JP2010110169A - Rotor for electric rotary machine - Google Patents

Rotor for electric rotary machine Download PDF

Info

Publication number
JP2010110169A
JP2010110169A JP2008281672A JP2008281672A JP2010110169A JP 2010110169 A JP2010110169 A JP 2010110169A JP 2008281672 A JP2008281672 A JP 2008281672A JP 2008281672 A JP2008281672 A JP 2008281672A JP 2010110169 A JP2010110169 A JP 2010110169A
Authority
JP
Japan
Prior art keywords
magnet
claw
shaped magnetic
rotor
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281672A
Other languages
Japanese (ja)
Other versions
JP4743257B2 (en
Inventor
Koji Kondo
考司 近藤
Yoshinori Hayashi
由典 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008281672A priority Critical patent/JP4743257B2/en
Priority to EP09012996.6A priority patent/EP2182613B1/en
Priority to US12/588,757 priority patent/US8283833B2/en
Publication of JP2010110169A publication Critical patent/JP2010110169A/en
Application granted granted Critical
Publication of JP4743257B2 publication Critical patent/JP4743257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for an electric rotary machine, which prevent damage to permanent magnets 7 in a low cost constitution without an excess force applied thereto when the permanent magnet 7 is assembled or in use or the like. <P>SOLUTION: The permanent magnets 7 are not fixed to the magnetic supporting segment 8a of a magnet support ring in advance and each permanent magnet is assembled separately of the magnet support ring. Prior to assembling the permanent magnets 7, the magnet support ring is preliminarily located on inner peripheral sides of a claw-shaped magnetic pole 3c while being combined with a pair of field iron cores 3A, 3B, and then the permanent magnets 7 are inserted into magnet insertion spaces in longitudinal directions. This method allows the individual magnets 7 to be easily inserted into magnet insertion spaces for assembly in spite of the variation in working accuracy and assembling accuracy of the claw-shaped magnetic pole 3c, so that an excess force is not applied to the magnets 7 during assembling, thereby preventing the magnets 7 from being damaged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一対の界磁鉄心に設けられる互いの爪状磁極間に永久磁石を配設した回転電機の回転子に関する。   The present invention relates to a rotor of a rotating electrical machine in which a permanent magnet is disposed between claw-shaped magnetic poles provided on a pair of field iron cores.

従来、自動車用等の交流発電機として、例えば、特許文献1に開示された技術が公知である。この特許文献1では、一対のランデル型ポールコアに設けられる爪状磁極同士の間にそれぞれ永久磁石を挿入し、周方向に隣合う爪状磁極間の漏洩磁束を減らして発電に寄与する有効磁束を増量させることにより、出力向上を図る技術が提案されている。
また、上記の従来技術には、爪状磁極の側面外周部から周方向へ鍔状に突き出る係止部が設けられ、この係止部の内周に永久磁石の外周面肩部が当接することにより、ロータの回転時に永久磁石が遠心方向(径方向外側)へ飛び出すことを規制している。
さらに、複数の永久磁石は、非磁性体から成る支持リングの外周面にそれぞれ接着剤等により固着されて磁石アセンブリとして構成され、この磁石アセンブリがポールコアに組み付けられている。
特開平8−223882号公報
Conventionally, for example, a technique disclosed in Patent Document 1 is known as an AC generator for automobiles or the like. In Patent Document 1, permanent magnets are inserted between the claw-shaped magnetic poles provided in the pair of Landel-type pole cores, and the effective magnetic flux contributing to power generation is reduced by reducing the leakage magnetic flux between the claw-shaped magnetic poles adjacent in the circumferential direction. A technique for improving the output by increasing the amount has been proposed.
Further, in the above-described conventional technology, a locking portion that protrudes in a circumferential manner from the outer peripheral portion of the side surface of the claw-shaped magnetic pole is provided, and the outer peripheral surface shoulder of the permanent magnet abuts on the inner periphery of the locking portion. This restricts the permanent magnet from jumping out in the centrifugal direction (radially outward) when the rotor rotates.
Further, the plurality of permanent magnets are each fixed to the outer peripheral surface of the support ring made of a non-magnetic material with an adhesive or the like to constitute a magnet assembly, and this magnet assembly is assembled to the pole core.
JP-A-8-223882

ところが、特許文献1に開示された従来技術では、複数の永久磁石が支持リングの外周面に接着剤等により固着されているため、極めて高い部品精度および組み付け精度が要求される。すなわち、磁石アセンブリの状態では、支持リングに対して複数の永久磁石の位置が予め固定されるため、永久磁石が正規の位置から多少でもずれていると、周方向に隣合う爪状磁極間に永久磁石を挿入する際、あるいは使用中に永久磁石に過大なストレスが加わり、永久磁石が破損する原因となる。
また、磁石アセンブリの精度(支持リングに対する永久磁石の位置精度)が良くても、爪状磁極の加工精度にばらつきがあると、一対のポールコアを組み合わせた状態で、周方向に隣合う爪状磁極同士の間に永久磁石を挿入できるだけの空間(磁石挿入スペースと呼ぶ)を確保できたとしても、その磁石挿入スペースと、支持リングに固着されている永久磁石との位置がずれることで、磁石挿入スペースに永久磁石を挿入できなくなる恐れもある。
However, in the prior art disclosed in Patent Document 1, since a plurality of permanent magnets are fixed to the outer peripheral surface of the support ring with an adhesive or the like, extremely high component accuracy and assembly accuracy are required. That is, in the state of the magnet assembly, the positions of the plurality of permanent magnets are fixed in advance with respect to the support ring. When the permanent magnet is inserted or during use, excessive stress is applied to the permanent magnet, causing the permanent magnet to break.
Even if the accuracy of the magnet assembly (positional accuracy of the permanent magnet with respect to the support ring) is good, if there are variations in the processing accuracy of the claw-shaped magnetic poles, the claw-shaped magnetic poles adjacent in the circumferential direction with a pair of pole cores combined Even if a space enough to insert a permanent magnet between them (called a magnet insertion space) can be secured, the magnet insertion space and the permanent magnet fixed to the support ring are misaligned. There is also a risk that permanent magnets cannot be inserted into the space.

上記の様に、特許文献1に係る発明では、支持リングに固着されている複数の永久磁石を複数箇所の磁石挿入スペースにそれぞれ無理なく挿入するためには、ポールコア側の部品精度(特に爪状磁極の加工精度)や組み付け精度だけでなく、磁石アセンブリの精度も要求されるため、コスト増加の要因となっている。
本発明は、上記事情に基づいて成されたもので、その目的は、永久磁石の組み付け時、または、使用中等に無理な力が加わることなく、低コストな構成で永久磁石の破損を防止できる回転電機の回転子を提供することにある。
As described above, in the invention according to Patent Document 1, in order to easily insert a plurality of permanent magnets fixed to a support ring into a plurality of magnet insertion spaces, the component accuracy on the pole core side (especially a claw-like shape) The accuracy of the magnet assembly is required in addition to the magnetic pole machining accuracy) and the assembly accuracy, which is a cause of cost increase.
The present invention has been made based on the above circumstances, and its purpose is to prevent damage to the permanent magnet with a low-cost configuration without applying excessive force during assembly of the permanent magnet or during use. It is in providing the rotor of a rotary electric machine.

(請求項1の発明)
本発明は、互いに複数の爪状磁極を有し、その互いの爪状磁極同士が周方向に所定の間隔を有して交互に噛み合う様に組み合わされて回転軸に固定される一対の界磁鉄心と、この一対の界磁鉄心に巻装される界磁巻線と、周方向に隣合う爪状磁極同士の側面間に配設され、その隣合う爪状磁極間の漏洩磁束を減少させる向きに着磁される複数の永久磁石と、この複数の永久磁石の内周側に配置される非磁性体の支持リングとを備え、爪状磁極には、周方向の側面外周部から周方向へ鍔状に突き出る係止部が設けられている回転電機の回転子であって、一対の界磁鉄心に設けられる互いの爪状磁極の内周側に予め支持リングが配置された状態で、周方向に隣合う爪状磁極同士の側面間に永久磁石が配設されると共に、その永久磁石の内周側が支持リングによって支持され、且つ、爪状磁極に設けられた係止部によって永久磁石の径方向外側への移動が規制されていることを特徴とする。
(Invention of Claim 1)
The present invention has a pair of field magnets that have a plurality of claw-shaped magnetic poles and are combined with each other so that the claw-shaped magnetic poles are alternately meshed with each other at a predetermined interval in the circumferential direction. It is disposed between the side surfaces of the iron core, the field winding wound around the pair of field iron cores, and the claw-shaped magnetic poles adjacent in the circumferential direction, and reduces the leakage magnetic flux between the adjacent claw-shaped magnetic poles. A plurality of permanent magnets magnetized in the direction and a non-magnetic support ring disposed on the inner peripheral side of the plurality of permanent magnets. A rotor of a rotating electrical machine provided with a locking portion protruding like a hook, with a support ring arranged in advance on the inner peripheral side of each claw-shaped magnetic pole provided in a pair of field iron cores, A permanent magnet is disposed between the side surfaces of the claw-shaped magnetic poles adjacent in the circumferential direction, and the inner peripheral side of the permanent magnet is supported. It is supported by the ring, and characterized in that the radially outward movement of the permanent magnet is restricted by the locking portion provided in the claw-shaped magnetic poles.

