JP2010107309A - On-vehicle radar device - Google Patents

On-vehicle radar device Download PDF

Info

Publication number
JP2010107309A
JP2010107309A JP2008278605A JP2008278605A JP2010107309A JP 2010107309 A JP2010107309 A JP 2010107309A JP 2008278605 A JP2008278605 A JP 2008278605A JP 2008278605 A JP2008278605 A JP 2008278605A JP 2010107309 A JP2010107309 A JP 2010107309A
Authority
JP
Japan
Prior art keywords
distance
radar device
vehicle
signal
transmission pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278605A
Other languages
Japanese (ja)
Other versions
JP5351492B2 (en
Inventor
Taiichi Nobemoto
泰一 延本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008278605A priority Critical patent/JP5351492B2/en
Publication of JP2010107309A publication Critical patent/JP2010107309A/en
Application granted granted Critical
Publication of JP5351492B2 publication Critical patent/JP5351492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress malfunction by reducing external noises without lowering radar performance, and to secure sufficient distance-measurement accuracy, even under an environment wherein an influence by the external noise is changed. <P>SOLUTION: Integration averaging processing for noise reduction following a vehicle speed signal is executed to frame data having a time correlation with a transmission pulse by a signal processing part 6a of a computing device 6, to thereby reduce noises of a distance-measuring signal, and a distance to an obstacle 10 is operated based on the distance-measuring signal by a distance measuring part 6b. The number of times of repetition of the integration averaging processing is restricted by a block period control part 6c so that a multiplication value between a transmission pulse generation period and the number of times of repetition satisfy a condition based on a distance resolution and vehicle speed, and even in an environment having many external noises, the noises are reduced without lowering the radar performance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ターゲットに放射したレーダ電波の反射波を受信して測距を行う車載レーダ装置に関する。   The present invention relates to an on-vehicle radar device that receives a reflected wave of a radar radio wave radiated to a target and performs distance measurement.

従来から、無線技術は、レーダのみならず、通信や放送など様々な用途で使用されている。それぞれの用途における無線機においては、必要な電波以外はノイズとして扱われ、このノイズの影響により所望の動作が阻害されたり、誤動作を引き起こしたりすることがある。また、それぞれの電波の強度は電波の用途や場所により異なり、ノイズの影響も場所により一定ではない。   Conventionally, wireless technology is used not only for radar but also for various purposes such as communication and broadcasting. In a radio device for each application, a signal other than necessary radio waves is treated as noise, and the influence of the noise may inhibit a desired operation or cause a malfunction. In addition, the intensity of each radio wave varies depending on the use and location of the radio wave, and the influence of noise is not constant depending on the location.

このようなノイズの影響を抑制する方法として、例えば特許文献1には、ノイズ信号に対して一定時間に所定の回数をサンプリングしてメモリに蓄え、その値を用いてノイズレベルを計算し、通信の適用範囲(距離)を限定する無線装置が開示されており、ノイズによる誤動作を防止することができる。
特開平9−46247号公報
As a method of suppressing the influence of such noise, for example, in Patent Document 1, a predetermined number of times is sampled with respect to a noise signal and stored in a memory, a noise level is calculated using the value, and communication is performed. A wireless device that limits the application range (distance) of the device is disclosed, and malfunction due to noise can be prevented.
Japanese Patent Laid-Open No. 9-46247

しかしながら、特許文献1に開示されているような誤動作防止のために適用範囲を限定する技術では、レーダ装置に適用した場合、レーダを使用する環境によって測距範囲が変化することになり、レーダの性能を大きく低下させる虞がある。   However, in the technology that limits the application range for preventing malfunction as disclosed in Patent Document 1, when applied to a radar apparatus, the ranging range changes depending on the environment in which the radar is used, There is a risk that the performance is greatly reduced.

本発明は上記事情に鑑みてなされたもので、外来ノイズによる影響が変化する環境下においてもレーダ性能を適切に確保した上で外来ノイズを低減して誤動作を抑制し、十分な測距精度を確保することのできる車載レーダ装置を提供することを目的としている。   The present invention has been made in view of the above circumstances.In an environment in which the influence of external noise changes, the radar performance is appropriately ensured, and the external noise is reduced to suppress malfunction, thereby providing sufficient ranging accuracy. An object of the present invention is to provide an on-vehicle radar device that can be secured.

