JP2010110063A - Voltage control circuit and electric lock device - Google Patents

Voltage control circuit and electric lock device Download PDF

Info

Publication number
JP2010110063A
JP2010110063A JP2008277555A JP2008277555A JP2010110063A JP 2010110063 A JP2010110063 A JP 2010110063A JP 2008277555 A JP2008277555 A JP 2008277555A JP 2008277555 A JP2008277555 A JP 2008277555A JP 2010110063 A JP2010110063 A JP 2010110063A
Authority
JP
Japan
Prior art keywords
circuit
voltage
electric lock
electric
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008277555A
Other languages
Japanese (ja)
Inventor
Kenji Okazaki
健志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008277555A priority Critical patent/JP2010110063A/en
Publication of JP2010110063A publication Critical patent/JP2010110063A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overcurrent preventing circuit 11 that determines whether an overcurrent will flow through an electric lock control circuit 2 before the overcurrent actually flows through the electric lock control circuit 2. <P>SOLUTION: A voltage dividing resistor Rs 6 is connected in series with a power source 9a and the electric lock control circuit 2 to divide supply voltage. When a cable 4 is short-circuited, approximately 0V is detected as divided voltage applied to the electric rock control circuit 2 by an AD converter 7. When the divided voltage is not approximately 0V, CPU 1 determines that the cable 4 is not short-circuited and controls a relay circuit Ry 8 to short circuit the voltage dividing resistor Rs 6. As a result, rated voltage is applied to an electric rock circuit 12 and an electric rock 3 is released. When the divided voltage is approximately 0V, the CPU 1 determines that the cable 4 is short-circuited and controls the relay circuit Ry 8 not to short circuit the voltage dividing resistor Rs 6. Owing to the division of supply voltage by the voltage dividing resistor Rs 6, an overcurrent flows through the electric rock control circuit 2 even if the cable 4 is short-circuited. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、扉の近くに設置されて扉の電気錠を施解錠する電気錠制御盤を構成する電圧制御回路および電気錠装置に関するものである。   The present invention relates to a voltage control circuit and an electric lock device that constitute an electric lock control panel that is installed near a door and locks and unlocks the electric lock of the door, for example.

特許文献1には、負荷回路に過電流が流れたことを検出する過電流検出手段と、電源電圧をレベル変換して一定の出力電圧を負荷回路に供給する電圧制御手段とを備える過電流防止回路が開示されている。
特開2005−333736号公報
Patent Document 1 discloses an overcurrent prevention unit that includes an overcurrent detection unit that detects that an overcurrent has passed through a load circuit, and a voltage control unit that converts the level of a power supply voltage and supplies a constant output voltage to the load circuit. A circuit is disclosed.
JP 2005-333736 A

特許文献1に開示されている技術には、負荷回路に過電流が流れた後に電圧制御が行われるため、電圧制御が行われる前に流れる過電流により負荷回路が故障してしまう可能性がある、という課題がある。   In the technique disclosed in Patent Document 1, since voltage control is performed after an overcurrent flows through the load circuit, the load circuit may break down due to the overcurrent flowing before the voltage control is performed. There is a problem.

本発明は、例えば、負荷回路に過電流が流れてしまう前に負荷回路に過電流が流れるか否かを予め判定する回路を提供できるようにすることを目的とする。   An object of the present invention is to provide a circuit for determining in advance whether or not an overcurrent flows through a load circuit before the overcurrent flows through the load circuit.

本発明の電圧制御回路は、電源と特定の電気回路とに接続して前記電気回路にかかる電圧を制御する電圧制御回路であり、前記電源の電圧を前記電気回路にかかる電圧と前記電気回路にかからない電圧とに分圧する電源電圧分圧部と、前記電源電圧分圧部により分圧された前記電気回路にかかる電圧を分圧電圧として測定する分圧電圧測定部と、前記分圧電圧測定部により測定された分圧電圧に基づいて前記電気回路の短絡を検出する短絡検出部と、前記短絡検出部により前記電気回路の短絡が検出されなかった場合に前記電源電圧分圧部による分圧を止めて前記電源の電圧を前記電気回路に供給する分圧制御部とを備える。   The voltage control circuit of the present invention is a voltage control circuit that controls a voltage applied to the electric circuit by connecting to a power supply and a specific electric circuit, and the voltage of the power supply is applied to the voltage applied to the electric circuit and the electric circuit. A power supply voltage dividing unit that divides the voltage into an unapplied voltage; a divided voltage measuring unit that measures a voltage applied to the electric circuit divided by the power supply voltage dividing unit as a divided voltage; and the divided voltage measuring unit A short-circuit detecting unit for detecting a short circuit of the electric circuit based on the divided voltage measured by the voltage dividing unit by the power source voltage dividing unit when the short circuit detecting unit does not detect a short circuit of the electric circuit. A voltage dividing control unit that stops and supplies the voltage of the power source to the electric circuit.