上記の構成によれば、複数の永久磁石がそれぞれ支持リングに固定されている訳ではなく、一対の界磁鉄心に対し、複数の永久磁石と支持リングとを別々に組み付けることができる。つまり、一対の界磁鉄心に設けられる互いの爪状磁極の内周側に予め支持リングを配置して、その後、周方向に隣合う爪状磁極同士の側面間に永久磁石を挿入して組み付けることができる。これにより、爪状磁極の加工精度や組み付け精度にばらつきがあっても、永久磁石に無理な力が加わることはなく、組み付け時や使用中等に磁石が破損することを防止できる。その結果、複数の永久磁石が予め支持リングに固着されている従来技術(特許文献1)と比較した場合に、本発明によれば、磁石アセンブリを形成する必要がないので、複数の永久磁石と支持リングとの位置関係を精度良く位置決めする必要はなく、且つ、界磁鉄心側の部品精度及び組み付け精度を高くする必要もないので、その分、コストを低く抑えることができる。   According to said structure, a some permanent magnet is not necessarily fixed to the support ring, respectively, but a some permanent magnet and a support ring can be separately assembled | attached with respect to a pair of field iron core. That is, a support ring is arranged in advance on the inner peripheral side of each claw-shaped magnetic pole provided in the pair of field iron cores, and then a permanent magnet is inserted and assembled between the side surfaces of the claw-shaped magnetic poles adjacent in the circumferential direction. be able to. Thereby, even if there are variations in the processing accuracy and assembly accuracy of the claw-shaped magnetic poles, an excessive force is not applied to the permanent magnet, and the magnet can be prevented from being damaged during assembly or during use. As a result, when compared with the prior art (Patent Document 1) in which a plurality of permanent magnets are fixed to a support ring in advance, according to the present invention, it is not necessary to form a magnet assembly. Since it is not necessary to position the positional relationship with the support ring with high accuracy and there is no need to increase the component accuracy and assembly accuracy on the field iron core side, the cost can be reduced accordingly.

(請求項2の発明)
請求項1に記載した回転電機の回転子であって、爪状磁極に設けられた係止部と支持リングとの間の径方向寸法と、周方向に隣合う爪状磁極同士の側面間の周方向寸法とで磁石挿入スペースが規定され、一対の界磁鉄心に設けられる互いの爪状磁極の内周側に支持リングを配置した後、磁石挿入スペースに永久磁石を自身の長手方向から挿入して組み付けることを特徴とする。
本発明によれば、一対の界磁鉄心に設けられる互いの爪状磁極の内周側に支持リングを配置することで磁石挿入スペースを形成し、その磁石挿入スペースに永久磁石を単体で挿入する、つまり、支持リングに永久磁石が固着された状態ではなく、永久磁石のみを磁石挿入スペースに挿入して組み付けることができる。
(Invention of Claim 2)
It is a rotor of the rotary electric machine according to claim 1, Comprising: Between the size of a diameter direction between a locking part provided in a claw-like magnetic pole, and a support ring, and the side of claw-like magnetic poles adjacent in the peripheral direction The magnet insertion space is defined by the circumferential dimension, and after placing the support ring on the inner peripheral side of each claw-shaped magnetic pole provided in the pair of field iron cores, the permanent magnet is inserted into the magnet insertion space from its longitudinal direction And assembled.
According to the present invention, a magnet insertion space is formed by disposing a support ring on the inner peripheral side of each claw-shaped magnetic pole provided in a pair of field iron cores, and a permanent magnet is inserted into the magnet insertion space alone. That is, it is not a state in which the permanent magnet is fixed to the support ring, but only the permanent magnet can be inserted into the magnet insertion space and assembled.

(請求項3の発明)
本発明は、互いに複数の爪状磁極を有し、その互いの爪状磁極同士が周方向に所定の間隔を有して交互に噛み合う様に組み合わされて回転軸に固定される一対の界磁鉄心と、この一対の界磁鉄心に巻装される界磁巻線と、周方向に隣合う爪状磁極同士の側面間に配設され、その隣合う爪状磁極間の漏洩磁束を減少させる向きに着磁される複数の永久磁石と、この複数の永久磁石の内周側に配置される非磁性体の支持リングとを備え、爪状磁極には、周方向の側面外周部から周方向へ鍔状に突き出る係止部が設けられている回転電機の回転子であって、一対の界磁鉄心のうち、どちらか一方の界磁鉄心に設けられる爪状磁極の内周側に予め支持リングを配置してから、爪状磁極に設けられる係止部と支持リングとの間の径方向寸法によって規定される径方向空間に永久磁石を挿入して、その永久磁石の内周側を支持リングにより支持すると共に、係止部によって永久磁石の径方向外側への移動が規制された状態を保ち、その後、他方の界磁鉄心を組み合わせることを特徴とする。
(Invention of Claim 3)
The present invention has a pair of field magnets that have a plurality of claw-shaped magnetic poles and are combined with each other so that the claw-shaped magnetic poles are alternately meshed with each other at a predetermined interval in the circumferential direction. It is disposed between the side surfaces of the iron core, the field winding wound around the pair of field iron cores, and the claw-shaped magnetic poles adjacent in the circumferential direction, and reduces the leakage magnetic flux between the adjacent claw-shaped magnetic poles. A plurality of permanent magnets magnetized in the direction and a non-magnetic support ring disposed on the inner peripheral side of the plurality of permanent magnets. A rotor of a rotating electrical machine provided with a locking portion protruding like a flange, and is previously supported on the inner peripheral side of a claw-shaped magnetic pole provided on one of the pair of field cores Specified by the radial dimension between the locking part provided on the claw-shaped magnetic pole and the support ring after the ring is placed The permanent magnet is inserted into the radial space to be supported, the inner peripheral side of the permanent magnet is supported by the support ring, and the movement of the permanent magnet to the radially outer side is maintained by the locking portion, and then The other field iron core is combined.

上記の構成によれば、複数の永久磁石がそれぞれ支持リングに固定されている訳ではなく、界磁鉄心に対し、複数の永久磁石と支持リングとを別々に組み付けることができる。つまり、どちらか一方の界磁鉄心に設けられる爪状磁極の内周側に予め支持リングを配置して、その後、爪状磁極の係止部と支持リングとの間の径方向寸法によって規定される径方向空間に永久磁石を挿入して組み付けることができる。これにより、爪状磁極の加工精度や組み付け精度にばらつきがあっても、永久磁石に無理な力が加わることはなく、組み付け時や使用中等に磁石が破損することを防止できる。その結果、複数の永久磁石が予め支持リングに固着されている従来技術(特許文献1)と比較した場合に、本発明によれば、磁石アセンブリを形成する必要がないので、複数の永久磁石と支持リングとの位置関係を精度良く位置決めする必要はなく、且つ、界磁鉄心側の部品精度及び組み付け精度を高くする必要もないので、その分、コストを低く抑えることができる。   According to said structure, a some permanent magnet is not necessarily fixed to a support ring, respectively, but a some permanent magnet and a support ring can be separately assembled | attached with respect to a field iron core. In other words, a support ring is arranged in advance on the inner peripheral side of the claw-shaped magnetic pole provided in one of the field cores, and then is defined by the radial dimension between the locking portion of the claw-shaped magnetic pole and the support ring. A permanent magnet can be inserted and assembled in the radial space. Thereby, even if there are variations in the processing accuracy and assembly accuracy of the claw-shaped magnetic poles, an excessive force is not applied to the permanent magnet, and the magnet can be prevented from being damaged during assembly or during use. As a result, when compared with the prior art (Patent Document 1) in which a plurality of permanent magnets are fixed to a support ring in advance, according to the present invention, it is not necessary to form a magnet assembly. Since it is not necessary to position the positional relationship with the support ring with high accuracy and there is no need to increase the component accuracy and assembly accuracy on the field iron core side, the cost can be reduced accordingly.

(請求項4の発明)
請求項1〜3に記載した何れかの回転電機の回転子において、支持リングは、複数の永久磁石を個々に支持する複数の磁石支持部と、この複数の磁石支持部を環状に連結する連結部とを有し、磁石支持部は、永久磁石の長手方向に相当する方向の長さが、連結部の幅より長く設けられていることを特徴とする。
この場合、連結部の幅より磁石支持部の長さを長くすることで、永久磁石を爪状磁極の係止部に安定して押し付けることができ、遠心力ストレスに対する信頼性が向上する。
(Invention of Claim 4)
4. The rotor according to claim 1, wherein the support ring includes a plurality of magnet support portions that individually support the plurality of permanent magnets, and a connection that connects the plurality of magnet support portions in an annular shape. The magnet support part is characterized in that the length in the direction corresponding to the longitudinal direction of the permanent magnet is longer than the width of the connecting part.
In this case, by making the length of the magnet support portion longer than the width of the connecting portion, the permanent magnet can be stably pressed against the locking portion of the claw-shaped magnetic pole, and the reliability against centrifugal force stress is improved.

(請求項5の発明)
請求項4に記載した回転電機の回転子において、磁石支持部は、永久磁石を支持する面が平坦面であることを特徴とする。
例えば、磁石支持部を連結部と同じ曲率の円弧状に形成すると、永久磁石に対し平面で接触することができないため、永久磁石との接触面積が小さくなる。これに対し、本発明では、磁石支持部を平坦面とすることで、磁石支持部と永久磁石との当接面積を大きく取ることができる。その結果、永久磁石の固定が安定すると共に、永久磁石と磁石支持部との当接面の面圧が低下するので、支持リングや永久磁石の信頼性も向上する。
(Invention of Claim 5)
The rotor of the rotating electrical machine according to claim 4 is characterized in that the magnet support portion has a flat surface for supporting the permanent magnet.
For example, if the magnet support portion is formed in an arc shape having the same curvature as that of the connecting portion, the contact area with the permanent magnet is reduced because the permanent magnet cannot be contacted in a plane. On the other hand, in this invention, the contact area of a magnet support part and a permanent magnet can be taken large by making a magnet support part into a flat surface. As a result, the fixation of the permanent magnet is stabilized and the surface pressure of the contact surface between the permanent magnet and the magnet support portion is reduced, so that the reliability of the support ring and the permanent magnet is improved.