上記目的を達成するため、本発明による車載レーダ装置は、車両に搭載され、ターゲットに放射した送信パルスの反射波を受信して測距を行う車載レーダ装置であって、所定の期間をブロック周期として設定し、該ブロック周期内の受信データを統計処理し、該送信パルスと時間相関を有しないノイズ信号を除去して時間相関を有する測距信号を抽出する信号処理部と、上記ブロック周期を、測距時の車速と距離分解能とに基づいて制御するブロック周期制御部とを備えたことを特徴とする。   In order to achieve the above object, an on-vehicle radar device according to the present invention is mounted on a vehicle and receives a reflected wave of a transmission pulse radiated to a target to measure a distance, and a predetermined period is a block period. A signal processing unit that statistically processes received data within the block period, removes a noise signal that does not have time correlation with the transmission pulse, and extracts a distance measurement signal that has time correlation; and the block period A block cycle control unit that controls the vehicle speed based on the vehicle speed and distance resolution at the time of distance measurement is provided.

本発明によれば、外来ノイズによる影響が変化する環境下においてもレーダ性能を適切に確保した上で外来ノイズを低減して誤動作を抑制することができ、十分な測距精度を確保することができる。   According to the present invention, it is possible to suppress malfunctions by reducing external noise while ensuring radar performance appropriately even in an environment where the influence of external noise changes, and to ensure sufficient ranging accuracy. it can.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図6は本発明の実施の一形態に係り、図1は車載レーダ装置の構成図、図2は信号処理のフローチャート、図3は反復回数設定処理のフローチャート、図4はノイズ無し環境下でのフレームデータを示す説明図、図5は積算平均処理のブロック化を示す説明図、図6はノイズ有り環境下での積算平均処理前後のフレームデータを示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 relate to an embodiment of the present invention, FIG. 1 is a configuration diagram of an on-vehicle radar device, FIG. 2 is a flowchart of signal processing, FIG. 3 is a flowchart of iteration count setting processing, and FIG. FIG. 5 is an explanatory diagram showing the frame data below, FIG. 5 is an explanatory diagram showing the block of the integration averaging process, and FIG. 6 is an explanatory diagram showing the frame data before and after the integration averaging process in a noisy environment.

本発明による車載レーダ装置は、自動車等の車両に搭載され、障害物等のターゲットに対する測距を、パルスエコー方式すなわちパルス信号がターゲットから反射されて受信されるまでの時間差から距離を算出する方式で行うものである。特に、外来ノイズの影響を受けやすい微弱無線方式、例えば300MHz帯や3GHz帯を採用する場合に、レーダ性能の低下を回避して安定した測距精度を確保することができる。図1に示すように、本実施の形態におけるレーダ装置1は、パルス状のレーダ波を放射する送信アンテナ2と、障害物10からの反射波を受信する受信アンテナ3とを備えている。   An on-vehicle radar device according to the present invention is mounted on a vehicle such as an automobile, and measures a distance from a target such as an obstacle by calculating a distance from a pulse echo method, that is, a time difference until a pulse signal is reflected from the target and received. Is what you do. In particular, when a weak wireless system that is easily affected by external noise, such as a 300 MHz band or a 3 GHz band, is adopted, a stable ranging accuracy can be ensured by avoiding a decrease in radar performance. As shown in FIG. 1, the radar apparatus 1 according to the present embodiment includes a transmission antenna 2 that radiates a pulsed radar wave and a reception antenna 3 that receives a reflected wave from an obstacle 10.

このレーダ装置1の主要機能部は、主として、送信パルスを生成して送信アンテナ2に出力する送信回路4、受信アンテナ3からの信号を取り込み、デジタル化したフレームデータとして出力する受信回路5、送信回路4へ送信パルスを生成するためのクロック信号を出力すると共に、受信回路5から出力されるフレームデータを処理して測距を行う演算装置6から構成されている。演算装置6は、マイクロコンピュータ等から構成され、図示しない車両の制御装置にインターフェース(I/F)回路7を介して接続され、車両の制御装置から車速データを取得する。   The main functional units of the radar apparatus 1 mainly include a transmission circuit 4 that generates transmission pulses and outputs them to the transmission antenna 2, a reception circuit 5 that takes in signals from the reception antenna 3 and outputs them as digitized frame data, and transmission. A clock signal for generating a transmission pulse is output to the circuit 4, and an arithmetic unit 6 that performs distance measurement by processing frame data output from the receiving circuit 5 is configured. The arithmetic device 6 is constituted by a microcomputer or the like, and is connected to a vehicle control device (not shown) via an interface (I / F) circuit 7 to acquire vehicle speed data from the vehicle control device.

送信回路4は、演算装置6からのクロック信号を元にして送信パルスを生成し、この送信パルスによるレーダ電波を送信アンテナ2から周期的に放出する。受信回路5は、送信アンテナ2から放出されてターゲット(障害物)で反射された反射パルスと外来ノイズを受信パルスとして受信アンテナ3を介して取り込む。この受信回路5で取り込まれる受信パルスは、等価時間サンプリングにより処理される。すなわち、受信パルスは送信パルスに対してタイミングを少しずつ遅延させながらサンプルホールドされ、送信パルスと時間相関を持つフレームデータとして演算装置6に出力される。   The transmission circuit 4 generates a transmission pulse based on the clock signal from the arithmetic device 6, and periodically emits a radar radio wave from the transmission pulse from the transmission antenna 2. The receiving circuit 5 captures the reflected pulse and the external noise emitted from the transmitting antenna 2 and reflected by the target (obstacle) through the receiving antenna 3 as a received pulse. The reception pulse captured by the reception circuit 5 is processed by equivalent time sampling. In other words, the received pulse is sampled and held while delaying the timing little by little with respect to the transmitted pulse, and output to the arithmetic unit 6 as frame data having a time correlation with the transmitted pulse.

演算装置6は、送信パルスと時間相関を持つフレームデータに対して、車速信号に従ったノイズ低減の統計的処理(本実施の形態においては積算平均処理)を実施する信号処理部6a、信号処理部6aでノイズ低減処理された測距信号に基づいて障害物10までの距離を演算する測距部6b、信号処理部6aにおける積算平均処理に係る後述のブロック周期を制御するブロック周期制御部cを備えて構成されている。   The arithmetic unit 6 performs a signal processing unit 6a that performs statistical processing (accumulation averaging processing in the present embodiment) of noise reduction according to the vehicle speed signal on the frame data having time correlation with the transmission pulse, A distance measuring unit 6b that calculates the distance to the obstacle 10 based on the distance measurement signal that has been subjected to noise reduction processing by the unit 6a, and a block period control unit c that controls a later-described block period related to an integration averaging process in the signal processing unit 6a. It is configured with.

一般に、外来ノイズは、送信パルスに対して無相関なランダム信号であり、障害物を認識し、測距反応として観測できる変化とは無関係に信号上にのってくる。従って、信号処理部6aでノイズレベルに応じた反復回数の積算平均処理を行うことにより、送信パルス周期と時間的相関のある反射パルスに影響を与えることなく、時間相関のない外来ノイズを反復回数に応じて減少させることができ、結果として信号対雑音比であるS/N比を改善することができる。   In general, the external noise is a random signal that is uncorrelated with the transmission pulse, and is recognized on the signal regardless of a change that can be observed as a ranging response. Accordingly, the signal processing unit 6a performs the process of integrating and averaging the number of iterations according to the noise level, so that the external noise having no time correlation is repeated the number of times without affecting the reflected pulse having a temporal correlation with the transmission pulse period. As a result, the S / N ratio which is a signal-to-noise ratio can be improved.

尚、本実施の形態における積算平均処理とは、同期加算処理ともいう。時間的に繰り返す信号において、繰り返しの周期に同期して標本信号の測定を行い、これを積算平均することを指す。具体的には、サンプリングした複数の受信パルスを、送信パルスのタイミングと同期して加算し、平均処理を行うことである。   Note that the integration averaging process in the present embodiment is also referred to as a synchronous addition process. For a signal that repeats in time, the sample signal is measured in synchronism with the repetition period, and this is integrated and averaged. Specifically, a plurality of sampled reception pulses are added in synchronization with the timing of the transmission pulse, and an average process is performed.

ここで、電波の進む速度は、光速である3.0×108m/secであり、通常必要とされる距離分解能、例えば距離分解能として10cm程度を例に取ると、電波が10cmの距離を進む時間は、0.33nsecである。従って、通常要求される分解能に相当する距離を電波が進む時間は車速と比較して十分に大きく、積算平均処理を行う過程において車両とターゲットとの距離は一定と見なすことができる。 Here, the traveling speed of the radio wave is 3.0 × 10 8 m / sec, which is the speed of light, and the distance resolution normally required, for example, about 10 cm as the distance resolution, is taken as an example. The advance time is 0.33 nsec. Therefore, the time during which the radio wave travels the distance corresponding to the normally required resolution is sufficiently longer than the vehicle speed, and the distance between the vehicle and the target can be regarded as constant in the process of performing the averaging process.

この場合、積算平均処理における反復回数を多くする程、S/N比は向上するが、反復回数を多くし過ぎると、車速の影響が大きくなって、積算平均処理を行う過程において車両とターゲットとの距離が一定とは見なせなくなる。このため、信号処理部6aの積算平均処理における反復回数kは、送信パルス発生周期Tpと反復回数kの乗算値Bfが、距離分解能Rと車速Vとに基づく以下の(1)式の条件を満足するよう、ブロック周期制御部6cによって制限される。
Bf≦R/V …(1)
In this case, the S / N ratio increases as the number of iterations in the averaging process is increased. However, if the number of iterations is increased too much, the influence of the vehicle speed increases, and the vehicle and the target in the process of performing the averaging process. The distance cannot be considered constant. For this reason, the number of iterations k in the integration averaging process of the signal processing unit 6a satisfies the condition of the following expression (1) based on the multiplication value Bf of the transmission pulse generation period Tp and the number of iterations k based on the distance resolution R and the vehicle speed V. It is limited by the block cycle control unit 6c to satisfy.
Bf ≦ R / V (1)

本実施の形態においては、積算平均処理の高速化のため、1つ以上のフレームデータをまとめて、1つのブロックとして扱う。送信パルス発生周期Tpと反復回数kとの乗算値Bfをブロック周期として、このブロック周期Bfが(1)式の条件を満足するよう、ブロック周期制御部6cによって可変制御される。これにより、外来ノイズの多い環境下においても、レーダ性能を適切に確保した上でノイズを低減することができる。   In the present embodiment, one or more pieces of frame data are collectively handled as one block in order to speed up the averaging process. The multiplication value Bf of the transmission pulse generation period Tp and the number of repetitions k is used as a block period, and the block period control unit 6c variably controls the block period Bf so that the condition of the expression (1) is satisfied. Thereby, even in an environment with a lot of external noise, it is possible to reduce the noise while ensuring the radar performance appropriately.

すなわち、反復回数kは、以下の(1')式に示すとおり、車速Vと送信パルスの発生周期Tpとの乗算値で、距離分解能Rを除算した値以下に制限される。
k≦R/(V×Tp)…(1')
That is, the number of iterations k is limited to a value obtained by dividing the distance resolution R by the product of the vehicle speed V and the transmission pulse generation period Tp, as shown in the following equation (1 ′).
k ≦ R / (V × Tp) (1 ′)

つまり、車速が上がるとブロック周期は小さく(短く)なり、逆に車速が下がるとブロック周期は大きく(長く)なる。よって、積算平均処理を行う過程において、車両とターゲットとの距離がブロック周期の間に移動する距離を一定の範囲に留めることができる。これにより、車速の影響を小さくし、十分な測距精度を確保することができる。   That is, when the vehicle speed increases, the block cycle becomes smaller (shorter), and conversely, when the vehicle speed decreases, the block cycle becomes longer (longer). Therefore, in the process of performing the averaging process, the distance that the distance between the vehicle and the target moves during the block period can be kept within a certain range. Thereby, the influence of the vehicle speed can be reduced and sufficient distance measurement accuracy can be ensured.

また、距離分解能を向上させる、すなわちより小さな距離まで識別できるようにすると、ブロック周期は小さく(短く)なり、逆に距離分解能を下げると、ブロック周期は大きく(長く)なる。よって、積算平均処理を行う過程において、車両とターゲットとの距離がブロック周期の間に移動する距離を一定の範囲に留めることができる。これにより、車両が距離分解能を過剰に超えて移動することを抑制し、十分な測距精度を確保することができる。   Further, if the distance resolution is improved, that is, it is possible to identify a smaller distance, the block cycle becomes smaller (shorter), and conversely, if the distance resolution is lowered, the block cycle becomes larger (longer). Therefore, in the process of performing the averaging process, the distance that the distance between the vehicle and the target moves during the block period can be kept within a certain range. Thereby, it can suppress that a vehicle moves exceeding the distance resolution excessively, and can ensure sufficient ranging accuracy.

尚、或るターゲットに対する測距に際しては、送信パルス発生周期は一定であり、その場合のブロック周期の可変は、ノイズ低減の積算平均処理における反復回数を可変することを意味する。   It should be noted that the transmission pulse generation period is constant for distance measurement with respect to a certain target, and changing the block period in this case means changing the number of iterations in the noise reduction integrated averaging process.

また、反復回数kは整数である方が処理が簡潔になるため好ましい。ただし、特に整数に限る必然性はない。反復回数kが(1)式の条件を満足する限り、kが整数でなく、例えば小数で処理しても問題はない。   Further, it is preferable that the number of iterations k is an integer because the processing becomes simple. However, it is not necessarily limited to integers. As long as the number of iterations k satisfies the condition of the expression (1), k is not an integer, and there is no problem even if it is processed with, for example, a decimal.

更に、演算装置6は、希望信号の周波数と比較して高い周波数成分のノイズに対して、フレームデータの取得時に移動平均処理を行い、高周波数ノイズを低減するようにしている。この移動平均の最大数は、サンプリング時間Tsにおけるフレームデータ数Nfの移動平均量Dmの積算値が以下の(2)式に示す関係を満足するように、距離分解能Rと車速Vとに基づいて定められる。
Dm×Ts×Nf≦R/V …(2)
Further, the arithmetic unit 6 performs a moving average process when acquiring frame data for noise having a frequency component higher than the frequency of the desired signal, thereby reducing high frequency noise. The maximum number of moving averages is based on the distance resolution R and the vehicle speed V so that the integrated value of the moving average amount Dm of the frame data number Nf at the sampling time Ts satisfies the relationship shown in the following equation (2). Determined.
Dm × Ts × Nf ≦ R / V (2)

次に、演算装置6の測距機能に係るソフトウエア処理について、図2に示す信号処理のフローチャート、図3に示す反復回数設定処理のフローチャートを用いて説明する。   Next, software processing related to the distance measuring function of the arithmetic device 6 will be described with reference to a flowchart of signal processing shown in FIG. 2 and a flowchart of iteration number setting processing shown in FIG.

図2に示す信号処理では、先ず、最初のステップS1において、フレームデータを評価信号として取得し、ステップS2で、このフレームデータを評価してノイズの有無を判断する。具体的には、図4に示すように、フレームデータ内に遅延処理により無変化部を設け、この無変化部の反応強度の変化量を評価してノイズの有無を判断する。   In the signal processing shown in FIG. 2, first, in the first step S1, frame data is acquired as an evaluation signal, and in step S2, this frame data is evaluated to determine the presence or absence of noise. Specifically, as shown in FIG. 4, a non-change portion is provided in the frame data by delay processing, and the presence or absence of noise is determined by evaluating the amount of change in the reaction intensity of this non-change portion.

図4はノイズ無し環境下におけるフレームデータを示しており、図中の横軸は距離に対応する時間を示し、縦軸は反応強度を示している。ノイズが無い場合には、フレームデータの無変化部の反応強度には変化が無く、ノイズが有る場合、無変化部の反応強度が変化する。   FIG. 4 shows frame data in a no-noise environment. In the figure, the horizontal axis indicates time corresponding to the distance, and the vertical axis indicates reaction intensity. When there is no noise, there is no change in the reaction intensity of the unchanged part of the frame data, and when there is noise, the reaction intensity of the unchanged part changes.

そして、ステップS2において、フレームデータの無変化部に変化が無い場合には、ステップS3へ進んでフレームデータの無変化部に続く測距信号を取得し、ステップS4で、測距信号の反応強度を評価することにより測距を行う。この測距処理では、送信アンテナ2から送信パルスを出力した時間を基準として、その送信パルスが目標物で反射して受信アンテナ3で受信されるまでの時間(パルス走行時間)を、測距信号の反応強度が所定の閾値を超えるまでの時間で計測し、以下の(3)式に従って距離Lを算出する。
L=c×Tr/2 …(3)
但し、c :光速(3.0×108m/sec)
Tr:送信パルスから受信パルスまでのパルス走行時間
In step S2, if there is no change in the unchanged portion of the frame data, the process proceeds to step S3 to acquire a ranging signal following the unchanged portion of the frame data, and in step S4, the response intensity of the ranging signal Ranging is performed by evaluating. In this distance measurement process, the time (pulse travel time) from when the transmission pulse is reflected by the target to be received by the reception antenna 3 on the basis of the time when the transmission pulse is output from the transmission antenna 2 is determined as a distance measurement signal. Measured in the time until the reaction intensity exceeds a predetermined threshold, and the distance L is calculated according to the following equation (3).
L = c × Tr / 2 (3)
Where c: speed of light (3.0 × 10 8 m / sec)
Tr: Pulse travel time from transmission pulse to reception pulse

一方、ステップS2において、フレームデータの無変化部に反応強度の変化が有った場合には、ノイズ有りと判断してステップS5へ進む。ステップS5では、ノイズレベル評価のための積算平均処理の繰り返し反復回数を、図3のフローチャートに示す反復回数設定処理により、予め設定したノイズレベルの段階に応じて設定する。そして、ステップS6の測距信号の取得からステップS7の反復回数確認のループを経て反復回数分のフレームデータを取得し、積算平均処理により時間相関のないランダムノイズを除去した後、ステップS8で測距反応を計算する。このステップS8における測距処理は、前述したステップS4と同様である。   On the other hand, if there is a change in the reaction intensity in the unchanged part of the frame data in step S2, it is determined that there is noise and the process proceeds to step S5. In step S5, the number of iterations of the integration averaging process for noise level evaluation is set according to the preset level of the noise level by the iteration number setting process shown in the flowchart of FIG. Then, frame data corresponding to the number of iterations is obtained through the loop of the distance measurement signal acquisition in step S6 to the iteration number confirmation loop in step S7, and random noise having no time correlation is removed by integration averaging processing, and then measurement is performed in step S8. Calculate the distance response. The distance measurement process in step S8 is the same as step S4 described above.

本実施の形態においては、積算平均処理の高速化のためにフレームをブロックとして扱っており、図3の反復回数設定処理においては、前述の(1)式の条件による反復回数の制限内で、ノイズレベルに応じた回数を設定するようにしている。   In the present embodiment, the frame is handled as a block for speeding up the integration averaging process. In the iteration count setting process of FIG. 3, within the limit of the iteration count according to the condition of the above-described equation (1), The number of times according to the noise level is set.

具体的には、反復回数設定処理では、先ず、最初のステップS11でフレームデータの無変化部の反応強度の変化量Δを計算し、次に、ステップS12で変化量Δがレベル1の閾値Z1を超えているか否かを調べる。その結果、Δ≦Z1の場合には、ステップS13で積算平均処理の反復回数を21回に設定する。 Specifically, in the iteration number setting process, first, the change amount Δ of the reaction intensity of the unchanged portion of the frame data is calculated in the first step S11, and then the threshold value Z1 of which the change amount Δ is the level 1 in step S12. Check whether or not. As a result, in the case of delta ≦ Z1 is set to 2 one iteration number of integration average processing in step S13.

一方、ステップS12においてΔ>Z1の場合には、ステップS12からステップS14へ進んで変化量Δがレベル2の閾値Z2を超えているか否かを調べ、Δ≦Z2の場合、ステップS15で反復回数を22回に設定する。Δ>Z2の場合には、同様の処理でノイズレベルに応じた反復回数を設定し、最終的に最大となるノイズレベルnに達したとき(ステップS16_n)、ステップS16_n+1で反復回数を2n回に設定する。 On the other hand, if Δ> Z1 in step S12, the process proceeds from step S12 to step S14 to check whether or not the change amount Δ exceeds the level 2 threshold value Z2, and if Δ ≦ Z2, the number of iterations in step S15. Set to 2 2 times. In the case of Δ> Z2, the number of iterations corresponding to the noise level is set in the same process, and when the noise level n finally reaches the maximum (step S16_n), the number of iterations is set to 2 in step S16_n + 1. Set n times.

すなわち、図5に示すように、例えば8ビットのフレームデータを1ブロックとする場合、外来ノイズのレベルがレベル1以下である場合には、積算平均処理を行うことなく1ブロックのフレームデータを用いて測距を行い、ノイズレベルがレベル2の場合には、最初のフレームデータを2ビットずつシフトした22(=4)個のブロックのフレームデータを積算して平均処理を行う。更に、ノイズレベルがレベル4の場合には、24(=16)個のブロックで積算平均処理を行い、ノイズレベルnの場合、2n個のブロックで積算平均処理を行うことで、ノイズを低減する。このときの積算平均処理の反復回数2nは、レーダ装置1の距離分解能Rと車速Vとによる制限を受ける。例えば、(1)式の条件を満足する最大の整数値、或いはそれ以下の整数値が反復回数として設定される。 That is, as shown in FIG. 5, for example, when 8-bit frame data is set to one block, when the level of external noise is equal to or lower than level 1, one block of frame data is used without performing the averaging process. When the noise level is level 2, the frame data of 2 2 (= 4) blocks obtained by shifting the first frame data by 2 bits are added up and averaged. Further, when the noise level is level 4, the integration averaging process is performed with 2 4 (= 16) blocks, and when the noise level is n, the integration averaging process is performed with 2 n blocks to reduce the noise. To reduce. In this case, the number of repetitions 2n of the averaging process is limited by the distance resolution R and the vehicle speed V of the radar apparatus 1. For example, the maximum integer value that satisfies the condition of the expression (1) or an integer value less than that is set as the number of iterations.

以上により、図6に示すように、ノイズ成分Snz1が載った測距信号S1やノイズ成分Snz2が載った測距信号S2に対して積算平均処理が実施され、ランダムな外来ノイズ成分Snz1,Snz2を相殺・低減した測距信号S3を得ることができ、安定した測距精度を確保することができる。しかも、測距信号に重畳したノイズのレベルを判断して車速に適応した最適な処理で外来ノイズの影響を低減するため、レーダ反応の誤動作を防止することができる。   As described above, as shown in FIG. 6, the integration averaging process is performed on the ranging signal S1 carrying the noise component Snz1 and the ranging signal S2 carrying the noise component Snz2, and random external noise components Snz1 and Snz2 are obtained. The offset / reduced ranging signal S3 can be obtained, and stable ranging accuracy can be ensured. In addition, since the influence of external noise is reduced by determining the level of noise superimposed on the distance measurement signal and optimizing the vehicle speed, it is possible to prevent malfunction of the radar reaction.

尚、上述の実施の形態では送信アンテナ2と受信アンテナ3が別に設定されているが、両者がひとつになった送受信アンテナを用いたレーダ装置にも適用可能である。また、上述の実施の形態では300MHz帯や3GHz帯の微弱無線方式によるパルスエコー方式のレーダ(パルスレーダ)を開示しているが、他の周波数帯域を利用したレーダ装置にも適用可能である。また、パルスレーダ以外にも、時間的に繰り返す信号を送出するレーダ装置にも適用可能である。また、上述の実施の形態では受信パルスのサンプリングに等価時間サンプリングを用いているが、通常のサンプリングも利用可能である。   In the above-described embodiment, the transmission antenna 2 and the reception antenna 3 are set separately. However, the present invention can also be applied to a radar apparatus using a transmission / reception antenna in which both are combined. In the above-described embodiment, a pulse echo radar (pulse radar) based on a weak radio system in the 300 MHz band or 3 GHz band is disclosed, but the present invention can also be applied to a radar apparatus using another frequency band. In addition to the pulse radar, the present invention can also be applied to a radar apparatus that transmits a signal that repeats in time. In the above-described embodiment, the equivalent time sampling is used for sampling the received pulse, but normal sampling can also be used.

車載レーダ装置の構成図Configuration diagram of in-vehicle radar system 信号処理のフローチャートSignal processing flowchart 反復回数設定処理のフローチャートRepetition count setting process flowchart ノイズ無し環境下でのフレームデータを示す説明図Explanatory drawing showing frame data under no-noise environment 積算平均処理のブロック化を示す説明図Explanatory drawing showing blocking of integrated average processing ノイズ有り環境下での積算平均処理前後のフレームデータを示す説明図Explanatory drawing showing frame data before and after the averaging process in a noisy environment

符号の説明Explanation of symbols

1 レーダ装置
4 送信回路
5 受信回路
6 演算装置
6a 信号処理部
6b 測距部
6c ブロック周期制御部
Bf ブロック周期
R 距離分解能
V 車速
DESCRIPTION OF SYMBOLS 1 Radar apparatus 4 Transmission circuit 5 Reception circuit 6 Arithmetic unit 6a Signal processing part 6b Distance measuring part 6c Block period control part Bf Block period R Distance resolution V Vehicle speed

Claims (7)

車両に搭載され、ターゲットに放射した送信パルスの反射波を受信して測距を行う車載レーダ装置であって、
所定の期間をブロック周期として設定し、該ブロック周期内の受信データを統計処理し、該送信パルスと時間相関を有しないノイズ信号を除去して時間相関を有する測距信号を抽出する信号処理部と、
上記ブロック周期を、測距時の車速と距離分解能とに基づいて制御するブロック周期制御部と
を備えたことを特徴とする車載レーダ装置。
An on-vehicle radar device that is mounted on a vehicle and receives a reflected wave of a transmission pulse radiated to a target to perform distance measurement,
A signal processing unit that sets a predetermined period as a block period, statistically processes received data within the block period, and removes a noise signal that does not have time correlation with the transmission pulse to extract a distance measurement signal that has time correlation When,
An on-vehicle radar device comprising: a block cycle control unit that controls the block cycle based on a vehicle speed and distance resolution at the time of ranging.
上記ブロック周期内の受信データに対する統計処理を積算平均処理とし、この積算平均処理の反復回数を、上記車速と上記送信パルスの発生周期との乗算値で上記距離分解能を除算した値以下に制限することを特徴とする請求項1記載の車載レーダ装置。   The statistical process for the received data within the block period is an integration average process, and the number of repetitions of the integration average process is limited to a value obtained by dividing the distance resolution by the product of the vehicle speed and the transmission pulse generation period. The on-vehicle radar device according to claim 1. 上記受信データを移動平均処理し、この移動平均処理の処理量を上記車速と上記距離分解能とに基づいて制限することを特徴とする請求項1又は2記載の車載レーダ装置。   3. The in-vehicle radar device according to claim 1, wherein the received data is subjected to a moving average process, and a processing amount of the moving average process is limited based on the vehicle speed and the distance resolution. 上記受信データに遅延処理を行って測距反応により変化を生じない領域を先頭部分に作成し、該先頭部分の領域における信号強度に基づいて上記ノイズ信号を評価することを特徴とする請求項1〜3の何れか一に記載の車載レーダ装置。   2. A delay process is performed on the received data to create an area that does not change due to a ranging response at the head part, and the noise signal is evaluated based on a signal intensity in the head part area. The on-vehicle radar device according to any one of? 上記積算平均処理の反復回数を、上記ノイズ信号のレベルに応じて設定することを特徴とする請求項2〜4の何れか一に記載の車載レーダ装置。   The in-vehicle radar device according to any one of claims 2 to 4, wherein the number of repetitions of the integration averaging process is set according to a level of the noise signal. 上記送信パルスの発生周期毎に得られる受信データを1ブロックとして扱い、上記反復回数に渡るブロック間で上記積算平均処理を行うことを特徴とする請求項2〜5の何れか一に記載の車載レーダ装置。   6. The vehicle-mounted device according to claim 2, wherein reception data obtained for each generation period of the transmission pulse is handled as one block, and the integration averaging process is performed between the blocks over the number of repetitions. Radar device. 上記所定の期間は、上記送信パルスの発生周期の整数倍であることを特徴とする請求項1〜6の何れか一に記載の車載レーダ装置。   The on-vehicle radar device according to any one of claims 1 to 6, wherein the predetermined period is an integral multiple of a generation period of the transmission pulse.
JP2008278605A 2008-10-29 2008-10-29 In-vehicle radar system Expired - Fee Related JP5351492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278605A JP5351492B2 (en) 2008-10-29 2008-10-29 In-vehicle radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278605A JP5351492B2 (en) 2008-10-29 2008-10-29 In-vehicle radar system

