JP2010109006A - Circuit for driving light emitting element - Google Patents

Circuit for driving light emitting element Download PDF

Info

Publication number
JP2010109006A
JP2010109006A JP2008277106A JP2008277106A JP2010109006A JP 2010109006 A JP2010109006 A JP 2010109006A JP 2008277106 A JP2008277106 A JP 2008277106A JP 2008277106 A JP2008277106 A JP 2008277106A JP 2010109006 A JP2010109006 A JP 2010109006A
Authority
JP
Japan
Prior art keywords
voltage
light emitting
node
constant current
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008277106A
Other languages
Japanese (ja)
Inventor
Kosuke Takada
幸輔 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2008277106A priority Critical patent/JP2010109006A/en
Publication of JP2010109006A publication Critical patent/JP2010109006A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate a minimum step-up voltage with a simple circuit configuration and to drive light emitting elements such as LEDs connected in parallel with one another at the same luminance. <P>SOLUTION: The output voltage VOUT of a step-up part 40 is supplied to LED lines 1a, 1b, and the LED lines 1a, 1b are driven at constant currents by constant current parts 10a, 10b connected in series to thereto, respectively. The voltages of nodes N1a, N1b are detected by voltage detection parts 20a, 20b, and output to nodes N3a, N3b, respectively. The node N3a, N3b are connected to a node N4, in common, and a lower voltage within the voltages of the nodes N3a, N3b is output from the node N4. The voltage of the node N4 is applied to a voltage control part 30, and a control voltage VC in accordance with the difference from a source voltage of a PMOS 33 is generated to control an output voltage VOUT of the step-up part 40. By this feedback loop, the output voltage VOUT is controlled so that the lower voltage within the voltages of the nodes N1a, N1b is set equal to the source voltage of the PMOS 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、並列に接続された複数の発光素子をほぼ同じ輝度となるように駆動する発光素子駆動回路に関する。   The present invention relates to a light emitting element driving circuit that drives a plurality of light emitting elements connected in parallel so as to have substantially the same luminance.

携帯電話をはじめとする携帯機器の液晶表示器(以下、LCDという)では、バックライトとして発光ダイオード(以下、LEDという)等の発光素子が使用される。携帯電話等では、電源の制約から、LEDを点灯させるための昇圧回路を備えることが多い。また、複数のLEDを並列に接続して駆動することが一般的である。このような場合、複数のLEDを同じ輝度で発光させる必要があり、そのためには各LEDを同じ一定電流で駆動する必要がある。   In a liquid crystal display (hereinafter referred to as an LCD) of a portable device such as a cellular phone, a light emitting element such as a light emitting diode (hereinafter referred to as an LED) is used as a backlight. A cellular phone or the like often includes a booster circuit for turning on an LED due to power supply restrictions. Also, it is common to drive a plurality of LEDs connected in parallel. In such a case, it is necessary to cause a plurality of LEDs to emit light with the same luminance, and for this purpose, it is necessary to drive each LED with the same constant current.

ところが、LED(特に白色LED)には、順方向電圧にばらつきがあるため、最悪の状態を想定して昇圧回路の出力電圧を定める必要がある。このため、必要以上に高い電圧でLEDを駆動し、無駄な電力を消費していることが多い。また、これとは逆に、昇圧回路の出力電圧が低く、一部のLEDで十分な輝度が得られず画質が劣化する場合もある。   However, since the forward voltage varies among LEDs (particularly white LEDs), it is necessary to determine the output voltage of the booster circuit assuming the worst state. For this reason, the LED is driven at a voltage higher than necessary, and wasteful power is often consumed. On the other hand, the output voltage of the booster circuit is low, and there is a case where sufficient luminance cannot be obtained with some LEDs and image quality deteriorates.

このような問題を回避するために、下記特許文献1には、定電流回路で駆動される各LEDの端子電位をLED端子監視回路で比較して最も電位の低いLEDを検出し、その検出結果に基づいてアナログ信号選択回路が該当するLEDの電圧状態を選択し、その選択された電圧状態に基づいて昇圧回路の出力電圧を制御するように構成したLED点灯制御装置が記載されている。   In order to avoid such a problem, the following patent document 1 detects the LED having the lowest potential by comparing the terminal potential of each LED driven by a constant current circuit with an LED terminal monitoring circuit. The LED lighting control device is configured such that the analog signal selection circuit selects the voltage state of the corresponding LED based on the above and controls the output voltage of the booster circuit based on the selected voltage state.

このような構成により、昇圧回路は複数のLEDの内で最も電圧状態が低いLEDに基づいて昇圧動作を実行するので、複数のLEDを確実に駆動することができ、且つ必要最小限度の電圧で駆動することができるとされている。   With such a configuration, the booster circuit performs the boosting operation based on the LED having the lowest voltage state among the plurality of LEDs, so that the plurality of LEDs can be driven reliably and at the minimum necessary voltage. It can be driven.

特開2005−116199号公報JP 2005-116199 A

しかしながら、特許文献1のLED点灯制御装置は、複数のLEDの内で最も電圧状態が低いLEDを検出するためのLED端子監視回路や、このLED端子監視回路の検出結果に基づいて該当するLEDの電圧状態を選択するアナログ信号選択回路が必要となる。特に、LED端子監視回路は、一番低いLED端子電位を検出するために多数の電圧比較器と共に、これらの電圧比較器の比較結果に基づいて端子電圧が一番低いLEDを特定するための論理回路で構成されている。このため、駆動するLEDの数が多くなると、LED端子監視回路の規模が極端に大きくなるという課題があった。本発明は、簡単な回路構成で必要最小限の昇圧電圧を生成して、並列接続された発光素子を同一輝度で駆動することができる発光素子駆動回路を提供することを目的としている。   However, the LED lighting control device of Patent Document 1 is based on the LED terminal monitoring circuit for detecting the LED having the lowest voltage state among the plurality of LEDs, and the corresponding LED based on the detection result of the LED terminal monitoring circuit. An analog signal selection circuit for selecting the voltage state is required. In particular, the LED terminal monitoring circuit has a number of voltage comparators for detecting the lowest LED terminal potential, and a logic for identifying the LED having the lowest terminal voltage based on the comparison result of these voltage comparators. It consists of a circuit. For this reason, when the number of driven LEDs increases, there is a problem that the scale of the LED terminal monitoring circuit becomes extremely large. An object of the present invention is to provide a light emitting element driving circuit capable of generating a minimum boosted voltage with a simple circuit configuration and driving light emitting elements connected in parallel with the same luminance.

上記目的を達成するために、本発明に係る発光素子駆動回路は、並列に接続された複数の発光素子を駆動する発光素子駆動回路であって、前記各発光素子と共通電位との間に直列に接続され、該発光素子に一定電流を流す複数の定電流部と、それぞれ検出電圧を出力するための検出ノードを有し、前記発光素子と前記定電流部との接続点の電圧を検出して該検出ノードから該検出電圧を出力する複数の電圧検出部と、前記各電圧検出部の検出ノードが共通に接続される共通ノードと、基準電圧と前記共通ノードの電圧との差に対応する制御電圧を出力する電圧制御部と、入力電圧を前記制御電圧に従って昇圧し、前記複数の発光素子に対する駆動電圧として供給する昇圧部とを備え、
前記共通ノードの電圧が前記基準電圧に等しくなるように、前記制御電圧によって前記昇圧部から出力される前記駆動電圧が制御されることを特徴とする。
In order to achieve the above object, a light emitting element driving circuit according to the present invention is a light emitting element driving circuit for driving a plurality of light emitting elements connected in parallel, and is connected in series between each light emitting element and a common potential. A plurality of constant current portions that pass a constant current to the light emitting element, and a detection node for outputting a detection voltage, respectively, and detects a voltage at a connection point between the light emitting element and the constant current portion. A plurality of voltage detection units that output the detection voltage from the detection node, a common node to which the detection nodes of the voltage detection units are connected in common, and a difference between a reference voltage and the voltage of the common node A voltage control unit that outputs a control voltage; and a boosting unit that boosts an input voltage according to the control voltage and supplies it as a drive voltage for the plurality of light emitting elements,
The drive voltage output from the boosting unit is controlled by the control voltage so that the voltage of the common node becomes equal to the reference voltage.

ここで、前記各定電流部は、前記発光素子と共通電位との間に直列に接続された第1のトランジスタと抵抗を有し、該抵抗に流れる電流が前記一定電流となるように、該第1のトランジスタの導通状態を制御するように構成され、前記各電圧検出部は、ソース電極が前記検出ノードに接続され、ドレイン電極が前記共通電位に接続された第2のトランジスタを有し、前記発光素子と前記定電流部との接続点の電圧に基づく電圧が該ソース電極から出力されるように該第2のトランジスタの導通状態を制御するように構成され、前記電圧制御部は、ソース電極がプルアップされ、ドレイン電極が前記共通電位に接続され、ゲート電極に参照電圧が与えられて該ソース電極から前記基準電圧を出力する第3のトランジスタと、該基準電圧と前記共通ノードの電圧との差に応じて前記制御電圧を出力する演算増幅器とで構成することができる。   Here, each of the constant current units has a first transistor and a resistor connected in series between the light emitting element and a common potential, and the current flowing through the resistor becomes the constant current. Each voltage detection unit includes a second transistor having a source electrode connected to the detection node and a drain electrode connected to the common potential; and configured to control a conduction state of the first transistor. The second transistor is configured to control a conduction state so that a voltage based on a voltage at a connection point between the light emitting element and the constant current unit is output from the source electrode, and the voltage control unit includes a source A third transistor in which the electrode is pulled up, the drain electrode is connected to the common potential, a reference voltage is applied to the gate electrode and the reference voltage is output from the source electrode; and the reference voltage and the common voltage It can be constituted by an operational amplifier for outputting the control voltage in accordance with the difference between the voltage of the node.

なお、前記参照電圧は、前記定電流部の抵抗に前記一定電流が流れたときに該抵抗に生ずる電圧に前記第1のトランジスタのオン抵抗に掛かる電圧を加えた電圧と同じ値に設定することができる。また、前記発光素子は、白色LEDとすることができる。   The reference voltage is set to the same value as a voltage obtained by adding a voltage applied to the on-resistance of the first transistor to a voltage generated in the resistor when the constant current flows through the resistor of the constant current portion. Can do. The light emitting element can be a white LED.

本発明によれば、並列に接続された発光素子に一定電流を流す複数の定電流部と、発光素子と定電流部との接続点の電圧を検出して、それぞれの検出ノードから出力する複数の電圧検出部を備えると共に、各電圧検出部の検出ノードが共通に接続される共通ノードの電圧と基準電圧との差に対応する制御電圧を出力する電圧制御部と、入力電圧を制御電圧に従って昇圧して発光素子に対する駆動電圧として供給する昇圧部とを備えている。
これにより、共通ノードには複数の検出ノードの電圧の内の最低の電圧が出力され、この共通ノードの電圧が基準電圧に等しくなるように、昇圧部から出力される駆動電圧が制御される。従って、本発明は、簡単な回路構成で必要最小限の駆動電圧を生成して、並列接続された発光素子を同一輝度で駆動することができるという効果がある。
According to the present invention, a plurality of constant current portions that allow a constant current to flow in light emitting elements connected in parallel, and a plurality of voltages that are detected from voltages at connection points between the light emitting elements and the constant current portions and output from the respective detection nodes. A voltage control unit that outputs a control voltage corresponding to a difference between a reference voltage and a voltage of a common node to which a detection node of each voltage detection unit is commonly connected, and an input voltage according to the control voltage And a boosting unit that boosts the voltage and supplies the driving voltage to the light emitting element.
Thus, the lowest voltage among the voltages of the plurality of detection nodes is output to the common node, and the drive voltage output from the boosting unit is controlled so that the voltage of the common node becomes equal to the reference voltage. Therefore, the present invention has an effect that it is possible to generate the minimum necessary driving voltage with a simple circuit configuration and to drive the light emitting elements connected in parallel with the same luminance.

以下、図面に基づき、本発明の実施の形態について詳細に説明する。
本発明のLED駆動回路は、図1に示すように、発光素子として複数の白色LEDが直列に接続されたLED列1a,1bに同一の一定電流Ia,Ibを流すことにより、これらの複数の白色LEDを同じ輝度で発光するように駆動するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the LED driving circuit of the present invention is configured such that the same constant currents Ia and Ib are caused to flow through the LED rows 1a and 1b in which a plurality of white LEDs are connected in series as light emitting elements. The white LED is driven to emit light with the same luminance.

各LED列1a,1bのアノード側には、昇圧された出力電圧VOUTが共通に供給されるようになっており、カソード側は、それぞれノードN1a,N1bに接続されている。更に、ノードN1a,N1bは、それぞれ一定電流Ia,Ibを流すための定電流部10a,10bを介して共通電位に接続されている。   The boosted output voltage VOUT is commonly supplied to the anode side of each LED row 1a, 1b, and the cathode side is connected to nodes N1a, N1b, respectively. Further, the nodes N1a and N1b are connected to a common potential via constant current portions 10a and 10b for flowing constant currents Ia and Ib, respectively.

定電流部10a,10bは同一の回路構成で、定電流部10aに示すように、ドレインがノードN1aに接続され、ソースが抵抗12aを介して共通電位に接続されたNチャネル型MOSトランジスタ(以下、NMOSという)11aと、演算増幅器(以下、OPという)13aを有している。OP13aの非反転入力端子+には参照電圧REF1が与えられ、反転入力端子−はNMOS11aのソースに接続されている。また、OP13aの出力端子は、NMOS11aのゲートに接続されている。   The constant current units 10a and 10b have the same circuit configuration, and as shown in the constant current unit 10a, an N channel type MOS transistor (hereinafter referred to as a drain) connected to a node N1a and a source connected to a common potential via a resistor 12a. And an operational amplifier (hereinafter referred to as OP) 13a. The reference voltage REF1 is applied to the non-inverting input terminal + of the OP 13a, and the inverting input terminal − is connected to the source of the NMOS 11a. The output terminal of OP13a is connected to the gate of NMOS 11a.

ノードN1a,N1bには、更に、これらのノードN1a,N1bの電圧を検出するための電圧検出部20a,20bが接続されている。電圧検出部20a,20bは同一の回路構成で、電圧検出部20aに示すように、ゲートがノードN1aに接続され、ドレインが共通電位に接続され、ソースがノードN2aに接続されたPチャネル型MOSトランジスタ(以下、PMOSという)21aを有している。ノードN2aは、プルアップ用のPMOS22aを介して電源電位VDDに接続されている。なお、PMOS22aのゲートには、微小な一定電流を流すためのバイアス電圧VB1が与えられている。   The nodes N1a and N1b are further connected to voltage detectors 20a and 20b for detecting the voltages of these nodes N1a and N1b. The voltage detection units 20a and 20b have the same circuit configuration, and as shown in the voltage detection unit 20a, a P-channel MOS having a gate connected to the node N1a, a drain connected to a common potential, and a source connected to the node N2a It has a transistor (hereinafter referred to as PMOS) 21a. The node N2a is connected to the power supply potential VDD via the pull-up PMOS 22a. Note that a bias voltage VB1 for supplying a small constant current is applied to the gate of the PMOS 22a.

ノードN2aには、更にOP23aの非反転入力端子+が接続され、このOP23aの出力端子がPMOS24aのゲートに接続されている。PMOS24aのドレインは共通電位に接続され、ソースがノードN3aに接続されている。ノードN3aは、OP23aの反転入力端子−に接続され、このノードN3aからノードN2aと同じ電圧が出力されるようになっている。即ち、この電圧検出部20aは、ソースフォロワ型のボルテージフォロワ回路を構成している。同様に、電圧検出部20bのノードN3bから、ノードN2bと同じ電圧が出力されるようになっている。電圧検出部20a,20bのノードN3a,N3bはノードN4に共通接続され、このノードN4から、ノードN3a,N3bの電圧の内で一番低い電圧が出力されるようになっている。ノードN4には、電圧制御部30が接続されている。   The non-inverting input terminal + of OP23a is further connected to the node N2a, and the output terminal of OP23a is connected to the gate of the PMOS 24a. The drain of the PMOS 24a is connected to the common potential, and the source is connected to the node N3a. The node N3a is connected to the inverting input terminal − of the OP 23a, and the same voltage as that of the node N2a is output from the node N3a. That is, the voltage detector 20a constitutes a source follower type voltage follower circuit. Similarly, the same voltage as that of the node N2b is output from the node N3b of the voltage detection unit 20b. The nodes N3a and N3b of the voltage detectors 20a and 20b are commonly connected to the node N4, and the lowest voltage among the voltages of the nodes N3a and N3b is output from the node N4. The voltage control unit 30 is connected to the node N4.

電圧制御部30は、PMOS31,32,33とOP34で構成され、ノードN4の電圧と基準電圧REF(具体的には、PMOS33のソース電圧)との差に対応する制御電圧VCを出力するものである。ノードN4は、プルアップ用のPMOS31を介して電源電位VDDに接続されると共に、OP34の非反転入力端子+に接続されている。OP34の反転入力端子−は、プルアップ用のPMOS32を介して電源電位VDDに接続されると共に、PMOS33を介して共通電位に接続されている。なお、PMOS33のゲートには、定電流部10における参照電圧REF1よりも高い、参照電圧REF2が与えられている。また、OP34の出力端子は、昇圧部40の制御端子に接続されている。   The voltage control unit 30 includes PMOSs 31, 32, 33 and OP34, and outputs a control voltage VC corresponding to the difference between the voltage of the node N4 and the reference voltage REF (specifically, the source voltage of the PMOS 33). is there. The node N4 is connected to the power supply potential VDD via the pull-up PMOS 31, and is also connected to the non-inverting input terminal + of OP34. The inverting input terminal − of the OP 34 is connected to the power supply potential VDD via the pull-up PMOS 32 and is connected to the common potential via the PMOS 33. Note that a reference voltage REF2 higher than the reference voltage REF1 in the constant current unit 10 is applied to the gate of the PMOS 33. Further, the output terminal of OP34 is connected to the control terminal of the booster 40.

昇圧部40は、電圧制御部30から与えられる制御電圧VCに基づいて、入力電圧VIN(通常は、電源電圧)を昇圧し、可変の出力電圧VOUTを生成するものである。昇圧部40は、例えば、電圧制御部30から与えられる制御電圧VCでクロック信号のパルス幅を変化させるパルス幅変調器(PWM変調器)と、この変調されたクロック信号を用いるスイッチングレギュレータ等の昇圧回路で構成することができる。昇圧部40で生成される可変の出力電圧VOUTは、LED列1a,1bのアノード側に与えられるようになっている。   The booster 40 boosts the input voltage VIN (usually a power supply voltage) based on the control voltage VC supplied from the voltage controller 30, and generates a variable output voltage VOUT. The step-up unit 40 includes, for example, a step-up unit such as a pulse width modulator (PWM modulator) that changes the pulse width of the clock signal with the control voltage VC supplied from the voltage control unit 30 and a switching regulator that uses the modulated clock signal. It can be configured with a circuit. The variable output voltage VOUT generated by the booster 40 is supplied to the anode side of the LED strings 1a and 1b.

次に動作を説明する。
LED列1a,1bのアノード側に、昇圧部40からの出力電圧VOUTが与えられ、これらのLED列1a,1bには、それぞれIa,Ibの駆動電流が流れる。
定電流部10aのOP13aでは、NMOS11aの導通状態が、このOP13aの出力信号によって制御され、抵抗12aに生ずる電圧が反転入力端子−にフィードバックされる。帰還回路を有するOPのイマジナリ・ショートの原理から、OP13aの反転入力端子−の電圧(即ち、抵抗12aに生ずる電圧)は、非反転入力端子+の電圧(即ち、参照電圧REF1)に等しくなる。従って、抵抗12aの抵抗値をRとすると、この抵抗12aに流れる電流は、REF1/Rである。
Next, the operation will be described.
The output voltage VOUT from the booster 40 is applied to the anode side of the LED strings 1a and 1b, and drive currents Ia and Ib flow through these LED strings 1a and 1b, respectively.
In OP13a of the constant current unit 10a, the conduction state of the NMOS 11a is controlled by the output signal of the OP13a, and the voltage generated in the resistor 12a is fed back to the inverting input terminal −. From the imaginary short-circuit principle of the OP having the feedback circuit, the voltage at the inverting input terminal − of the OP 13a (that is, the voltage generated at the resistor 12a) becomes equal to the voltage at the non-inverting input terminal + (that is, the reference voltage REF1). Therefore, if the resistance value of the resistor 12a is R, the current flowing through the resistor 12a is REF1 / R.

LED列1a、NMOS11a、及び抵抗12aは、直列に接続されているので、このLED列1aに流れる駆動電流IaもREF1/Rとなる。一方、定電流部10bも、定電流部10aと同一の回路構成となっているので、LED列1bに流れる駆動電流IbもREF1/Rとなる。従って、LED列1aとLED列1bを構成する各白色LEDは、すべて同じ大きさの電流で駆動されるので、ほぼ同じ輝度で発光する。但し、各白色LEDに掛かる電圧は、素子の特性のばらつきによって異なる。このため、一般的にはLED列1a,1bによる電圧降下が異なり、ノードN1a,N1bに発生する電圧は同一とはならない。   Since the LED string 1a, the NMOS 11a, and the resistor 12a are connected in series, the drive current Ia flowing through the LED string 1a is also REF1 / R. On the other hand, since the constant current unit 10b has the same circuit configuration as the constant current unit 10a, the drive current Ib flowing through the LED array 1b is also REF1 / R. Accordingly, since the white LEDs constituting the LED array 1a and the LED array 1b are all driven by the same current, they emit light with substantially the same luminance. However, the voltage applied to each white LED varies depending on variations in the characteristics of the elements. For this reason, in general, the voltage drops due to the LED strings 1a and 1b are different, and the voltages generated at the nodes N1a and N1b are not the same.

ノードN1aの電圧は、ボルテージフォロワ回路を構成する電圧検出部20aの入力側のPMOS21aのゲートに与えられる。これにより、電圧検出部20aの出力側のノードN3a(即ち、PMOS24aのソース)には、ノードN2aと同じ電圧が出力されることになる。同様に、ノードN1bの電圧は、ボルテージフォロワ回路を構成する電圧検出部20bの入力側のPMOS21bのゲートに与えられ、この電圧検出部20bの出力側のノードN3bに、ノードN2bと同じ電圧が出力される。   The voltage of the node N1a is applied to the gate of the PMOS 21a on the input side of the voltage detection unit 20a that constitutes the voltage follower circuit. As a result, the same voltage as the node N2a is output to the node N3a on the output side of the voltage detection unit 20a (that is, the source of the PMOS 24a). Similarly, the voltage of the node N1b is applied to the gate of the PMOS 21b on the input side of the voltage detection unit 20b constituting the voltage follower circuit, and the same voltage as the node N2b is output to the node N3b on the output side of the voltage detection unit 20b. Is done.

ノードN3aとノードN3bは、それぞれPMOS24a,24bを介して共通電位に接続されると共に、ノードN4に共通接続されている。このため、ノードN4の電圧は、ノードN3a,N3bの電圧の内の低い方の電圧に引き下げられる。従って、ノードN4の電圧は、ノードN1a,N1bの内の低い方の電圧となる。   The nodes N3a and N3b are connected to the common potential via the PMOSs 24a and 24b, respectively, and are commonly connected to the node N4. For this reason, the voltage at the node N4 is lowered to the lower one of the voltages at the nodes N3a and N3b. Therefore, the voltage at the node N4 is the lower voltage of the nodes N1a and N1b.

ノードN4の電圧は、電圧制御部30のOP34の非反転入力端子+に与えられ、このOP34の反転入力端子−に与えられているPMOS33のソース電圧(参照電圧REF2からPMOS33の閾値電圧Vtだけレベルシフトした電圧)と比較される。これにより、OP34の出力端子から、ノードN4の電圧とPMOS33のソース電圧との差に応じた制御電圧VCが出力され、昇圧部40に与えられる。   The voltage of the node N4 is applied to the non-inverting input terminal + of OP34 of the voltage control unit 30, and the level of the source voltage of the PMOS 33 (the reference voltage REF2 to the threshold voltage Vt of the PMOS 33) applied to the inverting input terminal − of OP34. Compared to the shifted voltage). As a result, the control voltage VC corresponding to the difference between the voltage of the node N4 and the source voltage of the PMOS 33 is output from the output terminal of OP34 and applied to the booster 40.

昇圧部40では、制御電圧VCに応じて入力電圧VINが昇圧され、この制御電圧VCに対応した出力電圧VOUTが出力される。出力電圧VOUTは、LED列1a,1bのアノード側に共通に供給され、定電流部10a,10bによって、これらのLED列1a,1bが同一の一定電流で駆動される。   The booster 40 boosts the input voltage VIN according to the control voltage VC, and outputs an output voltage VOUT corresponding to the control voltage VC. The output voltage VOUT is commonly supplied to the anode side of the LED strings 1a and 1b, and the LED strings 1a and 1b are driven with the same constant current by the constant current units 10a and 10b.

ここで、例えばノードN4の電圧がPMOS33のソース電圧よりも高い場合、電圧制御部30から出力される制御電圧VCは、昇圧部40の出力電圧VOUTを引き下げるように作用する。これにより、LED列1a,1bに流れる駆動電流Ia,Ibは一定値を保持したままで、ノードN1a,N1bの電圧が低下する。ノードN1a,N1bの電圧は、それぞれ電圧検出部20a,20bを通してノードN3a,N3bに出力される。そして、ノードN4には、ノードN1a,N1bの電圧の内の低い方の電圧に対応する電圧が出力される。   Here, for example, when the voltage of the node N4 is higher than the source voltage of the PMOS 33, the control voltage VC output from the voltage control unit 30 acts to lower the output voltage VOUT of the boosting unit 40. As a result, the voltages at the nodes N1a and N1b are lowered while the drive currents Ia and Ib flowing through the LED strings 1a and 1b are kept constant. The voltages at nodes N1a and N1b are output to nodes N3a and N3b through voltage detectors 20a and 20b, respectively. A voltage corresponding to the lower one of the voltages of the nodes N1a and N1b is output to the node N4.

一方、ノードN4の電圧がPMOS33のソース電圧よりも低い場合、電圧制御部30から出力される制御電圧VCは、昇圧部40の出力電圧VOUTを引き上げるように作用する。これにより、LED列1a,1bに流れる駆動電流Ia,Ibは一定値を保持したままで、ノードN1a,N1bの電圧が上昇する。   On the other hand, when the voltage of the node N4 is lower than the source voltage of the PMOS 33, the control voltage VC output from the voltage control unit 30 acts to raise the output voltage VOUT of the boosting unit 40. As a result, the voltages at the nodes N1a and N1b rise while the drive currents Ia and Ib flowing through the LED strings 1a and 1b are kept constant.

このような、フィードバック・ループにより、ノードN4の電圧は、PMOS33のソース電圧と等しくなるように制御される。ここで、ノードN4の電圧は、ノードN2a,N2bの電圧の内の低い方の電圧である。従って、このLED駆動回路では、ノードN1a,N1bの電圧の内の低い方の電圧が、PMOS33のソース電圧と等しくなるように制御されることになる。   By such a feedback loop, the voltage of the node N4 is controlled to be equal to the source voltage of the PMOS 33. Here, the voltage at the node N4 is the lower of the voltages at the nodes N2a and N2b. Therefore, in this LED drive circuit, the lower one of the voltages at the nodes N1a and N1b is controlled to be equal to the source voltage of the PMOS 33.

図2は、図1の動作説明図である。この図2では、制御電圧VCによるフィードバックが行われない場合の、LED列1a,1bに供給する駆動電圧(出力電圧VOUT)と駆動電流ILED(Ia,Ib)の関係を示している。
出力電圧VOUTを0から上昇させると、駆動電流ILEDは、直列接続されたLEDの順方向電圧の合計値を超えたポイントから、定電流部10a,10bで設定される一定電流I(=REF1/R)になるまで、この出力電圧VOUTの上昇と共に増加する。
FIG. 2 is an explanatory diagram of the operation of FIG. FIG. 2 shows the relationship between the drive voltage (output voltage VOUT) supplied to the LED strings 1a and 1b and the drive current ILED (Ia and Ib) when feedback by the control voltage VC is not performed.
When the output voltage VOUT is increased from 0, the drive current ILED is constant current I (= REF1 /) set by the constant current units 10a and 10b from the point where the total value of forward voltages of the LEDs connected in series is exceeded. Until the output voltage VOUT rises.

駆動電流ILEDが一定電流Iに達すると、出力電圧VOUTをそれ以上に上げても、駆動電流ILEDは変化しない。この状態において、LED列1a,1bに掛かる電圧は、これらのLED列1a,1bを構成する各白色LEDの特性に応じた値となり、出力電圧VOUTとは無関係である。即ち、出力電圧VOUTとLED列1a,1bに掛かる電圧との差の電圧が、ノードN1a,N1bの電圧となる。   When the drive current ILED reaches the constant current I, the drive current ILED does not change even if the output voltage VOUT is increased further. In this state, the voltage applied to the LED strings 1a and 1b has a value corresponding to the characteristics of the white LEDs constituting the LED strings 1a and 1b, and is independent of the output voltage VOUT. That is, the difference voltage between the output voltage VOUT and the voltage applied to the LED strings 1a and 1b becomes the voltage of the nodes N1a and N1b.

定電流部10a,10bが正常に動作する(即ち、LED列1a,1bに一定電流Iを流す)ためには、ノードN1a,N1bの電圧は、少なくとも、REF1+NMOS11a,11bのオン抵抗に掛かる電圧Vtn以上である必要がある。但し、それ以上の電圧を掛けると、余りの電圧はNMOS11a,11bによって無駄な電力として消費される。従って、ノードN1a,N1bの電圧の内の低い方の電圧を、定電流部10a,10bが正常に動作する必要最低限の電圧(即ち、REF1+Vtn)に設定することにより、無駄な電力の消費を抑えることができる。   In order for the constant current units 10a and 10b to operate normally (that is, to allow the constant current I to flow through the LED strings 1a and 1b), the voltage at the nodes N1a and N1b is at least the voltage Vtn applied to the on-resistance of the REF1 + NMOSs 11a and 11b. It is necessary to be above. However, if a voltage higher than that is applied, the excess voltage is consumed as wasted power by the NMOSs 11a and 11b. Therefore, by setting the lower one of the voltages of the nodes N1a and N1b to the minimum necessary voltage (that is, REF1 + Vtn) at which the constant current units 10a and 10b operate normally, wasteful power consumption can be reduced. Can be suppressed.

前述のように、LED列1a,1b→定電流部10a,10b→電圧検出部20a,20b→電圧制御部30→昇圧部40→LED列1a,1bのフィードバック・ループにより、ノードN1a,N1bの電圧の内の低い方の電圧が、参照電圧REF2に等しくなるように制御される。従って、参照電圧REF2を、定電流部10a,10bが正常に動作する必要最低限の電圧(即ち、REF1+Vtn)に設定することにより、無駄な電力の消費を抑えることができる。   As described above, the feedback of the LED strings 1a and 1b → constant current units 10a and 10b → voltage detection units 20a and 20b → voltage control unit 30 → boost unit 40 → LED strings 1a and 1b causes the nodes N1a and N1b to The lower one of the voltages is controlled to be equal to the reference voltage REF2. Therefore, by setting the reference voltage REF2 to the minimum necessary voltage (that is, REF1 + Vtn) at which the constant current units 10a and 10b operate normally, wasteful power consumption can be suppressed.

以上のように、本実施形態のLED駆動回路は、ソースフォロワ型の電圧検出部20a,20bの出力側のノードN3a,N3bを、電圧制御部30の入力側のノードN4に共通接続している。これにより、このLED駆動回路は、並列接続された白色LED等の発光素子を、簡単な回路構成で必要最低限の昇圧電圧を生成し、無駄な電力消費を抑えてほぼ同一の輝度で駆動することができるという利点がある。   As described above, in the LED drive circuit of this embodiment, the output side nodes N3a and N3b of the source follower type voltage detection units 20a and 20b are commonly connected to the input side node N4 of the voltage control unit 30. . As a result, the LED driving circuit generates light sources such as white LEDs connected in parallel with a simple circuit configuration and generates the minimum boosted voltage, and drives the light emitting elements with almost the same brightness while suppressing wasteful power consumption. There is an advantage that you can.

なお、本発明は、上記実施形態に限定されるものではなく、次のような種々の変形が可能である。
(a) 図1には、2つのLED列1a,1bを駆動する場合の構成を示したが、任意の数のLED列1を並列に駆動することができる。その場合、定電流部10と電圧検出部20を、LED列1の数だけ設ければ良い。また、LED列1a,1bは複数のLEDを直列に接続して構成されているが、単独のLEDでも良い。
In addition, this invention is not limited to the said embodiment, The following various deformation | transformation are possible.
(A) Although FIG. 1 shows a configuration in which two LED rows 1a and 1b are driven, an arbitrary number of LED rows 1 can be driven in parallel. In that case, what is necessary is just to provide the constant current part 10 and the voltage detection part 20 by the number of the LED rows 1. Moreover, although LED row | line 1a, 1b is comprised by connecting several LED in series, a single LED may be sufficient.

(b) 電圧検出部20a,20bや電圧制御部30の回路構成は一例であり、同様の機能を有する回路を使用することができる。例えば、プルアップ用のPMOS22a,22b,31,32に代えて、高抵抗を使用しても良い。
また、電圧検出部20a,20bのPMOS21a,21b,22a,22bを削除し、OP23a,23bの非反転入力端子+を、それぞれノードN1a,N1bに直接接続しても良い。これにより、ノードN1a,N1bの電圧が、それぞれノードN3a,N3bに出力されることになる。
(c) 発光素子は、白色LEDに限定されない。有機エレクトロルミネッセンス等の電流駆動型の発光素子に対しても、同様に適用可能である。
(B) The circuit configurations of the voltage detection units 20a and 20b and the voltage control unit 30 are merely examples, and circuits having the same function can be used. For example, a high resistance may be used in place of the pull-up PMOSs 22a, 22b, 31, 32.
Alternatively, the PMOSs 21a, 21b, 22a, and 22b of the voltage detection units 20a and 20b may be deleted, and the non-inverting input terminals + of the OPs 23a and 23b may be directly connected to the nodes N1a and N1b, respectively. As a result, the voltages at the nodes N1a and N1b are output to the nodes N3a and N3b, respectively.
(C) A light emitting element is not limited to white LED. The present invention can be similarly applied to current-driven light-emitting elements such as organic electroluminescence.

(d) 昇圧部40の構成は、例示したものに限定されない。電圧制御部30から出力される制御電圧VCに応じた出力電圧VOUTを生成するものであれば、どのような構成のものでも良い。 (D) The configuration of the booster 40 is not limited to that illustrated. Any configuration may be used as long as it generates the output voltage VOUT according to the control voltage VC output from the voltage control unit 30.

本発明の実施形態に係るLED駆動回路を示す回路図である。It is a circuit diagram which shows the LED drive circuit which concerns on embodiment of this invention. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG.

符号の説明Explanation of symbols

1a,1b LED列
10a,10b 定電流部
11a,11b NMOS
12a,12b 抵抗
20a,20b 電圧検出部
24a,24b,32,33 PMOS
30 電圧制御部
34 演算増幅器
40 昇圧部
1a, 1b LED string 10a, 10b Constant current part 11a, 11b NMOS
12a, 12b Resistors 20a, 20b Voltage detectors 24a, 24b, 32, 33 PMOS
30 Voltage Controller 34 Operational Amplifier 40 Booster

Claims (4)

並列に接続された複数の発光素子を駆動する発光素子駆動回路であって、
前記各発光素子と共通電位との間に直列に接続され、該発光素子に一定電流を流す複数の定電流部と、
それぞれ検出電圧を出力するための検出ノードを有し、前記発光素子と前記定電流部との接続点の電圧を検出して該検出ノードから該検出電圧を出力する複数の電圧検出部と、
前記各電圧検出部の検出ノードが共通に接続される共通ノードと、
基準電圧と前記共通ノードの電圧との差に対応する制御電圧を出力する電圧制御部と、
入力電圧を前記制御電圧に従って昇圧し、前記複数の発光素子に対する駆動電圧として供給する昇圧部とを備え、
前記共通ノードの電圧が前記基準電圧に等しくなるように、前記制御電圧によって前記昇圧部から出力される前記駆動電圧が制御されることを特徴とする発光素子駆動回路。
A light emitting element driving circuit for driving a plurality of light emitting elements connected in parallel,
A plurality of constant current portions connected in series between each of the light emitting elements and a common potential, and allowing a constant current to flow through the light emitting elements;
A plurality of voltage detection units each having a detection node for outputting a detection voltage, detecting a voltage at a connection point between the light emitting element and the constant current unit and outputting the detection voltage from the detection node;
A common node to which detection nodes of the respective voltage detection units are connected in common;
A voltage controller that outputs a control voltage corresponding to a difference between a reference voltage and a voltage of the common node;
A booster that boosts an input voltage in accordance with the control voltage and supplies the input voltage as a drive voltage for the plurality of light emitting elements;
The light emitting element driving circuit, wherein the driving voltage output from the boosting unit is controlled by the control voltage so that the voltage of the common node becomes equal to the reference voltage.
前記各定電流部は、前記発光素子と共通電位との間に直列に接続された第1のトランジスタと抵抗を有し、該抵抗に流れる電流が前記一定電流となるように、該第1のトランジスタの導通状態を制御するように構成され、
前記各電圧検出部は、ソース電極が前記検出ノードに接続され、ドレイン電極が前記共通電位に接続された第2のトランジスタを有し、前記発光素子と前記定電流部との接続点の電圧に基づく電圧が該ソース電極から出力されるように該第2のトランジスタの導通状態を制御するように構成され、
前記電圧制御部は、ソース電極がプルアップされ、ドレイン電極が前記共通電位に接続され、ゲート電極に参照電圧が与えられて該ソース電極から前記基準電圧を出力する第3のトランジスタと、該基準電圧と前記共通ノードの電圧との差に応じて前記制御電圧を出力する演算増幅器とで構成される、
ことを特徴とする請求項1に記載の発光素子駆動回路。
Each of the constant current portions includes a first transistor and a resistor connected in series between the light emitting element and a common potential, and the first current is set so that a current flowing through the resistor becomes the constant current. Configured to control the conduction state of the transistor;
Each of the voltage detection units includes a second transistor having a source electrode connected to the detection node and a drain electrode connected to the common potential, and is connected to a voltage at a connection point between the light emitting element and the constant current unit. Configured to control a conduction state of the second transistor such that a voltage based on the second transistor is output from the source electrode;
The voltage control unit includes a third transistor in which a source electrode is pulled up, a drain electrode is connected to the common potential, a reference voltage is applied to a gate electrode, and the reference voltage is output from the source electrode; An operational amplifier that outputs the control voltage according to a difference between a voltage and a voltage of the common node;
The light-emitting element driving circuit according to claim 1.
前記参照電圧は、前記定電流部の抵抗に前記一定電流が流れたときに該抵抗に生ずる電圧に前記第1のトランジスタのオン抵抗に掛かる電圧を加えた電圧と同じ値に設定されることを特徴とする請求項2に記載の発光素子駆動回路。   The reference voltage is set to the same value as a voltage obtained by adding a voltage applied to the on-resistance of the first transistor to a voltage generated in the resistor when the constant current flows through the resistor of the constant current unit. The light emitting element drive circuit according to claim 2, wherein 前記発光素子は、白色発光ダイオードであることを特徴とする請求項1乃至3のいずれか1項に記載の発光素子駆動回路。   The light emitting element driving circuit according to claim 1, wherein the light emitting element is a white light emitting diode.
JP2008277106A 2008-10-28 2008-10-28 Circuit for driving light emitting element Withdrawn JP2010109006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277106A JP2010109006A (en) 2008-10-28 2008-10-28 Circuit for driving light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277106A JP2010109006A (en) 2008-10-28 2008-10-28 Circuit for driving light emitting element

Publications (1)

Publication Number Publication Date
JP2010109006A true JP2010109006A (en) 2010-05-13

Family

ID=42298182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277106A Withdrawn JP2010109006A (en) 2008-10-28 2008-10-28 Circuit for driving light emitting element

Country Status (1)

Country Link
JP (1) JP2010109006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263671B1 (en) 2011-07-05 2013-05-22 전북대학교산학협력단 Feedback circuit and LED backlight driving device applying the same
KR101304436B1 (en) * 2011-06-24 2013-09-05 주식회사 디엠비테크놀로지 LED Driving System and Driving Control Method therefor
JP2013545216A (en) * 2010-09-22 2013-12-19 オスラム・シルバニア・インコーポレイテッド Auto-sensing switching regulator that drives the light source via a current regulator
US8981652B2 (en) 2012-01-11 2015-03-17 Samsung Electronics Co., Ltd. Apparatus and method for compensating current deviation
JP2018022717A (en) * 2016-08-01 2018-02-08 株式会社島津製作所 Semiconductor light-emitting device drive circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545216A (en) * 2010-09-22 2013-12-19 オスラム・シルバニア・インコーポレイテッド Auto-sensing switching regulator that drives the light source via a current regulator
KR101304436B1 (en) * 2011-06-24 2013-09-05 주식회사 디엠비테크놀로지 LED Driving System and Driving Control Method therefor
KR101263671B1 (en) 2011-07-05 2013-05-22 전북대학교산학협력단 Feedback circuit and LED backlight driving device applying the same
US8981652B2 (en) 2012-01-11 2015-03-17 Samsung Electronics Co., Ltd. Apparatus and method for compensating current deviation
JP2018022717A (en) * 2016-08-01 2018-02-08 株式会社島津製作所 Semiconductor light-emitting device drive circuit

Similar Documents

Publication Publication Date Title
TWI522011B (en) Adaptive switch mode led driver
US8941325B2 (en) Light emitting device array driver circuit and current splitter circuit and method of splitting current therefor
JP5091567B2 (en) Light-emitting element drive circuit and electronic device
JP5004700B2 (en) Light emitting element driving device
US8493001B2 (en) Control circuit and light emitting diode driver and method using thereof
US20100019687A1 (en) Light emitting diode driving apparatus
US20120126712A1 (en) Light emitting diode driving circuit, and display device having the same
TW201315114A (en) Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
JP2009124125A (en) Apparatus for driving light emitting element
US8742689B2 (en) Light emitting diode driving apparatus
JP2010063332A (en) Load driving device
US8884545B2 (en) LED driving system and driving method thereof
KR20110120623A (en) Driver ic for electrical road and driving method thereof
JP2006202043A (en) Constant current circuit, power apparatus using it, and light emitting device
JP2007242886A (en) Light emitting element driving circuit, and portable device equipped therewith
JP2007215318A (en) Switching regulator
JPWO2011158786A1 (en) Drive device for organic EL element and organic EL lighting device
JP2019071299A (en) Lighting system
KR101087749B1 (en) Apparatus for detecting current, and driver for light emitting diode comprising the same
JP2010109006A (en) Circuit for driving light emitting element
JP5085261B2 (en) Driving circuit
US8853969B1 (en) Light emitting element drive device
KR101247506B1 (en) Driving apparatus for led string
US7948480B2 (en) Current driving circuit
JP4467395B2 (en) Power supply

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110