本発明によれば、例えば、負荷回路(電気回路)に過電流が流れてしまう前に負荷回路に過電流が流れるか否かを予め判定する回路(電圧制御回路)を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the circuit (voltage control circuit) which determines beforehand whether overcurrent flows into a load circuit before overcurrent flows into a load circuit (electric circuit) can be provided, for example.

実施の形態1.
電源と特定の電気回路(例えば、電気錠回路)とに接続して電気回路にかかる電圧を制御し、電気回路に過電流が流れるのを防止する過電流防止回路について説明する。
Embodiment 1 FIG.
An overcurrent prevention circuit that is connected to a power source and a specific electric circuit (for example, an electric lock circuit) to control a voltage applied to the electric circuit and prevents an overcurrent from flowing through the electric circuit will be described.

図1は、実施の形態1における電気錠装置10の構成図である。
実施の形態1における過電流防止回路11を有する電気錠装置10の構成について、図1に基づいて以下に説明する。
FIG. 1 is a configuration diagram of an electric lock device 10 according to the first embodiment.
The configuration of the electric lock device 10 having the overcurrent prevention circuit 11 in the first embodiment will be described below with reference to FIG.

電気錠装置10は、電気錠3を施錠・解錠する電気錠回路12と、電気錠回路12内の短絡を検出して電気錠回路12に過電流が流れるのを防ぐ過電流防止回路11とを有する。   The electric lock device 10 includes an electric lock circuit 12 that locks and unlocks the electric lock 3, an overcurrent prevention circuit 11 that detects a short circuit in the electric lock circuit 12 and prevents an overcurrent from flowing through the electric lock circuit 12, Have

電気錠回路12は、電気錠3(第2の回路の一例)と電気錠3を制御する電気錠制御回路2(第1の回路の一例)とを備え、電気錠3と電気錠制御回路2とはケーブル4により接続されている。
電気錠3にはモーター(M)やソレノイド(コイル)などの駆動機構(電気回路)が組み込まれ、電気錠制御回路2にはトランジスタスイッチ(FET)(Tr_a〜Tr_d)が組み込まれている。
電気錠3が施解錠される場合、CPU1から電気錠制御回路2へ電気信号が出力されてトランジスタスイッチ(Tr_a〜Tr_d)が通電し、電源9aの電力(電圧、電流)が電気錠制御回路2のトランジスタスイッチからケーブル4を介して電気錠3へ供給される。
電力の供給を受けた電気錠3は、駆動機構が動作して施解錠する。
The electric lock circuit 12 includes an electric lock 3 (an example of the second circuit) and an electric lock control circuit 2 (an example of the first circuit) that controls the electric lock 3, and the electric lock 3 and the electric lock control circuit 2. Are connected by a cable 4.
The electric lock 3 incorporates a drive mechanism (electric circuit) such as a motor (M) and a solenoid (coil), and the electric lock control circuit 2 incorporates transistor switches (FETs) (Tr_a to Tr_d).
When the electric lock 3 is unlocked, an electric signal is output from the CPU 1 to the electric lock control circuit 2, the transistor switches (Tr_a to Tr_d) are energized, and the power (voltage, current) of the power source 9a is changed to the electric lock control circuit 2. From the transistor switch to the electric lock 3 via the cable 4.
The electric lock 3 to which the power is supplied is locked and unlocked by operating the drive mechanism.

過電流防止回路11は、分圧抵抗Rs6(電源電圧分圧部の一例)、ADコンバータ7(分圧電圧測定部の一例)、CPU1(短絡検出部の一例)およびリレー回路Ry8(分圧制御部の一例)を備える。図1を簡潔に示すため、一つのリレー回路Ry8を分圧抵抗Rs6の上側とCPU1のPortDの右側との2か所に分けて記している。   The overcurrent prevention circuit 11 includes a voltage dividing resistor Rs6 (an example of a power supply voltage dividing unit), an AD converter 7 (an example of a divided voltage measuring unit), a CPU 1 (an example of a short circuit detecting unit), and a relay circuit Ry8 (a voltage dividing control). Part of an example). For the sake of simplicity, FIG. 1 shows that one relay circuit Ry8 is divided into two parts, the upper side of the voltage dividing resistor Rs6 and the right side of PortD of the CPU1.

分圧抵抗Rs6は、電源9aと電気錠制御回路2とに直列に接続する。
分圧抵抗Rs6は、電気錠3の施解錠時、リレー回路Ry8により電源9a側と電気錠回路12側とが短絡される。電気錠3の施解錠前、リレー回路Ry8による分圧抵抗Rs6の短絡は解除される。
The voltage dividing resistor Rs6 is connected in series with the power source 9a and the electric lock control circuit 2.
When the electric lock 3 is locked and unlocked, the voltage dividing resistor Rs6 is short-circuited between the power supply 9a side and the electric lock circuit 12 side by the relay circuit Ry8. Before the electric lock 3 is unlocked, the short circuit of the voltage dividing resistor Rs6 by the relay circuit Ry8 is released.

