤や、水以外の発泡剤(例えばフロンガスや炭化水素ガス)を適宜配合することができる。整泡剤を配合すると、発泡時の気泡形状が整えられ、独立気泡が増加し、かさ比重が小さくなることで、断熱性及び機械的強度が向上する。本発明では発泡剤を添加する必要はないが、かさ比重の小さな成形品を製造する場合には発泡剤を使用するほうが好ましい。   In addition, a conventionally known foam stabilizer and a foaming agent other than water (for example, chlorofluorocarbon gas or hydrocarbon gas) can be appropriately blended. When a foam stabilizer is blended, the shape of bubbles at the time of foaming is adjusted, the number of closed cells increases, and the bulk specific gravity decreases, thereby improving the heat insulation and mechanical strength. In the present invention, it is not necessary to add a foaming agent, but it is preferable to use a foaming agent when producing a molded article having a small bulk specific gravity.

また、熱硬化性樹脂の含浸性(繊維強化材中の隙間への浸透性)を向上させるために、あらかじめ、熱硬化性樹脂に適宜水を配合して熱硬化性樹脂の粘度を低下させておくことが好ましい。ただし、水の配合量は樹脂の種類や粘度に応じて調整可能であるが、水の配合量が多すぎると発泡効率が低下する傾向があるので、例えば、熱硬化性樹脂に対して最大で20重量%程度である。   In addition, in order to improve the impregnation property of the thermosetting resin (penetration into gaps in the fiber reinforcement), the viscosity of the thermosetting resin is decreased by adding water to the thermosetting resin in advance. It is preferable to keep it. However, the amount of water can be adjusted according to the type and viscosity of the resin. However, if the amount of water is too large, the foaming efficiency tends to decrease. About 20% by weight.

以上の混合物は、熱硬化性樹脂と必要に応じて水、整泡剤、発泡剤とを混合し、適当な機械を用いて攪拌し、最後に硬化剤や硬化触媒を添加し、さらに攪拌することで調製できる。   The above mixture is a mixture of a thermosetting resin and water, a foam stabilizer, and a foaming agent as necessary, and is stirred using an appropriate machine. Finally, a curing agent and a curing catalyst are added and further stirred. Can be prepared.

熱硬化性樹脂を多孔質材料に含浸させるにあたっては、ローラなどを使用して多孔質材料に均一に熱硬化性樹脂が浸透するようにすればよい。また、過剰に含浸した熱硬化性樹脂は、絞って除去すればよい。熱硬化性樹脂の含浸量は、最終的な発泡成形品のかさ比重を考慮して適宜調整可能である。   When the porous material is impregnated with the thermosetting resin, a roller or the like may be used so that the thermosetting resin uniformly penetrates into the porous material. The excessively impregnated thermosetting resin may be removed by squeezing. The impregnation amount of the thermosetting resin can be appropriately adjusted in consideration of the bulk specific gravity of the final foamed molded product.

次いで第三工程では、第二工程で得た、熱硬化性樹脂を含浸した多孔質材料と、繊維強化材とを成形型内に封入する。   Next, in the third step, the porous material impregnated with the thermosetting resin obtained in the second step and the fiber reinforcing material are enclosed in a mold.