(請求項6の発明)
請求項4または5に記載した回転電機の回転子において、磁石支持部は、この磁石支持部によって支持される永久磁石の内周面の形状および面積と略等しい形状および面積を有していることを特徴とする。
この場合、磁石支持部の面積を必要以上に大きくしなくても、永久磁石をより安定して固定できるので、永久磁石の固定信頼性が更に向上する。
(Invention of Claim 6)
6. The rotor of the rotating electrical machine according to claim 4, wherein the magnet support portion has a shape and an area substantially equal to a shape and an area of an inner peripheral surface of the permanent magnet supported by the magnet support portion. It is characterized by.
In this case, since the permanent magnet can be more stably fixed without increasing the area of the magnet support portion more than necessary, the fixing reliability of the permanent magnet is further improved.

(請求項7の発明)
請求項4〜6に記載した何れかの回転電機の回転子において、磁石支持部は、永久磁石の長手方向に相当する方向の両端のうち、少なくとも一方の端部には、径方向の内側へ折れ曲がるガイド部が設けられていることを特徴とする。
磁石支持部の端部にガイド部を設けることにより、永久磁石を組み付ける際に、永久磁石の角部が磁石支持部の端部に当たることはなく、組み付けを容易にできる。
なお、ガイド部は、磁石支持部の両端部に設けても良いし、永久磁石の組み付け方向を一方向だけに特定すれば、磁石支持部のどちらか一方の端部だけに設けても良い。
(Invention of Claim 7)
7. The rotor of any one of the rotating electric machines according to claim 4, wherein the magnet support portion is radially inward at at least one end portion of both ends in a direction corresponding to a longitudinal direction of the permanent magnet. A guide part that bends is provided.
By providing the guide portion at the end portion of the magnet support portion, the corner portion of the permanent magnet does not hit the end portion of the magnet support portion when the permanent magnet is assembled, and the assembly can be facilitated.
In addition, a guide part may be provided in the both ends of a magnet support part, and if the assembly direction of a permanent magnet is specified only to one direction, you may provide in only one end part of a magnet support part.

(請求項8の発明)
請求項4〜7に記載した何れかの回転電機の回転子において、永久磁石は、内周面が磁石支持部に当接して支持された状態で、外周面の両肩部が、爪状磁極に設けられた係止部の内面に当接して径方向外側への移動が規制されていることを特徴とする。
この場合、永久磁石は、爪状磁極の係止部と支持リングの磁石支持部との間の径方向寸法に対し若干の締代を持って挿入される。つまり、永久磁石は、爪状磁極の係止部と支持リングの磁石支持部との双方に当接しているため、遠心力ストレスに対する磁石の固定がより確実となる。
(Invention of Claim 8)
The rotor of any of the rotating electrical machines according to any one of claims 4 to 7, wherein the permanent magnet is supported by the inner peripheral surface being in contact with the magnet support portion, and both shoulder portions of the outer peripheral surface are claw-shaped magnetic poles. The movement toward the outside in the radial direction is restricted by abutting against the inner surface of the locking portion provided on the inner surface.
In this case, the permanent magnet is inserted with a slight allowance relative to the radial dimension between the locking portion of the claw-shaped magnetic pole and the magnet support portion of the support ring. That is, since the permanent magnet is in contact with both the locking portion of the claw-shaped magnetic pole and the magnet support portion of the support ring, the magnet is more reliably fixed against centrifugal force stress.

(請求項9の発明)
請求項8に記載した回転電機の回転子において、永久磁石の周方向側面と爪状磁極同士の側面との間に含浸材が充填されていることを特徴とする。
例えば、永久磁石の周方向の幅寸法を、周方向に隣合う爪状磁極同士の側面間の周方向寸法より若干小さく形成することで、周方向に隣合う爪状磁極同士の側面間に永久磁石を挿入する際に、永久磁石に無理な力が加わらないため、永久磁石の欠けや破損を防止できる。但し、この場合、永久磁石の側面と爪状磁極の側面との間に隙間が生じるため、その隙間を含浸材(例えばエポキシ樹脂)で埋めることにより、永久磁石が周方向に動くことを防止でき、永久磁石をより安定した状態で保持できるので、永久磁石の固定信頼性が向上する。
(Invention of Claim 9)
The rotor of the rotating electrical machine according to claim 8 is characterized in that an impregnation material is filled between a circumferential side surface of the permanent magnet and a side surface of the claw-shaped magnetic poles.
For example, by making the circumferential width dimension of the permanent magnet slightly smaller than the circumferential dimension between the side faces of the claw-shaped magnetic poles adjacent to each other in the circumferential direction, the permanent magnet is made permanent between the side faces of the claw-shaped magnetic poles adjacent in the circumferential direction. When the magnet is inserted, an excessive force is not applied to the permanent magnet, so that the permanent magnet can be prevented from being broken or damaged. However, in this case, since a gap is formed between the side surface of the permanent magnet and the side surface of the claw-shaped magnetic pole, the permanent magnet can be prevented from moving in the circumferential direction by filling the gap with an impregnating material (for example, epoxy resin). Since the permanent magnet can be held in a more stable state, the fixing reliability of the permanent magnet is improved.

(請求項10の発明)
請求項4〜7に記載した何れかの回転電機の回転子において、永久磁石と磁石支持部および爪状磁極との間に含浸材が充填されていることを特徴とする。
この場合、含浸材(例えばエポキシ樹脂)によって永久磁石をより安定した状態で保持できるので、永久磁石の固定信頼性が向上する。
(Invention of Claim 10)
The rotor of any one of the rotating electrical machines according to any one of claims 4 to 7, wherein an impregnation material is filled between the permanent magnet, the magnet support portion, and the claw-shaped magnetic pole.
In this case, since the permanent magnet can be held in a more stable state by the impregnating material (for example, epoxy resin), the fixing reliability of the permanent magnet is improved.

(請求項11の発明)
請求項1〜10に記載した何れかの回転電機の回転子において、永久磁石は、少なくとも径方向外側の外周面が非磁性部材により包囲されていることを特徴とする。
この場合、遠心力ストレスに対する磁石強度が増すので信頼性が向上する。
(Invention of Claim 11)
The rotor of any one of the rotating electrical machines according to any one of claims 1 to 10, wherein at least a radially outer peripheral surface of the permanent magnet is surrounded by a nonmagnetic member.
In this case, since the magnet strength against the centrifugal force stress is increased, the reliability is improved.

(請求項12の発明)
請求項11に記載した回転電機の回転子において、永久磁石は、非磁性部材により箱状に形成されたホルダに収容されていることを特徴とする。
この場合、永久磁石の全面をホルダにより包囲できるので、永久磁石の組み付け時に永久磁石が直接爪状磁極や支持リングに当たることはなく、永久磁石の破損を防止できる。 また、遠心力ストレスに対する磁石強度が増すと共に、万が一、永久磁石が破損した場合でも、永久磁石の破片が飛散することを防止できる。
(Invention of Claim 12)
The rotor of the rotating electrical machine described in claim 11 is characterized in that the permanent magnet is housed in a holder formed in a box shape by a non-magnetic member.
In this case, since the entire surface of the permanent magnet can be surrounded by the holder, the permanent magnet does not directly hit the claw-shaped magnetic pole or the support ring when the permanent magnet is assembled, and the permanent magnet can be prevented from being damaged. In addition, the magnet strength against the centrifugal force stress is increased, and even if the permanent magnet is broken, it is possible to prevent the fragments of the permanent magnet from scattering.

本発明を実施するための最良の形態を以下の実施例1〜3により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to Examples 1 to 3 below.

実施例1では、本発明の回転電機の一例を車両用交流発電機に適用して説明する。
図1は、車両用交流発電機の界磁として働く回転子1の断面図である。
回転子1は、図示しないハウジングに軸受(図示せず)を介して回転自在に支持される回転軸2と、この回転軸2に固定される一対の界磁鉄心3(3A、3B)と、この一対の界磁鉄心3に巻装される界磁巻線4と、一対の界磁鉄心3の軸方向両端面に固定される冷却ファン5、6と、一対の界磁鉄心3に組み込まれる複数個(本実施例では16個)の永久磁石(以下、磁石7と略す)と、この磁石7を径方向の内周側から支持する支持リング8等より構成される。
In Example 1, an example of the rotating electrical machine of the present invention will be described by applying it to a vehicle AC generator.
FIG. 1 is a cross-sectional view of a rotor 1 that functions as a field of a vehicle AC generator.
The rotor 1 includes a rotary shaft 2 that is rotatably supported by a housing (not shown) via a bearing (not shown), a pair of field iron cores 3 (3A, 3B) fixed to the rotary shaft 2, The field winding 4 wound around the pair of field cores 3, cooling fans 5 and 6 fixed to both end surfaces in the axial direction of the pair of field cores 3, and the pair of field cores 3. It is composed of a plurality (16 in this embodiment) of permanent magnets (hereinafter abbreviated as magnets 7), a support ring 8 that supports the magnets 7 from the radially inner peripheral side, and the like.

回転軸2は、軸方向の一方(図示左側)の端部にプーリ(図示せず)が取り付けられ、ベルト伝動によりエンジンの回転動力が伝達されて回転する。
一対の界磁鉄心3は、同一形状を有する一方の界磁鉄心3Aと、他方の界磁鉄心3Bとを軸方向に組み合わせて構成される。
一方の界磁鉄心3Aと他方の界磁鉄心3Bは、図2に示す様に、径方向の中央部に貫通孔3a(図2参照)を有するコアハブ3bと、このコアハブ3bの径方向外周部から軸方向に突き出る複数(本実施例では8個)の爪状磁極3cとが設けられている。
コアハブ3bには、軸方向の片側に突き出るボス部3b1 (図1参照)が一体に設けられ、このボス部3b1 と複数の爪状磁極3cとの間に、界磁巻線4を巻装するための巻線スペースが確保されている。
The rotary shaft 2 has a pulley (not shown) attached to one end (left side in the figure) in the axial direction, and rotates by receiving the rotational power of the engine by belt transmission.
The pair of field cores 3 is configured by combining one field core 3A having the same shape and the other field core 3B in the axial direction.
As shown in FIG. 2, one field iron core 3A and the other field iron core 3B are composed of a core hub 3b having a through hole 3a (see FIG. 2) in the radial center portion, and a radially outer peripheral portion of the core hub 3b. A plurality of (eight in this embodiment) claw-shaped magnetic poles 3c protruding in the axial direction are provided.
The core hub 3b is integrally provided with a boss portion 3b1 (see FIG. 1) protruding to one side in the axial direction, and a field winding 4 is wound between the boss portion 3b1 and a plurality of claw-shaped magnetic poles 3c. Winding space is ensured.