短絡が解除される電気錠3の施解錠前、分圧抵抗Rs6は、電源9aの電圧を自己にかかる電圧と電気錠回路12にかかる電圧とに分圧する。電源9aの電圧は、分圧抵抗Rs6の抵抗値と電気錠回路12の内部抵抗の値との比率で分圧される。分圧抵抗Rs6の抵抗値の比率が大きければその比率分、電気錠回路12より大きな電圧が分圧抵抗Rs6にかかり、電気錠回路12にはその比率分、分圧抵抗Rs6より小さな電圧がかかる。分圧抵抗Rs6は、電気錠回路12に流れる電流を微小電流にする。
例えば、分圧抵抗Rs6として電気錠3の内部抵抗(駆動機構の抵抗)と同程度またはそれ以上の大きさの抵抗が用いられる。
分圧抵抗Rs6が短絡される電気錠3の施解錠時、電源電圧の分圧は行われない。
Before the unlocking of the electric lock 3 to be released from the short circuit, the voltage dividing resistor Rs6 divides the voltage of the power source 9a into the voltage applied to itself and the voltage applied to the electric lock circuit 12. The voltage of the power source 9a is divided by the ratio between the resistance value of the voltage dividing resistor Rs6 and the value of the internal resistance of the electric lock circuit 12. If the ratio of the resistance value of the voltage dividing resistor Rs6 is large, a voltage larger than that of the electric lock circuit 12 is applied to the voltage dividing resistor Rs6 by that ratio, and a voltage smaller than the voltage dividing resistor Rs6 is applied to the electric lock circuit 12 by that ratio. . The voltage dividing resistor Rs6 makes the current flowing through the electric lock circuit 12 a minute current.
For example, a resistor having a magnitude equal to or greater than the internal resistance of the electric lock 3 (drive mechanism resistance) is used as the voltage dividing resistor Rs6.
At the time of locking / unlocking the electric lock 3 in which the voltage dividing resistor Rs6 is short-circuited, the power supply voltage is not divided.

電気錠回路12内に短絡がある場合、電気錠回路12の内部抵抗値が小さくなるため、分圧抵抗Rs6により分圧された電源電圧のうち電気錠回路12にかかる電圧(以下、「分圧電圧」という)は小さくなる。例えば、電気錠制御回路2と電気錠3とを接続するケーブル4が短絡している場合、電気錠回路12には電気錠3の抵抗がかからないため、電気錠制御回路2の抵抗値が電気錠回路12の内部抵抗値となり、電気錠回路12にかかる分圧電圧はほぼ「0V」となる。ここで、電気錠制御回路2の抵抗値は、電気錠3の抵抗値や分圧抵抗Rs6の抵抗値と比べて十分に小さいものとする。
例えば、分圧抵抗Rs6の抵抗値が電気錠3の内部抵抗値と同程度(またはそれ以上)の大きさである場合、電源9aの電圧は電気錠制御回路2に印加される前に分圧抵抗Rs6により、施解錠時に電気錠3にかかる電圧と同程度(またはそれ以上)降下する。このため、ケーブル4が短絡していても、電気錠制御回路2にかかる分圧電圧は電気錠制御回路2の定格電圧以下となり、電気錠制御回路2に流れる電流の大きさは定格電流以下となる。つまり、ケーブル4が短絡していても、電気錠制御回路2に過電流が流れることはなく、電気錠制御回路2は故障しない。電気錠回路12に流れる電流は微小電流であるため、電気錠制御回路2は故障しない。
When there is a short circuit in the electric lock circuit 12, the internal resistance value of the electric lock circuit 12 becomes small. Therefore, the voltage applied to the electric lock circuit 12 among the power supply voltages divided by the voltage dividing resistor Rs6 (hereinafter referred to as “divided voltage”). Voltage)) becomes smaller. For example, when the cable 4 connecting the electric lock control circuit 2 and the electric lock 3 is short-circuited, the resistance of the electric lock 3 is not applied to the electric lock circuit 12, so that the resistance value of the electric lock control circuit 2 is the electric lock. The internal resistance value of the circuit 12 is obtained, and the divided voltage applied to the electric lock circuit 12 is substantially “0V”. Here, it is assumed that the resistance value of the electric lock control circuit 2 is sufficiently smaller than the resistance value of the electric lock 3 and the resistance value of the voltage dividing resistor Rs6.
For example, when the resistance value of the voltage dividing resistor Rs6 is about the same (or higher) as the internal resistance value of the electric lock 3, the voltage of the power source 9a is divided before being applied to the electric lock control circuit 2. Due to the resistor Rs6, the voltage drops about the same as (or more than) the voltage applied to the electric lock 3 during unlocking. For this reason, even if the cable 4 is short-circuited, the divided voltage applied to the electric lock control circuit 2 is less than the rated voltage of the electric lock control circuit 2 and the magnitude of the current flowing through the electric lock control circuit 2 is less than the rated current. Become. That is, even if the cable 4 is short-circuited, no overcurrent flows through the electric lock control circuit 2, and the electric lock control circuit 2 does not fail. Since the current flowing through the electric lock circuit 12 is a minute current, the electric lock control circuit 2 does not fail.