本発明で使用する繊維強化材は、シート状の形状を有するものであり、繊維中の隙間を通じて熱硬化性樹脂が含浸することで高い補強効果を発揮するものである。具体的には、ガラスマット、ガラスクロス等のガラス繊維、麻、綿、羊毛等の天然繊維や、ポリエステル繊維やアクリル繊維等の合成繊維による織物、ニット、不織布等が使用できる。補強効果が高いことからガラス繊維が好ましい。これらを適当な大きさに裁断して用いる。マイクロ波照射を用いた内部加熱方式による発泡成形では、極めて高い内部圧力が生じるために、多孔質材料に含浸させた熱硬化性樹脂が繊維強化剤の隙間に侵入し、そこで硬化することによって、高い強度を持つ成形品を得ることができる。繊維強化材は樹脂が含浸しやすいように密度の粗い材料が好ましい。   The fiber reinforcing material used in the present invention has a sheet-like shape, and exhibits a high reinforcing effect by being impregnated with a thermosetting resin through a gap in the fiber. Specifically, glass fibers such as glass mats and glass cloth, natural fibers such as hemp, cotton, and wool, and woven fabrics, knits, nonwoven fabrics, and the like made of synthetic fibers such as polyester fibers and acrylic fibers can be used. Glass fiber is preferred because of its high reinforcing effect. These are cut into an appropriate size and used. In foam molding by an internal heating method using microwave irradiation, an extremely high internal pressure is generated, so that the thermosetting resin impregnated in the porous material penetrates into the gaps of the fiber reinforcing agent and is cured there. A molded product having high strength can be obtained. The fiber reinforcing material is preferably a material having a coarse density so that the resin can be easily impregnated.

本発明で用いる成形型は、マイクロ波を反射せず、かつ吸収しにくく透過する素材からなるものがよい。また、発泡・硬化時の高い内部圧力に耐えられるような強度と弾性率を有する素材が好ましい。具体的にはFRP(繊維強化プラスチック)製の成形型が好ましい。金属はマイクロ波を反射してしまうので使用できない。また、マイクロ波照射により発生する水蒸気等のガスを通すために、成形型にはガス抜きを設ける。   The mold used in the present invention is preferably made of a material that does not reflect microwaves and is difficult to absorb and transmit. Further, a material having strength and elastic modulus that can withstand high internal pressure during foaming / curing is preferable. Specifically, a mold made of FRP (fiber reinforced plastic) is preferable. Metals cannot be used because they reflect microwaves. Further, in order to pass a gas such as water vapor generated by microwave irradiation, the mold is provided with a vent.

成形型が成形品の所望の形状を有する場合には、当該成形型の内部に離型フィルムを敷設することによって発泡・硬化を行うことができる。また、成形型として、成形品を内包できるような大きめのサイズのものを用いる場合には、当該成形型の内部に、成形品の形状を有するシリコーンゴム製の型を設置して発泡・成形を行うこともできる。シリコーンゴムは弾力性に優れているから、極めて複雑かつ微細な曲面形状、例えば木目等の模様であっても、その形状を忠実に再現した成形品を製造することが可能である。シリコーンゴム型は、市販されている硬化用のシリコーン樹脂や、その硬化剤を使用し、適当な型に入れて硬化させることによって容易に製造することができる。   When the mold has the desired shape of the molded product, foaming and curing can be performed by laying a release film inside the mold. In addition, when using a mold that is large enough to contain a molded product, a silicone rubber mold having the shape of the molded product is placed inside the mold and foamed and molded. It can also be done. Since silicone rubber is excellent in elasticity, it is possible to manufacture a molded product that faithfully reproduces the shape of a very complicated and fine curved surface shape such as a grain pattern. The silicone rubber mold can be easily manufactured by using a commercially available curing silicone resin or a curing agent thereof, and curing the resin in an appropriate mold.

成形型内で、熱硬化性樹脂を含浸した多孔質材料と、繊維強化材とを積層するようにして配置した後、成形型を型締めする。   In the molding die, the porous material impregnated with the thermosetting resin and the fiber reinforcing material are arranged so as to be laminated, and then the molding die is clamped.

第三工程における具体的な手順を図1に基づいて説明する。   A specific procedure in the third step will be described with reference to FIG.