複数の爪状磁極3cは、コアハブ3bに対し周方向に等間隔に設けられ、コアハブ3bに連なる基端部から先端部へ向かって周方向の幅が次第に狭くなる略V字形状に設けられている。また、各爪状磁極3cには、図2及び図5に示す様に、周方向の両側面外周部から、それぞれ周方向へ鍔状に突き出る一対の係止部3c1 が設けられている。
上記の界磁鉄心3Aと界磁鉄心3Bは、図1に示す様に、両者のボス部3b1 の端面同士を軸方向に突き合わせて、互いの爪状磁極3c同士が周方向に所定の間隔を有して交互に噛み合う様に組み合わされ、コアハブ3bの貫通孔3aに回転軸2を挿通して回転軸2に固定されている。
The plurality of claw-shaped magnetic poles 3c are provided at substantially equal intervals in the circumferential direction with respect to the core hub 3b, and are provided in a substantially V shape in which the width in the circumferential direction gradually decreases from the base end portion connected to the core hub 3b toward the distal end portion. Yes. Further, as shown in FIGS. 2 and 5, each claw-shaped magnetic pole 3c is provided with a pair of engaging portions 3c1 that project from the outer peripheral portions of both side surfaces in the circumferential direction in a hook shape in the circumferential direction.
As shown in FIG. 1, the above-described field core 3A and field core 3B have the end faces of both boss portions 3b1 butted in the axial direction, and the claw-shaped magnetic poles 3c are spaced apart from each other by a predetermined distance in the circumferential direction. The rotating shaft 2 is inserted into the through hole 3a of the core hub 3b and fixed to the rotating shaft 2.

界磁巻線4は、図1に示す様に、界磁鉄心3A、3Bの両ボス部3b1 の外周に絶縁性のスプール9を介して巻回されている。界磁巻線4の巻き始めおよび巻き終わりの両端部は、それぞれリード線10、11に接続され、このリード線10、11を介して、回転軸2の他方の端部(反プーリ側の端部)に設けられる一組のスリップリング12に電気的に接続されている。この界磁巻線4には、スリップリング12の外周に配置されるブラシ(図示せず)を介してバッテリ(図示せず)から界磁電流が供給される。界磁巻線4に界磁電流が流れると、一方の界磁鉄心3Aに設けられた複数の爪状磁極3cが全てS極(またはN極)に磁化され、他方の界磁鉄心3Bに設けられた複数の爪状磁極3cが全てN極(またはS極)に磁化される。   As shown in FIG. 1, the field winding 4 is wound around the outer periphery of both boss portions 3b1 of the field cores 3A and 3B via an insulating spool 9. Both ends of the winding start and end of the field winding 4 are connected to lead wires 10 and 11, respectively, and the other end portion of the rotating shaft 2 (the end on the non-pulley side) is connected to the lead wires 10 and 11, respectively. Are electrically connected to a set of slip rings 12. A field current is supplied to the field winding 4 from a battery (not shown) via a brush (not shown) arranged on the outer periphery of the slip ring 12. When a field current flows through the field winding 4, all the claw-shaped magnetic poles 3c provided on one field iron core 3A are magnetized to the S pole (or N pole) and provided to the other field iron core 3B. The plurality of claw-shaped magnetic poles 3c thus formed are all magnetized to the N pole (or S pole).

冷却ファン5、6は、一方の界磁鉄心3Aのコアハブ3bの端面に抵抗溶接等により固定されるフロント側の冷却ファン5と、他方の界磁鉄心3Bのコアハブ3bの端面に抵抗溶接等により固定されるリヤ側の冷却ファン6とを有する。
磁石7は、図5に示す様に、爪状磁極3cに設けられた係止部3c1 と、爪状磁極3cの内周側に配置される支持リング8との間の径方向寸法と、周方向に隣合う爪状磁極3c同士の側面間の周方向寸法とで規定される磁石挿入スペースに挿入され、爪状磁極3cの側面と対向する面が、その爪状磁極3cと同極となる様に着磁される。つまり、磁石7を挟んで隣合う爪状磁極3c間の漏洩磁束を減少させる向きに着磁される。この磁石7は、例えば、希土類磁石やフェライト焼結磁石等を使用することができ、その全体形状が略直方体に形成されている。
The cooling fans 5 and 6 include a front-side cooling fan 5 fixed to the end surface of the core hub 3b of one field iron core 3A by resistance welding or the like, and a resistance welding or the like to the end surface of the core hub 3b of the other field core 3B. The rear cooling fan 6 is fixed.
As shown in FIG. 5, the magnet 7 has a radial dimension between a locking portion 3c1 provided on the claw-shaped magnetic pole 3c and a support ring 8 arranged on the inner peripheral side of the claw-shaped magnetic pole 3c, The claw-shaped magnetic pole 3c is inserted in a magnet insertion space defined by the circumferential dimension between the side surfaces of the claw-shaped magnetic poles 3c adjacent to each other, and the surface facing the side surface of the claw-shaped magnetic pole 3c has the same polarity as the claw-shaped magnetic pole 3c. It is magnetized in the same way. That is, the magnet 7 is magnetized in such a direction as to reduce the leakage magnetic flux between the claw-shaped magnetic poles 3c adjacent to each other. As this magnet 7, for example, a rare earth magnet, a ferrite sintered magnet, or the like can be used, and the entire shape thereof is formed in a substantially rectangular parallelepiped.

支持リング8は、非磁性体であるステンレスあるいは樹脂等により形成され、図4に示す様に、複数個の磁石7を個々に支持する複数の磁石支持部8aと、この複数の磁石支持部8aを環状に連結する連結部8bとを有している。
磁石支持部8aは、磁石7を支持する面、つまり、磁石7との当接面が平坦面であり、且つ、磁石7の長手方向に相当する方向の長さが、連結部8bの幅(支持リング8の周方向と直交する方向の寸法)より長く設けられている。なお、磁石支持部8aの長さを、磁石7の長さより長くしても良いが、不必要に長くしても材料が無駄になるだけであるため、必ずしも、磁石7の長さより長くする必要はない。つまり、磁石7を安定的に支持できるのであれば、磁石7の長さより短くしても良い。磁石支持部8aの一例として、磁石支持部8aによって支持される磁石7の内周面の形状および面積と略等しい形状および面積を有することもできる。
The support ring 8 is made of a non-magnetic material such as stainless steel or resin, and as shown in FIG. 4, a plurality of magnet support portions 8a for individually supporting the plurality of magnets 7 and the plurality of magnet support portions 8a. And a connecting portion 8b for connecting the two in a ring shape.
The magnet support portion 8a has a flat surface that supports the magnet 7, that is, a contact surface with the magnet 7, and the length in the direction corresponding to the longitudinal direction of the magnet 7 is the width of the connecting portion 8b ( Longer than the circumferential direction of the support ring 8). The length of the magnet support portion 8a may be longer than the length of the magnet 7. However, even if the length is unnecessarily long, only the material is wasted. Therefore, the length is necessarily longer than the length of the magnet 7. There is no. That is, as long as the magnet 7 can be stably supported, it may be shorter than the length of the magnet 7. As an example of the magnet support portion 8a, the magnet support portion 8a may have a shape and an area substantially equal to the shape and area of the inner peripheral surface of the magnet 7 supported by the magnet support portion 8a.

この磁石支持部8aは、連結部8bに対し周方向に所定の傾きを有して配置され、且つ、隣合う磁石支持部8a同士が互いに逆方向に傾いている。つまり、複数の磁石支持部8aは、磁石7の組み付け方向に対応して、一つ置きに同方向に傾斜している。
また、磁石支持部8aは、磁石7の長手方向に相当する方向の両端部に、それぞれガイド部8cが設けられている。このガイド部8cは、上記の磁石挿入スペースへ磁石7を挿入する際に、磁石7の角部が爪状磁極3cや磁石支持部8aの端部に当たらない様に、支持リング8の径方向内側へ折り曲げられている。すなわち、ガイド部8cは、磁石7を磁石挿入スペースへ挿入し易くするために設けられている。なお、ガイド部8cは、必ずしも磁石支持部8aの両端部に設ける必要はなく、磁石7の挿入方向が一方向に特定されていれば、その方向に合わせて、どちらか一方の端部だけに設けることもできる。
The magnet support portion 8a is disposed with a predetermined inclination in the circumferential direction with respect to the connecting portion 8b, and adjacent magnet support portions 8a are inclined in directions opposite to each other. That is, the plurality of magnet support portions 8a are inclined in the same direction every other direction corresponding to the assembly direction of the magnets 7.
Further, the magnet support portion 8 a is provided with guide portions 8 c at both ends in a direction corresponding to the longitudinal direction of the magnet 7. The guide portion 8c is arranged in the radial direction of the support ring 8 so that the corner portions of the magnet 7 do not hit the end portions of the claw-shaped magnetic pole 3c and the magnet support portion 8a when the magnet 7 is inserted into the magnet insertion space. It is bent inward. That is, the guide portion 8c is provided to facilitate insertion of the magnet 7 into the magnet insertion space. In addition, the guide part 8c does not necessarily need to be provided in the both ends of the magnet support part 8a, and if the insertion direction of the magnet 7 is specified in one direction, only one end part is matched to that direction. It can also be provided.

