JP2010108886A - Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same - Google Patents

Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same Download PDF

Info

Publication number
JP2010108886A
JP2010108886A JP2008282643A JP2008282643A JP2010108886A JP 2010108886 A JP2010108886 A JP 2010108886A JP 2008282643 A JP2008282643 A JP 2008282643A JP 2008282643 A JP2008282643 A JP 2008282643A JP 2010108886 A JP2010108886 A JP 2010108886A
Authority
JP
Japan
Prior art keywords
ion exchange
membrane
electrolyte membrane
fuel cell
exchange group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282643A
Other languages
Japanese (ja)
Inventor
Masakazu Washio
方一 鷲尾
Akihiro Oshima
明博 大島
Fumiya Shiraki
文也 白木
Yuji Oshima
雄二 大島
Takashi Tawara
隆志 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Xnet Corp
Original Assignee
Waseda University
Xnet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Xnet Corp filed Critical Waseda University
Priority to JP2008282643A priority Critical patent/JP2010108886A/en
Publication of JP2010108886A publication Critical patent/JP2010108886A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell that improves power generation performance by preventing the flooding. <P>SOLUTION: A membrane-electrode assembly 12 includes an anode electrode 15 to which a fuel gas is supplied, a cathode electrode 16 to which an oxidizer gas is supplied, an electrolyte membrane 17 arranged between both electrodes 15, 16 and made of a conductive polymer material including an ion exchange group for conducting protons from the anode electrode 15 to the cathode electrode 16, and binder layers 18, 19 including the ion exchange group and connecting between both electrodes 15, 16 and the electrolyte membrane 17. Concentration of the ion exchange group at a cathode electrode 16 side is set up to be higher than that of the ion exchange group at an anode electrode 15 side regarding the electrolyte membrane 17 and/or the binder layers 18, 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜電極接合体、電解質膜及びこれらを用いた燃料電池に係り、更に詳しくは、フラッディングによる発電性能の低下を抑制することのできる膜電極接合体、電解質膜及びこれらを用いた燃料電池に関する。   The present invention relates to a membrane electrode assembly, an electrolyte membrane, and a fuel cell using the membrane electrode. More specifically, the present invention relates to a membrane electrode assembly, an electrolyte membrane, and a fuel using the membrane electrode assembly that can suppress a decrease in power generation performance due to flooding. It relates to batteries.

固体高分子型燃料電池は、水素を含む燃料ガスが供給されるアノード電極と、酸素を含む酸化剤ガスが供給されるカソード電極と、これら各電極間に設けられた高分子電解質膜とにより構成された膜電極接合体(MEA)を備えている。この固体高分子型燃料電池では、アノード電極側で燃料ガスからプロトン(水素イオン)が分離され、当該プロトンが電解質膜内を伝導してカソード電極側に移動し、当該カソード電極側で酸化剤ガス中の酸素と反応して水が生成され、この化学反応の過程で起電力を発生させる。このような固体高分子型燃料電池では、発電能力を高くしようとすると、カソード電極側の水が過剰に生成され、結果的に発電性能が落ち込むフラッディングと呼ばれる現象を招来する。すなわち、カソード電極で過剰に生成された水は、その近傍の電解質膜内に溜まってしまい、これがカソード電極へのプロトンの移動を阻害することになって、燃料電池の発電性能が低下してしまう。   A polymer electrolyte fuel cell includes an anode electrode supplied with a fuel gas containing hydrogen, a cathode electrode supplied with an oxidant gas containing oxygen, and a polymer electrolyte membrane provided between these electrodes. The membrane electrode assembly (MEA) is provided. In this polymer electrolyte fuel cell, protons (hydrogen ions) are separated from the fuel gas on the anode electrode side, and the protons conduct through the electrolyte membrane and move to the cathode electrode side, and the oxidant gas on the cathode electrode side. It reacts with the oxygen in it to produce water and generates an electromotive force in the course of this chemical reaction. In such a polymer electrolyte fuel cell, when an attempt is made to increase the power generation capacity, water on the cathode electrode side is excessively generated, resulting in a phenomenon called flooding in which the power generation performance falls. That is, the water generated excessively at the cathode electrode accumulates in the electrolyte membrane in the vicinity thereof, which inhibits the movement of protons to the cathode electrode, thereby reducing the power generation performance of the fuel cell. .

ところで、特許文献1には、電解質膜の膜厚方向にイオン交換基量を変化させた複合電解質膜が開示されている。この複合電解質膜は、絶縁性の多孔質材料にイオン交換樹脂を含浸処理して得られるものであって、密度の異なる三種類の多孔質材料を膜厚方向に積層した後でイオン交換樹脂の含浸処理が行われることで、単位重量当たりのイオン交換基量が膜厚方向に増大する複合電解質膜が得られる。
特開2006−147425号公報
By the way, Patent Document 1 discloses a composite electrolyte membrane in which the amount of ion exchange groups is changed in the thickness direction of the electrolyte membrane. This composite electrolyte membrane is obtained by impregnating an insulating porous material with an ion exchange resin, and after laminating three types of porous materials having different densities in the film thickness direction, By performing the impregnation treatment, a composite electrolyte membrane in which the amount of ion exchange groups per unit weight increases in the film thickness direction is obtained.
JP 2006-147425 A

しかしながら、前記特許文献1では、イオン交換基量の多い複合電解質膜の面をアノード側若しくはカソード側のどちら側に配置するか明示されていない。そこで、前述したように、カソード電極側の電解質膜内に水が溜まり易いことを考えると、カソード電極側からアノード電極側への排水促進を考え、アノード電極側が親水性を有するイオン交換基の量が多くなる向きで複合電解質膜を配置することが考えられる。ところが、本発明者らが、鋭意実験研究を行った結果、後述するように、アノード電極側のイオン交換基の濃度をカソード側より高くしても、フラッディングによる発電性能の低下が殆ど改善されないことが判明した。そこで、本発明者らは、逆に、カソード電極側のイオン交換基の濃度をアノード電極側よりも高くすると、最大電流密度が従来の燃料電池よりも上昇し、フラッディングによる発電性能の低下が改善できることを知見した。   However, Patent Document 1 does not clearly indicate which side of the composite electrolyte membrane having a large amount of ion exchange groups is arranged on the anode side or the cathode side. Therefore, as described above, considering that water is likely to accumulate in the electrolyte membrane on the cathode electrode side, considering the promotion of drainage from the cathode electrode side to the anode electrode side, the amount of ion-exchange groups having hydrophilicity on the anode electrode side. It is conceivable to dispose the composite electrolyte membrane in such a direction as to increase the amount. However, as a result of intensive experiment research conducted by the present inventors, even if the ion exchange group concentration on the anode electrode side is made higher than that on the cathode side, as will be described later, the decrease in power generation performance due to flooding is hardly improved. There was found. Therefore, conversely, when the concentration of the ion exchange group on the cathode electrode side is higher than that on the anode electrode side, the present inventors increase the maximum current density as compared with the conventional fuel cell and improve the decrease in power generation performance due to flooding. I found out that I can do it.

また、前記特許文献1の複合電解質膜にあっては、無機材料からなる多孔質材料に、有機材料からなるイオン交換樹脂を付着させることになるため、その接着性が良好でなく、水や熱によるイオン交換樹脂の膨張収縮により、イオン交換樹脂が多孔質材料から剥離し易いという不都合がある。また、多孔質材料が絶縁性を有することから、電解質膜内の導電性部分は、イオン交換樹脂が膜厚方向に連続している部分のみとなり、電解質膜の全領域でプロトンを移動させることができず、有機材料のみからなる固体高分子電解質膜に比べると、同一体積(質量)当たりのイオン伝導度が低く、燃料電池の小型化を阻害する一要因となる。   In the composite electrolyte membrane of Patent Document 1, since an ion exchange resin made of an organic material is attached to a porous material made of an inorganic material, its adhesiveness is not good, and water or heat Due to the expansion and contraction of the ion exchange resin, the ion exchange resin is easily peeled off from the porous material. In addition, since the porous material has insulating properties, the conductive portion in the electrolyte membrane is only the portion where the ion exchange resin is continuous in the film thickness direction, and protons can move in the entire region of the electrolyte membrane. However, the ionic conductivity per volume (mass) is lower than that of a solid polymer electrolyte membrane made of only an organic material, which is one factor that hinders downsizing of the fuel cell.

本発明は、このような課題に着目しつつ、本発明者の知見に基づいて案出されたものであり、その目的は、フラッディングを抑制して発電性能を向上させることができる膜電極接合体、電解質膜及びこれらを用いた燃料電池を提供することにある。   The present invention has been devised based on the knowledge of the present inventor while paying attention to such problems, and the object thereof is a membrane electrode assembly capable of improving power generation performance by suppressing flooding. An electrolyte membrane and a fuel cell using the same are provided.

(1)前記目的を達成するため、本発明は、固体高分子型燃料電池用の膜電極接合体において、
燃料ガスが供給されるアノード電極と、酸化剤ガスが供給されるカソード電極と、これら各電極間に設けられ、前記アノード電極から前記カソード電極にプロトンを伝導させるイオン交換基を含む導電性高分子材料からなる電解質膜と、前記イオン交換基を含み、前記各電極と前記電解質膜とを接合するバインダー層とを備え、
前記電解質膜及び/又は前記バインダー層は、前記カソード電極側の前記イオン交換基の濃度が前記アノード電極側よりも高く設定される、という構成を採っている。
(1) In order to achieve the above object, the present invention provides a membrane electrode assembly for a polymer electrolyte fuel cell,
A conductive polymer including an anode electrode to which fuel gas is supplied, a cathode electrode to which oxidant gas is supplied, and an ion exchange group that is provided between these electrodes and that conducts protons from the anode electrode to the cathode electrode An electrolyte membrane made of a material, and a binder layer that includes the ion exchange group and joins the electrodes and the electrolyte membrane,
The electrolyte membrane and / or the binder layer has a configuration in which the concentration of the ion exchange group on the cathode electrode side is set higher than that on the anode electrode side.