まず、FRP製の成形型1内に、離型フィルム(図示せず)を敷設するか、又はシリコーンゴム製の型(図示せず)を設置した後、下部の繊維強化材3aを配置し、それに積層して、熱硬化性樹脂を含浸した多孔質材料5を配置し、さらにその上に積層して、もう一枚の繊維強化材3bを配置する。図1では、繊維強化材3を上下に1枚ずつ配置しているが、片面のみに配置してもよい。   First, in the FRP mold 1, a release film (not shown) is laid or a silicone rubber mold (not shown) is placed, and then the lower fiber reinforcement 3a is placed. The porous material 5 impregnated with it and impregnated with the thermosetting resin is arranged, and further laminated thereon, and another fiber reinforcing material 3b is arranged. In FIG. 1, the fiber reinforcements 3 are arranged one by one up and down, but may be arranged only on one side.

図1では、板状の成形品を成形する場合について図示しているが、曲面形状を有するシリコーンゴム製の型等を内部に配置することで、曲面形状を有する成形品を製造することも可能である。   Although FIG. 1 illustrates the case where a plate-shaped molded product is molded, a molded product having a curved shape can be manufactured by placing a silicone rubber mold having a curved shape inside. It is.

急激な水蒸気発生による高い内部圧力に耐えられるよう成形型1を型締めした後、前記成形型の外側からマイクロ波を照射して、前記熱硬化性樹脂の発泡・硬化及び成形を行うことで、発泡成形品を形成する第四工程を行う。すなわち、マイクロ波照射装置を用いて、成形型1全体に対して、マイクロ波を数分〜10分程度照射する。この短い時間の間に、熱硬化性樹脂の発泡・硬化、及び成形と、繊維強化材の隙間への熱硬化性樹脂の浸透及び硬化と、多孔質材料と繊維強化材との接着とが同時進行することになる。   After clamping the mold 1 so as to withstand high internal pressure due to rapid water vapor generation, by irradiating microwaves from the outside of the mold, foaming / curing and molding the thermosetting resin, A fourth step of forming the foam molded product is performed. That is, the microwave is irradiated to the whole mold 1 for several minutes to 10 minutes using a microwave irradiation apparatus. During this short period of time, foaming / curing and molding of the thermosetting resin, penetration and curing of the thermosetting resin into the gaps of the fiber reinforcement, and adhesion between the porous material and the fiber reinforcement are simultaneously performed. Will progress.

マイクロ波を成形型に照射する際には、できるだけ均一に照射されるようにする。一般的に工業利用されるマイクロ波の周波数は2450MHzであり、波長は約12cmであるから、波長による加熱ムラを生じる可能性がある。そのため、対象物を回転させたり、マイクロ波を拡散するための金属製ファンを回転させたりしてなるべく均一に照射するようにする。   When irradiating the mold with the microwave, it is radiated as uniformly as possible. Generally, the frequency of microwaves used industrially is 2450 MHz, and the wavelength is about 12 cm. Therefore, there is a possibility of causing uneven heating due to the wavelength. Therefore, the object is irradiated as uniformly as possible by rotating the object or rotating the metal fan for diffusing the microwave.

マイクロ波の出力電力は大きいほど発泡・硬化反応が速く進行するため短時間での成形が可能になるが、逆に発泡の制御は難しくなるため、照射時間と関連づけて調整すればよい。さらには、成形品の形状やサイズ、あるいは熱硬化性樹脂の種類や、硬化剤の量、強化繊維材の種類等を考慮して調整を行う。   As the output power of the microwave increases, the foaming / curing reaction proceeds faster, so that molding in a short time becomes possible. On the contrary, since it becomes difficult to control foaming, it may be adjusted in association with the irradiation time. Further, the adjustment is performed in consideration of the shape and size of the molded product, the type of the thermosetting resin, the amount of the curing agent, the type of the reinforcing fiber material, and the like.

照射後必要に応じてアフターキュアを行った後、得られた成形品を成形型から取り出す。離型フィルムを用いずにシリコーンゴム型を用いた場合においても容易に離型することができる。   After irradiation is performed as necessary after irradiation, the obtained molded product is taken out of the mold. Even when a silicone rubber mold is used without using a release film, the mold can be easily released.

得られた成形品は、中心材が、多孔質材料と、硬化した熱硬化性樹脂とからなる発泡硬化物であり、当該硬化物に、硬化した熱硬化性樹脂が含浸した繊維強化材が接着されている構造を有している。本発明では、発泡・硬化に伴い高い内部圧力が発生するために、曲面形状を有する成形品であっても、伸縮性のある繊維強化材が強固に、かつ皺なく接着される。   In the obtained molded product, the center material is a foamed cured product composed of a porous material and a cured thermosetting resin, and a fiber reinforcing material impregnated with the cured thermosetting resin is bonded to the cured product. Has the structure. In the present invention, since a high internal pressure is generated with foaming / curing, the stretchable fiber reinforcing material is firmly and evenly adhered even to a molded product having a curved shape.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1及び比較例1)
下記の材料を混合して熱硬化性樹脂混合物を調製した。
・レゾール型フェノール樹脂:昭和高分子(株)製BRL−191(粘度(25℃):2750〜3750mPa・s、不揮発分:76〜80重量%、揮発分のうち約15重量%が水、残りが遊離フェノールである)
・フェノール樹脂用硬化剤:第一工業製薬(株)製レジノールPS−63(フェノールスルホン酸が約63重量%、遊離硫酸が1重量%以下、遊離フェノールが5重量%、残りが水):8重量%(各成分の配合量はフェノール樹脂に対する重量比で示す。以下同様。)
・竹粉:2重量%
・整泡剤:第一工業製薬(株)製フロティアK−54(ヒマシ油アルキレンオキサイド付加物及びビスフェノールAホルムアルデヒド縮合物の配合物):2重量%
・発泡剤:ジエチルエーテル(沸点35℃):3重量%
樹脂の使用量は、発泡成形品のかさ比重が400〜450kg/mの範囲に収まるように調整した。
(Example 1 and Comparative Example 1)
The following materials were mixed to prepare a thermosetting resin mixture.
・ Resol type phenol resin: BRL-191 (viscosity (25 ° C.): 2750-3750 mPa · s, non-volatile content: 76-80 wt%, approximately 15 wt% of volatile content is water, remaining as Showa High Polymer Co., Ltd. Is free phenol)
-Phenolic resin curing agent: Resinol PS-63 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (Phenolsulfonic acid is about 63% by weight, free sulfuric acid is 1% by weight or less, free phenol is 5% by weight, and the rest is water): 8 % By weight (The amount of each component is shown as a weight ratio to the phenol resin. The same applies hereinafter.)
・ Bamboo powder: 2% by weight
-Foam stabilizer: Flotia K-54 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (a blend of castor oil alkylene oxide adduct and bisphenol A formaldehyde condensate): 2% by weight
-Foaming agent: diethyl ether (boiling point 35 ° C.): 3% by weight
The amount of resin used was adjusted so that the bulk specific gravity of the foamed molded product was within the range of 400 to 450 kg / m 3 .

繊維強化材としては、ガラスマットである、旭ファイバーグラス(株)製のコンティニュアスマットCSM(目付:300g/m)を使用し、成形品の上下に積層できるように2枚使用した。 As the fiber reinforcement, a continuous mat CSM (weight per unit: 300 g / m 2 ) manufactured by Asahi Fiber Glass Co., Ltd., which is a glass mat, was used, and two sheets were used so that they could be laminated on the top and bottom of the molded product.

多孔質材料としては、東レ・ファインケミカル(株)製セルローススポンジ(厚さ:約7mm)を使用した。   As the porous material, cellulose sponge (thickness: about 7 mm) manufactured by Toray Fine Chemical Co., Ltd. was used.

成形型としては、ガラス織物を複数枚と不飽和ポリエステル樹脂を積層して作製したFRP製成形型を使用した。   As the mold, an FRP mold formed by laminating a plurality of glass fabrics and an unsaturated polyester resin was used.

マイクロ波加熱装置としては、三菱電機(株)製の家庭用電子レンジRO−BV6を使用した。   As the microwave heating device, a household microwave oven RO-BV6 manufactured by Mitsubishi Electric Corporation was used.

マイクロ波の照射は200Wで5分間行った。マイクロ波の照射後は、60℃で3時間維持することによってアフターキュアを行った。十分に冷却したものを曲げ試験に供した。   Microwave irradiation was performed at 200 W for 5 minutes. After the microwave irradiation, after-curing was performed by maintaining at 60 ° C. for 3 hours. What was fully cooled was subjected to a bending test.

実施例1では、上述した手順に沿って、両面の表面層付近に繊維強化材が配置され、内部材がセルローススポンジと、硬化したフェノール樹脂とからなる平板状の発泡成形品(厚み:約1cm)を製造した。   In Example 1, in accordance with the above-described procedure, a fiber reinforcing material is disposed in the vicinity of the surface layers on both sides, and the inner member is a flat foam molded product (thickness: about 1 cm) made of cellulose sponge and a cured phenol resin. ) Was manufactured.

比較例1では、セルローススポンジを使用せずに実施例1の手順を繰り返し、平板状の発泡成形品(厚み:約1cm)を製造した。
(1)曲げ強度試験
以下の条件により3点曲げ試験を行い、最大曲げ強度を算出した。
1.試験機:材料試験機((株)エー・アンド・ディ製テンシロン RTF1325)
2.たわみ速度:5mm/分
3.支点間距離:100mm
4.試験試料:厚みt=8〜12mm、幅b=24.5〜25.5mm、長さL=270〜275mm
5.最大曲げ強度の算出式:最大曲げ強度=3*Pmax(最大曲げ荷重)*L/2*b*t
なお数点の試験試料を作製して試験を行い、以下の表ではその平均値を示した。
In Comparative Example 1, the procedure of Example 1 was repeated without using a cellulose sponge to produce a flat foam-molded product (thickness: about 1 cm).
(1) Bending strength test A three-point bending test was performed under the following conditions to calculate the maximum bending strength.
1. Testing machine: Material testing machine (A & D Tensilon RTF1325)
2. 2. Deflection speed: 5 mm / min Distance between fulcrums: 100mm
4). Test sample: thickness t = 8-12 mm, width b = 24.5-25.5 mm, length L = 270-275 mm
5). Formula for calculating maximum bending strength: Maximum bending strength = 3 * Pmax (maximum bending load) * L / 2 * b * t 2
Several test samples were prepared and tested, and the average values are shown in the following table.

曲げ強度、及びかさ比重を測定した結果を表1に示す。   The results of measuring the bending strength and bulk specific gravity are shown in Table 1.

表1の結果より、セルローススポンジを使用することで、曲げ強度が約80%も向上したことが分かる。   From the results in Table 1, it can be seen that the bending strength was improved by about 80% by using cellulose sponge.

さらに、実施例1の発泡成形品の曲げ試験後の外観を観察したところ、試料中央部で縦方向(厚み方向)にのみ亀裂が見られた。一方、比較例1の発泡成形品では、材料内の水平方向に大きな亀裂が見られた。前述の3点曲げを行った場合には荷重点である中央部に最大曲げモーメントが加わるが、比較例1のセルローススポンジなしの発泡成形品では、中央部で発生した亀裂が水平方向に大きく拡がったと考えられる。   Furthermore, when the external appearance after the bending test of the foam molded article of Example 1 was observed, cracks were observed only in the longitudinal direction (thickness direction) at the center of the sample. On the other hand, in the foam molded product of Comparative Example 1, a large crack was observed in the horizontal direction in the material. When the above-mentioned three-point bending is performed, the maximum bending moment is applied to the central portion, which is the load point, but in the foamed molded product without the cellulose sponge of Comparative Example 1, the cracks generated at the central portion greatly expand in the horizontal direction. It is thought.

樹脂を含浸する前で水を吸水したセルローススポンジの内部を顕微鏡により観察して撮影した写真(倍率150倍)を図2に示し、実施例1の発泡成形品の内部を顕微鏡(倍率500倍)により観察して撮影した写真を図3に示す。この発泡成形品では、セルローススポンジ内の小さなセルの内部及びセルの壁面内に樹脂が含浸することで高い強度を発現するとともに、セルローススポンジ内のセルが連結することで亀裂の進展を防ぎ、高い曲げ強度が得られたと考えられる。   A photograph (150 magnifications) of the inside of the cellulose sponge that has absorbed water before impregnating the resin and observed with a microscope is shown in FIG. 2, and the inside of the foamed molded product of Example 1 is microscope (500 times magnification). FIG. 3 shows a photograph taken by observation. In this foam-molded product, the resin is impregnated into the inside of the small cell in the cellulose sponge and the wall surface of the cell to express high strength, and the cell in the cellulose sponge is connected to prevent the progress of cracks. It is thought that bending strength was obtained.

図4では、実施例1及び比較例1の発泡成形品を曲げ試験に供した際のたわみ量と曲げ強度の関係を示す。実施例1及び比較例1の双方でたわみ量が約3mmに到達した時点で荷重の低下が観察されるが、比較例1では荷重の低下量が大きく、一気に亀裂が拡がって破壊に至ったと考えられる。一方、実施例1では亀裂が発生したものの拡がらず、荷重が一旦低下した後でも荷重の増加が観察された。   FIG. 4 shows the relationship between the amount of deflection and the bending strength when the foam molded products of Example 1 and Comparative Example 1 were subjected to a bending test. In both Example 1 and Comparative Example 1, a decrease in load is observed when the amount of deflection reaches about 3 mm. In Comparative Example 1, the amount of decrease in load is large, and cracks spread all at once, leading to destruction. It is done. On the other hand, in Example 1, although the crack occurred, it did not spread and an increase in the load was observed even after the load once decreased.

(2)発泡成形品内での繊維強化材の安定性
実施例1及び比較例1の発泡成形品の断面を確認したところ、実施例1では、ガラスマットが成形品の表面層に、平面上に配置されており、かつ樹脂が含浸していた。そのため、セルローススポンジ内のセル連結による亀裂進展防止効果に加えて、高い補強効果を発揮することができる。一方、比較例1では、ガラスマットは蛇行しており、しかも成形品の内部に配置されていた。このため、補強効果が十分ではない。
(2) Stability of the fiber reinforcement in the foam molded product When the cross sections of the foam molded products of Example 1 and Comparative Example 1 were confirmed, in Example 1, the glass mat was placed on the surface layer of the molded product on the plane. And was impregnated with resin. Therefore, in addition to the effect of preventing crack growth due to cell connection in the cellulose sponge, a high reinforcing effect can be exhibited. On the other hand, in Comparative Example 1, the glass mat meanders and is disposed inside the molded product. For this reason, the reinforcing effect is not sufficient.

(3)発泡成形品の寸法安定性
実施例1及び比較例1の発泡成形品の厚みを測定し、成形品の中心部からの距離と、厚みの平均値からの差との関係を図5に示した。これらの発泡成形品は厚みが均一になるように成形を行ったものであるが、比較例1では、中心部が厚く、両端へ近づくほど薄くなる傾向が見られた。一方、実施例1では、平均値からのバラツキが少なく、全体的に寸法(厚み)が安定していることが分かる。すなわちセルローススポンジの使用によって寸法安定性が向上することが分かった。これは、セルローススポンジが、マイクロ波照射により生じる内部圧力の均一化に資するためと考えられる。
(3) Dimensional Stability of Foam Molded Product The thicknesses of the foam molded products of Example 1 and Comparative Example 1 were measured, and the relationship between the distance from the center of the molded product and the difference from the average thickness was shown in FIG. It was shown to. These foam-molded products were molded so as to have a uniform thickness, but in Comparative Example 1, there was a tendency that the central portion was thicker and thinner as it approached both ends. On the other hand, in Example 1, it turns out that there is little variation from an average value and the dimension (thickness) is stabilized as a whole. That is, it was found that the use of cellulose sponge improves the dimensional stability. This is probably because the cellulose sponge contributes to uniform internal pressure generated by microwave irradiation.

本発明の成形方法でマイクロ波照射前の材料を型内に配置した状態を示す概念図The conceptual diagram which shows the state which has arrange | positioned the material before microwave irradiation in the type | mold by the shaping | molding method of this invention 樹脂を含浸する前で水を吸水したセルローススポンジの内部を拡大した顕微鏡写真Magnified photo of the inside of a cellulose sponge that has absorbed water before impregnation with resin 実施例1の発泡成形品の内部を拡大した顕微鏡写真Photomicrograph in which the inside of the foam molded product of Example 1 was enlarged 実施例1及び比較例1の発泡成形品を曲げ試験に供した際のたわみ量と曲げ強度の関係を示すグラフThe graph which shows the relationship between the bending amount at the time of using the foaming molded article of Example 1 and Comparative Example 1 for a bending test, and bending strength. 実施例1及び比較例1の発泡成形品における中心部からの距離と、厚みの平均値からの差との関係を示すグラフThe graph which shows the relationship between the distance from the center part in the foaming molded product of Example 1 and Comparative Example 1, and the difference from the average value of thickness.

符号の説明Explanation of symbols

1 FRP製成形型
3a,3b 繊維強化材
5 熱硬化性樹脂を含浸した多孔質材料
DESCRIPTION OF SYMBOLS 1 FRP mold 3a, 3b Fiber reinforcement 5 Porous material impregnated with thermosetting resin

Claims (5)

湿潤状態の多孔質材料を準備する第一工程、
前記湿潤状態の多孔質材料に、熱硬化性樹脂を含浸させる第二工程、
成形型内に、熱硬化性樹脂を含浸した多孔質材料、及び、繊維強化材を封入する第三工程、
第三工程の後、前記成形型の外側からマイクロ波を照射して、前記熱硬化性樹脂の発泡・硬化及び成形を行うことで、発泡成形品を形成する第四工程、及び、
前記成形型から前記発泡成形品を取り出す第五工程を含む、発泡成形品の製造方法。
A first step of preparing a wet porous material;
A second step of impregnating the wet porous material with a thermosetting resin;
A third step of enclosing a porous material impregnated with a thermosetting resin and a fiber reinforcing material in a mold;
After the third step, a fourth step of forming a foamed molded product by irradiating microwaves from the outside of the mold and performing foaming / curing and molding of the thermosetting resin, and
A method for producing a foam molded product, comprising a fifth step of taking out the foam molded product from the mold.
前記多孔質材料が、スポンジ材料、立体織物、及び、立体編物からなる群より選択される少なくとも1種である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the porous material is at least one selected from the group consisting of a sponge material, a three-dimensional woven fabric, and a three-dimensional knitted fabric. 前記熱硬化性樹脂がフェノール樹脂である請求項1又は2記載の製造方法。   The manufacturing method according to claim 1, wherein the thermosetting resin is a phenol resin. 前記繊維強化材がガラス繊維である請求項1〜3のいずれか記載の製造方法。   The manufacturing method according to claim 1, wherein the fiber reinforcing material is glass fiber. 請求項1〜4のいずれか記載の製造方法により得られた発泡成形品。   A foam-molded article obtained by the production method according to claim 1.
JP2008285889A 2008-11-06 2008-11-06 Method of manufacturing foam molded article using porous material Pending JP2010111026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285889A JP2010111026A (en) 2008-11-06 2008-11-06 Method of manufacturing foam molded article using porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285889A JP2010111026A (en) 2008-11-06 2008-11-06 Method of manufacturing foam molded article using porous material

Publications (1)

Publication Number Publication Date
JP2010111026A true JP2010111026A (en) 2010-05-20

Family

ID=42299983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285889A Pending JP2010111026A (en) 2008-11-06 2008-11-06 Method of manufacturing foam molded article using porous material

Country Status (1)

Country Link
JP (1) JP2010111026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111163A (en) * 2010-11-26 2012-06-14 Pentel Corp Elastic body and shaft body arranged with the elastic body in gripping part
WO2014073753A1 (en) * 2012-11-09 2014-05-15 전북대학교산학협력단 Particle reinforced cellular foam and preparation method thereof
CN111867798A (en) * 2019-01-15 2020-10-30 宝洁公司 Process for making flexible porous dissolvable solid sheet articles with improved pore structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829774B1 (en) * 1970-03-07 1973-09-13
JPH0418433A (en) * 1990-05-11 1992-01-22 Toray Ind Inc Production of phenol foam and phenol foam
JPH07148851A (en) * 1993-11-30 1995-06-13 F Tatsukuru:Kk Production f foamed phenol frp molded product by microwave heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829774B1 (en) * 1970-03-07 1973-09-13
JPH0418433A (en) * 1990-05-11 1992-01-22 Toray Ind Inc Production of phenol foam and phenol foam
JPH07148851A (en) * 1993-11-30 1995-06-13 F Tatsukuru:Kk Production f foamed phenol frp molded product by microwave heating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111163A (en) * 2010-11-26 2012-06-14 Pentel Corp Elastic body and shaft body arranged with the elastic body in gripping part
WO2014073753A1 (en) * 2012-11-09 2014-05-15 전북대학교산학협력단 Particle reinforced cellular foam and preparation method thereof
CN111867798A (en) * 2019-01-15 2020-10-30 宝洁公司 Process for making flexible porous dissolvable solid sheet articles with improved pore structure

Similar Documents

Publication Publication Date Title
JP6036844B2 (en) Prepreg, fiber reinforced composite material and method for producing fiber reinforced composite material
CN102574358B (en) Fiber-reinforced molded product and method for producing same
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
US20090252921A1 (en) Method for the production of a sandwich component having a honeycomb core and the sandwich component obtained in this way
KR101500036B1 (en) Core for sandwich panel and method for manufacturing the same, the sandwich panel containing the same
TWI697398B (en) Manufacturing method of structure
WO2008094966A1 (en) Composite panel having in-situ thermoset foamed core
CN108248124A (en) A kind of pp cellular sandwich compound plates and preparation method thereof
KR101672722B1 (en) Method for producing sandwich composition article
CN108081691B (en) Aramid short fiber reinforced carbon fiber prepreg, preparation method and application
JP4805375B2 (en) Method for manufacturing FRP structure
JP2009137204A (en) Manufacturing method for foam molded article using micro wave radiation
JP2010111026A (en) Method of manufacturing foam molded article using porous material
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
JP2020513351A (en) Plastic composite core member and method of manufacturing the same
KR102317515B1 (en) A sandwich panel and a manufacturing method thereof
CN106700123B (en) A kind of noise reduction aramid fiber honeycomb and preparation method thereof
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2018144274A (en) Molded product manufacturing method and molded product made from metal and fiber-reinforced composite material
JP4367994B2 (en) Method for producing composite material of pulp fiber panel and fiber reinforced plastic
JP2013249441A (en) Preform and fiber-reinforced resin molding using the same
JP2013209474A (en) Resin composition, prepreg using the same and method for producing resin composition
JPH1110656A (en) Manufacture of fiber-reinforced resin composite body
JP2021049692A (en) Fiber-reinforced composite panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402