連結部8bは、図5に示す様に、爪状磁極3cの内周面に沿って円弧状に配置され、且つ、図1に示す様に、一方の爪状磁極3cの内周面に形成された段差と、他方の爪状磁極3cの内周面に形成された段差との間に配置されて、両段差により軸方向(図示左右方向)の移動が規制されている。但し、界磁鉄心3Aと界磁鉄心3Bとを組み合わせた時に、両者のボス部3b1 同士の間に隙間(エアギャップ)が生じることがない様に、両段差の間で連結部8bが軸方向に少し移動できる様に構成されている。   As shown in FIG. 5, the connecting portion 8b is arranged in an arc shape along the inner peripheral surface of the claw-shaped magnetic pole 3c, and is formed on the inner peripheral surface of one claw-shaped magnetic pole 3c as shown in FIG. The step is arranged between the step and the step formed on the inner peripheral surface of the other claw-shaped magnetic pole 3c, and movement in the axial direction (left-right direction in the drawing) is restricted by both steps. However, when the field iron core 3A and the field iron core 3B are combined, the connecting portion 8b is axially positioned between the two steps so that no gap (air gap) is generated between the boss portions 3b1 of the two. It is configured to be able to move slightly.

つまり、連結部8bは、図4に示す様に、幅方向の一辺側(図示上側辺)に凹み8b1 が形成されている部分と、凹み8b1 の無い部分とが磁石支持部8aを挟んで交互に設けられ、凹み8b1 を有する部分の幅が、凹み8b1 の無い部分より若干小さく形成されている。従って、連結部8bの幅方向の他辺側を爪状磁極3cの一方の段差に当接させた時に、凹み8b1 を有する一辺側と爪状磁極3cの他方の段差との間に若干隙間が確保される。これにより、連結部8bの幅によって一対の界磁鉄心3の軸方向位置が影響を受けることはなく、界磁鉄心3Aのボス部3b1 と界磁鉄心3Bのボス部3b1 とを軸方向に確実に当接させて、両ボス部3b1 の間にエアギャップの無い磁気回路を形成できる。   That is, as shown in FIG. 4, in the connecting portion 8b, the portion where the recess 8b1 is formed on one side in the width direction (the upper side in the drawing) and the portion where the recess 8b1 is not provided are alternately sandwiched between the magnet support portions 8a. The width of the portion having the recess 8b1 is slightly smaller than that of the portion without the recess 8b1. Accordingly, when the other side in the width direction of the connecting portion 8b is brought into contact with one step of the claw-shaped magnetic pole 3c, a slight gap is formed between the one side having the recess 8b1 and the other step of the claw-shaped magnetic pole 3c. Secured. As a result, the axial position of the pair of field cores 3 is not affected by the width of the connecting portion 8b, and the boss 3b1 of the field core 3A and the boss 3b1 of the field core 3B are reliably secured in the axial direction. To form a magnetic circuit without an air gap between the boss portions 3b1.

次に、磁石7の組み付け方法について説明する。
磁石7は、支持リング8に予め固着されている訳ではなく、支持リング8とは別に組み付けられる。すなわち、支持リング8は、磁石7を組み付ける前に、一対の界磁鉄心3を組み合わせた状態で、予め爪状磁極3cの内周側に配置される。その後、図2及び図3に示す様に、磁石7を自身の長手方向から磁石挿入スペースに挿入して組み付ける。この時、磁石7は、爪状磁極3cの係止部3c1 (図5参照)と支持リング8の磁石支持部8aとの間の径方向寸法に対し若干の締代を持って挿入される。すなわち、磁石7は、径方向の内周面が磁石支持部8aに当接して支持された状態で、外周面の両肩部が、爪状磁極3cに設けられた係止部3c1 の内面に押圧されて径方向外側への移動が規制される。
Next, a method for assembling the magnet 7 will be described.
The magnet 7 is not fixed to the support ring 8 in advance, and is assembled separately from the support ring 8. That is, the support ring 8 is arranged in advance on the inner peripheral side of the claw-shaped magnetic pole 3c in a state where the pair of field cores 3 are combined before the magnet 7 is assembled. Then, as shown in FIG.2 and FIG.3, the magnet 7 is inserted and assembled in a magnet insertion space from its longitudinal direction. At this time, the magnet 7 is inserted with a slight allowance relative to the radial dimension between the locking portion 3c1 (see FIG. 5) of the claw-shaped magnetic pole 3c and the magnet support portion 8a of the support ring 8. That is, in the state where the inner peripheral surface in the radial direction is in contact with and supported by the magnet support portion 8a, the magnet 7 has both shoulder portions of the outer peripheral surface on the inner surface of the locking portion 3c1 provided on the claw-shaped magnetic pole 3c. When pressed, movement outward in the radial direction is restricted.

また、磁石7は、磁石挿入スペースへ無理なく挿入できる様に、磁石7の周方向寸法が、周方向に隣合う爪状磁極3c同士の側面間の周方向寸法より若干小さく形成されている。このため、図5に示すように、磁石7の周方向側面と、爪状磁極3c同士の側面との間に隙間Sを有している。この隙間Sを埋めるために、図6に示す様に、エポキシ樹脂等の含浸材13を前記隙間Sに充填しても良い。これにより、磁石7を含浸材13により固定できるので、磁石7をより安定した状態で保持できる。
なお、上記の実施例では、支持リング8の磁石支持部8aを平坦面で形成する一例を記載したが、図7および図8に示す様に、磁石支持部8aを連結部8bと同じ曲率の円弧状に形成しても良い。この場合も、図8に示す様に、磁石7の側面と爪状磁極3cの側面との間に生じる隙間Sにエポキシ樹脂等の含浸材13を充填しても良い。
Further, the magnet 7 is formed such that the circumferential dimension of the magnet 7 is slightly smaller than the circumferential dimension between the side surfaces of the claw-shaped magnetic poles 3c adjacent in the circumferential direction so that the magnet 7 can be inserted into the magnet insertion space without difficulty. For this reason, as shown in FIG. 5, there is a gap S between the circumferential side surface of the magnet 7 and the side surface of the claw-shaped magnetic poles 3c. In order to fill this gap S, an impregnating material 13 such as an epoxy resin may be filled into the gap S as shown in FIG. Thereby, since the magnet 7 can be fixed by the impregnating material 13, the magnet 7 can be held in a more stable state.
In the above embodiment, an example in which the magnet support portion 8a of the support ring 8 is formed with a flat surface has been described. However, as shown in FIGS. 7 and 8, the magnet support portion 8a has the same curvature as the connection portion 8b. You may form in circular arc shape. Also in this case, as shown in FIG. 8, the gap S generated between the side surface of the magnet 7 and the side surface of the claw-shaped magnetic pole 3c may be filled with an impregnating material 13 such as epoxy resin.

(実施例1の効果)
磁石7が挿入される磁石挿入スペースの寸法および位置は、界磁鉄心3に設けられる爪状磁極3cの加工精度や爪状磁極3cの組み付け精度に大きく影響される。言い換えると、爪状磁極3cの加工精度や爪状磁極3cの組み付け精度にばらつきが生じると、複数箇所の磁石挿入スペースがそれぞれ異なった寸法にばらつきを生じる恐れがある。これに対し、本実施例の回転子1は、複数の磁石7が支持リング8に固着されている訳ではないので、先に支持リング8を爪状磁極3cの内周側に配置した状態で、その後、複数の磁石7を個々に磁石挿入スペースに挿入して組み付けることができる。このため、爪状磁極3cの加工精度や爪状磁極3cの組み付け精度にばらつきがあっても、各磁石挿入スペースの寸法および位置に応じて、複数の磁石7を個々に磁石挿入スペースに挿入して組み付けることができる。
(Effect of Example 1)
The size and position of the magnet insertion space in which the magnet 7 is inserted are greatly influenced by the processing accuracy of the claw-shaped magnetic pole 3c provided in the field iron core 3 and the assembly accuracy of the claw-shaped magnetic pole 3c. In other words, if variations occur in the processing accuracy of the claw-shaped magnetic pole 3c and the assembly accuracy of the claw-shaped magnetic pole 3c, the magnet insertion spaces at a plurality of locations may vary in different dimensions. On the other hand, in the rotor 1 of this embodiment, since the plurality of magnets 7 are not fixed to the support ring 8, the support ring 8 is first arranged on the inner peripheral side of the claw-shaped magnetic pole 3c. Thereafter, the plurality of magnets 7 can be individually inserted into the magnet insertion space and assembled. For this reason, even if the processing accuracy of the claw-shaped magnetic pole 3c and the assembly accuracy of the claw-shaped magnetic pole 3c vary, a plurality of magnets 7 are individually inserted into the magnet insertion space according to the size and position of each magnet insertion space. Can be assembled.

上記の構成によれば、磁石7に無理な力が加わらないため、組み付け時や使用中等に磁石7が破損することを防止できる。その結果、複数の磁石7が予め支持リング8に固着されている従来技術(特許文献1)と比較した場合に、磁石アセンブリを形成する必要がないので、複数の磁石7と支持リング8との位置関係を精度良く位置決めする必要はなく、且つ、界磁鉄心3側の部品精度及び組み付け精度を高くする必要もないので、その分、コストを低く抑えることができる。
また、磁石7は、爪状磁極3cの係止部3c1 と支持リング8の磁石支持部8aとの間の径方向寸法に対し若干の締代を持って挿入されている。つまり、磁石7は、爪状磁極3cの係止部3c1 と支持リング8の磁石支持部8aとの双方に当接しているため、遠心力ストレスに対する磁石7の固定がより確実となる。
According to said structure, since an excessive force is not applied to the magnet 7, it can prevent that the magnet 7 is damaged at the time of an assembly | attachment or in use. As a result, when compared with the prior art (Patent Document 1) in which a plurality of magnets 7 are fixed to the support ring 8 in advance, it is not necessary to form a magnet assembly. It is not necessary to position the positional relationship with high accuracy, and it is not necessary to increase the component accuracy and assembly accuracy on the field iron core 3 side, so that the cost can be reduced accordingly.
The magnet 7 is inserted with a slight allowance with respect to the radial dimension between the locking portion 3c1 of the claw-shaped magnetic pole 3c and the magnet support portion 8a of the support ring 8. That is, since the magnet 7 is in contact with both the locking portion 3c1 of the claw-shaped magnetic pole 3c and the magnet support portion 8a of the support ring 8, the magnet 7 is more reliably fixed against centrifugal force stress.