ADコンバータ7は、入力側が分圧抵抗Rs6と電気錠制御回路2との間に接続されると共に出力側がCPU1のPortCに接続され、電気錠回路12にかかっている分圧電圧を測定する。
具体的に、ADコンバータ7は、電気錠回路12にかかっている分圧電圧をアナログ信号として入力し、入力したアナログ信号から分圧電圧の値を取得し、取得した分圧電圧の値をディジタル値に変換してCPU1のPortCに出力する。
The AD converter 7 has an input side connected between the voltage dividing resistor Rs6 and the electric lock control circuit 2 and an output side connected to the PortC of the CPU 1, and measures a divided voltage applied to the electric lock circuit 12.
Specifically, the AD converter 7 inputs the divided voltage applied to the electric lock circuit 12 as an analog signal, acquires the value of the divided voltage from the input analog signal, and digitally converts the acquired value of the divided voltage. It converts into a value and outputs it to PortC of CPU1.

CPU1は、電気錠制御回路2のトランジスタスイッチ(Tr_a〜Tr_d)と接続するPortAおよびPortBを有する。
さらに、CPU1は、ADコンバータ7と接続するPortC、リレー回路Ry8を動作させるトランジスタスイッチ(Tr_e)と接続するPortDおよびLED13と接続するPortEを有する。
The CPU 1 has Port A and Port B connected to the transistor switches (Tr_a to Tr_d) of the electric lock control circuit 2.
Further, the CPU 1 has PortC connected to the AD converter 7, PortD connected to the transistor switch (Tr_e) for operating the relay circuit Ry8, and PortE connected to the LED 13.

CPU1は、電気錠3を施解錠するときにまず、PortDから電気信号を出力してトランジスタスイッチTr_eを通電させる。トランジスタスイッチTr_eの通電によりリレー回路Ry8が動作(OFF)して分圧抵抗Rs6の短絡が解除される。次に、CPU1は、PortAおよびPortBから電気錠制御回路2への電気信号の出力を開始する。電気錠制御回路2への電気信号の出力により各トランジスタスイッチ(Tr_a〜Tr_d)が通電し、電気錠回路12には分圧電圧がかかり、ADコンバータ7により計測された電気錠回路12にかかる分圧電圧値(ディジタル値)がPortCに入力される。   When the CPU 1 locks and unlocks the electric lock 3, first, the CPU 1 outputs an electric signal from the Port D to energize the transistor switch Tr_e. When the transistor switch Tr_e is energized, the relay circuit Ry8 operates (OFF) and the short circuit of the voltage dividing resistor Rs6 is released. Next, the CPU 1 starts outputting electric signals from the Port A and the Port B to the electric lock control circuit 2. Each transistor switch (Tr_a to Tr_d) is energized by the output of an electric signal to the electric lock control circuit 2, and a divided voltage is applied to the electric lock circuit 12. The voltage value (digital value) is input to PortC.

CPU1は、ADコンバータ7からPortCに分圧電圧のディジタル値が入力された場合、分圧電圧のディジタル値と所定値(例えば、電気錠制御回路2の定格電圧より低く「0V」に近い値)とを比較し、電気錠回路12(特に、ケーブル4)が短絡しているか否かを判定する。
CPU1は、分圧電圧値が所定値以下である場合に電気錠回路12が短絡していると判定し、分圧電圧値が所定値より大きい場合に電気錠回路12が短絡していないと判定する。
When the digital value of the divided voltage is input from the AD converter 7 to the PortC, the CPU 1 has a digital value of the divided voltage and a predetermined value (for example, a value lower than the rated voltage of the electric lock control circuit 2 and close to “0V”). To determine whether or not the electric lock circuit 12 (in particular, the cable 4) is short-circuited.
The CPU 1 determines that the electric lock circuit 12 is short-circuited when the divided voltage value is equal to or less than a predetermined value, and determines that the electric lock circuit 12 is not short-circuited when the divided voltage value is greater than the predetermined value. To do.

