JP2010109914A - Wireless relay system, and wireless relay apparatus - Google Patents

Wireless relay system, and wireless relay apparatus Download PDF

Info

Publication number
JP2010109914A
JP2010109914A JP2008282268A JP2008282268A JP2010109914A JP 2010109914 A JP2010109914 A JP 2010109914A JP 2008282268 A JP2008282268 A JP 2008282268A JP 2008282268 A JP2008282268 A JP 2008282268A JP 2010109914 A JP2010109914 A JP 2010109914A
Authority
JP
Japan
Prior art keywords
wireless
wireless relay
signal
power
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282268A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hara
嘉孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008282268A priority Critical patent/JP2010109914A/en
Publication of JP2010109914A publication Critical patent/JP2010109914A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wireless relay system for preventing information from being lost. <P>SOLUTION: The invention relates to a wireless relay system which includes a relay station 2 for relaying communication between radio units 1-1, 1-2 and adopts network coding, wherein the relay station 2 determines receive power for each radio unit on the basis of reception signals from the radio units 1-1, 1-2, determines an adjustment amount for adjusting power so as to settle a difference in the receive power within a predetermined range and transmits adjustment information indicative of the adjustment amount to the radio units 1-1, 1-2 and the radio units 1-1, 1-2 adjust transmit power on the basis of the adjustment information. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無線リレー伝送を行う無線中継システムおよび無線中継装置に関する。   The present invention relates to a radio relay system and a radio relay apparatus that perform radio relay transmission.

近年の高速無線通信方式では、伝送速度の高速化に伴い大きな送信電力が必要とされる。しかし、実際には送信機の送信電力には限界があり、限られた送信電力のもとでカバーエリアを確保できる技術が求められている。このような要求に対し、その解決策として近年リレー伝送が注目されている。   In recent high-speed wireless communication systems, large transmission power is required as the transmission speed increases. However, in reality, there is a limit to the transmission power of the transmitter, and there is a need for a technique that can secure a cover area under the limited transmission power. In recent years, relay transmission has attracted attention as a solution to such demands.

リレー伝送では、送信機からの信号をリレー装置が増幅して受信機に送信する。リレー伝送を行うと、送信機が受信機へ直接信号伝送する場合に比べ、送信機での送信電力を小さく抑えることができる。そのため、送信機の送信電力に制約のある環境でカバレッジ問題を解決できる技術として期待されている。   In relay transmission, a relay device amplifies a signal from a transmitter and transmits the amplified signal to a receiver. When relay transmission is performed, the transmission power at the transmitter can be reduced as compared with the case where the transmitter directly transmits a signal to the receiver. Therefore, it is expected as a technique that can solve the coverage problem in an environment where the transmission power of the transmitter is limited.

このようなリレー伝送技術の1つとして、たとえば、下記非特許文献1に記載のネットワーク符号技術が存在する。ネットワーク符号技術では、2つの無線機A,Bがリレー局に向けて同時にそれぞれ信号a(p),b(p)を送信する。ここで、pは、p番目のシンボルを示す。このとき、無線機A,Bからリレー局が受信する受信信号xR(p)は、a(p)に対して無線機Aの送信電力レベルの平方根と無線機Aからリレー局Rへの経路の伝搬路係数とを乗じた成分と、b(p)に対して無線機Bの送信電力レベルの平方根と無線機Aからリレー局Rの経路の伝搬路係数とを乗じた成分と、雑音成分と、を加算した信号となる。 As one of such relay transmission techniques, for example, there is a network coding technique described in Non-Patent Document 1 below. In the network coding technique, two wireless devices A and B simultaneously transmit signals a (p) and b (p) to a relay station, respectively. Here, p indicates the p-th symbol. At this time, the received signal x R (p) received by the relay station from the wireless devices A and B is a route from the wireless device A to the relay station R and the square root of the transmission power level of the wireless device A with respect to a (p). A component obtained by multiplying b (p) by the square root of the transmission power level of the radio B and the channel coefficient of the path from the radio A to the relay station R, and a noise component. And a signal obtained by adding together.

リレー局は、この受信信号を増幅後に、次の時間スロットで送信し、無線機A,Bは、リレー局から送信された信号をそれぞれ受信する。このとき、無線機A,Bが受信する信号は、xR(p)に対して、増幅利得の平方根とそれぞれ無線機A,Bからリレー局への経路の伝搬路係数とを乗じ、雑音成分を加算した信号となる。すなわち、無線機A,Bが受信する信号は、a(p),b(p)にそれぞれの伝搬路に対応する伝搬係数(増幅利得等を含む)を乗じた項と雑音に関する項を含む。 The relay station amplifies the received signal and transmits it in the next time slot, and the radios A and B receive the signals transmitted from the relay station, respectively. At this time, the signals received by the radios A and B are multiplied by the square root of the amplification gain and the propagation path coefficient of the path from the radios A and B to the relay station, respectively, with respect to x R (p). Is a signal obtained by adding That is, the signals received by the radios A and B include a term obtained by multiplying a (p) and b (p) by a propagation coefficient (including an amplification gain) corresponding to each propagation path and a term related to noise.

無線機Aは、自身が送信したa(p)を認識している。また、信号a(p)に含まれるパイロット信号を用いて、リレー局から受信した信号のa(p)の係数(伝搬係数)を推定することができる。したがって、無線機Aは、受信した信号から推定した係数にa(p)を乗じた結果をリレー局から減ずることにより、b(p)の項に基づいて無線機Bから送信されたb(p)を得ることができる。   The wireless device A recognizes a (p) transmitted by itself. Further, the coefficient (propagation coefficient) of a (p) of the signal received from the relay station can be estimated using the pilot signal included in the signal a (p). Therefore, the wireless device A subtracts the result obtained by multiplying the coefficient estimated from the received signal by a (p) from the relay station, thereby transmitting b (p) transmitted from the wireless device B based on the term b (p). ) Can be obtained.

同様に無線機Bは、無線機Aから送信されたa(p)を得ることができる。このように、無線機A,Bからリレー局への信号伝送とリレー局から無線機A,Bへの信号伝送との2つの時間スロットを用いて、無線機Aから無線機Bへの通信と無線機Bから無線機Aへの通信を同時に行うことができる。   Similarly, the wireless device B can obtain a (p) transmitted from the wireless device A. As described above, communication from the wireless device A to the wireless device B is performed using two time slots of signal transmission from the wireless devices A and B to the relay station and signal transmission from the relay station to the wireless devices A and B. Communication from the wireless device B to the wireless device A can be performed simultaneously.

P. Popovski and H. Yomo,“Bi-directional Amplification of Throughput in a Wireless Multi-Hop Network”,IEEE Proc. of VTC 2006-Spring. vol. 2,pp.588-593P. Popovski and H. Yomo, “Bi-directional Amplification of Throughput in a Wireless Multi-Hop Network”, IEEE Proc. Of VTC 2006-Spring. Vol. 2, pp.588-593

しかしながら、上記従来の技術によれば、無線機A,Bからの信号をリレー局で受信した際、無線機Aから送信された信号a(p)と無線機Bから送信されたb(p)は加算された1つの受信信号としてA/D(Analog to Digital)変換などの処理が行われる。そのため、a(p)とb(p)で送信電力が大きく異なる場合には、リレー局が、受信信号をA/D変換を施し一旦デジタル領域に格納する際に、一部の信号が量子化誤差に埋もれ、信号a(p),b(p)の有する情報を喪失してしまう、という問題がある。   However, according to the above conventional technique, when the signals from the wireless devices A and B are received by the relay station, the signal a (p) transmitted from the wireless device A and b (p) transmitted from the wireless device B are received. Are subjected to processing such as A / D (Analog to Digital) conversion as a single received signal. Therefore, when the transmission power is largely different between a (p) and b (p), some signals are quantized when the relay station performs A / D conversion on the received signal and temporarily stores it in the digital domain. There is a problem that information contained in the signals a (p) and b (p) is lost due to errors.

また、上記従来の技術では、2つの無線機間の双方向通信を行うことができる。しかし、実環境では順方向の通信の送信局と逆方向の通信の受信局が一致しない環境も多い。そのため、さまざまな実環境に対応するには、順方向の通信の送信局と逆方向の通信の受信局が一致しない環境に対応することが課題となる。   Further, in the above conventional technique, two-way communication between two wireless devices can be performed. However, in an actual environment, there are many environments in which a transmitting station for forward communication and a receiving station for reverse communication do not match. Therefore, in order to cope with various real environments, it becomes a problem to cope with an environment in which a transmitting station for forward communication and a receiving station for reverse communication do not match.

さらに、従来技術では1つのリレー局を想定している。しかし、将来的には複数のリレー局が存在する環境も多く想定され、複数リレー局の存在下で効率的にネットワーク符号を適用して双方向通信を行える構成が重要となる。   Furthermore, the conventional technique assumes one relay station. However, many environments in which a plurality of relay stations exist in the future are assumed, and a configuration capable of performing bidirectional communication by efficiently applying a network code in the presence of a plurality of relay stations is important.

本発明は、上記に鑑みてなされたものであって、情報喪失を防ぎ、また、順方向の通信の送信局と逆方向の通信の受信局が一致しない場合および複数リレー局を備える場合に対応することができる無線中継システムおよび無線中継装置を得ることを目的とする。   The present invention has been made in view of the above, prevents information loss, and corresponds to a case where a transmitting station for forward communication and a receiving station for reverse communication do not match and a case where a plurality of relay stations are provided. An object of the present invention is to obtain a wireless relay system and a wireless relay device that can be used.

上述した課題を解決し、目的を達成するために、本発明は、無線機間の通信を中継する無線中継装置を備え、ネットワーク符号化を採用する無線中継システムであって、前記無線中継装置は、前記無線機からの受信信号に基づいて無線機ごとに受信電力を求め、前記受信電力の差が所定の範囲内となるよう電力を調整するための調整量を求め、前記調整量を示す調整情報を前記無線機に送信し、前記無線機は、前記調整情報に基づいて送信電力を調整することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a wireless relay system that includes a wireless relay device that relays communication between wireless devices and employs network coding, and the wireless relay device includes: The reception power is obtained for each wireless device based on the received signal from the wireless device, the adjustment amount for adjusting the power so that the difference between the reception powers is within a predetermined range, and the adjustment indicating the adjustment amount Information is transmitted to the wireless device, and the wireless device adjusts transmission power based on the adjustment information.