さらに、磁石7の側面と爪状磁極3cの側面との間に含浸材13を充填した場合は、その含浸材13によって磁石7をより安定した状態に固定できるので、磁石7の固定信頼性が更に向上する。
本実施例の支持リング8は、磁石支持部8aを平坦面とすることで、磁石支持部8aと磁石7との当接面積を大きく取ることができる。その結果、磁石7の固定が安定すると共に、磁石7と磁石支持部8aとの当接面の面圧が低下するので、支持リング8や磁石7の信頼性も向上する。
また、支持リング8は、連結部8bの幅より磁石支持部8aの長さを大きく(長く)しているので、磁石7を爪状磁極3cの係止部3c1 に安定して押し付けることができ、遠心力ストレスに対する信頼性が向上する。
Furthermore, when the impregnating material 13 is filled between the side surface of the magnet 7 and the side surface of the claw-shaped magnetic pole 3c, the magnet 7 can be fixed in a more stable state by the impregnating material 13, so that the fixing reliability of the magnet 7 is improved. Further improvement.
The support ring 8 of the present embodiment can have a large contact area between the magnet support portion 8a and the magnet 7 by making the magnet support portion 8a a flat surface. As a result, the fixation of the magnet 7 is stabilized and the contact pressure between the magnet 7 and the magnet support portion 8a is reduced, so that the reliability of the support ring 8 and the magnet 7 is also improved.
Further, since the support ring 8 has the magnet support portion 8a longer (longer) than the width of the connecting portion 8b, the magnet 7 can be stably pressed against the locking portion 3c1 of the claw-shaped magnetic pole 3c. The reliability against centrifugal force stress is improved.

さらに、磁石支持部8aに対して連結部8bの幅を適宜に小さくすることで、以下の作用効果を得ることができる。
本実施例の支持リング8は、図9に示す様に、図中のA点およびB点を支点とする両持ちはりとして考えることができる。両持ちはりのモデルは、図10に示す様に、支点部(A点またはB点)が連結部8bに相当し、はり14の部分が磁石支持部8aに相当する。また、図中のC点は荷重点であり、この荷重点に発生する荷重は、はり14の弾性力F(磁石7を爪状磁極3cの係止部3c1 に押し付ける力)に等しく、以下の式(1)で表される。
F=k×δ…………………………………(1)
なお、k:はり14のばね定数(N/mm)、δ:はり14の撓み量(mm)である。
Furthermore, the following effects can be obtained by appropriately reducing the width of the connecting portion 8b with respect to the magnet support portion 8a.
As shown in FIG. 9, the support ring 8 of the present embodiment can be considered as a double-supported beam having points A and B in the figure as fulcrums. In the double-supported beam model, as shown in FIG. 10, the fulcrum portion (point A or point B) corresponds to the connecting portion 8b, and the portion of the beam 14 corresponds to the magnet support portion 8a. Also, point C in the figure is a load point, and the load generated at this load point is equal to the elastic force F of the beam 14 (the force pressing the magnet 7 against the locking portion 3c1 of the claw-shaped magnetic pole 3c). It is represented by Formula (1).
F = k × δ ………………………………… (1)
Here, k is the spring constant (N / mm) of the beam 14, and δ is the deflection amount (mm) of the beam 14.

また、当モデルでのはり14のばね定数kは、以下の式(2)より求められる。
k=E×b×h3 /(2×L3 )…………(2)
但し、E:はり材料のヤング率(N/mm2 )、b:はり14の幅(mm)、h:はり14の厚さ(mm)、L:はり14の長さ(mm)である。
従って、連結部8bの幅(はり14の幅b)を小さくすることでばね定数が低下し、はり14の撓みδに対する弾性力Fは、図11に示すようになる。
磁石7の寸法や、爪状磁極3cの寸法ばらつきにより、はり14の撓み量もばらつきを生じるが、ばね定数が小さいと、図11に示した様に、はり14の弾性力のばらつきを抑制できるため、安定した弾性力を得ることが可能である。なお、上記の式(2)からも明らかであるが、はり14の長さh、およびはり材料のヤング率Eを小さくするか、はり14の長さLを長くしても、同様の効果を得ることができる。
Further, the spring constant k of the beam 14 in this model is obtained from the following equation (2).
k = E × b × h 3 / (2 × L 3 ) (2)
However, E: Young's modulus (N / mm 2 ) of the beam material, b: width (mm) of the beam 14, h: thickness (mm) of the beam 14, and L: length (mm) of the beam 14.
Therefore, by reducing the width of the connecting portion 8b (the width b of the beam 14), the spring constant is lowered, and the elastic force F against the deflection δ of the beam 14 is as shown in FIG.
The amount of deflection of the beam 14 also varies depending on the size of the magnet 7 and the size variation of the claw-shaped magnetic pole 3c. However, if the spring constant is small, variation in the elastic force of the beam 14 can be suppressed as shown in FIG. Therefore, it is possible to obtain a stable elastic force. Although it is clear from the above formula (2), the same effect can be obtained even if the length h of the beam 14 and the Young's modulus E of the beam material are reduced or the length L of the beam 14 is increased. Obtainable.

図12は磁石7の組み付け方法を示す平面図である。
実施例1では、一対の界磁鉄心3を組み合わせた状態で、予め爪状磁極3cの内周側に支持リング8が配置され、その後、磁石7を磁石挿入スペースに挿入して組み付ける例を記載したが、この実施例2では、一対の界磁鉄心3を組み合わせる前に、磁石7を組み付ける場合の一例を説明する。
先ず、一対の界磁鉄心3のうち、どちらか一方、例えば、界磁鉄心3Aの爪状磁極3cの内周側に支持リング8を配置する。
続いて、図12に示す様に、爪状磁極3cに設けられる係止部3c1 と磁石支持部8aとの間の径方向寸法によって規定される径方向空間に磁石7を挿入する。この時、磁石7は、爪状磁極3cの係止部3c1 と磁石支持部8aとの間の径方向寸法に対し若干の締代を持って挿入されるので、簡単に脱落することはない。
FIG. 12 is a plan view showing a method for assembling the magnet 7.
Example 1 describes an example in which a support ring 8 is disposed in advance on the inner peripheral side of the claw-shaped magnetic pole 3c in a state where a pair of field iron cores 3 are combined, and then the magnet 7 is inserted into a magnet insertion space and assembled. However, in the second embodiment, an example in which the magnet 7 is assembled before the pair of field cores 3 are combined will be described.
First, the support ring 8 is disposed on one of the pair of field cores 3, for example, on the inner peripheral side of the claw-shaped magnetic pole 3c of the field core 3A.
Subsequently, as shown in FIG. 12, the magnet 7 is inserted into the radial space defined by the radial dimension between the locking portion 3c1 provided on the claw-shaped magnetic pole 3c and the magnet support portion 8a. At this time, since the magnet 7 is inserted with a slight tightening margin with respect to the radial dimension between the locking portion 3c1 of the claw-shaped magnetic pole 3c and the magnet support portion 8a, the magnet 7 does not easily fall off.

この後、他方の界磁鉄心(界磁鉄心3B)を組み合わせて、界磁鉄心3Aの爪状磁極3cと界磁鉄心3Bの爪状磁極3cとの間に磁石7を保持する。
この実施例2に示した組み付け方法においても、実施例1の場合と同様に、先に支持リング8を爪状磁極3cの内周に配置した状態で、その後、複数の磁石7を個々に組み付けるため、磁石7に無理な力が加わることはなく、組み付け時や使用中等に磁石7が破損することを防止できる。また、複数の磁石7と支持リング8との位置関係を精度良く位置決めする必要はなく、且つ、界磁鉄心3側の部品精度及び組み付け精度を高くする必要もないので、その分、コストを低く抑えることができる。
Thereafter, the magnet 7 is held between the claw-shaped magnetic pole 3c of the field core 3A and the claw-shaped magnetic pole 3c of the field core 3B by combining the other field core (field core 3B).
Also in the assembling method shown in the second embodiment, as in the first embodiment, the plurality of magnets 7 are individually assembled after the support ring 8 is first disposed on the inner periphery of the claw-shaped magnetic pole 3c. Therefore, an excessive force is not applied to the magnet 7, and the magnet 7 can be prevented from being damaged during assembly or use. Further, it is not necessary to position the positional relationship between the plurality of magnets 7 and the support ring 8 with high accuracy, and it is not necessary to increase the component accuracy and assembly accuracy on the field iron core 3 side. Can be suppressed.