電気錠回路12が短絡している場合、CPU1は、PortEに接続しているLED13を点灯(または、点滅、消灯)させて、電気錠回路12の短絡故障を知らせる。そして、CPU1は、PortAおよびPortBからの電気信号の出力を終了する。このとき、電気錠3は施錠・解錠されない。
電気錠回路12が短絡していない場合、CPU1は、PortDから電気信号を出力してトランジスタスイッチTr_eを通電させる。トランジスタスイッチTr_eの通電によりリレー回路Ry8が動作(ON)して分圧抵抗Rs6が短絡し、分圧抵抗Rs6による電源電圧の分圧が停止する。このとき、分圧抵抗Rs6による分圧が行われないため電気錠回路12には定格電圧がかかり、電気錠3の駆動機構が動作し、電気錠3が施解錠する。CPU1は、電気錠3を施解錠させた後、PortAおよびPortBからの電気信号の出力を終了する。
When the electric lock circuit 12 is short-circuited, the CPU 1 turns on (or blinks or turns off) the LED 13 connected to Port E to notify the short circuit failure of the electric lock circuit 12. And CPU1 complete | finishes the output of the electrical signal from PortA and PortB. At this time, the electric lock 3 is not locked / unlocked.
When the electric lock circuit 12 is not short-circuited, the CPU 1 outputs an electric signal from PortD to energize the transistor switch Tr_e. By energizing the transistor switch Tr_e, the relay circuit Ry8 operates (ON), the voltage dividing resistor Rs6 is short-circuited, and the voltage dividing of the power supply voltage by the voltage dividing resistor Rs6 is stopped. At this time, since voltage division by the voltage dividing resistor Rs6 is not performed, the rated voltage is applied to the electric lock circuit 12, the drive mechanism of the electric lock 3 operates, and the electric lock 3 is locked and unlocked. After locking and unlocking the electric lock 3, the CPU 1 ends the output of electric signals from Port A and Port B.

CPU1は、電気錠3を施解錠させる前にリレー回路Ry8をOFFにして電気錠回路12が短絡しているか判定し、電気錠回路12が短絡していないと判定した場合にリレー回路Ry8をONにして電気錠3を施解錠させる二段階制御を行う。   The CPU 1 determines whether the electric lock circuit 12 is short-circuited by turning off the relay circuit Ry8 before locking and unlocking the electric lock 3, and turns on the relay circuit Ry8 when determining that the electric lock circuit 12 is not short-circuited. Thus, the two-stage control for locking and unlocking the electric lock 3 is performed.

リレー回路Ry8は、電源9bに接続し、CPU1によるトランジスタスイッチTr_eの通電でON/OFFが切り替えられる。リレー回路Ry8は、ON時には分圧抵抗Rs6の電源9a側と分圧抵抗Rs6の電気錠回路12側とを直結して分圧抵抗Rs6を短絡させ、OFF時には分圧抵抗Rs6の電源9a側と分圧抵抗Rs6の電気錠回路12側との直結を外して分圧抵抗Rs6の短絡を解除する。   The relay circuit Ry8 is connected to the power source 9b, and is turned ON / OFF by energization of the transistor switch Tr_e by the CPU1. The relay circuit Ry8 directly connects the power supply 9a side of the voltage dividing resistor Rs6 and the electric lock circuit 12 side of the voltage dividing resistor Rs6 when the relay circuit Ry8 is ON, and shorts the voltage dividing resistor Rs6. The direct connection between the voltage dividing resistor Rs6 and the electric lock circuit 12 is removed, and the short circuit of the voltage dividing resistor Rs6 is released.

実施の形態1では、以下のような電気錠装置10について説明した。
扉の電気錠3の施解錠を行う電気錠制御盤の過電流防止回路11は、電気錠3を制御するとき、電気錠3と接続するケーブル4の短絡を検出し、過電流が流れないように電気錠制御回路2を保護する。
過電流防止回路11は、微小電流ループにより生じた電気錠回路12の分圧電圧を測定することにより、電気錠制御回路2と電気錠3とを接続するケーブル4の短絡を検出する。
過電流防止回路11は、電気錠制御回路2と電気錠3とを接続するケーブル4が短絡している場合においても、電気錠制御回路2−電気錠3間に微小電流を流すことにより、定格電圧(定格電流)を印加する前にケーブル4の短絡を容易に確認することができ、電気錠制御回路2が短絡電流(過電流)により破損もしくは損傷することを容易に防止することができる。
In the first embodiment, the following electric lock device 10 has been described.
When the electric lock 3 is controlled, the overcurrent prevention circuit 11 of the electric lock control panel that locks and unlocks the electric lock 3 of the door detects a short circuit of the cable 4 connected to the electric lock 3 so that no overcurrent flows. The electric lock control circuit 2 is protected.
The overcurrent prevention circuit 11 detects a short circuit of the cable 4 connecting the electric lock control circuit 2 and the electric lock 3 by measuring the divided voltage of the electric lock circuit 12 generated by the minute current loop.
The overcurrent prevention circuit 11 is rated by passing a minute current between the electric lock control circuit 2 and the electric lock 3 even when the cable 4 connecting the electric lock control circuit 2 and the electric lock 3 is short-circuited. The short circuit of the cable 4 can be easily confirmed before applying the voltage (rated current), and the electric lock control circuit 2 can be easily prevented from being damaged or damaged by the short circuit current (overcurrent).

実施の形態2.
電気錠制御回路2に過電流が流れたか検出し、電気錠制御回路2に過電流が流れたことを検出した場合に電気錠制御回路2への電流の供給を停止する回路を備える電気錠装置10について説明する。
以下、実施の形態1で説明した事項について説明を省略する。
Embodiment 2. FIG.
An electric lock device comprising a circuit that detects whether or not an overcurrent flows in the electric lock control circuit 2 and stops supplying the current to the electric lock control circuit 2 when it is detected that an overcurrent flows in the electric lock control circuit 2 10 will be described.
Hereinafter, description of items described in the first embodiment will be omitted.

図2は、実施の形態2における電気錠装置10の構成図である。
実施の形態2における電気錠装置10は、実施の形態1で説明した構成に加えて、過電流検出及び電流停止回路5を備える。
FIG. 2 is a configuration diagram of the electric lock device 10 according to the second embodiment.
The electric lock device 10 according to the second embodiment includes an overcurrent detection and current stop circuit 5 in addition to the configuration described in the first embodiment.

過電流検出及び電流停止回路5は、電源9aと分圧抵抗Rs6とに接続し、電気錠制御回路2に過電流が流れたか検出し、電気錠制御回路2に過電流が流れたことを検出した場合に電気錠制御回路2への電流の供給を停止する。   The overcurrent detection and current stop circuit 5 is connected to the power source 9a and the voltage dividing resistor Rs6, detects whether an overcurrent flows in the electric lock control circuit 2, and detects that an overcurrent flows in the electric lock control circuit 2. In this case, the supply of current to the electric lock control circuit 2 is stopped.

図3は、実施の形態2における過電流検出及び電流停止回路5の構成図である。
実施の形態2における過電流検出及び電流停止回路5の構成について、図3に基づいて以下に説明する。
FIG. 3 is a configuration diagram of the overcurrent detection and current stop circuit 5 according to the second embodiment.
The configuration of the overcurrent detection and current stop circuit 5 in the second embodiment will be described below with reference to FIG.

過電流検出及び電流停止回路5は、電気錠制御回路2に過電流が流れたか検出する過電流検出回路21と、電気錠制御回路2に過電流が流れたことが検出された場合に電気錠制御回路2への電流供給を停止する電流停止回路22とを備える。   The overcurrent detection and current stop circuit 5 includes an overcurrent detection circuit 21 that detects whether an overcurrent has flowed through the electric lock control circuit 2, and an electric lock when it is detected that an overcurrent has flowed through the electric lock control circuit 2. And a current stop circuit 22 for stopping current supply to the control circuit 2.

電流停止回路22はトランジスタスイッチTr_fを備える。トランジスタスイッチTr_fが通電することにより、電気錠制御回路2に電流が供給される。   The current stop circuit 22 includes a transistor switch Tr_f. When the transistor switch Tr_f is energized, a current is supplied to the electric lock control circuit 2.

過電流検出回路21は、電源9aと電気錠制御回路2とに分圧抵抗Rs6および電流停止回路22を介して直列に接続する抵抗Reを備える。
さらに、過電流検出回路21は、抵抗Reに所定値未満の電圧がかかっている場合、電流停止回路22のトランジスタスイッチTr_fに電流を出力してトランジスタスイッチTr_fを通電させるコンパレータCmpを備える。抵抗Reに所定値以上の電圧がかかっている場合、コンパレータCmpからトランジスタスイッチTr_fへは電流が出力されない。
The overcurrent detection circuit 21 includes a resistor Re connected in series to the power source 9a and the electric lock control circuit 2 via a voltage dividing resistor Rs6 and a current stop circuit 22.
Further, the overcurrent detection circuit 21 includes a comparator Cmp that outputs a current to the transistor switch Tr_f of the current stop circuit 22 and energizes the transistor switch Tr_f when a voltage less than a predetermined value is applied to the resistor Re. When a voltage higher than a predetermined value is applied to the resistor Re, no current is output from the comparator Cmp to the transistor switch Tr_f.

ケーブル4が短絡している場合、電気錠3の内部抵抗がかからないため、過電流検出回路21の抵抗Reには大きな電圧がかかる。抵抗Reに大きな電圧がかかると、コンパレータCmpからトランジスタスイッチTr_fへ電流が出力されないためトランジスタスイッチTr_fが通電せず、電気錠制御回路2への電流の供給が停止する。   When the cable 4 is short-circuited, since the internal resistance of the electric lock 3 is not applied, a large voltage is applied to the resistance Re of the overcurrent detection circuit 21. When a large voltage is applied to the resistor Re, no current is output from the comparator Cmp to the transistor switch Tr_f, so that the transistor switch Tr_f is not energized and the supply of current to the electric lock control circuit 2 is stopped.