この発明によれば、本実施の形態では、リレー局が、第1の無線機から受信する信号と第2の無線機から受信する信号から受信する信号の受信電力を同レベルにするように第1の無線機および第2の無線機の送信電力を制御するようにしたので、情報喪失を防ぐことができる、という効果を奏する。   According to this invention, in the present embodiment, the relay station sets the reception power of the signal received from the first radio device and the signal received from the signal received from the second radio device to the same level. Since the transmission power of the first radio device and the second radio device is controlled, there is an effect that information loss can be prevented.

以下に、本発明にかかる無線中継システムおよび無線中継装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a wireless relay system and a wireless relay device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる無線中継システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の無線中継システムは、無線機1−1,1−2と、リレー局2と、で構成される。また、図中の制御信号3は、リレー局から無線機1−1,1−2に送信される制御信号を示している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a wireless relay system according to the present invention. As shown in FIG. 1, the wireless relay system according to the present embodiment includes wireless devices 1-1 and 1-2 and a relay station 2. A control signal 3 in the figure indicates a control signal transmitted from the relay station to the radios 1-1 and 1-2.

本実施の形態では、ネットワーク符号を用いて双方向リレー伝送を行うこととする。ここで、無線機1−1を無線機Aとし、無線機1−2を無線機Bとして、ネットワーク符号を用いた伝送の例について式を用いて説明する。無線機A,Bから送信される送信信号をそれぞれa(p),b(p)(pは、シンボル番号を示す)とするとき、リレー局2が無線機A,Bから受信する受信信号は以下の式(1)で表すことができる。なお、hARは無線機Aからリレー局Rへの経路の伝搬路係数、hBRは無線機Bからリレー局2への経路の伝搬路係数、PA,PBはそれぞれ無線機A,Bの送信電力、zR(p)はリレー局2での雑音成分を表す。 In the present embodiment, bidirectional relay transmission is performed using a network code. Here, an example of transmission using a network code with the wireless device 1-1 as the wireless device A and the wireless device 1-2 as the wireless device B will be described using equations. When the transmission signals transmitted from the wireless devices A and B are a (p) and b (p) (p indicates a symbol number), the received signals that the relay station 2 receives from the wireless devices A and B are It can be represented by the following formula (1). Note that h AR is a propagation path coefficient of a path from the wireless device A to the relay station R, h BR is a propagation path coefficient of a path from the wireless device B to the relay station 2, and P A and P B are wireless devices A and B, respectively. , Z R (p) represents a noise component in the relay station 2.

Figure 2010109914
Figure 2010109914

リレー局2は、受信信号を増幅利得Gに従って増幅して、zR(p)を受信したスロットの次の時間スロットで送信する。このとき、無線機A,Bがリレー局2から受信する信号xA(p),xB(p)は、以下の式(2)で示すことができる。なお、hRAはリレー局2から無線機Aへの経路の伝搬路系数とし、hRBはリレー局2から無線機Bへの経路の伝搬路系数とし、zA(p),zB(p)は、それぞれ無線機A,Bでの雑音成分を表すこととする。 The relay station 2 amplifies the received signal according to the amplification gain G, and transmits it in the time slot next to the slot that received z R (p). At this time, signals x A (p) and x B (p) received by the radios A and B from the relay station 2 can be expressed by the following equation (2). Note that h RA is the propagation path system number of the path from the relay station 2 to the wireless device A, h RB is the propagation path system number of the path from the relay station 2 to the wireless device B, and z A (p), z B (p ) Represent noise components in the radios A and B, respectively.

Figure 2010109914
Figure 2010109914

ここで、無線機Aは自身の送信信号a(p)を認識している。また、a(p)に含まれるパイロット信号を用いると以下の式(3)で表す伝搬係数Cを求めることができる。   Here, the wireless device A recognizes its transmission signal a (p). Further, when a pilot signal included in a (p) is used, a propagation coefficient C represented by the following equation (3) can be obtained.

Figure 2010109914
Figure 2010109914

したがって、無線機Aでは、以下の式(4)に示すx(ハット)を算出することができ、x(ハット)に基づいて無線機Bからの送信信号b(p)を得ることができる。同様に無線機Bは、無線機Aからの送信信号a(p)を得ることができる。   Therefore, in the wireless device A, x (hat) shown in the following formula (4) can be calculated, and the transmission signal b (p) from the wireless device B can be obtained based on x (hat). Similarly, the wireless device B can obtain the transmission signal a (p) from the wireless device A.

Figure 2010109914
Figure 2010109914

一方、リレー局2では、zR(p)を受信後に一旦蓄積して、次のスロットで送信するために、アナログ信号であるzR(p)をデジタル信号に変換する。すなわち、リレー局2で受信されたアナログ信号はA/D変換によって、デジタル信号に変換されて蓄積される。 On the other hand, the relay station 2 temporarily stores z R (p) after receiving it and converts the analog signal z R (p) into a digital signal for transmission in the next slot. That is, the analog signal received by the relay station 2 is converted into a digital signal by A / D conversion and stored.

この際、A/D変換では量子化ビット数に応じて受信振幅を離散化し、ビット情報として蓄積する。たとえば、8ビットA/D変換であれば、アナログ振幅は28(=256)レベルに離散化される。したがって、リレー局2が受信したアナログ領域の信号が、無線機Aから送信された信号と無線機Bから送信された信号とで、受信電力が大きく異なる場合には、振幅の大きな方に基づいて離散化されることになるため、一方の受信信号電力が量子化誤差に埋もれ、信号に含まれる変調情報を喪失することになる。 At this time, in A / D conversion, the received amplitude is discretized according to the number of quantized bits and stored as bit information. For example, in the case of 8-bit A / D conversion, the analog amplitude is discretized to 2 8 (= 256) levels. Therefore, when the received signal of the analog domain signal received by the relay station 2 differs greatly between the signal transmitted from the wireless device A and the signal transmitted from the wireless device B, it is based on the larger amplitude. Since it is discretized, one received signal power is buried in the quantization error, and the modulation information contained in the signal is lost.

たとえば、8ビットAD変換では振幅を28レベルに離散化するため、信号a(p)の振幅レベルが信号b(p)の1/256以下である場合、信号b(p)の最大振幅を基準として量子化すると、信号a(p)の変調は量子化単位以下となり情報を喪失してしまう。また、信号a(p)の振幅レベルが信号b(p)の1/256以上であっても、2つの信号の大きく振幅が異なる場合には、振幅の小さい方の信号は量子化誤差の影響を大きく受ける。その結果、リレー局2が一旦デジタル領域で格納した受信信号を再び増幅して送信しても、無線機A,Bでは所望信号b(p),a(p)を円滑に正しく抽出できない問題が生じる。 For example, in the 8-bit AD conversion, the amplitude is discretized to 2 8 levels. Therefore, when the amplitude level of the signal a (p) is 1/256 or less of the signal b (p), the maximum amplitude of the signal b (p) is increased. When quantized as a reference, the modulation of the signal a (p) becomes less than the quantization unit and information is lost. In addition, even if the amplitude level of the signal a (p) is 1/256 or more of the signal b (p), if the two signals have greatly different amplitudes, the signal having the smaller amplitude is affected by the quantization error. Receive greatly. As a result, even if the relay station 2 once amplifies the received signal stored in the digital domain and transmits it again, the wireless devices A and B cannot extract the desired signals b (p) and a (p) smoothly and correctly. Arise.

このような問題を解消するために、本実施の形態ではリレー局2が受信する無線機Aからの送信信号と無線機Bからの送信信号Bとの受信電力が同一または一定比以内となるように無線機A,Bの送信電力PA,PBを制御する。このような送信電力制御を行うことにより、リレー局2が、受信信号にA/D変換を行った後も、信号a(p),b(p)に含まれる変調情報を喪失することがなく、変調情報を維持してリレー伝送を行うことができる。 In order to solve such a problem, in the present embodiment, the received power of the transmission signal from the wireless device A and the transmission signal B from the wireless device B received by the relay station 2 is the same or within a certain ratio. The transmission powers P A and P B of the radios A and B are controlled. By performing such transmission power control, the relay station 2 does not lose the modulation information included in the signals a (p) and b (p) even after A / D conversion is performed on the received signal. Therefore, relay transmission can be performed while maintaining the modulation information.

このような送信電力制御方法、すなわち、リレー局2が送信信号a(p),b(p)を受信する際の受信電力が、同一または一定比以内となるように無線機A,Bの送信電力を制御する方法としては、さまざまな方法がある。   Such a transmission power control method, that is, transmission of the radios A and B so that the reception power when the relay station 2 receives the transmission signals a (p) and b (p) is the same or within a certain ratio. There are various methods for controlling power.

その一例として、リレー局2での受信電力が所要電力Preqとなるようにリレー局2が無線機A,Bにそれぞれ送信電力上昇または下降を指示する制御信号3を送信する方法がある。この場合、リレー局2は無線機Aからの受信電力を測定し、その受信電力がPreqより所定の値α以上小さければ、無線機Aに送信電力上昇を指示し、受信電力がPreqより所定の値β以上大きければ、無線機Aに送信電力下降を指示する。リレー局2が、この動作を無線機A,Bに対して個別に行うことでリレー局2での2つの信号の受信電力レベルをほぼ同じ(Preq−α以上かつPreq−β以下)とすることができる。 As an example, there is a method in which the relay station 2 transmits a control signal 3 instructing the radio devices A and B to increase or decrease the transmission power so that the received power at the relay station 2 becomes the required power P req . In this case, the relay station 2 measures the received power from the radio A, and if the received power is smaller than the P req by a predetermined value α or more, the relay station 2 instructs the radio A to increase the transmission power, and the received power exceeds the P req . If it is larger than the predetermined value β, the wireless device A is instructed to lower the transmission power. The relay station 2 performs this operation individually for the radios A and B, so that the reception power levels of the two signals at the relay station 2 are approximately the same (P req −α or more and P req −β or less). can do.