図13は爪状磁極3cと磁石7および支持リング8の断面図である。
この実施例3は、磁石7が非磁性材料(例えばステンレス、樹脂等)によって箱状に形成されたホルダ15に収容され、そのホルダ15により磁石7の全面が包囲されている。 また、ホルダ15には、図15に示す様に、支持リング8の磁石支持部8aに対する位置決め用の突起15aが設けられている。一方、磁石支持部8aには、ホルダ15に設けられた突起15aに嵌合する位置決め孔8a1 が開けられている。この位置決め孔8a1 と突起15aとの嵌合により、磁石支持部8aに対し磁石7を位置決めできるので、特に、磁石7の挿入方向における磁石7の位置ずれを確実に防止できる。
この実施例3の構成によれば、磁石7をホルダ15の内部に収容しているので、遠心力ストレスに対する磁石7の強度が増すと共に、万が一、磁石7が破損した場合でも、その磁石7の破片が飛散することを防止できる。なお、本実施例に示すホルダ15は、磁石7の全面を包囲しているが、例えば、少なくとも磁石7の径方向外側の外周面を覆う形状であっても良い。
FIG. 13 is a cross-sectional view of the claw-shaped magnetic pole 3 c, the magnet 7, and the support ring 8.
In Example 3, the magnet 7 is accommodated in a holder 15 formed in a box shape from a nonmagnetic material (for example, stainless steel, resin, etc.), and the entire surface of the magnet 7 is surrounded by the holder 15. Further, as shown in FIG. 15, the holder 15 is provided with a projection 15 a for positioning with respect to the magnet support portion 8 a of the support ring 8. On the other hand, the magnet support portion 8a is provided with a positioning hole 8a1 that fits into the protrusion 15a provided on the holder 15. By fitting the positioning hole 8a1 and the projection 15a, the magnet 7 can be positioned with respect to the magnet support portion 8a, so that the positional deviation of the magnet 7 in the insertion direction of the magnet 7 can be particularly reliably prevented.
According to the configuration of the third embodiment, since the magnet 7 is accommodated in the holder 15, the strength of the magnet 7 against centrifugal force stress increases, and even if the magnet 7 is broken, It is possible to prevent debris from scattering. In addition, although the holder 15 shown in the present embodiment surrounds the entire surface of the magnet 7, for example, it may have a shape that covers at least the outer peripheral surface of the magnet 7 on the outer side in the radial direction.

支持リング8は、実施例1と同様に、磁石支持部8aを平坦面(図13参照)としても良いし、連結部8bと同じ曲率を有する円弧形状(図14参照)としても良い。
さらに、支持リング8は、連結部8bと磁石支持部8aとの間に段差を設けることもできる。具体的には、図16、図17に示す様に、連結部8bに対し磁石支持部8aを径方向の外側へ凸状に突き出すことで、磁石7を爪状磁極3cの係止部3c1 に押し付けている。この場合、磁石7の厚み(径方向の寸法)に応じて、連結部8bに対する磁石支持部8aの高さを適宜対応させることにより、磁石7を安定して固定できる。
As in the first embodiment, the support ring 8 may have a magnet support portion 8a having a flat surface (see FIG. 13) or an arc shape having the same curvature as the connecting portion 8b (see FIG. 14).
Furthermore, the support ring 8 can also provide a level | step difference between the connection part 8b and the magnet support part 8a. Specifically, as shown in FIGS. 16 and 17, the magnet 7 is projected to the engaging portion 3c1 of the claw-shaped magnetic pole 3c by projecting the magnet support portion 8a outward in the radial direction with respect to the connecting portion 8b. Pressed. In this case, the magnet 7 can be stably fixed by appropriately matching the height of the magnet support portion 8a with respect to the connecting portion 8b according to the thickness (diameter dimension) of the magnet 7.

回転電機の回転子の断面図である(実施例1)。(Example 1) which is sectional drawing of the rotor of a rotary electric machine. 回転子の斜視図である。It is a perspective view of a rotor. 回転子の側面図である。It is a side view of a rotor. 支持リングの斜視図である。It is a perspective view of a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 両持ちはりのモデル図である。It is a model figure of a double-supported beam. はりの撓み量と弾性力との関係を示すグラフである。It is a graph which shows the relationship between the amount of bending of a beam, and elastic force. 一方の界磁鉄心の側面図である(実施例2)。(Example 2) which is a side view of one field iron core. 爪状磁極と磁石および支持リングの断面図である(実施例3)。(Example 3) which is sectional drawing of a nail | claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 支持リングの斜視図である。It is a perspective view of a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring. 爪状磁極と磁石および支持リングの断面図である。It is sectional drawing of a claw-shaped magnetic pole, a magnet, and a support ring.

符号の説明Explanation of symbols

1 回転子
2 回転軸
3 界磁鉄心
3A 一方の界磁鉄心
3B 他方の界磁鉄心
3c 爪状磁極
3c1 爪状磁極に設けられる係止部
4 界磁巻線
7 磁石
8 支持リング
8a 支持リングの磁石支持部
8b 支持リングの連結部
8c 磁石支持部の端部に設けられるガイド部
13 含浸材
15 ホルダ(磁石の外周面を包囲する非磁性部材)
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotating shaft 3 Field iron core 3A One field iron core 3B The other field iron core 3c Claw-shaped magnetic pole 3c1 Locking part provided in claw-shaped magnetic pole 4 Field winding 7 Magnet 8 Support ring 8a Support ring Magnet support part 8b Linking part of support ring 8c Guide part provided at end of magnet support part 13 Impregnation material 15 Holder (nonmagnetic member surrounding the outer peripheral surface of the magnet)

Claims (12)