(2)ここで、前記イオン交換基の濃度は、前記アノード電極側から前記カソード側電極側に向かって上昇する、という構成を採ることが好ましい。   (2) Here, it is preferable to adopt a configuration in which the concentration of the ion exchange group increases from the anode electrode side toward the cathode side electrode side.

(3)また、本発明は、固体高分子型燃料電池に用いられるとともに、プロトンを伝導させるイオン交換基を含む導電性高分子材料により形成される電解質膜において、
カソード電極側に位置する膜領域の前記イオン交換基の濃度が、アノード電極側に位置する膜領域よりも高く設定される、という構成を採っている。
(3) Further, the present invention is an electrolyte membrane that is used for a polymer electrolyte fuel cell and is formed of a conductive polymer material including an ion exchange group that conducts protons.
The ion exchange group concentration in the membrane region located on the cathode electrode side is set higher than that in the membrane region located on the anode electrode side.

(4)更に、本発明に係る燃料電池は、前記膜電極接合体又は前記電解質膜を備えた構成が採用されている。   (4) Furthermore, the fuel cell according to the present invention employs a configuration including the membrane electrode assembly or the electrolyte membrane.

本発明によれば、従来に比べ、フラッディングが抑制されて最大電流密度を上昇させることができ、高い電流密度でもフラッディングが起こりにくい高性能の燃料電池を得ることが可能になる。更には、従来のように、ナフィオン(登録商標、デュポン社製)等のパーフルオロスルホン酸系イオン交換樹脂を電解質膜に用いる場合、発電時の燃料電池セルの相対湿度を高く設定する必要があるが(60%以上)、本発明によれば、アノード電極側の加湿のみで足り、燃料電池の低加湿運転が可能となる。   According to the present invention, it is possible to obtain a high-performance fuel cell in which flooding is suppressed and the maximum current density can be increased as compared with the conventional case, and flooding hardly occurs even at a high current density. Furthermore, when a perfluorosulfonic acid ion exchange resin such as Nafion (registered trademark, manufactured by DuPont) is used for the electrolyte membrane as in the past, it is necessary to set the relative humidity of the fuel cell during power generation to be high. However (60% or more), according to the present invention, only humidification on the anode electrode side is sufficient, and low humidification operation of the fuel cell becomes possible.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る固体高分子型燃料電池の要部の概略断面図が示されている。この図において、燃料電池10は、ガス流路11Aが形成された一対のセパレータ11,11と、これらセパレータ11,11の間に配置される膜電極接合体12(MEA)とからなるセルSを備えており、当該セルSが単一若しくは複数個積層されて構成されている。   FIG. 1 shows a schematic cross-sectional view of the main part of the polymer electrolyte fuel cell according to the present embodiment. In this figure, a fuel cell 10 includes a cell S comprising a pair of separators 11, 11 in which a gas flow path 11 A is formed, and a membrane electrode assembly 12 (MEA) disposed between the separators 11, 11. Provided, and the cell S is constituted by a single layer or a plurality of stacked layers.

前記膜電極接合体12は、水素等を含む燃料ガスが一方のセパレータ11のガス流路11Aを通じて供給されるアノード電極15と、酸素等を含む酸化剤ガスが他方のセパレータ11のガス流路11Aを通じて供給されるカソード電極16と、アノード電極15とカソード電極16の間に設けられるとともに、プロトンを伝導させるイオン交換基を含む導電体からなる電解質膜17と、アノード電極15と電解質膜17との間に位置するアノード側バインダー層18と、カソード電極16と電解質膜17との間に位置するカソード側バインダー層19とを備えて構成されている。   The membrane electrode assembly 12 includes an anode electrode 15 to which a fuel gas containing hydrogen or the like is supplied through a gas flow path 11A of one separator 11, and an oxidant gas containing oxygen or the like to a gas flow path 11A of the other separator 11. An electrolyte membrane 17 that is provided between the anode electrode 15 and the electrolyte membrane 17. The electrolyte membrane 17 is provided between the anode electrode 15 and the electrolyte membrane 17. An anode side binder layer 18 positioned between them and a cathode side binder layer 19 positioned between the cathode electrode 16 and the electrolyte membrane 17 are provided.

前記アノード電極及びカソード電極15,16は、図示省略しているが、電解質膜17側に位置する触媒層と、セパレータ11側に位置するガス拡散層とからなる。触媒層としては、カーボン粒子に白金を担持させてなるものが例示でき、ガス拡散層としては、カーボンクロス、カーボンペーパーからなるものが例示できる。   Although not shown, the anode and cathode electrodes 15 and 16 include a catalyst layer located on the electrolyte membrane 17 side and a gas diffusion layer located on the separator 11 side. Examples of the catalyst layer include those in which platinum is supported on carbon particles, and examples of the gas diffusion layer include those made of carbon cloth and carbon paper.

前記電解質膜17は、スルホン酸基、カルボン酸基等の親水性強酸基からなるイオン交換基を含む有機高分子材料のみにより構成されており、膜中のイオン交換基の濃度は、カソード電極16側に位置する膜領域の方がアノード電極側16に位置する膜領域よりも高く設定されている。   The electrolyte membrane 17 is composed of only an organic polymer material containing an ion exchange group composed of a hydrophilic strong acid group such as a sulfonic acid group or a carboxylic acid group. The concentration of the ion exchange group in the membrane is determined by the cathode electrode 16. The membrane region located on the side is set higher than the membrane region located on the anode electrode side 16.

この電解質膜17は、イオン交換基の濃度が異なる複数の膜体を積層した上で、各膜体を相互に固着することで得られる。当該膜体は、粒子状のイオン交換樹脂からなる添加材を液状のイオン交換材料に添加した混合溶液を熱処理することで得られ、添加材の添加量を変えることで、イオン交換基の濃度が異なる膜体が得られる。   The electrolyte membrane 17 can be obtained by laminating a plurality of membrane bodies having different ion exchange group concentrations and fixing the membrane bodies to each other. The membrane is obtained by heat-treating a mixed solution in which an additive made of particulate ion exchange resin is added to a liquid ion exchange material. By changing the amount of the additive added, the concentration of ion exchange groups can be increased. Different film bodies are obtained.

前記イオン交換材料としては、パーフルオロスルホン酸系のイオン交換材料が挙げられ、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成社製)、フレミオン(登録商標、旭硝子社製)の各分散溶液が挙げられる。また、パーフルオロカルボン酸系のイオン交換材料を用いることもでき、例えば、フレミオン(登録商標、旭硝子社製)の分散溶液が挙げられる。なお、パーフルオロスルホン酸系又はパーフルオロカルボン酸系のイオン交換材料としては、前述の各製品の変成体も含まれ、パーフルオロスルホン酸系とパーフルオロカルボン酸系の各イオン交換材料を混合したものを用いてもよい。   Examples of the ion exchange material include perfluorosulfonic acid type ion exchange materials. For example, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei), Flemion (registered trademark, Asahi Glass Co., Ltd.). Manufactured dispersion). A perfluorocarboxylic acid ion exchange material can also be used, and examples thereof include a dispersion solution of Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.). The perfluorosulfonic acid-based or perfluorocarboxylic acid-based ion exchange material includes modified products of the above-mentioned products, and perfluorosulfonic acid-based and perfluorocarboxylic acid-based ion exchange materials are mixed. A thing may be used.

前記添加材としては、高分子鎖中にスルホン酸、カルボン酸等の強酸基を有するイオン交換樹脂が用いられ、好ましくは、フッ素系のイオン交換樹脂が用いられる。このフッ素系のイオン交換樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン系共重合体(EFTE及びPVdF)、パーフルオロクロロテトラフルオロエチレン(PCTFE)、及びこれらの架橋体等を基材とし、当該基材にスルホン酸基を導入したイオン交換樹脂が挙げられる。なお、架橋体としては、イオン交換基の濃度調整をより正確に行う上で、化学架橋よりも放射線架橋により得られたものが好ましい。   As the additive, an ion exchange resin having a strong acid group such as sulfonic acid or carboxylic acid in the polymer chain is used, and preferably a fluorine ion exchange resin is used. Examples of the fluorine ion exchange resin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene. -Ion exchange resins using tetrafluoroethylene-based copolymers (EFTE and PVdF), perfluorochlorotetrafluoroethylene (PCTFE), and their cross-linked bodies as base materials and having sulfonic acid groups introduced into the base materials. It is done. In addition, as a crosslinked body, when performing the density | concentration adjustment of an ion exchange group more correctly, what was obtained by the radiation crosslinking rather than chemical crosslinking is preferable.

また、前記添加材として、炭化水素系のイオン交換樹脂を用いてもよく、炭化水素系のイオン交換樹脂としては、例えば、ポリエーテルエーテルケトン、ポリイミド、ポリサルホン、或いはポリエーテルイミドをそれぞれ基材とするスルホン酸系のイオン交換樹脂が挙げられる。   Further, as the additive, a hydrocarbon ion exchange resin may be used, and as the hydrocarbon ion exchange resin, for example, polyether ether ketone, polyimide, polysulfone, or polyether imide is used as a base material, respectively. And sulfonic acid-based ion exchange resins.

前記電解質膜17は、以下のように生成される。すなわち、先ず、本出願人が既に提案した特開2004−107461号公報に記載されているように、微粒子化された前記添加材を液状の前記イオン交換材料に添加し、当該イオン交換材料を適切な溶媒で希釈しながら、当該混合溶液中に前記添加材を分散させる。この際、添加材の添加量を変えることで、イオン交換基の濃度の異なる複数種の混合溶液を得た後で、キャスト法等により、各混合溶液中の溶媒をそれぞれ揮発乾燥することにより、イオン交換基の濃度が異なる複数種の膜体が得られる。当該各膜体は、その中の溶媒が完全に揮発する前に積層された上で、更に乾燥して溶媒を完全に揮発させると、各膜体が相互に固着して電解質膜17が得られる。ここで、複数種の膜体の積層時には、カソード電極16側に配置される膜体が、アノード電極15側に配置される膜体よりもイオン交換基の濃度が高くなるように積層される。なお、アノード電極15側に配置される表面側から、カソード電極16側に配置される表面側に向かって、傾斜状或いはステップ状にイオン交換基の濃度が上昇するように各膜体を積層してもよい。   The electrolyte membrane 17 is generated as follows. That is, first, as described in Japanese Patent Application Laid-Open No. 2004-107461 already proposed by the present applicant, the finely divided additive is added to the liquid ion exchange material, and the ion exchange material is appropriately used. The additive is dispersed in the mixed solution while diluting with an appropriate solvent. At this time, by changing the addition amount of the additive, after obtaining a plurality of mixed solutions having different ion exchange group concentrations, the solvent in each mixed solution is volatilely dried by a casting method or the like, A plurality of types of film bodies having different ion exchange group concentrations can be obtained. The respective film bodies are laminated before the solvent therein is completely volatilized, and further dried to completely volatilize the solvent, whereby the respective film bodies are fixed to each other and the electrolyte membrane 17 is obtained. . Here, when a plurality of types of film bodies are laminated, the film bodies arranged on the cathode electrode 16 side are laminated so that the concentration of ion exchange groups is higher than the film bodies arranged on the anode electrode 15 side. Each film body is laminated so that the concentration of ion exchange groups increases in a slope or step from the surface side arranged on the anode electrode 15 side toward the surface side arranged on the cathode electrode 16 side. May be.

次に、イオン交換材料としてナフィオン(登録商標、デュポン社製)の分散溶液を用い、添加材としてスルホン化架橋PTFEを用いた場合における電解質膜17の作製手順の一例を説明する。   Next, an example of a manufacturing procedure of the electrolyte membrane 17 in the case where a dispersion solution of Nafion (registered trademark, manufactured by DuPont) is used as an ion exchange material and sulfonated crosslinked PTFE is used as an additive will be described.

先ず、固体の添加材を破砕して粒径が10μm以下の微粒子状にする。そして、当該微粒子状の添加材をイオン交換材料に添加し、溶媒である1−プロパノールで希釈しながら添加材の濃度が三種類となる混合溶液をそれぞれ得る。そして、キャスト法によって、各混合溶液から1−プロパノールをある程度揮発させ、イオン交換基の濃度が異なる三種類の膜体を得る。更に、膜体内のイオン交換基の濃度が膜厚方向に次第に上昇するように各膜体を積層し、その状態で、140℃の雰囲気中に2時間静置し、各膜体内の1−プロパノールを完全に揮発させて電解質膜17が得られる。   First, the solid additive is crushed into fine particles having a particle size of 10 μm or less. Then, the particulate additive is added to the ion exchange material, and mixed solutions with three concentrations of the additive are obtained while being diluted with 1-propanol as a solvent. And 1-propanol is volatilized to some extent from each mixed solution by the casting method, and three types of film bodies with different concentrations of ion exchange groups are obtained. Furthermore, each film body is laminated so that the concentration of ion exchange groups in the film body gradually increases in the film thickness direction, and in that state, it is left to stand in an atmosphere of 140 ° C. for 2 hours, and 1-propanol in each film body is obtained. Is completely volatilized to obtain the electrolyte membrane 17.

なお、ここでの電解質膜17の作製は、前述の手順に限らず、カソード電極16側の膜領域のイオン交換基の濃度がアノード電極15側の膜領域よりも高くなる電解質膜17が得られる限り、種々の手法を用いることができる。例えば、前述した添加材を用いずに、イオン交換基の濃度が異なる複数種類のイオン交換材料からなる膜体を予め用意し、これら膜体を積層して固着させてもよい。   The production of the electrolyte membrane 17 here is not limited to the procedure described above, and an electrolyte membrane 17 in which the concentration of ion exchange groups in the membrane region on the cathode electrode 16 side is higher than that in the membrane region on the anode electrode 15 side is obtained. As long as various methods can be used. For example, a film body made of a plurality of types of ion exchange materials having different ion exchange group concentrations may be prepared in advance and the film bodies may be laminated and fixed without using the above-described additive.

前記各バインダー層18,19は、アノード電極15及びカソード電極16と、電解質膜17との間にそれぞれ介装されており、各バインダー層18,19を介して、各電極15,16の前記触媒層が電解質膜17の表面に接合するようになっている。   The binder layers 18 and 19 are respectively interposed between the anode electrode 15 and the cathode electrode 16 and the electrolyte membrane 17, and the catalysts of the electrodes 15 and 16 are interposed via the binder layers 18 and 19. The layer is bonded to the surface of the electrolyte membrane 17.

前記バインダー層18,19を生成するためのバインダーとしては、前述のイオン交換材料が用いられる。   As the binder for generating the binder layers 18 and 19, the above-described ion exchange material is used.

ここで、前述の電解質膜17と同様に、各バインダーのイオン交換材料に前述の添加材を添加することで、アノード側バインダー層18よりも、カソード側バインダー層19のイオン交換基の濃度を高くしてもよい。また、このように、各バインダー層18,19のイオン交換基の濃度に差を付けた場合には、電解質膜内でイオン交換基の濃度を前述のように変えなくてもよく、前記イオン交換材料からなる既存の固体高分子電解質膜をそのまま用いることができる。   Here, as in the case of the electrolyte membrane 17 described above, the concentration of the ion exchange groups in the cathode side binder layer 19 is made higher than that in the anode side binder layer 18 by adding the above-described additives to the ion exchange material of each binder. May be. In addition, when the concentration of the ion exchange groups of the binder layers 18 and 19 is made different in this way, the concentration of the ion exchange groups in the electrolyte membrane does not have to be changed as described above. An existing solid polymer electrolyte membrane made of a material can be used as it is.

次に、本発明の一実施例について説明する。   Next, an embodiment of the present invention will be described.

(実施例1)
電解質膜17として、ナフィオン(登録商標)112(デュポン社製)を用い、アノード電極15の触媒層側の表面に、ナフィオン(登録商標、デュポン社製)の分散溶液のみを塗布するとともに、カソード電極16の触媒層側の表面に、スルホン化架橋PTFE微粒子(GY=15kGy、IEC=2.7meq/g、平均粒径サイズ8.88μm)を前記分散溶液に10重量%添加した混合溶液を塗布した。そして、各電極15,16間に電解質膜を挟み込み、80℃、2時間の熱処理を行うことで、各バインダー層18,19を含む膜電極接合体12を形成した。
Example 1
Nafion (registered trademark) 112 (manufactured by DuPont) is used as the electrolyte membrane 17, and only the dispersion solution of Nafion (registered trademark, manufactured by DuPont) is applied to the surface of the anode electrode 15 on the catalyst layer side. A mixed solution in which 10% by weight of sulfonated crosslinked PTFE fine particles (GY = 15 kGy, IEC = 2.7 meq / g, average particle size size 8.88 μm) was added to the dispersion solution was applied to the surface of 16 catalyst layers. . The membrane electrode assembly 12 including the binder layers 18 and 19 was formed by sandwiching the electrolyte membrane between the electrodes 15 and 16 and performing heat treatment at 80 ° C. for 2 hours.

(比較例1)
前記実施例1とは逆に、アノード電極15の触媒層側の表面に、前記実施例1と同様の混合溶液を塗布し、カソード電極16の触媒層側の表面に、前記分散溶液のみを塗布し、その他の条件を前記実施例1と同一として、比較例1に係る膜電極接合体を形成した。
(Comparative Example 1)
Contrary to Example 1, the same mixed solution as in Example 1 is applied to the surface of the anode electrode 15 on the catalyst layer side, and only the dispersion solution is applied to the surface of the cathode electrode 16 on the catalyst layer side. The membrane electrode assembly according to Comparative Example 1 was formed with the other conditions being the same as those in Example 1.

(比較例2)
アノード電極15及びカソード電極16ともに、触媒層側の表面に前記分散溶液のみ塗布し、その他条件を前記実施例1と同一とし、比較例2に係る膜電極接合体を形成した。
(Comparative Example 2)
For both the anode electrode 15 and the cathode electrode 16, only the dispersion solution was applied to the surface on the catalyst layer side, and other conditions were the same as in Example 1 to form a membrane electrode assembly according to Comparative Example 2.

得られた各膜電極接合体それぞれについて、同一の発電条件下で電流密度と電圧の関係を調べた。ここでの発電条件は、アノード電極側に供給される水素ガスとして、0.5MPaで25℃の水中をバブリングし、流量50cc/minで供給し、カソード電極側に供給される酸素として、0.5MPaのドライガスを供給し、燃料電池セルの温度及び相対湿度RHを60℃、16%とした。   Each obtained membrane electrode assembly was examined for the relationship between current density and voltage under the same power generation conditions. The power generation conditions here are as follows: water as a hydrogen gas supplied to the anode electrode side is bubbled in water at 25 ° C. at 0.5 MPa, supplied at a flow rate of 50 cc / min, and oxygen supplied to the cathode electrode side is 0.02%. A dry gas of 5 MPa was supplied, and the temperature and relative humidity RH of the fuel cell were 60 ° C. and 16%.

その結果、図2に示されるように、比較例1及び比較例2に係る膜電極接合体は、最大電流密度が殆ど同一となり、実施例1に係る膜電極接合体12は、比較例1及び比較例2に係る膜電極接合体よりも最大電流密度が高くなった。この結果から、実施例1のように、カソード電極側のイオン交換基の濃度をアノード電極側よりも高くした場合は、アノード電極側及びカソード電極側でイオン交換基の濃度を同一にした比較例2の場合と比較し、フラッディングが改善されて発電効率が向上することが実証された。一方、実施例1とは逆に、アノード電極側のイオン交換基の濃度をカソード電極側よりも高くした比較例1の場合は、アノード電極側及びカソード電極側でイオン交換基の濃度を同一にした比較例2の場合と比較し、フラッディングが殆ど改善されずに発電効率があまり変わらないことが実証された。この理由としては、カソード電極側に生成されてプロトンの移動を阻害する自由水は、カソード電極側のイオン交換基に結合水として取り込まれ、アノード電極側よりもカソード電極側にイオン交換基を多く配置する程、自由水の水分子がイオン交換基に多く取り込まれ易くなり、自由水によって阻害されるプロトンの伝導経路がより多く確保される等が考えられる。   As a result, as shown in FIG. 2, the membrane electrode assemblies according to Comparative Example 1 and Comparative Example 2 have almost the same maximum current density, and the membrane electrode assembly 12 according to Example 1 has Comparative Example 1 and The maximum current density was higher than that of the membrane / electrode assembly according to Comparative Example 2. From this result, when the concentration of the ion exchange group on the cathode electrode side was made higher than that on the anode electrode side as in Example 1, the comparative example in which the concentration of ion exchange groups was made the same on the anode electrode side and the cathode electrode side. Compared with the case of 2, it was proved that flooding was improved and power generation efficiency was improved. On the other hand, in contrast to Example 1, in the case of Comparative Example 1 in which the concentration of ion exchange groups on the anode electrode side is higher than that on the cathode electrode side, the concentration of ion exchange groups is the same on the anode electrode side and the cathode electrode side. Compared to the case of Comparative Example 2, it was proved that the power generation efficiency did not change so much as the flooding was hardly improved. The reason for this is that free water that is generated on the cathode electrode side and inhibits the movement of protons is taken into the ion exchange group on the cathode electrode side as bound water, and there are more ion exchange groups on the cathode electrode side than on the anode electrode side. It can be considered that the more the water molecules are arranged, the more water molecules of free water are more easily taken into the ion exchange groups, and more proton conduction paths that are inhibited by free water are secured.

従って、本実施形態によれば、従来よりもフラッディングを抑制することができ、燃料電池の発電効率を高めることができるという効果を得る。   Therefore, according to the present embodiment, flooding can be suppressed as compared with the conventional case, and the power generation efficiency of the fuel cell can be improved.

なお、電解質膜内において、カソード電極側のイオン交換基の濃度をアノード電極側よりも高くした場合においても、前述と同様の結果が得られると思われる。   In addition, even when the concentration of the ion exchange group on the cathode electrode side is higher than that on the anode electrode side in the electrolyte membrane, the same result as described above seems to be obtained.

また、本発明の構成は前述の態様に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   Further, the configuration of the present invention is not limited to the above-described embodiment, and various modifications are possible as long as substantially the same operation is achieved.

本実施形態に係る固体高分子型燃料電池の要部の概略断面図。1 is a schematic cross-sectional view of a main part of a polymer electrolyte fuel cell according to an embodiment. 実施例及び比較例の膜電極接合体における電流密度と電圧の関係を示すI−V曲線。The IV curve which shows the relationship between the current density and voltage in the membrane electrode assembly of an Example and a comparative example.

符号の説明Explanation of symbols

10 燃料電池
12 膜電極接合体
15 アノード電極
16 カソード電極
17 電解質膜
18 アノード側バインダー層
19 カソード側バインダー層
DESCRIPTION OF SYMBOLS 10 Fuel cell 12 Membrane electrode assembly 15 Anode electrode 16 Cathode electrode 17 Electrolyte membrane 18 Anode side binder layer 19 Cathode side binder layer

Claims (5)

固体高分子型燃料電池用の膜電極接合体において、
燃料ガスが供給されるアノード電極と、酸化剤ガスが供給されるカソード電極と、これら各電極間に設けられ、前記アノード電極から前記カソード電極にプロトンを伝導させるイオン交換基を含む導電性高分子材料からなる電解質膜と、前記イオン交換基を含み、前記各電極と前記電解質膜とを接合するバインダー層とを備え、
前記電解質膜及び/又は前記バインダー層は、前記カソード電極側の前記イオン交換基の濃度が前記アノード電極側よりも高く設定されていることを特徴とする膜電極接合体。
In a membrane electrode assembly for a polymer electrolyte fuel cell,
A conductive polymer including an anode electrode to which fuel gas is supplied, a cathode electrode to which oxidant gas is supplied, and an ion exchange group that is provided between these electrodes and that conducts protons from the anode electrode to the cathode electrode An electrolyte membrane made of a material, and a binder layer that includes the ion exchange group and joins the electrodes and the electrolyte membrane,
The membrane electrode assembly, wherein the electrolyte membrane and / or the binder layer is set such that the concentration of the ion exchange group on the cathode electrode side is higher than that on the anode electrode side.
前記イオン交換基の濃度は、前記アノード電極側から前記カソード側電極側に向かって上昇することを特徴とする請求項1記載の膜電極接合体。   The membrane electrode assembly according to claim 1, wherein the concentration of the ion exchange group increases from the anode electrode side toward the cathode electrode side. 固体高分子型燃料電池に用いられるとともに、プロトンを伝導させるイオン交換基を含む導電性高分子材料により形成される電解質膜において、
カソード電極側に位置する膜領域の前記イオン交換基の濃度が、アノード電極側に位置する膜領域よりも高く設定されていることを特徴とする電解質膜。
In an electrolyte membrane formed of a conductive polymer material that is used in a polymer electrolyte fuel cell and includes an ion exchange group that conducts protons,
The electrolyte membrane, wherein the concentration of the ion exchange group in the membrane region located on the cathode electrode side is set higher than that in the membrane region located on the anode electrode side.
請求項1又は2記載の膜電極接合体を備えたことを特徴とする燃料電池。   A fuel cell comprising the membrane electrode assembly according to claim 1. 請求項3記載の電解質膜を備えたことを特徴とする燃料電池。   A fuel cell comprising the electrolyte membrane according to claim 3.
JP2008282643A 2008-11-03 2008-11-03 Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same Pending JP2010108886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282643A JP2010108886A (en) 2008-11-03 2008-11-03 Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282643A JP2010108886A (en) 2008-11-03 2008-11-03 Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2010108886A true JP2010108886A (en) 2010-05-13

Family

ID=42298108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282643A Pending JP2010108886A (en) 2008-11-03 2008-11-03 Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2010108886A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023661A (en) * 1999-07-02 2001-01-26 Toyota Motor Corp Fuel cell and solid polymer electrolyte membrane
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2007073350A (en) * 2005-09-07 2007-03-22 Toyota Motor Corp Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, membrane-electrode assembly (mea), and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023661A (en) * 1999-07-02 2001-01-26 Toyota Motor Corp Fuel cell and solid polymer electrolyte membrane
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2007073350A (en) * 2005-09-07 2007-03-22 Toyota Motor Corp Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, membrane-electrode assembly (mea), and fuel cell

Similar Documents

Publication Publication Date Title
Oshiba et al. Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells
Fu et al. Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells
JP6312666B2 (en) Ion conductive membrane
JP5109311B2 (en) Membrane electrode assembly and fuel cell using the same
JP5379786B2 (en) Organic / inorganic hybrid proton exchange membrane
JP5165205B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
PatiL et al. A review on the fuel cells development
Kinoshita et al. Development of PFSA Ionomers for the Membrane and the Electrodes
JP2011071068A (en) Direct oxidation type fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
KR100832213B1 (en) Direct oxidation fuel cell and production method thereof
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP2007234359A (en) Membrane electrode assembly for solid polymer fuel cell
US8778557B2 (en) Membrane electrode assembly for fuel cell and fuel cell using the same
KR20160039375A (en) Electrolyte membrane for fuel cell and preparation method thereof
JP2011171301A (en) Direct oxidation fuel cell
JP2009070630A (en) Ionic polymer particle dispersion and method for producing the same
Kinoshita et al. (Plenary) Development of PFSA Ionomers and Their Use in Fuel Cells
JP2003142124A (en) Electrolyte film and solid high polymer type fuel cell using the same
JP2010108886A (en) Membrane-electrode assembly, electrolyte membrane, and fuel cell using the same
JP5458774B2 (en) Electrolyte membrane-electrode assembly
JP2008146859A (en) Membrane-electrode assembly and fuel cell having it
JP2007073337A (en) Film/electrode assembly for direct methanol type fuel cell, and direct methanol type fuel cell using the same
JP5870495B2 (en) POLYMER ELECTROLYTE, MEMBRANE ELECTRODE ASSEMBLY USING THE POLYMER ELECTROLYTE, AND FUEL CELL
JP2004349180A (en) Membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130628