なお、リレー局2が行う無線機A(またはB)からの信号の受信電力測定は、パイロット信号(既知信号)を用いて容易に実施することができる。たとえば、無線機A,Bが異なる直交パターンの既知信号を同時に送信すれば、リレー局2は個々の既知パターンと受信信号の相関を取ることにより、直交する他の既知信号からの干渉を受けることなく一つの無線機の伝搬路のみを測定できる。この測定方法を用いれば、無線機Aと無線機Bからの信号の受信電力を同時に測定することも可能である。   Note that the received power measurement of the signal from the wireless device A (or B) performed by the relay station 2 can be easily performed using a pilot signal (known signal). For example, if the radios A and B simultaneously transmit known signals having different orthogonal patterns, the relay station 2 receives interference from other orthogonal known signals by correlating each known pattern with the received signal. It is possible to measure only the propagation path of one radio. If this measurement method is used, it is possible to simultaneously measure the received power of the signals from the wireless device A and the wireless device B.

また、上記の送信電力制御方法と異なる一例として、リレー局2がパイロット信号を送信し、無線機A,Bがそのパイロット信号を受信して伝搬損失量を測定し、無線機A,Bがその伝搬損失を補償できる送信電力を設定して信号送信する方法がある。   Further, as an example different from the above transmission power control method, the relay station 2 transmits a pilot signal, the wireless devices A and B receive the pilot signal, measure the amount of propagation loss, and the wireless devices A and B There is a method of transmitting a signal by setting transmission power capable of compensating for propagation loss.

さらに、送信電力制御方法の具体的を図2および図3を用いて説明する。図2は、リレー局2での受信電力制御方法の一例を示す図である。図2に示すように、送信電力制御実施前には、リレー局2が無線機Aから受信する信号と無線機Bから受信する信号から受信する信号との受信電力差がΔdBであるとする。このとき、両者の受信電力差を低減するために、リレー局2は無線機Aの送信電力をΔ/2dB低下させ、無線機Bの送信電力をΔ/2dB上昇させるように送信電力制御を行う。   Further, a specific transmission power control method will be described with reference to FIGS. FIG. 2 is a diagram illustrating an example of a reception power control method in the relay station 2. As shown in FIG. 2, it is assumed that the reception power difference between the signal received by the relay station 2 from the wireless device A and the signal received from the signal received from the wireless device B is ΔdB before the transmission power control is performed. At this time, in order to reduce the reception power difference between them, the relay station 2 performs transmission power control so as to decrease the transmission power of the wireless device A by Δ / 2 dB and increase the transmission power of the wireless device B by Δ / 2 dB. .

具体的には、リレー局2はまず無線機Aから受信する信号と無線機Bから受信する信号から受信する信号の受信電力を測定する。受信電力の測定は無線機Aから受信する信号と無線機Bから受信する信号から受信する信号にそれぞれ含まれるパイロット信号を用いて行う。次に、リレー局2は、制御信号3を無線機A,Bに向けて送信する。図3は、リレー局2が無線機A,Bへ送信する制御信号3の構成例を示す図である。制御信号3は、電力の上昇または下降の指示を識別するための電力上昇ビットと、変化させるべき電力量を示す電力変化量と、を含む。ここでは、電力変化量をDとするとき、電力上昇ビットは、以下の指示を示すこととする。
電力上昇ビット=0:無線機Aが送信電力DdB上昇、無線機Bが送信電力DdB下降
電力上昇ビット=1:無線機Aが送信電力DdB下降、無線機Bが送信電力DdB上昇
Specifically, the relay station 2 first measures the received power of the signal received from the radio A and the signal received from the radio B. The received power is measured using pilot signals included in signals received from the radio A and signals received from the radio B. Next, the relay station 2 transmits the control signal 3 toward the radio devices A and B. FIG. 3 is a diagram illustrating a configuration example of the control signal 3 transmitted from the relay station 2 to the radios A and B. The control signal 3 includes a power increase bit for identifying an instruction to increase or decrease the power, and a power change amount indicating the power amount to be changed. Here, when the amount of power change is D, the power increase bit indicates the following instruction.
Power increase bit = 0: Radio A increases transmission power DdB, Radio B increases transmission power DdB lower power increase bit = 1: Radio A decreases transmission power DdB, Radio B increases transmission power DdB

無線機A,Bはこの制御信号3を受信すると、電力上昇ビットの値と電力変化量Dに基づいて送信電力を変更する。この際、図2で示したように測定結果に基づく受信電力差がΔdBであった場合、D=Δ/2dBと設定すると、1つの制御信号で無線機A,Bが同時に送信電力を変更し、リレー局2での、無線機Aから受信する信号と無線機Bから受信する信号から受信する信号の受信電力を同レベルとできる。   When receiving the control signal 3, the radios A and B change the transmission power based on the value of the power increase bit and the power change amount D. At this time, if the received power difference based on the measurement result is ΔdB as shown in FIG. 2, if D = Δ / 2 dB is set, the radios A and B simultaneously change the transmission power with one control signal. The reception power of the signal received from the radio device A and the signal received from the signal received from the radio device B at the relay station 2 can be set to the same level.

このように1つの制御信号により2つの無線機を同時に送信電力制御することにより、高効率な送信電力制御が可能となる。従来の送信電力制御では無線機ごとに個別の制御信号が必要とされたが、本手法では複数の無線機が共通の制御信号を用いて送信電力を変更することにより、必要な制御信号の数を従来技術より低減することができる。   Thus, by performing transmission power control of two wireless devices simultaneously with one control signal, highly efficient transmission power control becomes possible. In conventional transmission power control, a separate control signal is required for each radio.In this method, multiple radios change the transmission power using a common control signal. Can be reduced as compared with the prior art.

このように、本実施の形態では、リレー局2が受信する無線機Aから受信する信号と無線機Bから受信する信号から受信する信号の受信電力を同レベルにするように無線機Aおよび無線機Bの送信電力を制御するようにした。このため、リレー局2が受信信号に対してAD変換を行っても変調情報を喪失することがない。このように、リレー局2を中心とする送信電力制御を導入することによって、信号の情報喪失を回避できる新たな効果を得ることができる。   Thus, in the present embodiment, the radio A and the radio are set so that the reception power of the signal received from the radio A received by the relay station 2 and the signal received from the signal received from the radio B are the same level. The transmission power of the machine B was controlled. For this reason, even if the relay station 2 performs AD conversion on the received signal, the modulation information is not lost. In this way, by introducing transmission power control centered on the relay station 2, a new effect capable of avoiding signal information loss can be obtained.

実施の形態2.
図4は、本発明にかかる無線中継システムの実施の形態2の構成例を示す図である。図4に示すように、本実施の形態の無線中継システムは、無線機1−1〜1−3と、リレー局2と、で構成される。
Embodiment 2. FIG.
FIG. 4 is a diagram illustrating a configuration example of the second embodiment of the wireless relay system according to the present invention. As shown in FIG. 4, the wireless relay system according to the present embodiment includes wireless devices 1-1 to 1-3 and a relay station 2.

実施の形態1では、ネットワーク符号を適用するリレー伝送方法を採用する場合に、完全な双方向通信を行う例について説明した。本実施の形態では、実施の形態1と同様にネットワーク符号を適用するリレー伝送を行うが、完全な双方向ではない通信を行う場合について説明する。   In the first embodiment, an example in which complete bidirectional communication is performed when a relay transmission method using a network code is employed has been described. In this embodiment, a relay transmission to which a network code is applied is performed as in the first embodiment, but a case where communication that is not completely bidirectional is performed will be described.

以下、無線機1−1を無線機Aとし、無線機1−2を無線機Bとし、無線機1−3を無線機Cとして説明する。実環境では、図4に示すように無線機Aが無線機Bへ信号を送信し、無線機Bは、無線機Aとは異なる無線機Cへ信号を送信する状態が発生する。参考文献「S. Katti,D. Katabi,W. Hu,H. Rahul,and M.l Medard.,“The importance of being opportunistic:Practical network coding for wireless environments,”In Proc. of 43rd Allerton Conference on Communication,Control,and Computing,2005.」では、このような環境をサポートするため、論理的ORを用いるネットワーク符号を用いる構成を示している。この参考文献が用いるネットワーク符号は本実施の形態で採用するネットワーク符号(受信信号をそのまま増幅する方法)とは種類が異なるが、その構成は本実施の形態が扱うネットワーク符号にも拡張できる。 Hereinafter, the wireless device 1-1 will be described as wireless device A, the wireless device 1-2 will be described as wireless device B, and the wireless device 1-3 will be described as wireless device C. In a real environment, as shown in FIG. 4, a state occurs in which the wireless device A transmits a signal to the wireless device B, and the wireless device B transmits a signal to a wireless device C different from the wireless device A. References “S. Katti, D. Katabi, W. Hu, H. Rahul, and Ml Medard.“ The importance of being opportunistic: Practical network coding for wireless environments, ”In Proc. Of 43 rd Allerton Conference on Communication, "Control, and Computing, 2005." shows a configuration using a network code using a logical OR to support such an environment. The network code used in this reference is different in type from the network code employed in this embodiment (a method for amplifying a received signal as it is), but its configuration can be extended to the network code handled in this embodiment.

図4は、上記の参考文献の構成を本実施の形態のネットワーク符号の方式に拡張した場合の構成例を示している。この構成では、従来と同じく無線機A,Bが、それぞれが信号a(p),b(p)をリレー局2に向けて同時に送信する。この際、無線機Aの近傍に位置する無線機Cは無線機Aからの信号a(p)を受信して検出する。つぎに、リレー局2は無線機A,Bからの信号を受信すると、従来技術と同じく実施の形態1の式(1)で示した受信信号xR(p)を増幅して送信する。 FIG. 4 shows a configuration example when the configuration of the above-mentioned reference is extended to the network code system of the present embodiment. In this configuration, the wireless devices A and B transmit signals a (p) and b (p) simultaneously to the relay station 2 as in the conventional case. At this time, the wireless device C located in the vicinity of the wireless device A receives and detects the signal a (p) from the wireless device A. Next, when the relay station 2 receives signals from the radios A and B, it amplifies and transmits the received signal x R (p) shown in the expression (1) of the first embodiment as in the prior art.

そして、無線機Cは、リレー局2がxR(p)を増幅して送信した信号を受信する。このとき、無線機Cは、信号a(p)を把握していることとすると、受信信号に含まれるa(p)のパイロット信号を用いて信号a(p)の伝搬係数を測定できる。従って、無線機Cは、実施の形態1の無線機Aと同様に、受信信号から信号a(p)の項を差し引くことで、無線機Aに代わって信号b(p)を検出できる。一方、無線機Bは、実施の形態1と同様に、無線機Aから送信された信号a(p)を得ることができる。このようにして、無線機Aから無線機Bへの信号a(p)の伝送と、無線機Bから無線機Cへの信号b(p)の伝送を同時に行える。 The wireless device C receives the signal transmitted by the relay station 2 after amplifying x R (p). At this time, if the wireless device C knows the signal a (p), it can measure the propagation coefficient of the signal a (p) using the pilot signal a (p) included in the received signal. Therefore, similarly to the wireless device A of the first embodiment, the wireless device C can detect the signal b (p) instead of the wireless device A by subtracting the term of the signal a (p) from the received signal. On the other hand, the wireless device B can obtain the signal a (p) transmitted from the wireless device A, as in the first embodiment. In this way, transmission of the signal a (p) from the wireless device A to the wireless device B and transmission of the signal b (p) from the wireless device B to the wireless device C can be performed simultaneously.

上述のような伝送を可能にするには、無線機Cが無線機Aから送信された信号を検出できる程度に無線機Aに近いことが重要な条件となる。移動通信等に見られる実際の無線通信システムでは、基地局の周辺に多くの端末が存在する場合が多い。このような無線通信システムにおいて、無線機Bを基地局とし、無線機A,Cとして2つの端末を適切に選定する(近い位置関係にある)と、上述のネットワーク符号を用いて上下リンク通信を行うことができる。   In order to enable the transmission as described above, it is an important condition that the wireless device C is close to the wireless device A to the extent that the signal transmitted from the wireless device A can be detected. In an actual wireless communication system found in mobile communication or the like, there are many cases where there are many terminals around a base station. In such a wireless communication system, when wireless device B is a base station and two terminals are appropriately selected as wireless devices A and C (which are in a close positional relationship), uplink / downlink communication is performed using the network code described above. It can be carried out.

図5は、本実施の形態の無線中継方法を適用した無線通信システムの構成例を示す図である。図5に示すように、この無線通信システムは、基地局4と、端末5−1〜5−12と、で構成される。実環境では、多くの端末が広いエリアに分散的に存在する。そこで、本実施の形態では、図5に示すように多くの端末を互いに位置関係の近い複数のグループに分類する(グループ化する)。グループ6−1〜6−3は、端末5−1〜5−12の属するグループを示しており、図5では、端末5−1〜5−4がグループ6−1に属し、端末5−5〜5−8がグループ6−2に属し、端末5−9〜5−12がグループ6−3に属することとする。また、グループ6−1〜6−3のグループの識別子であるグループIDをそれぞれ#1,#2,#3とする。制御信号7は、基地局4が無線リソースを制御するための制御信号である。   FIG. 5 is a diagram illustrating a configuration example of a wireless communication system to which the wireless relay method according to the present embodiment is applied. As shown in FIG. 5, this wireless communication system includes a base station 4 and terminals 5-1 to 5-12. In a real environment, many terminals are distributed in a wide area. Therefore, in the present embodiment, as shown in FIG. 5, many terminals are classified (grouped) into a plurality of groups having a close positional relationship. Groups 6-1 to 6-3 represent groups to which the terminals 5-1 to 5-12 belong. In FIG. 5, the terminals 5-1 to 5-4 belong to the group 6-1 and the terminals 5-5 ˜5-8 belong to group 6-2, and terminals 5-9 to 5-12 belong to group 6-3. In addition, group IDs that are group identifiers of the groups 6-1 to 6-3 are # 1, # 2, and # 3, respectively. The control signal 7 is a control signal for the base station 4 to control radio resources.

このグループ化は、たとえば、以下のような処理で実施する。まず、端末間で相互にパイロット信号を用いた伝搬路測定を行い、各端末は伝送路測定結果に基づいて位置的に近い周辺端末を把握する。この周辺状態の把握は、たとえば、各端末が異なる時間で自身の端末ID(識別子)番号とパイロット信号を送信し、周辺の端末がそのパイロット信号を用いて伝搬測定を行い、測定結果に対応する送信端末IDを認識する操作を繰り返す。そして、各端末は伝搬状態の良い周辺端末を位置的に近い周辺端末として把握し、周辺端末情報として把握した端末の端末ID番号を保持する。   This grouping is performed by the following processing, for example. First, a channel measurement using a pilot signal is performed between terminals, and each terminal grasps a nearby terminal in a position based on a transmission channel measurement result. For example, each terminal transmits its own terminal ID (identifier) number and a pilot signal at different times, and the peripheral terminal performs propagation measurement using the pilot signal and corresponds to the measurement result. The operation of recognizing the transmission terminal ID is repeated. Each terminal recognizes a peripheral terminal with a good propagation state as a peripheral terminal close in position, and holds the terminal ID number of the terminal ascertained as peripheral terminal information.

さらに、各端末は、周辺端末情報を基地局4へ通知する。基地局4は、各端末から通知された周辺端末情報を用いて端末5−1〜5−12を、複数グループに分類する。このように端末を複数グループに分けることにより、基地局4はネットワーク符号を用いて信号を送受信する端末の組み合わせを容易に把握でき、無線リソース制御を円滑に行える。たとえば、基地局4は、グループ6−1に属する端末5−1〜5−4のいずれかに上りリンクの信号送信許可を与える場合には、同じグループ6−1に属する他の端末に下りリンクでの信号送信を行う。このように端末5−1〜5−12を複数グループに分類して、同じグループに属する端末にそれぞれ上りリンク送信と下りリンク送信の許可を与えることにより、円滑な無線リソース制御が可能となる。   Further, each terminal notifies the peripheral terminal information to the base station 4. The base station 4 classifies the terminals 5-1 to 5-12 into a plurality of groups using the peripheral terminal information notified from each terminal. By dividing the terminals into a plurality of groups in this way, the base station 4 can easily grasp the combination of terminals that transmit and receive signals using the network code, and can smoothly perform radio resource control. For example, when the base station 4 grants uplink signal transmission permission to any of the terminals 5-1 to 5-4 belonging to the group 6-1, the downlink is transmitted to other terminals belonging to the same group 6-1. Transmit the signal at. As described above, by classifying the terminals 5-1 to 5-12 into a plurality of groups and granting permission for uplink transmission and downlink transmission to terminals belonging to the same group, smooth radio resource control becomes possible.

また、基地局4は、上記のように信号送信を行う送信端末および信号受信を行う受信端末を選定し、その選定結果を制御信号7によって端末5−1〜5−12に通知する。この通知は、全端末に対して行ってもよいし、選定された端末だけに行ってもよい。端末5−1〜5−12は、この制御信号7を受信し、制御信号7で指定された端末は、制御信号7の指示に基づいて信号の送信または受信を行う。   In addition, the base station 4 selects a transmitting terminal that performs signal transmission and a receiving terminal that performs signal reception as described above, and notifies the terminals 5-1 to 5-12 of the selection result using the control signal 7. This notification may be performed for all terminals or only for selected terminals. The terminals 5-1 to 5-12 receive this control signal 7, and the terminal designated by the control signal 7 transmits or receives a signal based on the instruction of the control signal 7.

図6は、本実施の形態の制御信号フォーマットの一例を示す図である。図6に示すように、本実施の形態の制御信号は、無線リソースを用いてリレー伝送を行う端末グループのIDを示すグループIDと、上りリンクで信号送信を行う端末を特定するためのグループ内のサブIDと、下りリンクで信号受信を行う端末を特定するためのサブIDと、を含む。サブIDは、グループ内で端末を識別するためのIDであり、同一グループ内では、サブIDは端末と1対1に対応するようにIDが割り当てられているとする。   FIG. 6 is a diagram illustrating an example of a control signal format according to the present embodiment. As shown in FIG. 6, the control signal of the present embodiment includes a group ID indicating the ID of a terminal group that performs relay transmission using radio resources, and an intra-group for identifying a terminal that performs signal transmission in the uplink. And a sub ID for identifying a terminal that performs signal reception on the downlink. The sub-ID is an ID for identifying a terminal in the group. In the same group, it is assumed that an ID is assigned so that the sub-ID corresponds to the terminal on a one-to-one basis.

仮に、グループのIDを用いることなく、上りリンクでの送信端末と下りリンクでの送信端末を個別に指定すると、他のグループを含めた全端末の中から1つの端末を上下リンクそれぞれに対して指定する必要がある。その結果、端末を特定するためのビット数が、グループIDを用いる場合より増加する。これに対して、本実施の形態では、上りリンクで信号送信する端末と下りリンクで信号受信する端末が同じ端末グループに属することを利用して、制御信号内で端末グループIDを指定することにより端末を特定するために必要となる情報ビット数を低減している。   If the uplink transmitting terminal and the downlink transmitting terminal are individually specified without using the group ID, one terminal is selected for each uplink and downlink from all terminals including other groups. Must be specified. As a result, the number of bits for specifying the terminal increases as compared with the case where the group ID is used. On the other hand, in the present embodiment, the terminal group ID is specified in the control signal by using the fact that the terminal that transmits signals in the uplink and the terminal that receives signals in the downlink belong to the same terminal group. The number of information bits required to identify the terminal is reduced.

なお、実施の形態1で述べた無線中継システムにおいて、本実施の形態のグループ化の処理を行うようにしてもよい。この場合、たとえば、完全な双方向通信では、実施の形態1で述べた方法で通信を行い、双方向通信でない場合に、本実施の形態の動作を行う際に、同時にデータを送信する無線機A,Bからの受信電力が同程度となるように実施の形態1と同様に制御すればよい。   In the wireless relay system described in the first embodiment, the grouping process according to the present embodiment may be performed. In this case, for example, in complete bidirectional communication, communication is performed using the method described in the first embodiment. When the communication is not bidirectional communication, the wireless device that simultaneously transmits data when performing the operation of the present embodiment. What is necessary is just to control similarly to Embodiment 1 so that the received power from A and B becomes comparable.

このように、本実施の形態では、基地局4が、端末を近い位置関係に存在する端末ごとにグループ化し、送受信を行う端末を同一グループ内から選定するようにした。このため、円滑な無線リソース制御が可能となる。さらに、基地局4は、制御信号7を用いて選定した端末をグループ内の端末IDであるサブIDにより指定するようにした。このため、無線リソース制御負荷を低減することができる。   As described above, in this embodiment, the base station 4 groups terminals into terminals that are in a close positional relationship, and selects terminals that perform transmission and reception from the same group. Therefore, smooth radio resource control is possible. Furthermore, the base station 4 designates the terminal selected using the control signal 7 by the sub ID which is the terminal ID in the group. For this reason, a radio | wireless resource control load can be reduced.

実施の形態3.
図7は、本発明にかかる無線中継システムの実施の形態3の構成例を示す図である。図7に示すように、本実施の形態の無線中継システムは、無線機1−1,1−2と、リレー局2a−1,2a−2と、で構成される。信号伝送路8は、本システム内で送受信される信号の伝送路を示している。制御信号9は、本実施の形態で無線機1−1がリレー局2a−1,2a−2に送信する制御信号を示す。本実施の形態の無線機1−1,1−2は、実施の形態1の無線機1−1,1−2とそれぞれ同様である。本実施の形態では、リレー局が複数存在する場合について説明する。
Embodiment 3 FIG.
FIG. 7 is a diagram showing a configuration example of a third embodiment of the wireless relay system according to the present invention. As shown in FIG. 7, the radio relay system according to the present embodiment includes radio units 1-1 and 1-2 and relay stations 2a-1 and 2a-2. A signal transmission path 8 indicates a transmission path for signals transmitted and received in the present system. The control signal 9 indicates a control signal that the wireless device 1-1 transmits to the relay stations 2a-1 and 2a-2 in the present embodiment. Radio devices 1-1 and 1-2 of the present embodiment are the same as radio devices 1-1 and 1-2 of the first embodiment, respectively. In this embodiment, a case where there are a plurality of relay stations will be described.

図8は、本実施の形態の信号伝送例を示す図である。本実施の形態では、実施の形態1と同様にネットワーク符号を適用することとする。また、実施の形態1と同様、以下の説明では、無線機1−1を無線機Aとし、無線機1−2を無線機Bとして説明する。   FIG. 8 is a diagram illustrating an example of signal transmission according to the present embodiment. In the present embodiment, a network code is applied as in the first embodiment. Similarly to the first embodiment, in the following description, the wireless device 1-1 is described as the wireless device A, and the wireless device 1-2 is described as the wireless device B.

無線機A,Bは、実施の形態1と同様にそれぞれ信号a(p),b(p)を同時に送信する。リレー局2a−1,2a−2がそれぞれ受信する受信信号xR1(p),xR2(p)は、実施の形態1と同様の変数を用い、また、hARi(i=1,2)を無線機Aからリレー局2a−iへの経路の伝搬路係数とし、hBRiを無線機Bからリレー局2a−iへの経路の伝搬路係数とし、zRi(p)をリレー局2a−iでの雑音成分とすると、以下の式(5)で表すことができる。 Radio units A and B transmit signals a (p) and b (p) at the same time as in the first embodiment. The reception signals x R1 (p) and x R2 (p) received by the relay stations 2a-1 and 2a-2 use the same variables as in the first embodiment, and h ARi (i = 1, 2) Is the propagation path coefficient of the path from the wireless device A to the relay station 2a-i, h BRi is the propagation path coefficient of the path from the wireless device B to the relay station 2a-i, and z Ri (p) is the relay station 2a-. If it is a noise component in i, it can represent with the following formula | equation (5).

Figure 2010109914
Figure 2010109914

つぎに、リレー局2a−iは、受信信号xRi(p)に所定のウエイトwiを乗じて、xRi(p)を受信したスロットの次の時間スロットで送信する。このとき、無線機A,Bがそれぞれリレー局2a−1およびリレー局2a−2から受信する信号xA(p),xB(p)は、以下の式(6)で表すことができる。なお、hRiAはリレー局2a−iから無線機Aへの経路の伝搬路係数、hRiBはリレー局2a−iから無線機Bへの経路の伝搬路係数、zA(p),zB(p)は、それぞれ無線機A,Bでの雑音成分を表す。また、ウエイトは増幅器での増幅率を含んだパラメータである。 Next, the relay station 2a-i multiplies the received signal x Ri (p) by a predetermined weight w i and transmits it in the time slot next to the slot that received x Ri (p). At this time, the signals x A (p) and x B (p) received by the wireless devices A and B from the relay station 2a-1 and the relay station 2a-2, respectively, can be expressed by the following equation (6). Here , h RiA is a propagation path coefficient of the path from the relay station 2a-i to the radio A, h RiB is a propagation path coefficient of the path from the relay station 2a-i to the radio B, z A (p), z B (P) represents noise components in the radios A and B, respectively. The weight is a parameter including the amplification factor in the amplifier.

Figure 2010109914
Figure 2010109914

図9は、本実施の形態のリレー局2a−1の機能構成例を示す図である。図9に示すように、本実施の形態のリレー局2a−1は、アンテナ11と、LNA(Low Noise Amplifier)12と、第1のDC(Down Converter)13と、A/D(Analog to Digital変換器)14と、第2のDC15と、信号受信部16と、信号変換部17と、信号送信部18と、第2のUC(Up Converter)19と、D/A(Digital to Analog変換器)20と、第1のUC21と、HPA(High Power Amplifier)22と、局所発振器23と、周波数推定部24と、で構成される。また、アナログ領域31は受信信号がアナログ信号として処理される領域を示し、デジタル領域32はデジタル信号として処理される領域を示す。リレー局2a−2もリレー局2a−1と同様の構成である。   FIG. 9 is a diagram illustrating a functional configuration example of the relay station 2a-1 according to the present embodiment. As shown in FIG. 9, the relay station 2a-1 of this embodiment includes an antenna 11, an LNA (Low Noise Amplifier) 12, a first DC (Down Converter) 13, and an A / D (Analog to Digital). Converter) 14, second DC 15, signal receiver 16, signal converter 17, signal transmitter 18, second UC (Up Converter) 19, and D / A (Digital to Analog converter) ) 20, a first UC 21, an HPA (High Power Amplifier) 22, a local oscillator 23, and a frequency estimation unit 24. An analog area 31 indicates an area where the received signal is processed as an analog signal, and a digital area 32 indicates an area where the received signal is processed as a digital signal. The relay station 2a-2 has the same configuration as the relay station 2a-1.

リレー局2a−iは、アンテナ11およびLNA12経由で無線機A,Bから同時に受信した受信信号を第1のDC13が一旦中間周波数にダウンコンバートして、A/D14が、中間周波数のアナログ信号をデジタル信号に変換し、第2のDC15がベースバンド信号に変換した後に、信号受信部16がデジタル信号であるベースバンド信号を格納する。つぎに、信号変換部17が、このベースバンド信号に対してウエイト乗算処理を行い、次の時間スロットで、ウエイト乗算処理後の信号を信号送信部18が送信する。この信号は、第1のUC21と、HPA(High Power Amplifier)22経由で、無線周波数にアップコンバートされて増幅された後に、アンテナ11から送信される。このような構成により、リレー局2a−1,2は、ウエイト乗算を実施する。   In the relay station 2a-i, the first DC 13 once down-converts the received signal simultaneously received from the radios A and B via the antenna 11 and the LNA 12, and the A / D 14 converts the analog signal of the intermediate frequency. After converting into a digital signal and the second DC 15 converting into a baseband signal, the signal receiving unit 16 stores the baseband signal which is a digital signal. Next, the signal conversion unit 17 performs weight multiplication processing on the baseband signal, and the signal transmission unit 18 transmits the signal after the weight multiplication processing in the next time slot. This signal is transmitted from the antenna 11 after being up-converted and amplified to a radio frequency via a first UC 21 and a high power amplifier (HPA) 22. With such a configuration, the relay stations 2a-1 and 2a-2 perform weight multiplication.

ここで、無線機Aは自身の送信信号a(p)を認識しており、受信信号の中に含まれるパイロット信号を用いて伝搬路測定によりa(p)の係数である伝搬係数を推定する。これらの情報に基づいて受信信号から信号a(p)の項を差し引くと無線機Aは以下の式(7)で示す信号を得る。   Here, the wireless device A recognizes its own transmission signal a (p), and estimates a propagation coefficient which is a coefficient of a (p) by propagation path measurement using a pilot signal included in the reception signal. . When the term of the signal a (p) is subtracted from the received signal based on these pieces of information, the wireless device A obtains a signal represented by the following equation (7).

Figure 2010109914
Figure 2010109914

同様に、無線機Bは、以下の式(8)で示す信号を得る。   Similarly, the wireless device B obtains a signal represented by the following equation (8).

Figure 2010109914
Figure 2010109914

ここで、リレー局2a−iが乗算処理を行うウエイトwiは無線機A,Bでの所望信号の受信電力が大きくなるよう設定されることが望ましい。そこで、本実施の形態では、無線機Aがリレー局2a−1を通る経路の伝搬係数hBR1R1Aとリレー局2a−1を通る経路の伝搬係数hBR2R2Aを個別に測定する。この測定は、たとえば、無線機Bからのパイロット信号をリレー局2a−1,2a−2の一方のみが増幅して送信し、そのパイロット信号を無線機Aで測定することにより、パイロット信号を増幅したリレー局を経由する経路の伝搬係数の測定が可能である。そして、一方の経路を測定した後、他方のリレー局の経路に対しても同様に測定を行うことで各リレー局を通る経路の伝搬係数を個別に測定できる。 Here, it is desirable that the weight w i on which the relay station 2a-i performs multiplication processing is set so that the reception power of the desired signal at the radios A and B is increased. Therefore, in the present embodiment, the wireless device A individually measures the propagation coefficient h BR1 h R1A of the path passing through the relay station 2a-1 and the propagation coefficient h BR2 h R2A of the path passing through the relay station 2a-1. In this measurement, for example, only one of the relay stations 2a-1 and 2a-2 amplifies and transmits the pilot signal from the wireless device B, and the pilot signal is amplified by measuring the pilot signal with the wireless device A. It is possible to measure the propagation coefficient of the route passing through the relay station. And after measuring one path | route, the propagation coefficient of the path | route which passes each relay station can be measured separately by measuring similarly about the path | route of the other relay station.

無線機Aは、個別に測定した伝搬係数hBR1R1AとhBR2R2Aを用いて、|hBR11R1A+hBR22R2A|の値が大きくなるようにウエイトw1,w2を決定する。たとえば、以下の式(9)を満たすように、ウエイトを決定すると、|hBR11R1A+hBR22R2A|の値を最大化できる。なお、*は複素共役を表す。
2/w1=(hBR2R2A*/(hBR1R1A* …(9)
Radio A uses the propagation coefficients h BR1 h R1A and h BR2 h R2A measured individually, and weights w 1 , w so that the value of | h BR1 w 1 h R1A + h BR2 w 2 h R2A | Determine 2 . For example, if the weight is determined so as to satisfy the following expression (9), the value of | h BR1 w 1 h R1A + h BR2 w 2 h R2A | can be maximized. Note that * represents a complex conjugate.
w 2 / w 1 = (h BR2 h R2A) * / (h BR1 h R1A) * ... (9)

無線機Aは、このように、測定値に基づき、適切なウエイトw1,w2を決定する。無線機Aが決定したウエイトw1,w2は制御信号9によりリレー局2a−1,2a−2に通知され、リレー局2a−1,2a−2は、制御信号9によって通知されたウエイトのうち、自局に対応するウエイトを用いてリレー伝送を行う。このようにリレー局2a−1,2a−2が乗算するウエイトを伝搬測定結果に基づいて適切に決定することで、無線機Aが受信する所望信号b(p)を高い電力で受信することができる。 In this way, the wireless device A determines appropriate weights w 1 and w 2 based on the measurement values. The weights w 1 and w 2 determined by the wireless device A are notified to the relay stations 2a-1 and 2a-2 by the control signal 9, and the relay stations 2a-1 and 2a-2 receive the weights notified by the control signal 9. Of these, relay transmission is performed using the weight corresponding to the own station. Thus, by appropriately determining the weights multiplied by the relay stations 2a-1 and 2a-2 based on the propagation measurement result, it is possible to receive the desired signal b (p) received by the wireless device A with high power. it can.

つぎに、無線機Bが受信する信号の受信電力について説明を行う。本実施の形態のリレー伝送では、無線機A,Bは同じ周波数を用いて信号伝送を行う。通常、同じ周波数では信号の進行方向を逆方向としても伝搬係数は同じとなる。この原理は伝搬路可逆性として広く知られており、一般に以下の式(10)が成り立つ。
BRi=hRiB,hARi=RiA (i=1,2) …(10)
Next, the received power of the signal received by the wireless device B will be described. In the relay transmission of the present embodiment, the radios A and B perform signal transmission using the same frequency. Usually, at the same frequency, the propagation coefficient is the same even if the signal traveling direction is reversed. This principle is widely known as propagation path reversibility, and the following equation (10) is generally established.
h BRi = h RiB , h ARi = h RiA (i = 1, 2) (10)

BR11R1A+hBR22R2A=hAR11R1B+hAR22R2B …(11) h BR1 w 1 h R1A + h BR2 w 2 h R2A = h AR1 w 1 h R1B + h AR2 w 2 h R2B (11)

以上の式(9),(10),(11)より、無線機Aで信号b(p)の受信電力を最大化するウエイトは、無線機Bで信号a(p)の受信電力を最大化するウエイトと一致する。この結果から、無線機Aの受信電力が最大となるようにウエイト制御を行えば、無線機Bに対して特別なウエイト制御を行わなくても、無線機Bの所望信号の受信電力は最大化される。このように、ネットワーク符号を用いたリレー伝送では一方向の通信の送信ウエイトを最適化すれば、それが双方向の通信にとっての最適なウエイトとなる。この結果を用いると、両方向に対して個別に送信ウエイトを設定する必要がなく、1つのウエイト制御のみで双方向通信にとって最適なウエイト設定を行うことができる。   From the above formulas (9), (10), and (11), the weight for maximizing the reception power of the signal b (p) by the wireless device A maximizes the reception power of the signal a (p) by the wireless device B. Matches the weight to be From this result, if the weight control is performed so that the reception power of the wireless device A is maximized, the reception power of the desired signal of the wireless device B is maximized without performing any special weight control for the wireless device B. Is done. Thus, in relay transmission using a network code, if the transmission weight of one-way communication is optimized, it becomes the optimum weight for two-way communication. Using this result, it is not necessary to set transmission weights separately for both directions, and optimal weight setting for bidirectional communication can be performed with only one weight control.

なお、本実施の形態では、リレー局の数が2つの場合について説明したが、i=1〜N(N>2)として、N個のリレー局について同様の処理を行い、wiを求めて、各リレー局が対応するウエイトを用いてウエイト乗算するようにすればよい。 In this embodiment, the case where the number of relay stations is two has been described. However, i = 1 to N (N> 2), the same processing is performed for N relay stations, and w i is obtained. Each relay station may perform weight multiplication using a corresponding weight.

このように、本実施の形態では、複数のリレー局が存在する場合に、無線機Aが、無線機Bからの各リレー局を経由する伝搬係数hBR1R1AとhBR2R2Aを個別に測定し、測定結果に基づいて、|hBR11R1A+hBR22R2A|の値を最大化するようにウエイトw1,w2を決定して、リレー局2a−1,2a−2に通知し、リレー局2a−iは、ウエイトwiを用いてウエイト乗算を行うようにした。このため、複数のリレー局が存在する場合に、効率的に所望信号を得ることができる。 As described above, in the present embodiment, when there are a plurality of relay stations, the wireless device A individually transmits the propagation coefficients h BR1 h R1A and h BR2 h R2A from the wireless device B via the relay stations. Based on the measurement results, the weights w 1 and w 2 are determined so as to maximize the value of | h BR1 w 1 h R1A + h BR2 w 2 h R2A |, and the relay stations 2a-1, 2a- 2, the relay station 2 a-i performs weight multiplication using the weight w i . For this reason, when there are a plurality of relay stations, a desired signal can be obtained efficiently.

なお、実施の形態1または2で述べた無線中継システムにおいて、リレー局が複数存在する構成とし、本実施の形態のウエイト制御を行うようにしてもよい。また、実施の形態1と実施の形態2の両方の動作を行う無線中継システムにおいて、リレー局が複数存在する構成とし、本実施の形態のウエイト制御を行うようにしてもよい。   In the wireless relay system described in the first or second embodiment, a configuration in which a plurality of relay stations exist may be used, and the weight control according to the present embodiment may be performed. Further, in the radio relay system that performs the operations of both the first embodiment and the second embodiment, a configuration in which there are a plurality of relay stations may be performed, and the weight control of the present embodiment may be performed.

また、本実施の形態では、上述のようにウエイトを決定することにしたので、片方の伝送路について上述のウエイト制御を行えば、逆方向の伝送路についても最適化されるため、ウエイト制御負荷を大幅に低減することができる。   In the present embodiment, since the weight is determined as described above, if the above-described weight control is performed on one transmission line, the transmission path in the reverse direction is also optimized, so the weight control load Can be greatly reduced.

以上のように、本発明にかかる無線中継システムおよび無線中継装置は、リレー伝送を行う無線通信システムに有用であり、特に、ネットワーク符号を適用する無線通信システムに適している。   As described above, the wireless relay system and the wireless relay device according to the present invention are useful for a wireless communication system that performs relay transmission, and are particularly suitable for a wireless communication system to which a network code is applied.

本発明にかかる無線中継システムの実施の形態1の構成例を示す図である。It is a figure which shows the structural example of Embodiment 1 of the radio relay system concerning this invention. リレー局での受信電力制御方法の一例を示す図である。It is a figure which shows an example of the received power control method in a relay station. リレー局が無線機へ送信する制御信号の構成例を示す図である。It is a figure which shows the structural example of the control signal which a relay station transmits to a radio | wireless machine. 実施の形態2の無線中継システムの構成例を示す図である。6 is a diagram illustrating a configuration example of a wireless relay system according to a second embodiment. FIG. 実施の形態2の無線中継方法を適用した無線通信システムの構成例を示す図である。6 is a diagram illustrating a configuration example of a radio communication system to which a radio relay method according to a second embodiment is applied. FIG. 実施の形態2の制御信号フォーマットの一例を示す図である。6 is a diagram illustrating an example of a control signal format according to Embodiment 2. FIG. 実施の形態3の無線中継システムの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a wireless relay system according to a third embodiment. 実施の形態3の信号伝送例を示す図である。10 is a diagram illustrating an example of signal transmission in Embodiment 3. FIG. 実施の形態3のリレー局の機能構成例を示す図である。6 is a diagram illustrating a functional configuration example of a relay station according to Embodiment 3. FIG.

符号の説明Explanation of symbols

1−1,1−2,1−3 無線機
2,2a−1,2a−2 リレー局
3,7,9 制御信号
4 基地局
5−1〜5−12 端末
6−1〜6−3 グループ
8 信号伝送路
11 アンテナ
12 LNA
13 第1のDC
14 A/D
15 第2のDC
16 信号受信部
17 信号変換部
18 信号送信部
19 第2のUC
20 D/A
21 第1のUC
22 HPA
23 局所発振器
24 周波数推定部
31 アナログ領域
32 デジタル領域
1-1, 1-2, 1-3 Radio equipment 2, 2a-1, 2a-2 Relay station 3, 7, 9 Control signal 4 Base station 5-1 to 5-12 Terminal 6-1 to 6-3 Group 8 Signal transmission path 11 Antenna 12 LNA
13 First DC
14 A / D
15 Second DC
16 Signal receiver 17 Signal converter 18 Signal transmitter 19 Second UC
20 D / A
21 First UC
22 HPA
23 Local Oscillator 24 Frequency Estimator 31 Analog Domain 32 Digital Domain

Claims (17)

無線機間の通信を中継する無線中継装置を備え、ネットワーク符号化を採用する無線中継システムであって、
前記無線中継装置は、前記無線機からの受信信号に基づいて無線機ごとに受信電力を求め、前記受信電力の差が所定の範囲内となるよう電力を調整するための調整量を求め、前記調整量を示す調整情報を前記無線機に送信し、
前記無線機は、前記調整情報に基づいて送信電力を調整することを特徴とする無線中継システム。
A wireless relay system that includes a wireless relay device that relays communication between wireless devices and employs network coding,
The wireless relay device obtains received power for each wireless device based on a received signal from the wireless device, obtains an adjustment amount for adjusting the power so that the difference in the received power is within a predetermined range, Send adjustment information indicating the adjustment amount to the radio,
The wireless relay system, wherein the wireless device adjusts transmission power based on the adjustment information.
前記無線中継装置は、前記無線機ごとに、所定の基準値と受信電力との差に基づいて前記調整量を求めることを特徴とする請求項1に記載の無線中継システム。   The wireless relay system according to claim 1, wherein the wireless relay device determines the adjustment amount based on a difference between a predetermined reference value and received power for each wireless device. 前記無線中継装置は、前記受信電力の差に基づいて、中継対象の一方の無線機が上昇させる電力量である第1の調整電力量と、他方の無線機が下降させる電力量である第2の調整電力量と、が等しくなるように、第1の調整電力量および第2の調整電力量を求め、前記調整量を前記第1の調整電力量または前記第2の調整電力量とし、また、前記調整情報に、送信電力を上昇させる前記一方の無線機を判別するための無線機指定情報を含ませ、
前記無線機は、前記指定情報において、送信電力を上昇させる無線機として自機が指定されている場合には、前記調整量の分だけ送信電力を上昇させ、また、送信電力を上昇させる無線機として自機が指定されていない場合には、前記調整量の分だけ送信電力を下降させることを特徴とする請求項1に記載の無線中継システム。
The wireless relay device has a first adjustment power amount that is an amount of power that is increased by one of the wireless devices to be relayed and a second amount of power that is decreased by the other wireless device based on the difference in the received power. The first adjustment power amount and the second adjustment power amount are obtained so that the adjustment power amount is equal, and the adjustment amount is set as the first adjustment power amount or the second adjustment power amount. , Including the radio designation information for determining the one radio that increases the transmission power in the adjustment information,
When the wireless device is designated as a wireless device for increasing transmission power in the designation information, the wireless device increases the transmission power by the amount of adjustment, and also increases the transmission power. 2. The wireless relay system according to claim 1, wherein when the own device is not designated as the transmission power, the transmission power is decreased by the amount of adjustment.
前記受信電力を前記無線機から送信されるパイロット信号を用いて求めることを特徴とする請求項1、2または3に記載の無線中継システム。   The wireless relay system according to claim 1, 2, or 3, wherein the received power is obtained using a pilot signal transmitted from the wireless device. 前記無線機が、前記無線中継装置からの受信信号の受信電力である無線機側受信電力を求め、前記無線機側受信電力を前記無線中継装置に通知し、
前記無線中継装置は、前記無線機側受信電力に基づいて前記無線機ごとの受信電力を求めることを特徴とする請求項1、2または3に記載の無線中継システム。
The wireless device obtains the wireless device side received power that is the received power of the received signal from the wireless relay device, and notifies the wireless device of the wireless device side received power,
4. The wireless relay system according to claim 1, wherein the wireless relay device obtains reception power for each of the wireless devices based on the wireless device-side reception power. 5.
前記無線機側受信電力を前記無線中継装置から送信されるパイロット信号を用いて求めることを特徴とする請求項5に記載の無線中継システム。   6. The radio relay system according to claim 5, wherein the radio side reception power is obtained using a pilot signal transmitted from the radio relay apparatus. 上り方向通信における前記受信信号の送信元の無線機を上り送信局とし、その信号を受信し無線機を上り受信局とするとき、
下り方向通信においては、前記無線中継装置は、前記上り受信局から受信した信号を、前記上り送信局に送信することを特徴とする請求項1〜6のいずれか1つに記載の無線中継システム。
When the radio device that is the transmission source of the received signal in uplink communication is an uplink transmission station, and when the radio is received and the radio device is an uplink reception station,
The wireless relay system according to any one of claims 1 to 6, wherein, in downlink communication, the wireless relay device transmits a signal received from the upstream receiving station to the upstream transmitting station. .
上り方向通信における前記受信信号の送信元の無線機を上り送信局とし、その信号を受信した無線機を上り受信局とするとき、
下り方向通信においては、前記無線中継装置は、前記上り受信局から受信した信号を、前記上り送信局以外の無線機に送信することを特徴とする請求項1〜6のいずれか1つに記載の無線中継システム。
When an uplink transmitting station is a radio that is a transmission source of the received signal in uplink communication, and a radio that has received the signal is an uplink receiving station,
In downlink communication, the radio relay apparatus transmits a signal received from the uplink receiving station to a radio device other than the uplink transmitting station. Wireless relay system.
同一グループ内の無線機間の距離が所定の範囲となるよう無線機を複数のグループに分類し、前記無線中継装置が中継対象とする無線機を、同一グループに属する無線機とすることを特徴とする請求項8に記載の無線中継システム。   The wireless devices are classified into a plurality of groups so that the distance between the wireless devices in the same group falls within a predetermined range, and the wireless devices to be relayed by the wireless relay device are wireless devices belonging to the same group. The wireless relay system according to claim 8. 前記無線中継装置を複数備えることとし、
前記無線機が、無線中継装置を経由する経路の伝搬路状態に基づいて無線中継装置ごとにその無線中継装置のウエイト乗算に用いる重み係数を決定し、前記重み係数を送信し、
前記無線中継装置は、自装置に対応する前記重み係数を前記受信信号に乗算し、乗算後の信号を送信することを特徴とする請求項1〜9のいずれか1つに記載の無線中継システム。
A plurality of the wireless relay devices are provided,
The wireless device determines a weighting factor used for weight multiplication of the wireless relay device for each wireless relay device based on a propagation path state of a route passing through the wireless relay device, and transmits the weighting factor,
The wireless relay system according to claim 1, wherein the wireless relay device multiplies the received signal by the weighting factor corresponding to the wireless relay device, and transmits the multiplied signal. .
基地局と、複数の端末と、前記基地局と端末との間の通信を中継する無線中継装置で構成され、ネットワーク符号化を採用する無線中継システムであって、
前記基地局は、前記端末を同一グループ内の端末間の距離が所定の範囲となるよう複数のグループに分類し、前記無線中継装置が中継対象とする端末を同一グループに属する端末のなかから選択し、前記選択した端末を識別する情報である選択端末情報を送信し、
前記選択情報に基づいて自端末が前記基地局によって選択された端末であると認識した端末が、前記無線中継装置を経由した通信を行うことを特徴とする無線中継システム。
A wireless relay system configured with a base station, a plurality of terminals, and a wireless relay device that relays communication between the base station and the terminal, adopting network coding,
The base station classifies the terminals into a plurality of groups so that a distance between terminals in the same group falls within a predetermined range, and selects a terminal to be relayed by the wireless relay device from terminals belonging to the same group And transmitting selected terminal information that is information for identifying the selected terminal,
A radio relay system characterized in that a terminal that recognizes its own terminal as a terminal selected by the base station based on the selection information performs communication via the radio relay apparatus.
前記選択端末情報に、選択した端末の属するグループの識別子と、選択した端末のグループ内の識別子を含ませることを特徴とする請求項11に記載の無線中継システム。   The radio relay system according to claim 11, wherein the selected terminal information includes an identifier of a group to which the selected terminal belongs and an identifier in the group of the selected terminal. 前記無線中継装置を複数備えることとし、
前記基地局または前記端末が、無線中継装置を経由する経路の伝搬路状態に基づいて無線中継装置ごとにその無線中継装置のウエイト乗算に用いる重み係数を決定し、前記重み係数を送信し、
前記無線中継装置は、自装置に対応する前記重み係数を受信信号に乗算し、乗算後の信号を送信することを特徴とする請求項11または12に記載の無線中継システム。
A plurality of the wireless relay devices are provided,
The base station or the terminal determines a weighting factor used for weight multiplication of the wireless relay device for each wireless relay device based on a propagation path state of a route passing through the wireless relay device, and transmits the weighting factor,
The wireless relay system according to claim 11 or 12, wherein the wireless relay device multiplies a reception signal by the weighting factor corresponding to the device itself and transmits the multiplied signal.
無線機間の通信を中継する複数の無線中継装置を備え、ネットワーク符号化を採用する無線中継システムであって、
前記無線中継装置は、所定の重み係数を受信信号に乗算して送信し、
前記無線機が、中継経路の伝搬路状態に基づいて無線中継装置ごとに前記重み係数を決定し、前記重み係数を各無線中継装置に通知することを特徴とする無線中継システム。
A wireless relay system that includes a plurality of wireless relay devices that relay communication between wireless devices and employs network coding,
The wireless relay device multiplies the received signal by a predetermined weighting factor and transmits it,
The wireless relay system, wherein the wireless device determines the weighting factor for each wireless relay device based on a propagation path state of the relay route, and notifies the wireless relay device of the weighting factor.
片方向の通信の前記伝搬路状態に基づいて前記重み係数を決定することを特徴とする請求項10、13または14に記載の無線中継システム。   The wireless relay system according to claim 10, 13 or 14, wherein the weighting factor is determined based on the propagation path state of unidirectional communication. 無線機間の通信を中継する無線中継装置を備えかつネットワーク符号化を採用する無線中継システム、における前記無線中継装置であって、
前記無線機からの受信信号に基づいて無線機ごとの受信電力を求め、前記受信電力の差が所定の範囲内となるよう電力を調整するための調整量を求め、前記調整量を示す調整情報を前記無線機に送信することを特徴とする無線中継装置。
A wireless relay system including a wireless relay device that relays communication between wireless devices and adopting network encoding,
Based on the received signal from the wireless device, the reception power for each wireless device is obtained, the adjustment amount for adjusting the power so that the difference in the received power is within a predetermined range, and the adjustment information indicating the adjustment amount Is transmitted to the wireless device.
無線機間の通信を中継する複数の無線中継装置を備えかつネットワーク符号化を採用する無線中継システム、における前記無線中継装置であって、
受信信号に対して、前記無線機が測定した各無線中継装置を経由する経路の伝搬路状態に基づいて決定した重み係数、を乗算し、乗算後の信号を送信することを特徴とする無線中継装置。
A wireless relay system including a plurality of wireless relay devices that relay communication between wireless devices and adopting network coding,
A wireless relay characterized by multiplying a received signal by a weighting factor determined based on a propagation path state of a path passing through each wireless relay device measured by the wireless device, and transmitting the multiplied signal apparatus.
JP2008282268A 2008-10-31 2008-10-31 Wireless relay system, and wireless relay apparatus Pending JP2010109914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282268A JP2010109914A (en) 2008-10-31 2008-10-31 Wireless relay system, and wireless relay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282268A JP2010109914A (en) 2008-10-31 2008-10-31 Wireless relay system, and wireless relay apparatus

Publications (1)

Publication Number Publication Date
JP2010109914A true JP2010109914A (en) 2010-05-13

Family

ID=42298864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282268A Pending JP2010109914A (en) 2008-10-31 2008-10-31 Wireless relay system, and wireless relay apparatus

Country Status (1)

Country Link
JP (1) JP2010109914A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259198A (en) * 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Radio node device of multi-hop radio system and intervention compensation method
JP2013141061A (en) * 2011-12-28 2013-07-18 Mitsubishi Electric Corp Satellite relay device and satellite communication system
WO2021130942A1 (en) * 2019-12-25 2021-07-01 株式会社Nttドコモ Wireless communication node
JP2021521733A (en) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Wireless communication methods, devices and network equipment
WO2021199844A1 (en) * 2020-03-30 2021-10-07 Kddi株式会社 Communication device, control method, and program for executing transmission power control in relay transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244050A (en) * 2002-02-14 2003-08-29 Hitachi Cable Ltd Method for controlling transmission power for repeater
JP2006020211A (en) * 2004-07-05 2006-01-19 Ntt Docomo Inc Relay device, communication device and directivity control method
JP2006148867A (en) * 2004-08-31 2006-06-08 Ntt Docomo Inc Communication system, communication node and communication method
JP2006352855A (en) * 2005-06-01 2006-12-28 Ntt Docomo Inc Communication relay apparatus and communication receiver
JP2008054215A (en) * 2006-08-28 2008-03-06 Ntt Docomo Inc Relay node and relay method
JP2008154242A (en) * 2006-11-21 2008-07-03 Yokogawa Electric Corp Mimo mesh network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244050A (en) * 2002-02-14 2003-08-29 Hitachi Cable Ltd Method for controlling transmission power for repeater
JP2006020211A (en) * 2004-07-05 2006-01-19 Ntt Docomo Inc Relay device, communication device and directivity control method
JP2006148867A (en) * 2004-08-31 2006-06-08 Ntt Docomo Inc Communication system, communication node and communication method
JP2006352855A (en) * 2005-06-01 2006-12-28 Ntt Docomo Inc Communication relay apparatus and communication receiver
JP2008054215A (en) * 2006-08-28 2008-03-06 Ntt Docomo Inc Relay node and relay method
JP2008154242A (en) * 2006-11-21 2008-07-03 Yokogawa Electric Corp Mimo mesh network

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CSNG200800241004; Nguyen Vu Phong,浅野正一郎: '無線メッシュネットワークにおけるネットワークコーディングを用いたデータ転送特性の向上に関する一検討' 電子情報通信学会技術研究報告 第107巻,第438号, 20080117, p.19-24 *
CSNG200800876004; 梅原大祐 他: '無線中継ネットワークコーディングにおけるSlotted  ALOHAスループットの達成可能領域' 電子情報通信学会技術研究報告 第108巻,第258号, 20081016, p.25-30 *
CSNJ200910048438; 浜口泰弘 他: 'スペクトル重複リソースマネジメントにおける受信電力差の影響' 電子情報通信学会2008年総合大会講演論文集  通信1 , 20080305, p.438 *
JPN6012060327; BuiAnh Hong 他: '無線マルチホップネットワークにおける物理層ネットワークコーディングに関する一検討' 電子情報通信学会技術研究報告 第108巻,第249号, 20081015, p.153-157 *
JPN6012060328; 浜口泰弘 他: 'スペクトル重複リソースマネジメントにおける受信電力差の影響' 電子情報通信学会2008年総合大会講演論文集  通信1 , 20080305, p.438 *
JPN6012060330; 梅原大祐 他: '無線中継ネットワークコーディングにおけるSlotted  ALOHAスループットの達成可能領域' 電子情報通信学会技術研究報告 第108巻,第258号, 20081016, p.25-30 *
JPN6012060332; Nguyen Vu Phong,浅野正一郎: '無線メッシュネットワークにおけるネットワークコーディングを用いたデータ転送特性の向上に関する一検討' 電子情報通信学会技術研究報告 第107巻,第438号, 20080117, p.19-24 *
JPN6012060333; Hui Shi et al.: 'A Relaying Scheme using QR Decomposition with Phase Control for MIMO Wireless Networks' 2005 IEEE International Conference on Communications (ICC 2005) Volume 4, 200505, p.2705-2711 *
JPN6012060335; Petar Popovski and Hiroyuki Yomo: 'Bi-directional Amplification of Throughput in a Wireless Multi-Hop Network' IEEE 63rd Vehicular Technology Conference, VTC 2006-Spring Volume 2, 20060508, p.588-593 *
JPN6012060337; Hui Shi et al.: 'Relay Techniques in MIMO Wireless Networks' IEEE 62nd Vehicular Technology Conference, 2005, VTC-2005-Fall Volume 4, 200509, p.2438-2443 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259198A (en) * 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Radio node device of multi-hop radio system and intervention compensation method
JP2013141061A (en) * 2011-12-28 2013-07-18 Mitsubishi Electric Corp Satellite relay device and satellite communication system
JP2021521733A (en) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Wireless communication methods, devices and network equipment
US11523348B2 (en) 2018-05-11 2022-12-06 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
US11800457B2 (en) 2018-05-11 2023-10-24 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
JP7456941B2 (en) 2018-05-11 2024-03-27 維沃移動通信有限公司 Wireless communication methods, devices and network equipment
WO2021130942A1 (en) * 2019-12-25 2021-07-01 株式会社Nttドコモ Wireless communication node
WO2021199844A1 (en) * 2020-03-30 2021-10-07 Kddi株式会社 Communication device, control method, and program for executing transmission power control in relay transmission
JP2021163994A (en) * 2020-03-30 2021-10-11 Kddi株式会社 Communication device, control method, and program for performing transmission power control in relay transmission
JP7296910B2 (en) 2020-03-30 2023-06-23 Kddi株式会社 Communication device, control method, and program for executing transmission power control in relay transmission
EP4132056A4 (en) * 2020-03-30 2023-09-20 KDDI Corporation Communication device, control method, and program for executing transmission power control in relay transmission

Similar Documents

Publication Publication Date Title
JP2020526105A (en) Link adaptation with RF mediation element
US20160174230A1 (en) Radio base station, user terminal and radio communication method
TWI543557B (en) Transmitter method for supporting a determination of a set of beamforming weights by a receiver method, receiver method, transmitter apparatus, receiver apparatus and network node thereof
US20160142193A1 (en) Radio base station, user terminal, radio communication method and radio communication system
US20230031794A1 (en) Selection of decoding level at signal forwarding devices
CN101361291A (en) Relay
JP2014526837A (en) Beam allocation apparatus and method in wireless communication system
KR20080065343A (en) Apparatus and method for coperative transmission in multi antenas relay wireless communication system
US20160353429A1 (en) Apparatus, Systems and Methods For Interference Management in Massive Multiple-Input and Multiple-Output (MIMO) Operations
KR20120027207A (en) Determining the repeater gain in dependence of interference
CN112205056A (en) Uplink-downlink cooperative scheduling with beam steering and passive intermodulation awareness
CN102577476A (en) Communication system of detecting victim terminal and performing interference coordination in multi-cell environments
KR101155629B1 (en) Method for selective transmit/receive antenna repetition
JPWO2012090327A1 (en) Wireless communication system, mobile station, base station, and wireless communication method
US9065605B2 (en) Methods and systems for crest factor reduction in multi-carrier multi-channel architectures
JP2010109914A (en) Wireless relay system, and wireless relay apparatus
KR20150134520A (en) Apparatus for processing transmission/reception signal for interference alignment in a mu-mimo interference broadcasting channel and method thereof
JP4846614B2 (en) Communication device, relay device, transmission path determination method, wireless transmission method, and wireless transmission system
KR20220054635A (en) Emission-limited transmission of reference signals
US9788335B2 (en) Communication apparatus and communication control method
JP4435808B2 (en) Relay in wireless communication systems
JP5340344B2 (en) Communication apparatus and communication method
US9866301B2 (en) Channel estimation techniques for LSAS backhaul and the like
JP6223216B2 (en) Relay control station, repeater, and interference avoidance method
US20160149688A1 (en) Scheduling method and apparatus of multi-antenna communication system, and method and apparatus for feeding-back channel quality indicator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Effective date: 20130319

Free format text: JAPANESE INTERMEDIATE CODE: A02