Publications (2)

Publication Number Publication Date
JP2010107309A true JP2010107309A (en) 2010-05-13
JP5351492B2 JP5351492B2 (en) 2013-11-27

Family

ID=42296901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278605A Expired - Fee Related JP5351492B2 (en) 2008-10-29 2008-10-29 In-vehicle radar system

Country Status (1)

Country Link
JP (1) JP5351492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021924A (en) * 2013-07-23 2015-02-02 日産自動車株式会社 Distance measurement apparatus
JP2015040756A (en) * 2013-08-21 2015-03-02 学校法人 名城大学 Time correction method for radio chronometers
JP2017111529A (en) * 2015-12-15 2017-06-22 シャープ株式会社 Obstacle determination device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102310B (en) * 2017-06-26 2019-12-03 沈阳航空航天大学 A kind of multi-path laser radar detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153660A (en) * 1996-11-22 1998-06-09 Olympus Optical Co Ltd Distance-measuring device
JP2003248053A (en) * 2002-02-27 2003-09-05 Tech Res & Dev Inst Of Japan Def Agency Radar signal processing apparatus
JP2006329953A (en) * 2005-05-30 2006-12-07 Toshiba Corp Radar system
JP2008020419A (en) * 2006-07-14 2008-01-31 Nec Corp Radar signal processing method and radar signal processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153660A (en) * 1996-11-22 1998-06-09 Olympus Optical Co Ltd Distance-measuring device
JP2003248053A (en) * 2002-02-27 2003-09-05 Tech Res & Dev Inst Of Japan Def Agency Radar signal processing apparatus
JP2006329953A (en) * 2005-05-30 2006-12-07 Toshiba Corp Radar system
JP2008020419A (en) * 2006-07-14 2008-01-31 Nec Corp Radar signal processing method and radar signal processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021924A (en) * 2013-07-23 2015-02-02 日産自動車株式会社 Distance measurement apparatus
JP2015040756A (en) * 2013-08-21 2015-03-02 学校法人 名城大学 Time correction method for radio chronometers
JP2017111529A (en) * 2015-12-15 2017-06-22 シャープ株式会社 Obstacle determination device

Also Published As

Publication number Publication date
JP5351492B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US10139473B2 (en) Radar apparatus including transmitting antenna and receiving antenna
JP5291267B1 (en) Spread spectrum radar apparatus and control method thereof
WO2017130996A1 (en) Distance measurement device
JP4492628B2 (en) Interference judgment method, FMCW radar
JP5499181B2 (en) Method and apparatus for identifying and mitigating interference in wireless signals
US8879407B2 (en) Two-way ranging messaging scheme
US20110292819A1 (en) Two-way ranging messaging scheme
EP2015103A1 (en) Method for determining line-of-sight (LOS) distance between remote communications devices
UA102230C2 (en) Methods and devices for determining the impulse response of propagation channels involving emitters, reflectors and sensors that are fixed or mobile
US8812063B2 (en) Signal characteristic-based leading edge detection
US10996329B2 (en) Distance estimating system
JP5741508B2 (en) Distance and speed measuring device
JP5351492B2 (en) In-vehicle radar system
EP3510421B1 (en) Time-dependent filtering for lidar signals
US20110294449A1 (en) Signal-based gain control
JP2007271559A (en) Apparatus for detecting mobile object
EP3899580A1 (en) Coordination of wireless communication unit and radar unit in a wireless communication network
US10771941B2 (en) Vehicle system device and vehicle system
JP2013238477A (en) Radar device
JP2006250777A (en) Ranging system
JP6169119B2 (en) Ranging device and method for detecting performance degradation of ranging device
JP2009273053A (en) Transmitting apparatus, receiving apparatus and communication system
JP7458261B2 (en) Controls, communications and systems
JP3818204B2 (en) Radar equipment
JP2006275658A (en) Pulse-wave radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees