JP2010106391A - Metal-plated fiber structure and metal structure obtained by sintering the same - Google Patents

Metal-plated fiber structure and metal structure obtained by sintering the same Download PDF

Info

Publication number
JP2010106391A
JP2010106391A JP2008278944A JP2008278944A JP2010106391A JP 2010106391 A JP2010106391 A JP 2010106391A JP 2008278944 A JP2008278944 A JP 2008278944A JP 2008278944 A JP2008278944 A JP 2008278944A JP 2010106391 A JP2010106391 A JP 2010106391A
Authority
JP
Japan
Prior art keywords
fiber
metal
plated
plating
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278944A
Other languages
Japanese (ja)
Inventor
Tatsunobu Kida
達宣 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Holdings Co Ltd
Daiwabo Polytec Co Ltd
Original Assignee
Daiwabo Holdings Co Ltd
Daiwabo Polytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Holdings Co Ltd, Daiwabo Polytec Co Ltd filed Critical Daiwabo Holdings Co Ltd
Priority to JP2008278944A priority Critical patent/JP2010106391A/en
Publication of JP2010106391A publication Critical patent/JP2010106391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-plated fiber structure that is resistant to the peeling of plated layer and has suppressed plating unevenness. <P>SOLUTION: The metal-plated fiber structure is a fiber structure having a fiber surface plated with a metal. A fiber constituting the fiber structure contains a fiber having an ethylene-vinyl alcohol copolymer exposed at least at part of the surface of the fiber. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、繊維に金属をめっきした金属めっき繊維構造物に関し、詳細にはエチレン−ビニルアルコール共重合体を含む繊維に金属をめっきした金属めっき繊維構造物に関する。   The present invention relates to a metal-plated fiber structure in which metal is plated on a fiber, and more particularly to a metal-plated fiber structure in which metal is plated on a fiber containing an ethylene-vinyl alcohol copolymer.

従来、合成樹脂からなる材料に金属がメッキされた材料としては、ウレタン多孔体、ポリオレフィンやポリエステル繊維を含む不織布等の被メッキ材に金属メッキが施されたものが知られている。   Conventionally, as a material in which a metal is plated on a material made of a synthetic resin, a material in which metal is plated on a material to be plated such as a nonwoven fabric containing a urethane porous body, polyolefin, or polyester fiber is known.

特許文献1は、低融点繊維を高融点繊維の外側に配した熱融着性複合繊維を主成分とする不織布ウェブにニッケルめっきを施したニッケルめっき不織布電極基板を開示している。しかし、絶縁性かつ多孔質である不織布に金属メッキを施しているため、金属メッキが剥離しやすいという問題があった。特許文献2は、不織布と不織布の表面に形成されためっき膜とを備える電池用集電材を開示している。しかし、特許文献2のように、被めっき材である不織布にスルホン化処理、フッ素ガス処理、ビニルモノマーのグラフト重合、界面活性剤処理、放電処理或いは、親水性樹脂付与処理等の親水化処理を施し、その後、めっき処理を行ったものは、いずれの親水化処理の場合も、不織布全体に均一に親水基を導入することができず、親水基の導入ムラが生じ、結果として、めっきムラが生じたり、めっきされない部分が生じるという問題があった。また、親水化処理を行わない場合は、金属めっきが剥離しやすいという問題があった。   Patent Document 1 discloses a nickel-plated non-woven electrode substrate obtained by performing nickel plating on a non-woven web mainly composed of a heat-fusible composite fiber in which low-melting fibers are arranged outside high-melting fibers. However, since the insulating and porous nonwoven fabric is subjected to metal plating, there is a problem that the metal plating is easily peeled off. Patent document 2 is disclosing the electrical power collector for batteries provided with the nonwoven fabric and the plating film formed on the surface of the nonwoven fabric. However, as in Patent Document 2, a non-woven fabric that is a material to be plated is subjected to hydrophilization treatment such as sulfonation treatment, fluorine gas treatment, vinyl monomer graft polymerization, surfactant treatment, discharge treatment, or hydrophilic resin application treatment. In the case of any of the hydrophilization treatments, the hydrophilic group cannot be uniformly introduced into the entire nonwoven fabric, resulting in uneven introduction of the hydrophilic group, resulting in uneven plating. There was a problem that a part which is generated or not plated is generated. Further, when the hydrophilic treatment is not performed, there is a problem that the metal plating is easily peeled off.

特許文献3は、導電性を有する有機繊維を主成分とするウェブに水流交絡処理を施した後、電気めっきを施した金属めっき不織布電極基板の製造方法を開示している。しかし、特許文献3は、有機繊維に導電性のポリマーを付着させる方法、導電性カーボンを結着材ポリマーとともに付着させる方法、或いは繊維自体導電性を有する炭素繊維を使用する方法等により有機繊維に導電性を与え、水流交絡処理を施した後に、めっきを施すので、導電性の付与にムラが生じ、結果として、めっきムラが生じたり、めっきされない部分が生じるという問題があった。
特開平8−250125号公報 特開2003−109600号公報 特開平6−275281号公報
Patent Document 3 discloses a method for producing a metal-plated nonwoven electrode substrate obtained by subjecting a web mainly composed of conductive organic fibers to hydroentanglement and then electroplating. However, Patent Document 3 discloses that organic fibers are attached to organic fibers by a method of attaching a conductive polymer to organic fibers, a method of attaching conductive carbon together with a binder polymer, or a method of using carbon fibers having conductivity per se. Since plating is performed after imparting conductivity and hydroentanglement treatment, there is a problem that unevenness occurs in imparting conductivity, resulting in uneven plating or unplated portions.
JP-A-8-250125 JP 2003-109600 A JP-A-6-275281

本発明は、前記従来の問題を解決するため、めっきが剥離し難く、かつめっきムラが少ない金属めっき繊維構造物を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a metal-plated fiber structure in which plating is difficult to peel and plating unevenness is small.

本発明の金属めっき繊維構造物は、繊維表面に金属がめっきされてなる繊維構造物であって、前記繊維構造物を構成する繊維は繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含むことを特徴とする。   The metal-plated fiber structure of the present invention is a fiber structure in which a metal is plated on the fiber surface, and the fiber constituting the fiber structure has an ethylene-vinyl alcohol copolymer on at least a part of the fiber surface. It is characterized by including exposed fibers.

本発明は、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含むため、めっきが剥離し難く、かつめっきムラが少ない金属めっき繊維構造物を提供できる。   Since the present invention includes a fiber in which an ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface, it is possible to provide a metal-plated fiber structure in which plating is difficult to peel and plating unevenness is small.

本発明者は、繊維構造物の金属めっきについて検討し、従来の問題点であるめっきムラに着目した。詳細には、通常のポリオレフィン系繊維は特に繊維同士の交点や接点において、金属めっきされない部分が生じやすく、金属めっきにムラが生じることに着目し、エチレン−ビニルアルコール共重合体が繊維表面に存在するとめっきムラの少ない金属めっき繊維構造物及び不織布を得られることを見出した。即ち、本発明の金属めっき繊維構造物は、繊維構造物を構成する繊維として繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含むため、めっきが剥離し難く、かつめっきムラが少ない。 The present inventors have studied the metal plating on the fiber structure, focusing on the plating unevenness is a conventional problem. Specifically, with regard to ordinary polyolefin fibers, focusing on the fact that metal-plated parts are likely to occur at the intersections and contacts of the fibers, and that metal plating is uneven, ethylene-vinyl alcohol copolymer is present on the fiber surface. Then, it discovered that a metal plating fiber structure and a nonwoven fabric with little plating unevenness could be obtained. That is, the metal-plated fiber structure of the present invention includes fibers in which the ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface as the fibers constituting the fiber structure, so that the plating is difficult to peel off, And there is little plating unevenness.

本発明の繊維構造物を構成する繊維(以下、被めっき繊維ともいう)は、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維(以下、EVOH繊維ともいう)を含む。かかる構成であると、繊維表面に露出したエチレン−ビニルアルコール共重合体のヒドロキシル基の陽イオンを引きつける作用に起因して、金属めっきが固定されやすくなり、金属めっきが剥離し難くなり、めっきムラが少なくなる。   The fiber (hereinafter also referred to as a fiber to be plated) constituting the fiber structure of the present invention is a fiber (hereinafter also referred to as an EVOH fiber) in which an ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface. Including. With such a configuration, due to the action of attracting the cation of the hydroxyl group of the ethylene-vinyl alcohol copolymer exposed on the fiber surface, the metal plating is easily fixed, the metal plating is difficult to peel off, and the plating unevenness Less.

本発明は、被めっき繊維の繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含む構成である。かかる構成であると、被めっき繊維が、繊維表面自体にヒドロキシル基を有するEVOH繊維を含むので、特にビニルアルコール単位のヒドロキシル基に起因して、めっき金属が固定されやすく、めっきムラが少なくなる。また、被めっき繊維に親水化処理及び/又は導電性処理を行い、その後めっき処理を行う場合であっても、繊維表面のヒドロキシル基に起因して、親水化処理及び/又は導電性処理により親水性や導電性を均一に付与することができ、めっきムラが少なくなる。さらに、親水化処理及び/又は導電性処理の難しい繊維交点や繊維接点は、親水性や導電性を均一に付与できていない場合もあるが、その場合でもEVOH繊維の持つヒドロキシル基に起因して、めっきムラが少なくなる。
また、本発明はエチレン−ビニルアルコール共重合体のエチレン単位に起因して、耐薬品性に優れる。耐薬品性とは、例えば、耐酸性、耐アルカリ性や、酸化・還元による主鎖分解が起こりにくいという性質である。
The present invention has a configuration including fibers in which an ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface of the fiber to be plated. With such a configuration, since the fiber to be plated includes EVOH fiber having a hydroxyl group on the fiber surface itself, the plating metal is easily fixed particularly due to the hydroxyl group of the vinyl alcohol unit, and plating unevenness is reduced. In addition, even when the fiber to be plated is subjected to a hydrophilic treatment and / or a conductive treatment and then subjected to a plating treatment, due to the hydroxyl group on the fiber surface, the hydrophilicity is obtained by the hydrophilic treatment and / or the conductive treatment. And conductivity can be uniformly imparted, and plating unevenness is reduced. Furthermore, fiber intersections and fiber contacts that are difficult to hydrophilize and / or electrically conductive may not be able to uniformly impart hydrophilicity or electrical conductivity, but even in that case, due to the hydroxyl groups of EVOH fibers. , Plating unevenness is reduced.
Further, the present invention is excellent in chemical resistance due to the ethylene unit of the ethylene-vinyl alcohol copolymer. Chemical resistance refers to, for example, acid resistance, alkali resistance, and the property that main chain decomposition due to oxidation / reduction hardly occurs.

上記エチレン−ビニルアルコール共重合体は、エチレン酢酸ビニル共重合体を鹸化して得られる。市販品としては、クラレ社製商品名“エバール”、日本合成化学工業社製商品名“ソアノール”等があり、本発明ではこれらの市販品を使用できる。   The ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene vinyl acetate copolymer. Examples of commercially available products include Kuraray's product name “EVAL”, Nippon Synthetic Chemical Industry's product name “Soarnol”, and the like, and these commercially available products can be used in the present invention.

上記エチレン−ビニルアルコール共重合体の融点は100℃〜190℃であることが好ましく、より好ましくは120℃〜175℃であり、さらに好ましくは130℃〜155℃である。融点が100℃以上のエチレン−ビニルアルコール共重合体を用いると、繊維化しやすく、融点が190℃以下のエチレン−ビニルアルコール共重合体を用いると、繊維同士の交点を熱接着する場合に比較的低温で熱処理することができる。
また、上記範囲の融点のエチレン−ビニルアルコール共重合体を得るには、例えば、後述するエチレン含有量のエチレン−ビニルアルコール共重合体を用いるとよい。エチレン−ビニルアルコール共重合体の融点は、それに含まれるエチレン単位とビニルアルコール単位の含有量により異なり、エチレン含有量が多くなるとエチレン−ビニルアルコール共重合体の融点は低くなる傾向にあり、エチレン含有量が少なくなるとエチレン−ビニルアルコール共重合体の融点は高くなる傾向にある。
It is preferable that melting | fusing point of the said ethylene-vinyl alcohol copolymer is 100 to 190 degreeC, More preferably, it is 120 to 175 degreeC, More preferably, it is 130 to 155 degreeC. When an ethylene-vinyl alcohol copolymer having a melting point of 100 ° C. or higher is used, it is easy to form fibers, and when an ethylene-vinyl alcohol copolymer having a melting point of 190 ° C. or lower is used, it is relatively Heat treatment can be performed at a low temperature.
In order to obtain an ethylene-vinyl alcohol copolymer having a melting point in the above range, for example, an ethylene-vinyl alcohol copolymer having an ethylene content described later may be used. The melting point of the ethylene-vinyl alcohol copolymer varies depending on the contents of the ethylene units and vinyl alcohol units contained therein, and the ethylene-vinyl alcohol copolymer tends to have a lower melting point as the ethylene content increases. When the amount decreases, the melting point of the ethylene-vinyl alcohol copolymer tends to increase.

エチレン−ビニルアルコール共重合体のエチレン含有量は25mol%以上80mol%未満であることが好ましく、より好ましくは30mol%以上70mol%未満であり、さらに好ましくは45mol%以上65mol%未満である。エチレン含有量が25mol%以上であると、熱安定性がよく、繊維化し易い。エチレン含有量が80mol%未満であると、十分な親水性を得ることができ、めっきムラが生じ難い。また、エチレン含有量は少なくすると、親水性を得やすいが、水への溶解性が高まり形態安定性が悪くなる傾向にある。   The ethylene content of the ethylene-vinyl alcohol copolymer is preferably 25 mol% or more and less than 80 mol%, more preferably 30 mol% or more and less than 70 mol%, still more preferably 45 mol% or more and less than 65 mol%. When the ethylene content is 25 mol% or more, the thermal stability is good and the fiber is easily formed. When the ethylene content is less than 80 mol%, sufficient hydrophilicity can be obtained, and plating unevenness hardly occurs. Further, when the ethylene content is decreased, hydrophilicity is easily obtained, but the solubility in water is increased and the shape stability tends to be deteriorated.

また、後述する繊維同士の交点及び/又は接点を接着する場合には、エチレン−ビニルアルコール共重合体のエチレン含有量は25mol%以上80mol%未満であることが好ましい。より好ましい範囲は上述のとおりである。エチレン含有量が25mol%以上80mol%未満の範囲であると、EVOH繊維を湿潤状態又は、水分或いは水蒸気の存在下で熱処理を施すと、エチレン−ビニルアルコール共重合体が膨潤し、見かけ上軟化して、常温まで冷めると固まる現象(以下、ゲル化ともいう)を利用して繊維同士の交点や接点を接着できる。   Moreover, when bonding the intersection and / or contact of the fiber which are mentioned later, it is preferable that the ethylene content of an ethylene-vinyl alcohol copolymer is 25 mol% or more and less than 80 mol%. A more preferable range is as described above. When the ethylene content is in the range of 25 mol% or more and less than 80 mol%, when the EVOH fiber is subjected to heat treatment in a wet state or in the presence of moisture or water vapor, the ethylene-vinyl alcohol copolymer swells and softens apparently. In addition, the phenomenon of solidifying when cooled to room temperature (hereinafter also referred to as gelation) can be used to bond the intersections and contacts of the fibers.

本発明のEVOH繊維は、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維であり、めっきを剥離し難くする観点からEVOH繊維は繊維断面からみて繊維表面の10%以上にエチレン−ビニルアルコール共重合体が露出していることが好ましい。ここで、繊維表面の少なくとも一部に露出しているという用語は、繊維断面からみて繊維の表面の少なくとも一部に露出しているという意味である。例えば、単一繊維、サイドバイサイド型複合繊維、芯鞘型複合繊維、海島型複合繊維、分割型複合繊維等の複合繊維、ポリマーアロイ等の成分ランダム分散型繊維等が挙げられる。
また、エチレン−ビニルアルコール共重合体の露出部は、繊維の長さ方向に連続している構成であることがさらに好ましい。エチレン−ビニルアルコール共重合体の露出部が繊維の長さ方向に連続していると、ヒドロキシル基が繊維の長さ方向全体にわたって存在するため、よりめっきムラが少なくなる。
The EVOH fiber of the present invention is a fiber in which the ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface. From the viewpoint of making it difficult to peel off the plating, the EVOH fiber is 10% of the fiber surface as viewed from the fiber cross section. The ethylene-vinyl alcohol copolymer is preferably exposed as described above. Here, the term “exposed to at least part of the fiber surface” means that it is exposed to at least part of the surface of the fiber as viewed from the fiber cross section. For example, single fibers, side-by-side composite fibers, core-sheath composite fibers, sea-island composite fibers, composite fibers such as split-type composite fibers, and component random dispersion fibers such as polymer alloys can be used.
Moreover, it is more preferable that the exposed portion of the ethylene-vinyl alcohol copolymer has a configuration that is continuous in the fiber length direction. When the exposed portion of the ethylene-vinyl alcohol copolymer is continuous in the length direction of the fiber, since the hydroxyl group exists throughout the length direction of the fiber, plating unevenness is further reduced.

本発明のEVOH繊維は、鞘成分がエチレン−ビニルアルコール共重合体である芯鞘型複合繊維であることが好ましい。なお、鞘成分はエチレン−ビニルアルコール共重合体を70質量%以上含むことが好ましく、鞘成分はエチレン−ビニルアルコール共重合体のみから成ることが最も好ましい。EVOH繊維が、鞘成分がエチレン−ビニルアルコール共重合体である芯鞘型複合繊維であると、繊維表面にわたりエチレン−ビニルアルコール共重合体が露出した構成となり、ヒドロキシル基が繊維表面にわたり存在し、繊維の長さ方向にもエチレン−ビニルアルコール共重合体の露出部が連続しているので、さらに金属めっきが固定されやすく、めっきムラが少なくなる。また、EVOH繊維が芯鞘型複合繊維の形態であると金属めっき処理を施す不織布に用いる熱融着繊維として特に好適に用いることができる。   The EVOH fiber of the present invention is preferably a core-sheath type composite fiber whose sheath component is an ethylene-vinyl alcohol copolymer. In addition, it is preferable that a sheath component contains 70 mass% or more of ethylene-vinyl alcohol copolymers, and it is most preferable that a sheath component consists only of ethylene-vinyl alcohol copolymers. When the EVOH fiber is a core-sheath type composite fiber whose sheath component is an ethylene-vinyl alcohol copolymer, the ethylene-vinyl alcohol copolymer is exposed over the fiber surface, and hydroxyl groups are present over the fiber surface. Since the exposed portion of the ethylene-vinyl alcohol copolymer is continuous also in the length direction of the fiber, the metal plating is more easily fixed and plating unevenness is reduced. Further, when the EVOH fiber is in the form of a core-sheath type composite fiber, it can be particularly suitably used as a heat-sealing fiber used for a nonwoven fabric subjected to metal plating.

EVOH繊維が芯鞘型複合繊維である場合、芯鞘型複合繊維の芯成分の融点は鞘成分の融点より10℃以上高いことが好ましく、芯成分の融点は鞘成分の融点より20℃以上高いことがより好ましい。芯成分の融点が鞘成分の融点より10℃以上高いと、鞘成分のみが融着する温度で熱処理すれば鞘成分のみを融着させ、適度な空隙を有する金属めっき繊維構造物を得ることができる。   When the EVOH fiber is a core-sheath type composite fiber, the melting point of the core component of the core-sheath type composite fiber is preferably higher by 10 ° C. than the melting point of the sheath component, and the melting point of the core component is 20 ° C. higher than the melting point of the sheath component. It is more preferable. If the melting point of the core component is 10 ° C. or higher than the melting point of the sheath component, heat treatment at a temperature at which only the sheath component is fused can fuse only the sheath component and obtain a metal-plated fiber structure having an appropriate void. it can.

EVOH繊維が芯鞘型複合繊維である場合、芯成分は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン、エチレン−プロピレン共重合体等のポリオレフィン系成分、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸等のポリエステル系成分、ナイロン6、ナイロン66等のポリアミド系成分のうち1種又は2種以上を組み合わせて用いて良い。なかでも、耐薬品性の観点から、芯成分はポリオレフィン系成分であることが好ましく、芯成分はポリプロピレンであることが最も好ましい。耐薬品性とは、例えば、耐酸性、耐アルカリ性や、酸化・還元による主鎖分解が起こりにくいという性質である。   When EVOH fiber is a core-sheath type composite fiber, the core component is not particularly limited. For example, polyolefin components such as polyethylene, polypropylene, polymethylpentene, polybutene, and ethylene-propylene copolymer, polyethylene terephthalate, polybutylene terephthalate Polytrimethylene terephthalate, polybutylene succinate, polyester components such as polylactic acid, and polyamide components such as nylon 6 and nylon 66 may be used alone or in combination. Among these, from the viewpoint of chemical resistance, the core component is preferably a polyolefin-based component, and the core component is most preferably polypropylene. Chemical resistance refers to, for example, acid resistance, alkali resistance, and the property that main chain decomposition due to oxidation / reduction hardly occurs.

EVOH繊維が芯鞘型複合繊維である場合、鞘成分は、エチレン−ビニルアルコール共重合体以外の他の成分を30質量%未満で含んでよい。他の成分は、上述の芯成分として挙げた成分を用いることができる。また、他の成分を含む場合は、繊維化の前に、鞘成分をマスターバッチにすると好都合である。   When the EVOH fiber is a core-sheath composite fiber, the sheath component may contain other components other than the ethylene-vinyl alcohol copolymer at less than 30% by mass. As the other components, the components mentioned as the core component can be used. Also, when other components are included, it is advantageous to make the sheath component a masterbatch before fiberization.

EVOH繊維が芯鞘型複合繊維である場合、芯鞘型複合繊維を構成する各成分の容積比は、特に限定されず、各成分を構成できるだけの量があればよいが、芯/鞘の容積比は、2/8〜8/2であることが好ましく、4/6〜6/4であることがより好ましく、4.5/5.5〜5.5/4.5であることが最も好ましい。複合繊維の容積比が2/8〜8/2の範囲であると、繊維の紡糸性が良好であり、めっき性も良好である。   When the EVOH fiber is a core-sheath type composite fiber, the volume ratio of each component constituting the core-sheath type composite fiber is not particularly limited, and there may be an amount sufficient to constitute each component. The ratio is preferably 2/8 to 8/2, more preferably 4/6 to 6/4, and most preferably 4.5 / 5.5 to 5.5 / 4.5. preferable. When the volume ratio of the composite fiber is in the range of 2/8 to 8/2, the fiber spinnability is good and the plating property is also good.

本発明の繊維構造物を構成する繊維は、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含む。繊維構造物を構成する繊維中にEVOH繊維が多く存在するほど、めっきが剥離し難く、かつめっきムラが少ない効果が顕著になり、特に顕著な効果を得られる観点から、繊維構造物を構成する繊維は、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を25質量%以上含むことがより好ましい。   The fiber constituting the fiber structure of the present invention includes a fiber in which an ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface. The more EVOH fibers are present in the fibers constituting the fiber structure, the more difficult the plating is to peel off and the less the plating unevenness becomes more prominent. More preferably, the fiber contains 25% by mass or more of the fiber in which the ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface.

被めっき繊維は、EVOH繊維と他の繊維を混合して用いてよい。この場合、繊維構造物を構成する繊維が、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を25質量%以上90質量%以下含み、他の繊維を10質量%以上75質量%以下含むことが好ましい。また、EVOH繊維が上述の芯鞘型複合繊維の形態である場合には、繊維同士の交点をめっきされ易くする観点から、繊維同士の交点の接着にEVOH繊維を用いることが好ましい。また、繊維構造物を構成する繊維は、繊維交点以外の繊維同士の過度な融着を少なくする観点から、EVOH繊維を30質量%以上90質量%以下含み他の繊維を10質量%以上70質量%以下含むことがより好ましく、EVOH繊維を40質量%以上80質量%以下含み、他の繊維を20質量%以上60質量%以下含むことが特に好ましい。   The to-be-plated fibers may be used by mixing EVOH fibers and other fibers. In this case, the fibers constituting the fiber structure include 25% by mass or more and 90% by mass or less of fibers in which the ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface, and 10% by mass of other fibers. More than 75 mass% is preferable. Moreover, when EVOH fiber is a form of the above-mentioned core-sheath-type composite fiber, it is preferable to use EVOH fiber for adhesion | attachment of the intersection of fibers from a viewpoint of making the intersection of fibers easy to plate. Moreover, the fiber which comprises a fiber structure contains 30 mass% or more and 90 mass% or less of EVOH fiber from a viewpoint of reducing the excessive fusion | bonding of fibers other than fiber intersections, and 10 mass% or more and 70 mass% of other fibers. %, More preferably 40 to 80% by mass of EVOH fiber, and particularly preferably 20 to 60% by mass of other fibers.

EVOH繊維と混合して用いられる他の繊維は、EVOH繊維が芯鞘型複合繊維である場合には、融点が100℃以上300℃以下である繊維を用いてよく、繊維同士の交点や接点を確実に接着したい場合には、他の繊維は融点が100℃以上160℃以下の繊維を用いることができる。例えば、鞘成分の融点が100℃以上160℃以下である芯鞘型複合繊維である。また、繊維同士の過度な融着や繊維の収縮を避けたい場合には、他の繊維は融点が160℃以上300℃以下の繊維を用いることができる。例えば、融点が160℃以上300℃以下の単一繊維である。   When the EVOH fiber is a core-sheath type composite fiber, the other fiber used by mixing with the EVOH fiber may be a fiber having a melting point of 100 ° C. or higher and 300 ° C. or lower. When it is desired to securely bond, fibers having a melting point of 100 ° C. or higher and 160 ° C. or lower can be used as the other fibers. For example, it is a core-sheath type composite fiber whose melting point of the sheath component is 100 ° C. or higher and 160 ° C. or lower. In addition, when it is desired to avoid excessive fusion between fibers or contraction of the fibers, fibers having a melting point of 160 ° C. or higher and 300 ° C. or lower can be used as the other fibers. For example, it is a single fiber having a melting point of 160 ° C. or higher and 300 ° C. or lower.

また、EVOH繊維と混合して用いられる他の繊維は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン、エチレン−プロピレン共重合体等のポリオレフィン系成分、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸等のポリエステル系成分、ナイロン6、ナイロン66等のポリアミド系成分の群から選ばれる単一繊維又は2種以上を組み合わせた複合繊維繊維のうち、1種又は2種以上を混合して用いてよい。中でも、耐薬品性に優れる観点から、ポリオレフィン系成分からなる繊維が好ましく、なかでも、ポリプロピレンを含む繊維がより好ましい。   Further, other fibers used by mixing with EVOH fibers are not particularly limited. For example, polyolefin components such as polyethylene, polypropylene, polymethylpentene, polybutene, and ethylene-propylene copolymer, polyethylene terephthalate, and polybutylene terephthalate. Of single fiber selected from the group of polyester-based components such as polytrimethylene terephthalate, polybutylene succinate, polylactic acid, and polyamide-based components such as nylon 6 and nylon 66, or a composite fiber fiber combining two or more types, You may use 1 type or in mixture of 2 or more types. Among these, from the viewpoint of excellent chemical resistance, a fiber made of a polyolefin-based component is preferable, and a fiber containing polypropylene is more preferable.

次に、本発明のEVOH繊維の製造方法を芯鞘型複合繊維を例に挙げて説明する。まず、鞘成分と芯成分を準備する。ここで鞘成分及び/又は芯成分が複数の構成成分からなる場合は、マスターバッチの形態で提供されてよい。次いで、鞘成分と芯成分とを所望の繊維断面構造が得られるように適切な複合紡糸ノズルを用いて、常套の溶融紡糸機を用いて、複合紡糸する。なお、紡糸温度(ノズル温度)は、220℃以上320℃以下とするとよい。   Next, the EVOH fiber production method of the present invention will be described using a core-sheath type composite fiber as an example. First, a sheath component and a core component are prepared. Here, when the sheath component and / or the core component is composed of a plurality of components, it may be provided in the form of a masterbatch. Then, the sheath component and the core component are composite-spun using a conventional melt-spinning machine using an appropriate composite spinning nozzle so that a desired fiber cross-sectional structure can be obtained. The spinning temperature (nozzle temperature) is preferably 220 ° C. or higher and 320 ° C. or lower.

本発明で用いるEVOH繊維は、単繊維繊度が0.01dtex〜100dtexであることが好ましく、より好ましくは単繊維繊度が0.1dtex〜10dtexである。単繊維繊度が100dtex以上であると、安定した繊維化又は不織布化が困難となる場合があり、単繊維繊度が0.01dtex以下であると、繊維に金属めっきが固定され難くなる場合がある。   The EVOH fiber used in the present invention preferably has a single fiber fineness of 0.01 to 100 dtex, more preferably a single fiber fineness of 0.1 to 10 dtex. When the single fiber fineness is 100 dtex or more, stable fiberization or nonwoven fabric formation may be difficult, and when the single fiber fineness is 0.01 dtex or less, metal plating may be difficult to fix to the fiber.

被めっき繊維からなる繊維構造物の形態は、特に限定されないが、例えば、短繊維、長繊維等のフィラメント、織物、編物、不織布等であってよい。なかでも、被めっき繊維からなる繊維構造物の形態は不織布であることが好ましい。不織布の形態としては、スパンボンド不織布、メルトブローン不織布、ケミカルボンド不織布、エアレイド不織布、エアスルー不織布、サーマルボンド不織布、ニードルパンチ不織布、水流交絡不織布等が挙げられる。   Although the form of the fiber structure which consists of a to-be-plated fiber is not specifically limited, For example, filaments, such as a short fiber and a long fiber, a woven fabric, a knitted fabric, a nonwoven fabric, etc. may be sufficient. Especially, it is preferable that the form of the fiber structure which consists of to-be-plated fiber is a nonwoven fabric. Examples of the nonwoven fabric include spunbond nonwoven fabric, meltblown nonwoven fabric, chemical bond nonwoven fabric, airlaid nonwoven fabric, air-through nonwoven fabric, thermal bond nonwoven fabric, needle punch nonwoven fabric, hydroentangled nonwoven fabric, and the like.

繊維構造物が不織布からなる場合、繊維同士の交点及び/又は接点における金属めっきの剥離を少なくする観点から、被めっき繊維からなる不織布の繊維同士の交点及び/又は接点は接着されていることが好ましい。接着方法は繊維同士が固定されていればよく、特に限定されないが、例えば、繊維表面に露出している成分の融点以上の温度で熱処理を施すことにより熱接着する方法、或いは、繊維表面に露出しているエチレン−ビニルアルコール共重合体をゲル化させてゲル固着する方法が挙げられる。なお、ゲル化処理における熱処理温度は、エチレン−ビニルアルコール共重合体の融点以下であってよく、又は融点以上であってよい。中でも、ゲル化処理における熱処理温度がエチレン−ビニルアルコール共重合体の融点以上であると、ゲル固着と熱接着を同時に行うことができ、好都合である。   When the fiber structure is made of a nonwoven fabric, the intersection point and / or the contact point between the fibers of the nonwoven fabric made of the fiber to be plated may be bonded from the viewpoint of reducing the peeling of the metal plating at the intersection point and / or the contact point between the fibers. preferable. The bonding method is not particularly limited as long as the fibers are fixed to each other. For example, a method of heat-bonding by performing heat treatment at a temperature equal to or higher than the melting point of the component exposed on the fiber surface, or exposed on the fiber surface. And a method of gelling and fixing the ethylene-vinyl alcohol copolymer. In addition, the heat processing temperature in a gelling process may be below melting | fusing point of an ethylene-vinyl alcohol copolymer, or may be more than melting | fusing point. Among these, it is advantageous that the heat treatment temperature in the gelation treatment is equal to or higher than the melting point of the ethylene-vinyl alcohol copolymer, so that gel fixation and thermal bonding can be performed simultaneously.

被めっき不織布の不織布密度は0.001〜0.8g/cm3の範囲であることが好ましく、0.01〜0.5g/cm3の範囲であることがさらに好ましい。かかる構成であると、後述する金属構造物の通気度を得やすい。 Preferably the nonwoven fabric density of the plated nonwoven is in the range of 0.001~0.8g / cm 3, more preferably in the range of 0.01 to 0.5 g / cm 3. With such a configuration, it is easy to obtain the air permeability of a metal structure described later.

本発明の金属めっき繊維構造物の形態は、短繊維、長繊維等のフィラメント、織物、編物、不織布等であってよい。なかでも、金属めっき繊維構造物の形態は不織布であることが好ましい。不織布の形態としては、スパンボンド不織布、メルトブローン不織布、ケミカルボンド不織布、エアレイド不織布、エアスルー不織布、サーマルボンド不織布、ニードルパンチ不織布、水流交絡不織布等が挙げられる。   The form of the metal-plated fiber structure of the present invention may be filaments such as short fibers and long fibers, woven fabrics, knitted fabrics, non-woven fabrics and the like. Especially, it is preferable that the form of a metal plating fiber structure is a nonwoven fabric. Examples of the nonwoven fabric include spunbond nonwoven fabric, meltblown nonwoven fabric, chemical bond nonwoven fabric, airlaid nonwoven fabric, air-through nonwoven fabric, thermal bond nonwoven fabric, needle punch nonwoven fabric, hydroentangled nonwoven fabric, and the like.

本発明の金属めっき繊維構造物が金属めっき不織布である場合は、被めっき繊維として不織布を用い(以下、被めっき不織布ともいう)、被めっき不織布に金属めっき処理を施したものであってよく、又は、本発明の金属めっき繊維と他の繊維の混綿不織布であってよい。   When the metal-plated fiber structure of the present invention is a metal-plated nonwoven fabric, a nonwoven fabric is used as the fiber to be plated (hereinafter, also referred to as a nonwoven fabric to be plated), and the metal-plated nonwoven fabric may be subjected to metal plating treatment, Alternatively, it may be a mixed cotton nonwoven fabric of the metal plating fiber of the present invention and other fibers.

本発明で用いる被めっき繊維は、必要に応じて親水化処理を施してよい。親水化処理としては、スルホン化処理、フッ素ガス処理、コロナ処理、プラズマ処理、界面活性剤処理、グラフト重合処理、親水性樹脂処理等がある。本発明の被めっき繊維は、EVOH繊維に起因して、これらの親水化処理の際に親水化されやすい或いは親水基が導入されやすい。
また、本発明の被めっき繊維は、繊維表面にエチレン−ビニルアルコール共重合体が露出しているので、親水化処理なしでも、めっき処理を行うことができる。
The to-be-plated fiber used by this invention may give a hydrophilic treatment as needed. Examples of the hydrophilic treatment include sulfonation treatment, fluorine gas treatment, corona treatment, plasma treatment, surfactant treatment, graft polymerization treatment, and hydrophilic resin treatment. The to-be-plated fiber of this invention originates in EVOH fiber, and is easy to be hydrophilized at the time of these hydrophilic treatments, or a hydrophilic group is easy to be introduced.
Moreover, since the ethylene-vinyl alcohol copolymer is exposed on the fiber surface, the to-be-plated fiber of this invention can perform a metal-plating process without a hydrophilic treatment.

次にめっき処理工程について説明する。本発明の被めっき繊維にめっきする金属は、特に限定されないが、例えば、金、銀、銅、白金、ロジウム、ニッケル、クロム、コバルト、スズ、亜鉛、カドミウム等が挙げられる。めっき処理は、被めっき繊維に金属膜を形成する方法であればよく、例えば、無電解めっき法、電解めっき法、溶融金属めっき法、真空蒸着法、化学蒸着法、物理蒸着法、溶射法等が挙げられる。中でも、初めに無電解めっき法、次いで電解めっき法の2段階工程で金属膜を形成することが好ましい。この2段階工程でめっき処理を施すと、非金属材料でも均一な厚さにめっきしやすく、金属の定着速度も速い。   Next, the plating process will be described. Although the metal plated on the to-be-plated fiber of this invention is not specifically limited, For example, gold | metal | money, silver, copper, platinum, rhodium, nickel, chromium, cobalt, tin, zinc, cadmium etc. are mentioned. The plating treatment may be a method for forming a metal film on the fiber to be plated, such as an electroless plating method, an electrolytic plating method, a molten metal plating method, a vacuum deposition method, a chemical vapor deposition method, a physical vapor deposition method, a thermal spraying method, etc. Is mentioned. Among these, it is preferable to form the metal film in a two-step process of an electroless plating method and then an electrolytic plating method. When plating is performed in this two-step process, even a non-metallic material can be easily plated to a uniform thickness, and the metal fixing speed is high.

無電解めっき法について説明する。無電解めっき法は、初めに触媒化工程、次に無電解めっき工程の順で行うとよい。触媒化工程は、被めっき繊維の表面に触媒を付与する工程である。触媒付与の方法は、例えば、被めっき繊維を塩化第一スズの塩酸水溶液で処理した後に塩化パラジウムの塩酸水溶液で触媒化する方法、又は硬化剤のアミノ基を含む塩化パラジウムの塩酸溶液のみで固定化する方法等が挙げられる。なかでも、めっき膜厚を均一にできる観点から前者の方法が好ましい。
無電解めっき工程は、析出させる金属を含む溶剤と還元剤とを含む無電解めっき液を使用し、金属膜を形成する工程である。なお、無電解めっき液には、必要に応じて、錯化剤、pH調整剤、緩衝剤、促進剤、安定剤、改良剤等を加えても良い。析出させる金属を含む溶剤は、金属塩であれば特に限定されないが、例えば、ニッケルを膜を形成する場合は、硫酸ニッケル、塩化ニッケル、硝酸ニッケル、スルファミン酸ニッケル等が挙げられ、還元剤は、例えば、塩酸ヒドラジン、硫酸ヒドラジン、水和ヒドラジン等のヒドラジン誘導体又はヒドラジン、次亜リン酸ナトリウム、ジメチルアミンボラン等が挙げられる。
The electroless plating method will be described. The electroless plating method may be performed first in the order of the catalyzing step and then the electroless plating step. The catalyzing step is a step of imparting a catalyst to the surface of the fiber to be plated. For example, a method for providing a catalyst is a method in which a fiber to be plated is treated with a hydrochloric acid aqueous solution of stannous chloride and then catalyzed with an aqueous hydrochloric acid solution of palladium chloride, or fixed only with a hydrochloric acid solution of palladium chloride containing an amino group of a curing agent. And the like. Among these, the former method is preferable from the viewpoint of making the plating film thickness uniform.
The electroless plating step is a step of forming a metal film using an electroless plating solution containing a solvent containing a metal to be deposited and a reducing agent. In addition, you may add a complexing agent, a pH adjuster, a buffering agent, a promoter, a stabilizer, an improving agent, etc. to an electroless-plating liquid as needed. The solvent containing the metal to be deposited is not particularly limited as long as it is a metal salt. For example, in the case of forming a film of nickel, examples thereof include nickel sulfate, nickel chloride, nickel nitrate, nickel sulfamate, and the reducing agent is Examples thereof include hydrazine derivatives such as hydrazine hydrochloride, hydrazine sulfate, and hydrazine hydrate, hydrazine, sodium hypophosphite, dimethylamine borane, and the like.

電解めっき法について説明する。電解めっきは、金属塩を溶解させためっき浴を用いて、電気分解により、カソード上に金属を析出させる方法である。ここで、カソードは被めっき繊維で構成される。また、アノードは、めっき浴や析出させる金属によって、適時選択される。   The electrolytic plating method will be described. Electroplating is a method in which a metal is deposited on a cathode by electrolysis using a plating bath in which a metal salt is dissolved. Here, the cathode is made of a fiber to be plated. The anode is appropriately selected depending on the plating bath and the metal to be deposited.

電解めっきに用いられるめっき浴について説明する。例えば、電解ニッケルめっきの場合には、硫酸ニッケル、塩化ニッケル、ホウ酸が主組成であるワット浴、塩化ニッケル、ホウ酸が主組成である塩化浴、塩化ニッケル、スルファミン酸ニッケル、ホウ酸が主組成であるスルファミン酸浴、ホウフッ化ニッケル、ホウ酸が主組成であるホウフッ化浴等を用いてよい。なかでも、電解ニッケルめっきは、反応速度が速く生産性に優れる観点からワット浴を用いて行うことが好ましい。
また、上述の電解めっき浴は必要に応じて、1,5−ナフタレンジスルホン酸ナトリウム、サッカリン、p−トルエンスルホンアミド等の一次光沢剤、1,4−ブチンジオール、プロパギルアルコール、クマリン、エチレンシアンヒドリン等の二次光沢剤、ドデシル硫酸ナトリウム等の界面活性剤を加えてもよい。
A plating bath used for electrolytic plating will be described. For example, in the case of electrolytic nickel plating, nickel sulfate, nickel chloride, boric acid is the main composition Watt bath, nickel chloride, boric acid is the main composition chloride bath, nickel chloride, nickel sulfamate, boric acid. A sulfamic acid bath having a composition, nickel borofluoride, a borofluoride bath having a main composition of boric acid, or the like may be used. Of these, electrolytic nickel plating is preferably performed using a Watt bath from the viewpoint of a high reaction rate and excellent productivity.
In addition, the above-described electrolytic plating bath may contain primary brighteners such as sodium 1,5-naphthalenedisulfonate, saccharin, p-toluenesulfonamide, 1,4-butynediol, propargyl alcohol, coumarin, ethylene cyanide as required. A secondary brightener such as hydrin and a surfactant such as sodium dodecyl sulfate may be added.

電解銅めっきの場合には、硫酸銅、硫酸が主組成である硫酸銅浴、ホウフッ化銅、テトラフルオロホウ酸が主組成であるホウフッ化銅浴、シアン化銅、シアン化ナトリウム、水酸化ナトリウムが主組成であるシアン化銅浴、ピロリン酸第二銅、ピロリン酸カリウム、アンモニアが主組成であるピロリン酸銅浴を用いてよい。   In the case of electrolytic copper plating, copper sulfate, a copper sulfate bath whose main composition is sulfuric acid, copper borofluoride, a copper borofluoride bath whose main composition is tetrafluoroboric acid, copper cyanide, sodium cyanide, sodium hydroxide A copper cyanide bath in which is the main composition, cupric pyrophosphate, potassium pyrophosphate, and a copper pyrophosphate bath in which ammonia is the main composition may be used.

電解クロムめっきの場合は、酸化クロム(VI)、硫酸が主組成であるサージェント浴、酸化クロム(VI)、硫酸、ケイフッ酸がを主組成であるケイフッ酸浴を用いてよい。   In the case of electrolytic chromium plating, a Sargent bath whose main composition is chromium (VI) oxide and sulfuric acid, and a silicic acid bath whose main composition is chromium (VI) oxide, sulfuric acid and silicic acid may be used.

電解亜鉛めっきの場合は、硫酸亜鉛、硫酸アルミニウム、塩化ナトリウム、ホウ酸が主成分である硫酸亜鉛浴、塩化亜鉛、塩化アンモニウムが主組成である塩化亜鉛浴、シアン化亜鉛、シアン化ナトリウム、水酸化ナトリウムが主組成であるシアン浴、酸化亜鉛、水酸化ナトリウムが主組成であるジンケート浴を用いてよい。   For electrolytic galvanization, zinc sulfate, aluminum sulfate, sodium chloride, zinc sulfate bath mainly composed of boric acid, zinc chloride, zinc chloride bath mainly composed of ammonium chloride, zinc cyanide, sodium cyanide, water A cyan bath whose main composition is sodium oxide, a zincate bath whose main composition is zinc oxide and sodium hydroxide may be used.

電解スズめっきの場合は、硫酸スズ、硫酸、クレゾールスルホン酸、ホルマリンが主組成である硫酸浴、ホウフッ化スズ、テトラフルオロホウ酸、ホルマリンが主組成であるホウフッ化浴、スズ酸カリウム、水酸化カリウムが主組成である塩基性スズめっき浴を用いてよい。   In the case of electrolytic tin plating, sulfuric acid bath whose main composition is tin sulfate, sulfuric acid, cresol sulfonic acid, formalin, tin borofluoride, tetrafluoroboric acid, borofluoride bath whose main composition is formalin, potassium stannate, hydroxide A basic tin plating bath in which potassium is the main composition may be used.

電解金めっきの場合は、シアン化第一金カリウム、シアン化カリウムが主組成であるシアン浴、シアン化第一金カリウム、リン酸ナトリウム、リン酸水素ナトリウムが主組成である中性浴、シアン化第一金カリウム、クエン酸が主組成である酸性浴を用いてよい。   In the case of electrolytic gold plating, a cyanogen bath in which the main composition is potassium gold cyanide and potassium cyanide, a neutral bath in which the main composition is potassium gold cyanide, sodium phosphate, and sodium hydrogen phosphate, An acidic bath whose main composition is monopotassium potassium and citric acid may be used.

電解銀めっきの場合は、シアン化銀、シアン化カリウム、炭酸カリウムが主組成であるストライク浴を用いてよい。   In the case of electrolytic silver plating, a strike bath whose main composition is silver cyanide, potassium cyanide, and potassium carbonate may be used.

電解ロジウムめっきの場合は、金属ロジウム、硫酸が主組成である硫酸めっき浴、金属ロジウム、リン酸が主組成であるリン酸めっき浴を用いてよい。   In the case of electrolytic rhodium plating, a sulfuric acid plating bath whose main composition is metal rhodium and sulfuric acid, and a phosphoric acid plating bath whose main composition is metal rhodium and phosphoric acid may be used.

電解白金めっきの場合は、塩化白金(IV)、リン酸水素アミン、リン酸水素アンモニウムが主組成であるリン酸塩浴、ジアミノ亜硝酸白金、亜硝酸ナトリウム、硝酸アンモニウム、アンモニア水が主成分であるジアミノ亜硝酸塩浴を用いてよい。   In the case of electrolytic platinum plating, the main components are platinum (IV) chloride, hydrogen phosphate amine, ammonium phosphate phosphate bath, platinum dinitrite, sodium nitrite, ammonium nitrate, and ammonia water. A diaminonitrite bath may be used.

真空蒸着法について説明する。真空蒸着法は、10-5〜10-6Torrで加熱蒸発させた金属又は金属化合物を被めっき繊維に付着させて金属めっき膜を形成する方法である。また、真空蒸発法は、蒸発物質を放電プラズマ、電子ビーム等により、その一部又は全部をイオン化させ、負の電荷が印加された基板上に堆積させる方法であってよい。 The vacuum deposition method will be described. The vacuum deposition method is a method in which a metal or metal compound evaporated by heating at 10 −5 to 10 −6 Torr is attached to a fiber to be plated to form a metal plating film. Further, the vacuum evaporation method may be a method in which an evaporation substance is ionized partly or entirely by discharge plasma, an electron beam or the like and deposited on a substrate to which a negative charge is applied.

溶射法について説明する。溶射法は、金属を溶かして微粒とし、吹き付けて皮膜を形成させる方法である。具体的には、例えば、アルゴン、水素、窒素などのガス雰囲気中の陽極と陰極の間に直流大電流低電圧によりアークを生じさせ、プラズマ状態にし、この雰囲気中に金属を入れ、溶かして吹き付けるプラズマ溶射法等が挙げられる。   The thermal spraying method will be described. The thermal spraying method is a method in which a metal is melted into fine particles and sprayed to form a film. Specifically, for example, an arc is generated by a direct current large current and low voltage between an anode and a cathode in a gas atmosphere such as argon, hydrogen, nitrogen, etc., and a plasma state is obtained. Examples include plasma spraying.

本発明の金属構造物は、本発明の金属めっき繊維構造物を焼成することにより形成され、通気度が1〜200cm3/cm2/secである。金属構造物の通気度は、20〜100cm3/cm2/secであることが好ましい。金属構造物の通気度が1cm3/cm2/secより小さいと、粒子、粉体、液体等の充填量が少なくなる、又は、液体や気体に対する圧力損失が高くなる。また、金属構造物の通気度が200cm3/cm2/secより大きいと、粒子、粉体、液体等の充填ムラや脱落が発生しやすくなる、又は、液体や気体に対する接触面積が少なくなる傾向にある。
本発明の金属構造物は、焼成され繊維を構成する成分が炭化されてなることが好ましい。かかる構成であると、耐熱性や導電性を必要とする用途に特に好適に用いることができる。
The metal structure of the present invention is formed by firing the metal-plated fiber structure of the present invention, and has an air permeability of 1 to 200 cm 3 / cm 2 / sec. The air permeability of the metal structure is preferably 20 to 100 cm 3 / cm 2 / sec. When the air permeability of the metal structure is smaller than 1 cm 3 / cm 2 / sec, the filling amount of particles, powder, liquid, etc. decreases, or the pressure loss for the liquid or gas increases. Also, if the air permeability of the metal structure is greater than 200 cm 3 / cm 2 / sec, filling irregularities and dropping off of particles, powders, liquids, etc. are likely to occur, or the contact area with the liquid or gas tends to decrease. It is in.
The metal structure of the present invention is preferably formed by firing and carbonizing the components constituting the fiber. Such a configuration can be particularly suitably used for applications that require heat resistance and conductivity.

焼成工程は特に限定されないが、例えば、窒素、ヘリウム、アルゴン等の不活性気体雰囲気中で、700〜2000℃で、30秒〜30分間処理して行うことができる。   Although a baking process is not specifically limited, For example, it can carry out by processing for 30 second-30 minutes at 700-2000 degreeC in inert gas atmosphere, such as nitrogen, helium, and argon.

本発明の金属めっき繊維は、被めっき繊維にめっきされる金属、めっき方法によって、装飾性、耐劣化性、耐熱性、耐摩耗性、導電性、電磁波シール特性等の機能を生じる。そして、本発明の金属めっき繊維は、アクセサリー、フィルター、電子部品、電磁波シール材等に利用することができる。   The metal-plated fiber of the present invention has functions such as decoration, deterioration resistance, heat resistance, wear resistance, conductivity, electromagnetic wave sealing characteristics, etc., depending on the metal plated on the fiber to be plated and the plating method. And the metal plating fiber of this invention can be utilized for an accessory, a filter, an electronic component, an electromagnetic wave sealing material, etc.

[単位面積あたりのめっき量]
めっき処理前の不織布の質量をW、無電解めっき処理後のめっき不織布の質量をW1、無電解めっき処理後のめっき不織布の面積をA1、電解めっき処理後のめっき不織布の質量をW2、電解めっき処理後のめっき不織布の面積をA2としたとき、下記の式より算出した。
無電解めっき量=(W1−W)/A1
電解めっき量=(W2−W)/A2
[Plating amount per unit area]
The mass of the plating pretreatment nonwoven W, mass W 1 of plated nonwoven fabric after the electroless plating process, an electroless plating A 1 and the area of the plating nonwoven fabric after treatment, electroless plating treatment W 2 mass plating nonwoven after , the area of the plating nonwoven fabric after the electroless plating process when the a 2, was calculated from the following equation.
Electroless plating amount = (W 1 −W) / A 1
Electrolytic plating amount = (W 2 −W) / A 2

[電気抵抗]
無電解めっき処理後のめっき不織布、及び電解めっき処理後のめっき不織布を日置電機株式会社製HITESTER(3531)を使用し、ランダムな10箇所における抵抗値を測定し、平均値を算出して、抵抗値とした。なお、周波数は10kHz、電圧は1.0vの条件で測定した。
[Electric resistance]
HITOSTER (3531) manufactured by Hioki Electric Co., Ltd. is used for the plating nonwoven fabric after the electroless plating treatment and the plating nonwoven fabric after the electrolytic plating treatment, the resistance value is measured at 10 random locations, and the average value is calculated. Value. The frequency was measured at 10 kHz and the voltage was measured at 1.0 v.

[めっきムラ]
無電解めっき処理後のめっき不織布について、ランダムな10箇所における抵抗値を測定した。
A:10箇所の測定値の最大値と最小値との差が10Ω未満であった。
B:10箇所の測定値の最大値と最小値との差が10以上50Ω未満であった。
C:10箇所の測定値の最大値と最小値との差が50Ω以上であった。
[Plating unevenness]
About the plating nonwoven fabric after an electroless-plating process, the resistance value in 10 random places was measured.
A: The difference between the maximum value and the minimum value of 10 measured values was less than 10Ω.
B: The difference between the maximum value and the minimum value of 10 measured values was 10 or more and less than 50Ω.
C: The difference between the maximum value and the minimum value of 10 measured values was 50Ω or more.

[通気度]
金属めっき繊維構造物を焼成してなる金属めっき構造物の通気度を、JIS L−1096−6.27.1 A法に従って測定した。
[Air permeability]
The air permeability of the metal plating structure obtained by firing the metal plating fiber structure was measured according to JIS L-1096-6.27.1 A method.

(繊維1)
鞘成分が融点142℃、エチレン含有量55mol%のエチレン−ビニルアルコール共重合体(日本合成化学工業社製、商品名“ソアノールSG649”)、芯成分が融点165℃のポリプロピレン(日本ポリプロ社製、商品名“SA03”)の芯鞘型複合繊維(芯鞘比5:5)を用意した。繊維1は、繊度2.2dtex、繊維長51mmであった。
(Fiber 1)
An ethylene-vinyl alcohol copolymer having a melting point of 142 ° C. and an ethylene content of 55 mol% (manufactured by Nippon Synthetic Chemical Industry, trade name “Soarnol SG649”), and a core component having a melting point of 165 ° C. (manufactured by Nippon Polypro Co., Ltd.) A core-sheath type composite fiber (core-sheath ratio 5: 5) having a trade name “SA03” was prepared. The fiber 1 had a fineness of 2.2 dtex and a fiber length of 51 mm.

(繊維2)
鞘成分が融点173℃、エチレン含有量38mol%のエチレン−ビニルアルコール共重合体(日本合成化学工業社製、商品名“ソアノールK3835BN”)、芯成分が融点165℃のポリプロピレン(日本ポリプロ社製、商品名“SA03”)の芯鞘型複合繊維(芯鞘比5:5)を用意した。繊維2は、繊度2.2dtex、繊維長51mmであった。
(Fiber 2)
An ethylene-vinyl alcohol copolymer (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “Soarnol K3835BN”) having a melting point of 173 ° C. and an ethylene content of 38 mol%, and a core component having a melting point of 165 ° C. A core-sheath type composite fiber (core-sheath ratio 5: 5) having a trade name “SA03” was prepared. The fiber 2 had a fineness of 2.2 dtex and a fiber length of 51 mm.

(繊維3)
鞘成分が融点136℃の高密度ポリエチレン、芯成分が融点165℃のポリプロピレンである芯鞘型複合繊維(ダイワボウポリテック社製、商品名“NBF(H)”)を用意した。繊維3は、繊度2.2dtex、繊維長51mmであった。
(Fiber 3)
A core-sheath type composite fiber (manufactured by Daiwabo Polytech Co., Ltd., trade name “NBF (H)”) having a sheath component of high-density polyethylene having a melting point of 136 ° C. and a core component of polypropylene having a melting point of 165 ° C. was prepared. The fiber 3 had a fineness of 2.2 dtex and a fiber length of 51 mm.

(繊維4)
鞘成分が融点126℃の共重合ポリエステル、芯成分が融点260℃のポリエチレンテレフタレートである芯鞘型複合繊維(ユニチカ社製、商品名“メルティ”)を用意した。繊維4は、繊度2.2dtex、繊維長51mmであった。
(Fiber 4)
A core-sheath type composite fiber (manufactured by Unitika Ltd., trade name “Melty”) in which the sheath component is a copolyester having a melting point of 126 ° C. and the core component is polyethylene terephthalate having a melting point of 260 ° C. was prepared. The fiber 4 had a fineness of 2.2 dtex and a fiber length of 51 mm.

(実施例1)
被めっき繊維として、繊維1のみからなる目付が50g/m2のカードウェブを作成し、水圧3MPaにて水流交絡処理を施した後、エアースルー乾燥機を用いて、145℃で12秒間乾燥させて、不織布からなる被めっき不織布を得た。なお、実施例1の被めっき不織布は繊維の交点がゲル固着と熱接着により接着された不織布であった。
Example 1
A card web consisting of only fiber 1 and having a basis weight of 50 g / m 2 is prepared as a fiber to be plated, and hydroentangled at a water pressure of 3 MPa, and then dried at 145 ° C. for 12 seconds using an air-through dryer. Thus, a nonwoven fabric to be plated made of a nonwoven fabric was obtained. In addition, the to-be-plated nonwoven fabric of Example 1 was a nonwoven fabric in which the intersection of the fibers was bonded by gel fixation and thermal bonding.

次に、塩化第一スズ1質量%、10mol/Lの塩酸20質量%、塩化パラジウム0.1質量%の水溶液を用いて、被めっき不織布を触媒化させた。   Next, the nonwoven fabric to be plated was catalyzed using an aqueous solution of 1% by mass of stannous chloride, 20% by mass of hydrochloric acid of 10 mol / L, and 0.1% by mass of palladium chloride.

硫酸ニッケル20質量%、還元剤として20mol/Lのヒドラジン3質量%、錯化剤としてクエン酸ナトリウム30質量%、pH調整剤として水酸化ナトリウム2質量%を含む水溶液に、触媒化させた被めっき不織布を含浸させ、無電解めっきを行った。なお、無電解めっきは60℃で行った。   Plating to be catalyzed into an aqueous solution containing 20% by mass of nickel sulfate, 3% by mass of hydrazine of 20 mol / L as a reducing agent, 30% by mass of sodium citrate as a complexing agent, and 2% by mass of sodium hydroxide as a pH adjuster The nonwoven fabric was impregnated and electroless plating was performed. The electroless plating was performed at 60 ° C.

続いて、硫酸ニッケル300質量%、塩化ニッケル50質量%、ホウ酸50質量%を使用した水溶液(ワット浴)に、無電解めっきを施した被めっき不織布を含浸させ、電解めっきを行い、ニッケルめっき不織布を得た。なお、電解めっきは、60℃で、5Aの電流を流して行った。   Subsequently, an aqueous solution (watt bath) using 300% by mass of nickel sulfate, 50% by mass of nickel chloride, and 50% by mass of boric acid is impregnated with a non-plated non-plated nonwoven fabric, electroplated, and nickel plated. A nonwoven fabric was obtained. The electrolytic plating was performed at 60 ° C. with a current of 5 A flowing.

図1は得られためっき繊維で構成された不織布の表面の電子顕微鏡(SEM)写真(倍率300)である。   FIG. 1 is an electron microscope (SEM) photograph (magnification 300) of the surface of a nonwoven fabric composed of the obtained plated fibers.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(実施例2)
繊維2のみからなる目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従って被めっき不織布を得た。なお、実施例2の被めっき不織布は繊維の交点がゲル固着により接着された不織布であった。
その後、実施例1を製造するときに採用した手順に従って、同様にニッケルめっき処理を施し、ニッケルめっき不織布を得た。
(Example 2)
A non-woven fabric to be plated was obtained according to the same procedure as that employed when producing Example 1 except that a card web having a basis weight of 50 g / m 2 consisting of only fiber 2 was used. In addition, the to-be-plated nonwoven fabric of Example 2 was a nonwoven fabric by which the intersection of the fiber was adhere | attached by the gel fixation.
Then, according to the procedure employ | adopted when manufacturing Example 1, nickel plating processing was performed similarly and the nickel plating nonwoven fabric was obtained.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(実施例3)
繊維1を70質量%と繊維3を30質量%含む目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従って被めっき不織布を得た。なお、実施例3の被めっき不織布は繊維の交点がゲル固着と熱接着により接着された不織布であった。
その後、実施例1を製造するときに採用した手順に従って、同様にニッケルめっき処理を施し、ニッケルめっき不織布を得た。
(Example 3)
A non-woven fabric to be plated is prepared according to the same procedure as that employed when manufacturing Example 1 except that a card web containing 70% by mass of fiber 1 and 30% by mass of fiber 3 and having a basis weight of 50 g / m 2 is used. Obtained. In addition, the to-be-plated nonwoven fabric of Example 3 was a nonwoven fabric in which the intersection of the fibers was bonded by gel fixation and thermal bonding.
Then, according to the procedure employ | adopted when manufacturing Example 1, nickel plating processing was performed similarly and the nickel plating nonwoven fabric was obtained.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(実施例4)
繊維1を50質量%と繊維3を50質量%含む目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従って被めっき不織布を得た。なお、実施例4の被めっき不織布は繊維の交点がゲル固着と熱接着により接着された不織布であった。
その後、実施例1を製造するときに採用した手順に従って、同様にニッケルめっき処理を施し、ニッケルめっき不織布を得た。
Example 4
A non-woven fabric to be plated was prepared according to the same procedure as that employed when manufacturing Example 1 except that a card web containing 50% by mass of fiber 1 and 50% by mass of fiber 3 and having a basis weight of 50 g / m 2 was used. Obtained. In addition, the to-be-plated nonwoven fabric of Example 4 was a nonwoven fabric by which the intersection of the fiber was adhere | attached by gel fixation and heat bonding.
Then, according to the procedure employ | adopted when manufacturing Example 1, nickel plating processing was performed similarly and the nickel plating nonwoven fabric was obtained.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(実施例5)
繊維1を20質量%と繊維3を80質量%含む目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従って被めっき不織布を得た。なお、実施例5の被めっき不織布は繊維の交点がゲル固着と熱接着により接着された不織布であった。
その後、実施例1を製造するときに採用した手順に従って、同様にニッケルめっき処理を施し、ニッケルめっき不織布を得た。
(Example 5)
A non-woven fabric to be plated was prepared according to the same procedure as that employed when manufacturing Example 1 except that a card web containing 20% by mass of fiber 1 and 80% by mass of fiber 3 and having a basis weight of 50 g / m 2 was used. Obtained. In addition, the to-be-plated nonwoven fabric of Example 5 was a nonwoven fabric to which the intersection of the fiber was adhere | attached by gel fixation and heat bonding.
Then, according to the procedure employ | adopted when manufacturing Example 1, nickel plating processing was performed similarly and the nickel plating nonwoven fabric was obtained.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(比較例1)
繊維3のみからなる目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従ってニッケルめっき不織布を得た。
(Comparative Example 1)
A nickel-plated nonwoven fabric was obtained according to the same procedure as that used when producing Example 1, except that a card web consisting of only fibers 3 and having a basis weight of 50 g / m 2 was used.

図2は得られためっき繊維で構成された不織布の表面の電子顕微鏡(SEM)写真(倍率300)である。   FIG. 2 is an electron microscope (SEM) photograph (magnification 300) of the surface of the nonwoven fabric composed of the obtained plated fibers.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

(比較例2)
繊維4のみからなる目付が50g/m2のカードウェブを用いたこと以外は、実施例1を製造するときに採用した手順と同様の手順に従ってニッケルめっき不織布を得た。
(Comparative Example 2)
A nickel-plated non-woven fabric was obtained according to the same procedure as that employed when producing Example 1 except that a card web consisting of only fibers 4 and having a basis weight of 50 g / m 2 was used.

また、得られたニッケルめっき不織布を焼成して、ニッケル不織布を得た。   Moreover, the obtained nickel plating nonwoven fabric was baked and the nickel nonwoven fabric was obtained.

以上の実施例1〜5と比較例1〜2の条件と結果を表1にまとめて示す。   The conditions and results of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1.

実施例1〜5は、被めっき繊維の繊維表面にエチレン−ビニルアルコール共重合体が露出している構成であり、無電解めっき後の電気抵抗値及び電解めっき後の電気抵抗値は、比較例1に比べて低い。絶縁性の構造物に導電性金属をめっきした場合、均一にめっきされている場合は電気抵抗値が低くなり、めっきムラがある場合は、電気抵抗値が高くなることから、実施例1〜5の金属めっき不織布は、めっきムラの少ないものであることが理解できる。また、比較例2はオレフィン系に比べるとめっきされ易いエステル系の樹脂が繊維表面に露出している構成であり、めっきムラは少し良い結果であったが、耐薬品性は弱いものであった。   Examples 1-5 are the structures in which the ethylene-vinyl alcohol copolymer is exposed on the fiber surface of the fiber to be plated, and the electrical resistance value after electroless plating and the electrical resistance value after electrolytic plating are comparative examples. Low compared to 1. In the case where a conductive metal is plated on an insulating structure, the electric resistance value is lowered when uniformly plated, and the electric resistance value is increased when there is uneven plating. It can be understood that the metal-plated nonwoven fabric has little plating unevenness. Comparative Example 2 is a structure in which an ester-based resin that is more easily plated than the olefin-based resin is exposed on the fiber surface, and the plating unevenness was slightly good, but the chemical resistance was weak. .

実施例1と実施例2は、共に鞘成分がエチレン−ビニルアルコール共重合体、芯成分がポリプロピレンである芯鞘型複合繊維のみからなる不織布にニッケルめっき処理を施したニッケルめっき不織布であるが、実施例1が実施例2に比べて、無電解めっき後の電気抵抗値及び電解めっき後の電気抵抗値が低い。これは、繊維1が繊維2と比較して、エチレン−ビニルアルコールの融点が低く、エチレン含有量が多いことに起因して、実施例1は被めっき不織布の繊維の交点がゲル固着と熱接着の2種で接着された不織布であり、対して、実施例2は被めっき不織布の繊維の交点がゲル固着のみで接着された不織布であり、その結果、実施例1が実施例2と比較して繊維同士の交点におけるめっきムラが少なくなり、電気抵抗が低くなったと予想される。   Example 1 and Example 2 are both nickel-plated nonwoven fabrics in which a sheath component is an ethylene-vinyl alcohol copolymer, and a core component is a core-sheath type composite fiber that is made of only a core-sheath composite fiber, and is subjected to nickel plating. Compared to Example 2, Example 1 has lower electrical resistance values after electroless plating and lower electrical resistance values after electrolytic plating. This is because the fiber 1 has a lower melting point of ethylene-vinyl alcohol and a higher ethylene content than the fiber 2, and in Example 1, the intersection of the fibers of the nonwoven fabric to be plated is bonded to the gel and thermally bonded. In contrast, Example 2 is a nonwoven fabric in which the intersections of the fibers of the nonwoven fabric to be plated are adhered only by gel fixation. As a result, Example 1 is compared with Example 2. Therefore, it is expected that the plating unevenness at the intersection of the fibers is reduced and the electric resistance is lowered.

実施例1〜5、及び比較例1〜2の金属めっき繊維構造物を焼成してなる金属めっき構造物は、適度な通気度を有しており、気体に対する圧力損失が低いものであった。実施例1〜5からなる金属めっき構造物は、金属めっきが剥離した箇所が少なく、見た目もよいものであった。   The metal plating structures formed by firing the metal plating fiber structures of Examples 1 to 5 and Comparative Examples 1 to 2 had an appropriate air permeability and had a low pressure loss with respect to gas. The metal plating structure which consists of Examples 1-5 had few places where the metal plating peeled off, and its appearance was also good.

本発明の金属めっき繊維は、被めっき繊維にめっきされる金属、そのめっき方法によって、装飾性、耐劣化性、耐熱性、耐摩耗性、導電性、電磁波シール特性等の機能を生じる。そして、本発明の金属めっき繊維は、アクセサリー、フィルター、電子部品、電磁波シール材等に利用することができる。   The metal-plated fiber of the present invention has functions such as decoration, deterioration resistance, heat resistance, wear resistance, conductivity, and electromagnetic wave sealing characteristics depending on the metal plated on the fiber to be plated and the plating method. And the metal plating fiber of this invention can be utilized for an accessory, a filter, an electronic component, an electromagnetic wave sealing material, etc.

図1は実施例1で得られためっき繊維で構成された不織布の表面の電子顕微鏡(SEM)写真(倍率300)である。FIG. 1 is an electron microscope (SEM) photograph (magnification 300) of the surface of a nonwoven fabric composed of the plated fiber obtained in Example 1. 図2は比較例1で得られためっき繊維で構成された不織布の表面の電子顕微鏡(SEM)写真(倍率300)である。FIG. 2 is an electron microscope (SEM) photograph (magnification 300) of the surface of the nonwoven fabric composed of the plated fiber obtained in Comparative Example 1.

Claims (9)

繊維表面に金属がめっきされてなる繊維構造物であって、前記繊維構造物を構成する繊維は繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を含む金属めっき繊維構造物。   A metal-plated fiber comprising a fiber structure in which a metal is plated on a fiber surface, wherein the fiber constituting the fiber structure includes a fiber in which an ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface Structure. 前記エチレン−ビニルアルコール共重合体の融点が100℃〜190℃である請求項1に記載の金属めっき繊維構造物。   The metal-plated fiber structure according to claim 1, wherein the ethylene-vinyl alcohol copolymer has a melting point of 100C to 190C. 前記繊維構造物を構成する繊維は鞘成分がエチレン−ビニルアルコール共重合体である芯鞘型複合繊維を含む請求項1又は2に記載の金属めっき繊維構造物。   The metal which comprises the said fiber structure is a metal plating fiber structure of Claim 1 or 2 containing the core-sheath-type composite fiber whose sheath component is an ethylene-vinyl alcohol copolymer. 前記芯成分の融点が鞘成分の融点より10℃以上高い請求項3に記載の金属めっき繊維構造物。   The metal-plated fiber structure according to claim 3, wherein the melting point of the core component is 10 ° C. or more higher than the melting point of the sheath component. 前記芯成分がポリプロピレンからなる請求項3又は4に記載の金属めっき繊維構造物。   The metal plating fiber structure according to claim 3 or 4 in which said core ingredient consists of polypropylene. 前記繊維構造物を構成する繊維が、繊維表面の少なくとも一部にエチレン−ビニルアルコール共重合体が露出している繊維を25質量%以上90質量%以下含み、他の繊維を10質量%以上75質量%以下含む請求項1〜5のいずれかに記載の金属めっき繊維構造物。   The fiber constituting the fiber structure contains 25% by mass or more and 90% by mass or less of the fiber in which the ethylene-vinyl alcohol copolymer is exposed on at least a part of the fiber surface, and the other fiber is 10% by mass or more and 75% by mass. The metal-plated fiber structure according to any one of claims 1 to 5, comprising not more than mass%. 他の繊維がポリオレフィン系成分からなる繊維である請求項6に記載の金属めっき繊維構造物。   The metal-plated fiber structure according to claim 6, wherein the other fibers are fibers made of a polyolefin-based component. 前記金属めっき繊維構造物が不織布である請求項1〜7のいずれかに記載の金属めっき繊維構造物。   The metal plated fiber structure according to any one of claims 1 to 7, wherein the metal plated fiber structure is a nonwoven fabric. 請求項1〜8のいずれかに記載の金属めっき繊維構造物を焼成してなる通気度が1〜200cm3/cm2/secの金属構造物。 A metal structure having an air permeability of 1 to 200 cm 3 / cm 2 / sec obtained by firing the metal-plated fiber structure according to claim 1.
JP2008278944A 2008-10-29 2008-10-29 Metal-plated fiber structure and metal structure obtained by sintering the same Pending JP2010106391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278944A JP2010106391A (en) 2008-10-29 2008-10-29 Metal-plated fiber structure and metal structure obtained by sintering the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278944A JP2010106391A (en) 2008-10-29 2008-10-29 Metal-plated fiber structure and metal structure obtained by sintering the same

Publications (1)

Publication Number Publication Date
JP2010106391A true JP2010106391A (en) 2010-05-13

Family

ID=42296116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278944A Pending JP2010106391A (en) 2008-10-29 2008-10-29 Metal-plated fiber structure and metal structure obtained by sintering the same

Country Status (1)

Country Link
JP (1) JP2010106391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111210A1 (en) * 2018-11-30 2020-06-04 積水化学工業株式会社 Conductive nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111210A1 (en) * 2018-11-30 2020-06-04 積水化学工業株式会社 Conductive nonwoven fabric
JPWO2020111210A1 (en) * 2018-11-30 2021-02-15 積水化学工業株式会社 Conductive non-woven fabric

Similar Documents

Publication Publication Date Title
US20200373586A1 (en) Highly corrosion-resistant porous metal body
US5640669A (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
US20080261096A1 (en) Method For Producing Cathodes and Anodes for Electrochemical Systems, Metallised Material Used Therein, Method and Device For Production of Said Metallised Material
KR100739914B1 (en) Collector For Alkaline Secondary Battery, Method For Making The Same, And Alkaline Secondary Battery Using The Same
CN110983764B (en) Conductive aromatic polyamide fiber with composite metal coating structure
JP2024059671A (en) Film-like functional material and its manufacturing method
JP5785321B2 (en) Conductive fiber structure, metal porous structure, battery electrode material, and battery
JP5039638B2 (en) Metal-plated fiber structure and metal structure obtained by firing the same
CN1175139C (en) Cold layer-laminated fabric and method for fabricating the same
JP2010106391A (en) Metal-plated fiber structure and metal structure obtained by sintering the same
JP2010126824A (en) Metal-plated fiber structure and metal structure obtained by firing the same
US5840444A (en) Electrode for storage battery and process for producing the same
KR100763259B1 (en) Lead-coated complex porous structures, and corresponding method for conductive activation
JPH08329953A (en) Manufacture of nickel plated nonwoven fabric electrode substrate
US6245463B1 (en) Core body for electrode base of secondary cell, process for manufacturing the core body, electrode base of secondary cell, process for manufacturing the electrode base, and electrode and battery using them
JPH08203534A (en) Manufacture of nickel plated nonwoven electrode substrate
JPH06338329A (en) Manufacture of nickel plated nonwoven fabric electrode substrate
JPH08250125A (en) Nickel-plated nonwoven fabric electrode substrate
JP2013008813A (en) Capacitor
JP5136822B2 (en) Manufacturing method of battery electrode substrate, battery electrode and battery using the same
EP2644722A2 (en) Highly corrosion-resistant porous metal body and method for producing the same
WO1999054076A1 (en) Porous sintered body having high porosity, secondary cell electrode base comprising porous sintered body, method of producing the same, and electrode and cell using them
JP3341919B2 (en) Manufacturing method of plated nonwoven fabric electrode substrate
CN117188011A (en) Preparation process of copper wire woven cloth
JP5013361B2 (en) Method for producing nickel electrode for alkaline secondary battery