過電流検出及び電流停止回路5を加えることにより、電気錠制御回路2に過電流が流れることを二重に防止することができる。   By adding the overcurrent detection and current stop circuit 5, it is possible to prevent the overcurrent from flowing through the electric lock control circuit 2.

図4は、実施の形態2における電気錠装置10の別の構成図である。
図4に示すように、複数の電気錠回路12が制御されても構わない。
FIG. 4 is another configuration diagram of the electric lock device 10 according to the second embodiment.
As shown in FIG. 4, a plurality of electric lock circuits 12 may be controlled.

実施の形態1における電気錠装置10の構成図。1 is a configuration diagram of an electric lock device 10 according to Embodiment 1. FIG. 実施の形態2における電気錠装置10の構成図。The block diagram of the electric lock apparatus 10 in Embodiment 2. FIG. 実施の形態2における過電流検出及び電流停止回路5の構成図。FIG. 6 is a configuration diagram of an overcurrent detection and current stop circuit 5 in the second embodiment. 実施の形態2における電気錠装置10の別の構成図。FIG. 6 is another configuration diagram of the electric lock device 10 according to the second embodiment.

符号の説明Explanation of symbols

1 CPU、2 電気錠制御回路、3 電気錠、4 ケーブル、5 過電流検出及び電流停止回路、6 分圧抵抗Rs、7 ADコンバータ、8 リレー回路Ry、9a,9b 電源、10 電気錠装置、11 過電流防止回路、12 電気錠回路、13 LED、21 過電流検出回路、22 電流停止回路。   1 CPU, 2 electric lock control circuit, 3 electric lock, 4 cable, 5 overcurrent detection and current stop circuit, 6 voltage dividing resistor Rs, 7 AD converter, 8 relay circuit Ry, 9a, 9b power supply, 10 electric lock device, 11 Overcurrent prevention circuit, 12 Electric lock circuit, 13 LED, 21 Overcurrent detection circuit, 22 Current stop circuit.

Claims (6)

電源と特定の電気回路とに接続して前記電気回路にかかる電圧を制御する電圧制御回路であり、
前記電源の電圧を前記電気回路にかかる電圧と前記電気回路にかからない電圧とに分圧する電源電圧分圧部と、
前記電源電圧分圧部により分圧された前記電気回路にかかる電圧を分圧電圧として測定する分圧電圧測定部と、
前記分圧電圧測定部により測定された分圧電圧に基づいて前記電気回路の短絡を検出する短絡検出部と、
前記短絡検出部により前記電気回路の短絡が検出されなかった場合に前記電源電圧分圧部による分圧を止めて前記電源の電圧を前記電気回路に供給する分圧制御部と
を備えたことを特徴とする電圧制御回路。
A voltage control circuit for connecting a power source and a specific electric circuit to control a voltage applied to the electric circuit;
A power supply voltage divider for dividing the voltage of the power supply into a voltage applied to the electric circuit and a voltage not applied to the electric circuit;
A divided voltage measuring unit that measures a voltage applied to the electric circuit divided by the power supply voltage dividing unit as a divided voltage;
A short-circuit detection unit that detects a short circuit of the electric circuit based on the divided voltage measured by the divided voltage measurement unit;
A voltage dividing control unit that stops voltage division by the power supply voltage dividing unit and supplies the voltage of the power supply to the electric circuit when a short circuit of the electric circuit is not detected by the short circuit detecting unit. A characteristic voltage control circuit.
前記電源電圧分圧部は、前記電源と前記電気回路との間に直列に接続する抵抗を分圧抵抗として有し、
前記分圧制御部は、前記分圧抵抗の前記電源側と前記分圧抵抗の前記電気回路側とを短絡させて前記電源電圧分圧部による分圧を止める
ことを特徴とする請求項1記載の電圧制御回路。
The power source voltage dividing unit has a resistor connected in series between the power source and the electric circuit as a voltage dividing resistor,
2. The voltage dividing control unit according to claim 1, wherein the voltage dividing unit stops the voltage dividing by the power supply voltage dividing unit by short-circuiting the power supply side of the voltage dividing resistor and the electric circuit side of the voltage dividing resistor. Voltage control circuit.
前記短絡検出部は、前記分圧電圧が所定値以下である場合に前記電気回路が短絡していると判定する
ことを特徴とする請求項1〜請求項2いずれかに記載の電圧制御回路。
The voltage control circuit according to claim 1, wherein the short-circuit detection unit determines that the electric circuit is short-circuited when the divided voltage is equal to or lower than a predetermined value.
前記分圧電圧測定部は、前記分圧電圧をアナログ値で入力し、入力した前記分圧電圧のアナログ値をディジタル値に変換し、前記分圧電圧のディジタル値を出力するADコンバータを有し、
前記短絡検出部は、前記分圧電圧測定部により出力された前記分圧電圧のディジタル値に基づいて前記電気回路の短絡を検出するCPU(Central Proccessing Unit)を有する
ことを特徴とする請求項1〜電気錠3いずれかに記載の電圧制御回路。
The divided voltage measurement unit includes an AD converter that inputs the divided voltage as an analog value, converts the analog value of the input divided voltage into a digital value, and outputs the digital value of the divided voltage. ,
The said short circuit detection part has CPU (Central Processing Unit) which detects the short circuit of the said electric circuit based on the digital value of the said divided voltage output by the said divided voltage measurement part. -Voltage control circuit in any one of the electric lock 3.
前記電気回路は、第1の回路、第2の回路および前記第1の回路と前記第2の回路とを接続する接続ケーブルを有し、
前記電源電圧分圧部は、前記電源と前記第1の回路との間に位置して前記電源の電圧を分圧し、前記接続ケーブルが短絡している場合に前記第1の回路に過電流が流れることを防ぐ
ことを特徴とする請求項1〜請求項4いずれかに記載の電圧制御回路。
The electrical circuit has a first circuit, a second circuit, and a connection cable for connecting the first circuit and the second circuit,
The power supply voltage dividing unit is located between the power supply and the first circuit and divides the voltage of the power supply. When the connection cable is short-circuited, an overcurrent is generated in the first circuit. The voltage control circuit according to claim 1, wherein the voltage control circuit prevents flow.
請求項5記載の電圧制御回路と請求項5記載の電気回路とを有し、
前記第2の回路は、電気錠を施解錠する電気錠回路であり、
前記第1の回路は、前記電気錠回路を制御する電気錠制御回路である
ことを特徴とする電気錠装置。
A voltage control circuit according to claim 5 and an electric circuit according to claim 5,
The second circuit is an electric lock circuit for locking and unlocking the electric lock;
The electric lock device, wherein the first circuit is an electric lock control circuit for controlling the electric lock circuit.
JP2008277555A 2008-10-29 2008-10-29 Voltage control circuit and electric lock device Pending JP2010110063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277555A JP2010110063A (en) 2008-10-29 2008-10-29 Voltage control circuit and electric lock device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277555A JP2010110063A (en) 2008-10-29 2008-10-29 Voltage control circuit and electric lock device

Publications (1)

Publication Number Publication Date
JP2010110063A true JP2010110063A (en) 2010-05-13

Family

ID=42298957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277555A Pending JP2010110063A (en) 2008-10-29 2008-10-29 Voltage control circuit and electric lock device

Country Status (1)

Country Link
JP (1) JP2010110063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089365A (en) * 2014-05-23 2015-11-25 株洲南车时代电气股份有限公司 Device, system and method for controlling door lock
JP2020111882A (en) * 2019-01-08 2020-07-27 株式会社デンソーウェーブ Electric lock controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089365A (en) * 2014-05-23 2015-11-25 株洲南车时代电气股份有限公司 Device, system and method for controlling door lock
JP2020111882A (en) * 2019-01-08 2020-07-27 株式会社デンソーウェーブ Electric lock controller
JP7124717B2 (en) 2019-01-08 2022-08-24 株式会社デンソーウェーブ electric lock controller

Similar Documents

Publication Publication Date Title
FI118642B (en) Elevator system
US9018889B2 (en) Hardware-based, redundant overvoltage protection
US20060055365A1 (en) Motor control device
JPWO2010100988A1 (en) Rail vehicle door control system
JP2009207260A (en) Motor controller
US9899954B2 (en) Motor drive apparatus having function of detecting failure of electric shunt
US7005859B2 (en) Circuit arrangement and method for monitoring a current circuit
WO2015064002A1 (en) Controlling device and control method for vehicle opening and closing body and vehicle opening and closing body comprising same controlling device
JP2006230111A (en) Dc/dc converter
JP2009033938A (en) Electric vehicle controller
JP2010110063A (en) Voltage control circuit and electric lock device
JP4556918B2 (en) Power supply device with regenerative energy consumption circuit
JP4720334B2 (en) Offset converter for PWM converter
JP2010522531A (en) Error detection in the control unit
CN113841313B (en) Apparatus and method for current control of an actuator
JP2015233189A (en) Abnormality detector, image processing device, and abnormality detection method
CN107591780A (en) Into and exit the determination of safe mode
JP2006345683A (en) Current detector
JP2018182778A (en) Motor drive device
JP6080669B2 (en) Drive device detection device
JP2009254046A (en) Motor controller
JP2009021071A (en) Disconnection and/or overcurrent detecting device of load circuit
JP2011250533A (en) Load circuit drive device and its failure detection method and seat belt retractor
JP2020125996A (en) Control device and control method
JP6640486B2 (en) Motor unit