互いに複数の爪状磁極を有し、その互いの爪状磁極同士が周方向に所定の間隔を有して交互に噛み合う様に組み合わされて回転軸に固定される一対の界磁鉄心と、
この一対の界磁鉄心に巻装される界磁巻線と、
周方向に隣合う前記爪状磁極同士の側面間に配設され、その隣合う前記爪状磁極間の漏洩磁束を減少させる向きに着磁される複数の永久磁石と、
この複数の永久磁石の内周側に配置される非磁性体の支持リングとを備え、
前記爪状磁極には、周方向の側面外周部から周方向へ鍔状に突き出る係止部が設けられている回転電機の回転子であって、
前記一対の界磁鉄心に設けられる互いの爪状磁極の内周側に予め前記支持リングが配置された状態で、周方向に隣合う前記爪状磁極同士の側面間に前記永久磁石が配設されると共に、その永久磁石の内周側が前記支持リングによって支持され、且つ、前記爪状磁極に設けられた前記係止部によって前記永久磁石の径方向外側への移動が規制されていることを特徴とする回転電機の回転子。
A pair of field iron cores having a plurality of claw-shaped magnetic poles and being combined with each other so that the claw-shaped magnetic poles are alternately meshed with each other at a predetermined interval in the circumferential direction;
A field winding wound around the pair of field cores;
A plurality of permanent magnets arranged between side surfaces of the claw-shaped magnetic poles adjacent in the circumferential direction and magnetized in a direction to reduce leakage magnetic flux between the adjacent claw-shaped magnetic poles;
A non-magnetic support ring disposed on the inner peripheral side of the plurality of permanent magnets,
The claw-shaped magnetic pole is a rotor of a rotating electrical machine provided with a locking portion protruding in a hook shape in the circumferential direction from the circumferential side surface outer circumferential portion,
The permanent magnet is disposed between the side surfaces of the claw-shaped magnetic poles adjacent to each other in the circumferential direction in a state where the support ring is arranged in advance on the inner peripheral side of the claw-shaped magnetic poles provided on the pair of field cores. In addition, the inner peripheral side of the permanent magnet is supported by the support ring, and the movement of the permanent magnet to the outside in the radial direction is restricted by the locking portion provided on the claw-shaped magnetic pole. A rotor of a rotating electrical machine that is characterized.
請求項1に記載した回転電機の回転子であって、
前記爪状磁極に設けられた前記係止部と前記支持リングとの間の径方向寸法と、周方向に隣合う前記爪状磁極同士の側面間の周方向寸法とで磁石挿入スペースが規定され、
前記一対の界磁鉄心に設けられる互いの爪状磁極の内周側に前記支持リングを配置した後、前記磁石挿入スペースに前記永久磁石を自身の長手方向から挿入して組み付けることを特徴とする回転電機の回転子の製造方法。
A rotor for a rotating electrical machine according to claim 1,
A magnet insertion space is defined by a radial dimension between the locking portion provided on the claw-shaped magnetic pole and the support ring and a circumferential dimension between side surfaces of the claw-shaped magnetic poles adjacent in the circumferential direction. ,
The support ring is disposed on the inner peripheral side of each claw-shaped magnetic pole provided in the pair of field cores, and then the permanent magnet is inserted into the magnet insertion space from its longitudinal direction and assembled. A method for manufacturing a rotor of a rotating electrical machine.
互いに複数の爪状磁極を有し、その互いの爪状磁極同士が周方向に所定の間隔を有して交互に噛み合う様に組み合わされて回転軸に固定される一対の界磁鉄心と、
この一対の界磁鉄心に巻装される界磁巻線と、
周方向に隣合う前記爪状磁極同士の側面間に配設され、その隣合う前記爪状磁極間の漏洩磁束を減少させる向きに着磁される複数の永久磁石と、
この複数の永久磁石の内周側に配置される非磁性体の支持リングとを備え、
前記爪状磁極には、周方向の側面外周部から周方向へ鍔状に突き出る係止部が設けられている回転電機の回転子であって、
前記一対の界磁鉄心のうち、どちらか一方の界磁鉄心に設けられる爪状磁極の内周側に予め前記支持リングを配置してから、前記爪状磁極に設けられる前記係止部と前記支持リングとの間の径方向寸法によって規定される径方向空間に前記永久磁石を挿入して、その永久磁石の内周側を前記支持リングにより支持すると共に、前記係止部によって前記永久磁石の径方向外側への移動が規制された状態を保ち、その後、他方の界磁鉄心を組み合わせることを特徴とする回転電機の回転子の製造方法。
A pair of field iron cores having a plurality of claw-shaped magnetic poles and being combined with each other so that the claw-shaped magnetic poles are alternately meshed with each other at a predetermined interval in the circumferential direction;
A field winding wound around the pair of field cores;
A plurality of permanent magnets arranged between side surfaces of the claw-shaped magnetic poles adjacent in the circumferential direction and magnetized in a direction to reduce leakage magnetic flux between the adjacent claw-shaped magnetic poles;
A non-magnetic support ring disposed on the inner peripheral side of the plurality of permanent magnets,
The claw-shaped magnetic pole is a rotor of a rotating electrical machine provided with a locking portion protruding in a hook shape in the circumferential direction from the circumferential side surface outer circumferential portion,
The support ring is disposed in advance on the inner peripheral side of the claw-shaped magnetic pole provided in one of the pair of field cores, and then the locking portion provided in the claw-shaped magnetic pole and the The permanent magnet is inserted into a radial space defined by a radial dimension between the permanent magnet and the support ring, and an inner peripheral side of the permanent magnet is supported by the support ring. A method of manufacturing a rotor of a rotating electrical machine, characterized in that the movement to the outside in the radial direction is maintained, and then the other field core is combined.
請求項1〜3に記載した何れかの回転電機の回転子において、
前記支持リングは、前記複数の永久磁石を個々に支持する複数の磁石支持部と、この複数の磁石支持部を環状に連結する連結部とを有し、
前記磁石支持部は、前記永久磁石の長手方向に相当する方向の長さが、前記連結部の幅(前記支持リングの周方向と直交する方向の寸法)より長く設けられていることを特徴とする回転電機の回転子。
In the rotor of any one of the rotating electrical machines according to claims 1 to 3,
The support ring includes a plurality of magnet support portions that individually support the plurality of permanent magnets, and a connection portion that connects the plurality of magnet support portions in an annular shape.
The magnet support portion is provided such that a length in a direction corresponding to a longitudinal direction of the permanent magnet is longer than a width of the connection portion (a dimension in a direction orthogonal to a circumferential direction of the support ring). Rotating electrical machine rotor.
請求項4に記載した回転電機の回転子において、
前記磁石支持部は、前記永久磁石を支持する面が平坦面であることを特徴とする回転電機の回転子。
In the rotor of the rotating electrical machine according to claim 4,
The rotor for a rotating electrical machine, wherein the magnet support portion has a flat surface for supporting the permanent magnet.
請求項4または5に記載した回転電機の回転子において、
前記磁石支持部は、この磁石支持部によって支持される前記永久磁石の内周面の形状および面積と略等しい形状および面積を有していることを特徴とする回転電機の回転子。
In the rotor of the rotating electrical machine according to claim 4 or 5,
The rotor of a rotating electrical machine, wherein the magnet support portion has a shape and an area substantially equal to a shape and an area of an inner peripheral surface of the permanent magnet supported by the magnet support portion.
請求項4〜6に記載した何れかの回転電機の回転子において、
前記磁石支持部は、前記永久磁石の長手方向に相当する方向の両端のうち、少なくとも一方の端部には、径方向の内側へ折れ曲がるガイド部が設けられていることを特徴とする回転電機の回転子。
In the rotor of any one of the rotating electrical machines according to claim 4,
In the rotating electrical machine, the magnet support portion is provided with a guide portion that is bent inward in the radial direction at at least one of the ends in the direction corresponding to the longitudinal direction of the permanent magnet. Rotor.
請求項4〜7に記載した何れかの回転電機の回転子において、
前記永久磁石は、内周面が前記磁石支持部に当接して支持された状態で、外周面の両肩部が、前記爪状磁極に設けられた係止部の内面に当接して径方向外側への移動が規制されていることを特徴とする回転電機の回転子。
In the rotor of any one of the rotating electrical machines according to claims 4 to 7,
In the state where the inner peripheral surface of the permanent magnet is supported by being in contact with the magnet support portion, both shoulder portions of the outer peripheral surface are in contact with the inner surface of the locking portion provided on the claw-shaped magnetic pole and are in the radial direction. A rotor of a rotating electrical machine, characterized in that movement to the outside is restricted.
請求項8に記載した回転電機の回転子において、
前記永久磁石の周方向側面と前記爪状磁極同士の側面との間に含浸材が充填されていることを特徴とする回転電機の回転子。
In the rotor of the rotating electrical machine according to claim 8,
An impregnation material is filled between a circumferential side surface of the permanent magnet and a side surface of the claw-shaped magnetic poles.
請求項4〜7に記載した何れかの回転電機の回転子において、
前記永久磁石と前記磁石支持部および前記爪状磁極との間に含浸材が充填されていることを特徴とする回転電機の回転子。
In the rotor of any one of the rotating electrical machines according to claims 4 to 7,
A rotor of a rotating electrical machine, wherein an impregnation material is filled between the permanent magnet, the magnet support portion, and the claw-shaped magnetic pole.
請求項1〜10に記載した何れかの回転電機の回転子において、
前記永久磁石は、少なくとも径方向外側の外周面が非磁性部材により包囲されていることを特徴とする回転電機の回転子。
In the rotor of any one of the rotating electrical machines according to claim 1,
A rotor of a rotating electrical machine, wherein the permanent magnet has at least a radially outer peripheral surface surrounded by a nonmagnetic member.
請求項11に記載した回転電機の回転子において、
前記永久磁石は、前記非磁性部材により箱状に形成されたホルダに収容されていることを特徴とする回転電機の回転子。
In the rotor of the rotating electrical machine according to claim 11,
The rotor of a rotating electrical machine, wherein the permanent magnet is accommodated in a holder formed in a box shape by the non-magnetic member.
JP2008281672A 2008-10-31 2008-10-31 Rotor for rotating electrical machine and method for manufacturing the same Expired - Fee Related JP4743257B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008281672A JP4743257B2 (en) 2008-10-31 2008-10-31 Rotor for rotating electrical machine and method for manufacturing the same
EP09012996.6A EP2182613B1 (en) 2008-10-31 2009-10-14 Rotor for electric rotary machine
US12/588,757 US8283833B2 (en) 2008-10-31 2009-10-27 Rotor for electric rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281672A JP4743257B2 (en) 2008-10-31 2008-10-31 Rotor for rotating electrical machine and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010110169A true JP2010110169A (en) 2010-05-13
JP4743257B2 JP4743257B2 (en) 2011-08-10

Family

ID=42299050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281672A Expired - Fee Related JP4743257B2 (en) 2008-10-31 2008-10-31 Rotor for rotating electrical machine and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4743257B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032848A (en) * 2014-09-17 2016-03-25 현대자동차주식회사 Claw pole type rotor and Motor having the same
WO2019142286A1 (en) * 2018-01-18 2019-07-25 三菱電機株式会社 Rotor of rotating electric machine for vehicle and method for manufacturing same
WO2019226911A1 (en) * 2018-05-24 2019-11-28 Borgwarner, Inc. Enhanced permanent magnet claw pole segment geometry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223882A (en) * 1994-12-22 1996-08-30 General Motors Corp <Gm> Rotor assembly of hybrid ac machine
JP2002044921A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Ac generator
JP2002262530A (en) * 2001-02-27 2002-09-13 Hitachi Ltd Alternator for vehicle
JP2004007958A (en) * 2002-04-26 2004-01-08 Hitachi Ltd Alternator for vehicle, and its rotor
JP2005160172A (en) * 2003-11-25 2005-06-16 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor
JP2008054392A (en) * 2006-08-23 2008-03-06 Denso Corp Alternator for vehicles and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223882A (en) * 1994-12-22 1996-08-30 General Motors Corp <Gm> Rotor assembly of hybrid ac machine
JP2002044921A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Ac generator
JP2002262530A (en) * 2001-02-27 2002-09-13 Hitachi Ltd Alternator for vehicle
JP2004007958A (en) * 2002-04-26 2004-01-08 Hitachi Ltd Alternator for vehicle, and its rotor
JP2005160172A (en) * 2003-11-25 2005-06-16 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor
JP2008054392A (en) * 2006-08-23 2008-03-06 Denso Corp Alternator for vehicles and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032848A (en) * 2014-09-17 2016-03-25 현대자동차주식회사 Claw pole type rotor and Motor having the same
KR101704119B1 (en) 2014-09-17 2017-02-07 현대자동차주식회사 Claw pole type rotor and Motor having the same
WO2019142286A1 (en) * 2018-01-18 2019-07-25 三菱電機株式会社 Rotor of rotating electric machine for vehicle and method for manufacturing same
WO2019226911A1 (en) * 2018-05-24 2019-11-28 Borgwarner, Inc. Enhanced permanent magnet claw pole segment geometry
US11050332B2 (en) 2018-05-24 2021-06-29 Borgwarner Inc. Enhanced permanent magnet claw pole segment geometry

Also Published As

Publication number Publication date
JP4743257B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US8283833B2 (en) Rotor for electric rotary machine
US6853112B2 (en) Rotating electric machine
JP4735980B2 (en) AC generator for vehicle and method for manufacturing the same
CN109104007B (en) Brushless motor and stator thereof
US10523083B2 (en) Motor
JP4697292B2 (en) Rotating electrical machine rotor
JP6461381B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP2019509709A (en) Rotor for axial magnetic flux electromagnetic motor or generator having semi-embedded magnet and axial holding means
JP4743257B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP2006121870A (en) Motor device
JP5318397B2 (en) Brushless motor
JP4002451B2 (en) Rotating electric machine
JP6824348B2 (en) Manufacturing method of single-phase brushless motor, single-phase brushless motor, vacuum cleaner equipped with single-phase brushless motor, and manufacturing method of vacuum cleaner
JP2008182786A (en) Rotor and rotating electric machine
JP6485844B2 (en) Rotating electric machine
JP2005312189A (en) Rotor for dynamo-electric machine
CN108933496B (en) Motor
JP2008167598A (en) Stator of rotary electric machine, and rotary electric machine using the same
JP6429400B2 (en) Stator core, stator and rotating electric machine
CN110797998B (en) Rotor and motor
JP3790766B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2005348472A (en) Stator for axial motor and axial motor
JP6181220B2 (en) Stepping motor
JP2008283757A (en) Electric motor
US20200177040A1 (en) Rotor, motor, and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees