JP2010106197A - Method for producing carboxymethylcellulose - Google Patents
Method for producing carboxymethylcellulose Download PDFInfo
- Publication number
- JP2010106197A JP2010106197A JP2008281760A JP2008281760A JP2010106197A JP 2010106197 A JP2010106197 A JP 2010106197A JP 2008281760 A JP2008281760 A JP 2008281760A JP 2008281760 A JP2008281760 A JP 2008281760A JP 2010106197 A JP2010106197 A JP 2010106197A
- Authority
- JP
- Japan
- Prior art keywords
- cellulose
- reaction
- base
- crystallinity
- monohaloacetic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002134 Carboxymethyl cellulose Polymers 0.000 title claims abstract description 27
- 235000010948 carboxy methyl cellulose Nutrition 0.000 title claims abstract description 27
- 239000001768 carboxy methyl cellulose Substances 0.000 title claims abstract description 25
- 239000008112 carboxymethyl-cellulose Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000001913 cellulose Substances 0.000 claims abstract description 79
- 229920002678 cellulose Polymers 0.000 claims abstract description 52
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 239000002253 acid Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 28
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 235000010980 cellulose Nutrition 0.000 claims description 51
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 28
- 239000002585 base Substances 0.000 claims description 28
- 229920003124 powdered cellulose Polymers 0.000 claims description 27
- 235000019814 powdered cellulose Nutrition 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- 239000002994 raw material Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000004898 kneading Methods 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- FDRCDNZGSXJAFP-UHFFFAOYSA-M sodium chloroacetate Chemical compound [Na+].[O-]C(=O)CCl FDRCDNZGSXJAFP-UHFFFAOYSA-M 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229920003086 cellulose ether Polymers 0.000 description 2
- 238000003889 chemical engineering Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- -1 For example Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KDPAWGWELVVRCH-UHFFFAOYSA-N bromoacetic acid Chemical compound OC(=O)CBr KDPAWGWELVVRCH-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- JYVNDCLJHKQUHE-UHFFFAOYSA-N hydroxymethyl acetate Chemical compound CC(=O)OCO JYVNDCLJHKQUHE-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- KPFSGNRRZMYZPH-UHFFFAOYSA-M potassium;2-chloroacetate Chemical compound [K+].[O-]C(=O)CCl KPFSGNRRZMYZPH-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
本発明は、カルボキシメチルセルロースの製造方法の製造方法に関する。 The present invention relates to a method for producing a carboxymethyl cellulose.
カルボキシメチルセルロース(以下、「CMC」ともいう)は、増粘剤、分散剤、乳化剤、保護コロイド剤、安定化剤等として極めて広範に利用されている。このCMCは、工業的には、セルロースを大量のアルカリ水で処理してアルカリセルロースとして活性化(アルセル化)した後、含水有機溶媒中に分散させてモノハロ酢酸と反応させる溶媒法により製造されている。この溶媒法では、イソプロパノール等の親水性溶媒が用いられるが、これらの溶媒や水とモノハロ酢酸との副反応が避けられず、モノハロ酢酸のセルロースへの反応率が低いため、目的とする置換度を得るためには過剰量が必要となる。また、過剰のアルカリに由来する中和塩や、副反応物として得られるヒドロキシメチル酢酸塩等を洗浄等により除去する精製工程の負荷が高くなるという問題がある。 Carboxymethyl cellulose (hereinafter also referred to as “CMC”) is very widely used as a thickener, a dispersant, an emulsifier, a protective colloid agent, a stabilizer and the like. This CMC is industrially produced by a solvent method in which cellulose is treated with a large amount of alkaline water to be activated (arcelerized) as alkali cellulose, and then dispersed in a water-containing organic solvent and reacted with monohaloacetic acid. Yes. In this solvent method, a hydrophilic solvent such as isopropanol is used. However, the side reaction of these solvents and water with monohaloacetic acid is inevitable, and the reaction rate of monohaloacetic acid to cellulose is low. An excessive amount is required to obtain In addition, there is a problem that the load of a purification process for removing neutralized salts derived from excess alkali, hydroxymethyl acetate obtained as a side reaction product, and the like by washing or the like increases.
特許文献1には、モノハロ酢酸の利用効率を高めるため、グルコース単位に対して過剰モルのアルカリ金属成分とセルロースとの反応によりアルカリセルロースを生成させ、モノハロ酢酸及び有機酸を含む酸成分で中和し、中性〜弱塩基性域を維持しつつエーテル化するカルボキシメチルセルロース又はその塩の製造方法が開示されている。しかしながら、モノハロ酢酸の有効利用率は58〜65%であり、満足できるものではない。 In Patent Document 1, in order to increase the utilization efficiency of monohaloacetic acid, alkali cellulose is produced by the reaction of cellulose with an excess molar amount of alkali metal component with respect to glucose unit, and neutralized with an acid component containing monohaloacetic acid and organic acid. In addition, a method for producing carboxymethylcellulose or a salt thereof that is etherified while maintaining a neutral to weakly basic region is disclosed. However, the effective utilization rate of monohaloacetic acid is 58 to 65%, which is not satisfactory.
本発明は、モノハロ酢酸又はその塩の反応効率が極めて高く、選択的にカルボキシメチルセルロースを製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for selectively producing carboxymethyl cellulose, which has a very high reaction efficiency of monohaloacetic acid or a salt thereof.
本発明者らは、反応原料として低結晶性の粉末セルロースを用いることにより、モノハロ酢酸又はその塩との反応を極めて効率的かつ選択的に進行できることを見出した。
すなわち本発明は、低結晶性の粉末セルロースを、塩基の存在下、モノハロ酢酸又はその塩と反応させる、カルボキシメチルセルロースの製造方法である。
The present inventors have found that the reaction with monohaloacetic acid or a salt thereof can proceed extremely efficiently and selectively by using low crystalline powdered cellulose as a reaction raw material.
That is, the present invention is a method for producing carboxymethyl cellulose, in which low crystalline powdery cellulose is reacted with monohaloacetic acid or a salt thereof in the presence of a base.
本発明の方法によれば、カルボキシメチルセルロースを極めて効率的、選択的、かつ簡便に製造することができる。 According to the method of the present invention, carboxymethyl cellulose can be produced extremely efficiently, selectively and simply.
本発明のカルボキシメチルセルロースの製造方法は、低結晶性の粉末セルロースを、塩基の存在下、モノハロ酢酸又はその塩(以下、「モノハロ酢酸等」ともいう)と反応させることを特徴とする。以下、本発明方法に用いられる各成分、反応条件等について説明する。 The method for producing carboxymethylcellulose of the present invention is characterized in that low crystalline powdery cellulose is reacted with monohaloacetic acid or a salt thereof (hereinafter also referred to as “monohaloacetic acid etc.”) in the presence of a base. Hereinafter, each component used in the method of the present invention, reaction conditions, and the like will be described.
〔低結晶性の粉末セルロース〕
セルロースには幾つかの結晶構造が知られており、また一部に存在するアモルファス部と結晶部の全量に対する結晶部の割合から、一般に結晶化度が算出される。
本発明においては、「結晶化度」とは、天然セルロースの結晶構造に由来するI型の結晶化度を意味し、粉末X線結晶回折スペクトル法による回折強度値からSegal法により算出したもので、下記式(1)により定義される。
セルロースI型結晶化度(%)=〔(I22.6−I18.5)/I22.6〕×100 (1)
〔式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、及びI18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す。〕
また、「低結晶性」とは、セルロースの結晶構造においてアモルファス部の割合が多い状態を示し、具体的には上記式(1)によるセルロースI型結晶化度が好ましくは50%以下であることを意味し、該結晶化度が0%の完全非晶化の場合を含む。
通常の粉末セルロースは、少量のアモルファス部を有し、それらの結晶化度は、上記式(1)によれば概ね60〜80%の範囲に含まれるいわゆる結晶性セルロースである。この結晶性セルロースは、一般的なセルロース誘導体合成における反応性が極めて低いのに対し、本発明で用いられる低結晶性の粉末セルロースは、化学反応性が優れている。
[Low crystalline powdered cellulose]
Several crystal structures are known for cellulose, and the degree of crystallinity is generally calculated from the ratio of crystal parts to the total amount of amorphous parts and crystal parts existing in part.
In the present invention, “crystallinity” means type I crystallinity derived from the crystal structure of natural cellulose, and is calculated by the Segal method from the diffraction intensity value by the powder X-ray crystal diffraction spectrum method. , Defined by the following formula (1).
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[Wherein I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the amorphous portion (diffraction angle 2θ = 18.5 °). The diffraction intensity is shown. ]
“Low crystallinity” means a state in which the ratio of the amorphous part is large in the crystal structure of cellulose. Specifically, the cellulose I-type crystallinity according to the above formula (1) is preferably 50% or less. Including the case where the crystallinity is 0%.
Ordinary powdered cellulose has a small amount of amorphous part, and the crystallinity thereof is so-called crystalline cellulose included in the range of approximately 60 to 80% according to the above formula (1). This crystalline cellulose has a very low reactivity in general cellulose derivative synthesis, whereas the low crystalline powdery cellulose used in the present invention is excellent in chemical reactivity.
本発明に用いられる低結晶性の粉末セルロースの結晶化度は、化学反応性の観点から、前記式(1)による結晶化度が好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下である。該結晶化度が50%以下であれば、塩基によるモノハロ酢酸等との反応が極めて良好に進行するため、セルロースエーテル化反応の選択率を向上させることができ、また、置換基導入部位の位置的な偏りを低減できる。この観点から、特に完全に非晶質化した、すなわち前記式(1)による結晶化度がほぼ0%となる、いわゆる非晶化セルロースを用いることが最も好ましい。
なお、前記式(1)で定義されたセルロースI型結晶化度では計算上マイナスの値になる場合があるが、マイナスの値の場合はセルロースI型結晶化度は0%とする。
From the viewpoint of chemical reactivity, the crystallinity of the low crystalline powder cellulose used in the present invention is preferably 50% or less, more preferably 40% or less, and still more preferably from the above formula (1). 30% or less. If the crystallinity is 50% or less, the reaction with the monohaloacetic acid and the like by the base proceeds very well, so that the selectivity of the cellulose etherification reaction can be improved, and the position of the substituent introduction site General bias can be reduced. From this point of view, it is most preferable to use so-called non-crystallized cellulose that has been made completely amorphous, that is, the crystallinity according to the formula (1) is almost 0%.
The cellulose I type crystallinity defined by the formula (1) may be a negative value in calculation, but in the case of a negative value, the cellulose I type crystallinity is 0%.
低結晶性の粉末セルロースの平均粒径は、低結晶性セルロースを工業原料として用いる際の化学反応性の観点、及び粉体として流動性の良い状態が保つ観点から、300μm以下が好ましく、150μm以下がより好ましく、100μm以下がより好ましく、50μm以下が更に好ましい。また、工業的な操作性の観点から、該平均粒径は20μm以上が好ましく、25μm以上がより好ましい。
また、凝集等による微量な粗大粒子の混入を避けるため、反応には必要に応じて25〜100μm程度の篩を用いた篩下品を用いるのが好ましい。
低結晶性の粉末セルロースの重合度は、化学反応性の観点、及び原料パルプや工業的に実施する際の操作性の観点から、100〜2000であり、より好ましくは100〜1000である。
The average particle size of the low crystalline powdered cellulose is preferably 300 μm or less, preferably 150 μm or less, from the viewpoint of chemical reactivity when using low crystalline cellulose as an industrial raw material, and from the viewpoint of maintaining good fluidity as a powder. Is more preferable, 100 μm or less is more preferable, and 50 μm or less is still more preferable. Further, from the viewpoint of industrial operability, the average particle size is preferably 20 μm or more, and more preferably 25 μm or more.
Moreover, in order to avoid the mixing of a trace amount of coarse particles due to aggregation or the like, it is preferable to use an unsieved product using a sieve having a size of about 25 to 100 μm as necessary for the reaction.
The degree of polymerization of the low-crystalline powdery cellulose is 100 to 2000, more preferably 100 to 1000, from the viewpoint of chemical reactivity and from the viewpoint of raw material pulp and operability in industrial implementation.
〔低結晶性の粉末セルロースの調製〕
本発明に用いられる低結晶性の粉末セルロースは、汎用原料として得られるシート状やロール状のセルロース純度の高いパルプから調製することができる。例えば、特開昭62−236801号公報、特開2003−64184号公報、特開2004−331918号公報等に記載の方法により調製することができる。
また、低結晶性の粉末セルロースをより効率的に得る方法として、例えば、シート状パルプを粗粉砕して得られる、好ましくは1〜50mm角、より好ましくは1〜30mm角のチップ状パルプを、押出機で処理した後、更にボールミルで処理することにより調製する方法が挙げられる。
[Preparation of low crystalline powdered cellulose]
The low crystalline powdery cellulose used in the present invention can be prepared from a sheet-like or roll-like pulp having high cellulose purity obtained as a general-purpose raw material. For example, it can be prepared by the methods described in JP-A-62-236801, JP-A-2003-64184, JP-A-2004-331918, and the like.
Moreover, as a method for more efficiently obtaining low crystalline powdered cellulose, for example, obtained by roughly pulverizing sheet-like pulp, preferably 1-50 mm square, more preferably 1-30 mm square chip-like pulp, The method of preparing by processing with a ball mill after processing with an extruder is mentioned.
ここで、押出機としては単軸又は二軸の押出機を用いることができるが、強い圧縮せん断力を加える観点から、スクリューのいずれかの部分に、いわゆるニーディングディスク部を備えるものがより好ましい。
ニーディングディスク部とは、複数のニーディングディスクで構成され、これらを連続して、一定の位相でずらしながら組み合わせたものである。例えば3〜20枚、好ましくは6〜16枚のニーディングディスクを90°の位相で互い違いにずらしながら組み合わせたものが挙げられる。ニーディングディスク部は、スクリューの回転にともなって、その狭い隙間にチップ状パルプ等を強制的に通過させることで極めて強いせん断力を付与しながら、連続的に処理することができる。押出機処理におけるせん断速度としては、600〜3000sec-1が好ましく、6000〜2000sec-1がより好ましい。
Here, as the extruder, a single-screw or twin-screw extruder can be used, but from the viewpoint of applying a strong compressive shearing force, it is more preferable to have a so-called kneading disk portion in any part of the screw. .
The kneading disc portion is composed of a plurality of kneading discs, which are combined while being shifted at a constant phase. For example, a combination of 3 to 20 kneading disks, preferably 6 to 16 kneading disks, which are staggered at a phase of 90 °. The kneading disk portion can be continuously processed while applying a very strong shearing force by forcibly passing chip-like pulp through the narrow gap as the screw rotates. As a shear rate in an extruder process, 600-3000 sec < -1 > is preferable and 6000-2000 sec < -1 > is more preferable.
また、ボールミルとしては、公知の振動ボールミル、媒体攪拌ミル、転動ボールミル、遊星ボールミル等を用いることができる。媒体として用いるボールの材質に特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア等が挙げられる。ボールの外径は、効率的にセルロースの結晶化度を下げる観点から、好ましくは0.1〜100mmである。また媒体としては、ボール以外にもロッド状のものやチューブ状のものも用いることが可能である。
ボールミルの処理時間としては、結晶化度を低下させる観点から、好ましくは5分〜72時間である。またボールミル処理の際には、発生する熱による変性や劣化を最小限に抑えるためにも、250℃以下、好ましくは5〜200℃の範囲で処理を行うことが好ましく、さらには必要に応じて、窒素等の不活性ガス雰囲気下で行うことができる。
前述のような方法を用いれば、分子量の制御も可能であり、一般には入手困難な、重合度が高く、かつ低結晶性の粉末セルロースを容易に調製することが可能である。
As the ball mill, a known vibration ball mill, medium stirring mill, rolling ball mill, planetary ball mill, or the like can be used. There is no restriction | limiting in particular in the material of the ball | bowl used as a medium, For example, iron, stainless steel, an alumina, a zirconia etc. are mentioned. The outer diameter of the ball is preferably 0.1 to 100 mm from the viewpoint of efficiently reducing the crystallinity of cellulose. In addition to the ball, a medium such as a rod or tube can be used as the medium.
The treatment time of the ball mill is preferably 5 minutes to 72 hours from the viewpoint of reducing the crystallinity. Further, in the ball mill treatment, it is preferable to carry out the treatment at a temperature of 250 ° C. or lower, preferably 5 to 200 ° C. in order to minimize the denaturation and deterioration due to the generated heat. , Under an inert gas atmosphere such as nitrogen.
By using the method as described above, it is possible to control the molecular weight, and it is possible to easily prepare powdered cellulose having a high degree of polymerization and low crystallinity, which is generally difficult to obtain.
〔カルボキシメチルセルロースの製造〕
本発明のカルボキシメチルセルロースの製造方法は、前記の低結晶性の粉末セルロースを、塩基の存在下、モノハロ酢酸又はその塩と反応させる。
本発明で用いられるモノハロ酢酸又はその塩としては、モノクロロ酢酸、モノブロモ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸カリウム等が挙げられるが、特にモノクロロ酢酸ナトリウムが好ましい。
本発明で用いられ塩基としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、トリメチルアミン、トリエチルアミン、トリエチレンジアミン等の3級アミン類等が挙げられる。これらの中では、アルカリ金属水酸化物が好ましく、水酸化ナトリウム、水酸化カリウムがより好ましく、水酸化ナトリウムが更に好ましい。
上記のモノハロ酢酸等と塩基は、単独で又は2種以上を組み合わせて用いることができる。
本発明では、セルロースの分散性、並びに塩基及びモノハロ酢酸との混合性を改善する目的で、有機溶剤の存在下、反応を行うこともできる。
用いられる溶剤として、非水極性溶剤としては、イソプロパノール、tert−ブタノールなどの2級又は3級の低級アルコール;1,4−ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのジグライム、トリグライム等のエーテル系溶剤;ジメチルスルホキシド等の親水性極性溶剤が挙げられる。一方、トルエン、ベンゼン、ヘキサンや他の炭化水素油といった非水低極性又は非極性溶剤を用いることも可能である。
上記の溶剤は、単独で又は2種以上を組み合わせて用いることができる。
[Production of carboxymethyl cellulose]
In the method for producing carboxymethylcellulose of the present invention, the low crystalline powdery cellulose is reacted with monohaloacetic acid or a salt thereof in the presence of a base.
Examples of the monohaloacetic acid or a salt thereof used in the present invention include monochloroacetic acid, monobromoacetic acid, sodium monochloroacetate, potassium monochloroacetate and the like, and sodium monochloroacetate is particularly preferable.
The base used in the present invention is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, and alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. And tertiary amines such as trimethylamine, triethylamine, and triethylenediamine. In these, an alkali metal hydroxide is preferable, sodium hydroxide and potassium hydroxide are more preferable, and sodium hydroxide is still more preferable.
Said monohaloacetic acid etc. and a base can be used individually or in combination of 2 or more types.
In the present invention, the reaction can be carried out in the presence of an organic solvent for the purpose of improving the dispersibility of cellulose and the miscibility with a base and monohaloacetic acid.
As a solvent to be used, non-aqueous polar solvents include secondary alcohols or tertiary alcohols such as isopropanol and tert-butanol; ether solvents such as diglyme such as 1,4-dioxane, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, and triglyme. A hydrophilic polar solvent such as dimethyl sulfoxide. On the other hand, non-aqueous low polarity or non-polar solvents such as toluene, benzene, hexane and other hydrocarbon oils can also be used.
Said solvent can be used individually or in combination of 2 or more types.
(塩基及びモノハロ酢酸等の添加)
塩基の添加方法に特に制限はなく、例えば、(i)予め低結晶性の粉末セルロースとモノハロ酢酸等を混合した後、塩基水溶液として滴下する方法、又は(ii)予め低結晶性の粉末セルロースと塩基を混合した後、モノハロ酢酸等を添加する方法等が挙げられる。これらの中では、反応温度の制御や塊状(ダマ)化を防止する観点から、前記(i)の方法がより好ましい。
添加する塩基の性状についても特に制限はなく、したがって塩基は無水状態や水溶液として混合・添加することが可能であるが、前記(i)の方法で添加する場合には、塩基を水溶液として添加することが好ましく、その濃度は特に限定されないが、20〜50質量%の範囲が好ましい。
モノハロ酢酸等の添加方法も特に制限はなく、例えば、(iii)粉末セルロースに塩基を添加した後にモノハロ酢酸等を徐々に滴下する方法や、(iv)粉末セルロースにモノハロ酢酸等を一括で添加し、その後に塩基を加えて反応させる方法等が挙げられる。
(Addition of base, monohaloacetic acid, etc.)
There is no particular limitation on the method of adding the base. For example, (i) a method in which low crystalline powdery cellulose is mixed in advance with monohaloacetic acid and then dropped as an aqueous base solution, or (ii) a low crystalline powdery cellulose in advance. Examples thereof include a method of adding a monohaloacetic acid after mixing the base. Among these, the method (i) is more preferable from the viewpoint of controlling the reaction temperature and preventing lumping.
There is no particular restriction on the nature of the base to be added, and therefore the base can be mixed and added in an anhydrous state or as an aqueous solution. However, when adding by the method (i), the base is added as an aqueous solution. The concentration is not particularly limited, but a range of 20 to 50% by mass is preferable.
The addition method of monohaloacetic acid and the like is not particularly limited. For example, (iii) a method in which monohaloacetic acid or the like is gradually added dropwise after adding a base to powdered cellulose, or (iv) monohaloacetic acid or the like is added to powdered cellulose in a lump. Then, a method of adding a base and reacting it can be mentioned.
(塩基及びモノハロ酢酸等の使用量)
本発明においては、粉末セルロースとモノハロ酢酸又はその塩との反応効率が極めて高く、反応がほぼ定量的に進行する。そのため、塩基の使用量は、特にモノハロ酢酸塩の使用量に対して、1〜1.05モル倍用いるだけで十分である。ただしモノハロ酢酸を用いる場合には、更にカルボキシル基を完全に中和できる量が必要となる。
また、モノハロ酢酸又はその塩の使用量は、反応が極めて定量的に進行することから、所望の置換度(セルロース分子中のグルコース単位あたりの導入モル量)に相当する量を用いて、該置換度を適宜調整することができる。得られるカルボキシメチルセルロース中のカルボキシメチル基は、セルロース分子中のグルコース単位におけるいかなる位置の水酸基と結合していてもよい。
(Amount of base and monohaloacetic acid used)
In the present invention, the reaction efficiency between powdered cellulose and monohaloacetic acid or a salt thereof is extremely high, and the reaction proceeds almost quantitatively. Therefore, it is sufficient to use the base in an amount of 1 to 1.05 moles, especially with respect to the monohaloacetate. However, when monohaloacetic acid is used, an amount capable of completely neutralizing the carboxyl group is required.
In addition, the amount of monohaloacetic acid or its salt used is such that the reaction proceeds very quantitatively, so that the amount corresponding to the desired degree of substitution (introduced molar amount per glucose unit in the cellulose molecule) is used. The degree can be adjusted as appropriate. The carboxymethyl group in the obtained carboxymethyl cellulose may be bonded to the hydroxyl group at any position in the glucose unit in the cellulose molecule.
(反応条件)
本発明における反応温度は、モノハロ酢酸等の沸点以下の温度が好ましく、具体的には30〜100℃が好ましく、40〜80℃がより好ましい。
反応は、常圧下で行うことが好ましく、反応時の着色を避ける観点から、必要に応じて窒素等の不活性ガス雰囲気下で行うのが好ましい。
本発明においては、低結晶性の粉末セルロース、塩基及びモノハロ酢酸等を、流動性のある粉末状態で反応させることが好ましく、より具体的には、粉末セルロースと塩基、又は粉末セルロースとモノハロ酢酸等を、予めミキサー等の混合機や振とう機で均一に混合した後に、モノハロ酢酸等又は塩基と反応させることが好ましい。前記粉末状態で反応を行えば、反応終了後の有機溶媒除去工程の負担はが小さいか、又は不要であり、工業的に簡便であり有利である。
(Reaction conditions)
The reaction temperature in the present invention is preferably a temperature equal to or lower than the boiling point of monohaloacetic acid, specifically 30 to 100 ° C, more preferably 40 to 80 ° C.
The reaction is preferably carried out under normal pressure, and is preferably carried out under an inert gas atmosphere such as nitrogen as necessary from the viewpoint of avoiding coloring during the reaction.
In the present invention, it is preferable to react low crystalline powdered cellulose, base, monohaloacetic acid and the like in a fluid powder state. More specifically, powdered cellulose and base, or powdered cellulose and monohaloacetic acid, etc. Is preferably mixed in advance with a mixer such as a mixer or a shaker, and then reacted with monohaloacetic acid or the like or a base. If the reaction is performed in the powder state, the burden of the organic solvent removal step after the reaction is small or unnecessary, which is industrially simple and advantageous.
低結晶性の粉末セルロースとモノハロ酢酸等との反応においては、反応に用いる粉末セルロースや塩基水溶液等の原料由来の水分等、反応時の反応容器内(反応系中ともいう)に存在する水分により、原料や生成物が凝集する可能性がある。そこで、反応系中に存在する水分量を粉末セルロースに対して、好ましくは100質量%以下、より好ましくは80質量%以下、更に好ましくは50質量%以下、特に好ましくは5〜50質量%とする。反応系中に存在する水分量が前記範囲内であれば、原料の粉末セルロースや生成物であるカルボキシメチルセルロースが過度に凝集することがなく、流動性のある粉末状態で反応させることができる。
粉末セルロースに対する水分量を前記の範囲に保つためには、塩基水溶液の滴下及び反応とともに減圧条件下等で脱水することも好ましく、その際の圧力は13.3〜101kPaが好ましく、6.6〜13.3kPaがより好ましい。
有機溶剤の使用量としては、流動性のある粉末状態で反応させるという観点から、前記水分量と併せた量が、粉末セルロースに対して100質量%以下、より好ましくは80質量%以下、特には50質量%以下とすることが好ましい。
In the reaction of low crystalline powdered cellulose with monohaloacetic acid, etc., it depends on the moisture present in the reaction vessel (also referred to in the reaction system) at the time of reaction, such as powdered cellulose used in the reaction and moisture derived from raw materials such as aqueous base , Raw materials and products may agglomerate. Therefore, the amount of water present in the reaction system is preferably 100% by mass or less, more preferably 80% by mass or less, still more preferably 50% by mass or less, and particularly preferably 5 to 50% by mass with respect to the powdered cellulose. . If the amount of water present in the reaction system is within the above range, the raw material powdered cellulose and the product carboxymethylcellulose are not excessively aggregated and can be reacted in a fluid powder state.
In order to keep the water content with respect to the powdered cellulose within the above range, it is also preferable to dehydrate under a reduced pressure condition or the like together with the dropwise addition and reaction of the aqueous base, and the pressure at that time is preferably 13.3 to 101 kPa, 6.6 to 13.3 kPa is more preferable.
The amount of the organic solvent used is 100% by mass or less, more preferably 80% by mass or less, particularly preferably 80% by mass or less, based on the powdered cellulose, from the viewpoint of reacting in a fluid powder state. The content is preferably 50% by mass or less.
(反応装置)
本発明で用いる反応装置としては特に制限はないが、前記流動性のある粉末状態で反応を行うには、低結晶性の粉末セルロース、塩基及びモノハロ酢酸等をできるだけ均一に混合できるものが好ましい。例えば、特開2002-114801号公報明細書段落〔0016〕で開示しているような、樹脂等の混錬に用いられる、いわゆるニーダー等の混合機が好ましい。
ここで、ニーダー等の混合機としては、攪拌が十分できるものであれば特に限定されないが、例えば化学工学協会編「化学工学便覧」改訂五版(丸善株式会社発行)、917〜919頁に記載されているように、単軸型ニーダーとしてはリボンミキサー、コニーダー、ボテーター、スクリュー型ニーダー等が挙げられ、二軸型ニーダーとしては、双腕型ニーダー等が挙げられる。
これらの混合機は、塩基水溶液の滴下や脱水ができるような部位を備えていることがより好ましい。
(Reactor)
Although there is no restriction | limiting in particular as a reaction apparatus used by this invention, In order to react in the said powder state with the fluidity | liquidity, what can mix a low crystalline powder cellulose, a base, a monohalo acetic acid etc. as uniformly as possible is preferable. For example, a mixer such as a so-called kneader used for kneading resins or the like as disclosed in paragraph [0016] of JP-A-2002-114801 is preferable.
Here, the mixer such as a kneader is not particularly limited as long as it can sufficiently stir. For example, the chemical engineering association edition “Chemical Engineering Handbook” revised 5th edition (published by Maruzen Co., Ltd.), pages 917 to 919 As described above, examples of the single-axis kneader include a ribbon mixer, a kneader, a botter, and a screw-type kneader, and examples of the biaxial kneader include a double-arm kneader.
It is more preferable that these mixers have a portion where the aqueous base solution can be dropped and dehydrated.
本発明においては、モノハロ酢酸等のセルロースに対する反応選択率が極めて高いことから、モノハロ酢酸等に由来する副生成物が極めて少ないため、反応終了後の精製等の後処理も容易である。すなわち、本発明においては、反応終了後に、微量の未反応のモノハロ酢酸等や副生した中和塩を除去するために、必要に応じて、含水イソプロパノール、含水アセトン溶媒等で洗浄した後、乾燥する等、簡便な精製処理によって目的のカルボキシメチルセルロースを得ることができる。
また、反応終了後に中和塩除去等の精製処理を行わずに、必要に応じて触媒量の塩基等を添加した後、更なる誘導体化反応を行い、種々のセルロースエーテル誘導体を、粉末セルロースからワンポットで合成することもできる。
In the present invention, since the reaction selectivity with respect to cellulose such as monohaloacetic acid is extremely high, by-products derived from monohaloacetic acid and the like are extremely small, post-treatment such as purification after completion of the reaction is easy. That is, in the present invention, after the reaction is completed, in order to remove a trace amount of unreacted monohaloacetic acid and the like and by-product neutralized salt, if necessary, after washing with water-containing isopropanol, water-containing acetone solvent, etc., drying is performed. The target carboxymethyl cellulose can be obtained by a simple purification treatment such as.
Further, after completion of the reaction, without performing a purification treatment such as neutralization salt removal, a catalytic amount of a base or the like is added as necessary, and then a further derivatization reaction is performed, so that various cellulose ether derivatives are obtained from powdered cellulose. It can also be synthesized in one pot.
製造例で得られた低結晶性セルロースの結晶化度、重合度、平均粒径、水分含量の測定は、下記の方法で行った。 The crystallinity, degree of polymerization, average particle size, and water content of the low crystalline cellulose obtained in the production example were measured by the following methods.
(1)結晶化度の算出
セルロースI型結晶化度は、サンプルのX線回折強度を、株式会社リガク製の「Rigaku RINT 2500VC X-RAY diffractometer」を用いて以下の条件で測定し、前記式(1)に基づいて算出した。
測定条件は、X線源:Cu/Kα−radiation、管電圧:40kv、管電流:120mA、測定範囲:回折角2θ=5〜45°で測定した。測定用サンプルは面積320mm2×厚さ1mmのペレットを圧縮し作製した。X線のスキャンスピードは10°/minで測定した。
(1) Calculation of crystallinity The cellulose I type crystallinity is measured by measuring the X-ray diffraction intensity of a sample using the “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation under the following conditions. Calculated based on (1).
The measurement conditions were X-ray source: Cu / Kα-radiation, tube voltage: 40 kv, tube current: 120 mA, measurement range: diffraction angle 2θ = 5-45 °. The measurement sample was prepared by compressing a pellet having an area of 320 mm 2 × thickness of 1 mm. The X-ray scan speed was measured at 10 ° / min.
(2)重合度の測定
セルロースの重合度はISO−4312法に記載の銅アンモニア法により測定した。
(3)平均粒径の測定
平均粒径は、レーザー回折/散乱式粒度分布測定装置「LA−920」(株式会社堀場製作所製)を用いて測定した。測定条件は、粒径測定前に超音波で1分間処理し、測定時の分散媒体として水を用い、体積基準のメジアン径を、温度25℃にて測定した。なお、用いた屈折率は、1.2である。
(4)水分含量の測定
水分含量は、赤外線水分計(株式会社ケット科学研究所製、「FD−610」)を使用し、150℃にて測定を行った。
(2) Measurement of degree of polymerization The degree of polymerization of cellulose was measured by the copper ammonia method described in ISO-4312 method.
(3) Measurement of average particle diameter The average particle diameter was measured using a laser diffraction / scattering particle size distribution measuring apparatus “LA-920” (manufactured by Horiba, Ltd.). The measurement conditions were ultrasonic treatment for 1 minute before particle size measurement, water was used as a dispersion medium during measurement, and the volume-based median diameter was measured at a temperature of 25 ° C. The refractive index used is 1.2.
(4) Measurement of moisture content The moisture content was measured at 150 ° C using an infrared moisture meter ("FD-610", manufactured by Kett Scientific Laboratory).
製造例1(非晶化粉末セルロースの製造)
まず市販の木材パルプシート(ボレガード社製パルプシート、結晶化度74%)をシュレッダー(株式会社明光商会製、「MSX2000−IVP440F」)にかけて1cm角のチップ状にした。次に、得られたチップ状パルプをスクリューの中央部にニーディングディスク部を備えた二軸押出機(株式会社スエヒロEPM製、「EA−20」)に2kg/hrで投入し、せん断速度660sec-1、スクリュー回転数300rpmの条件で、外部から冷却水を流しながら、1パス処理して粉末状にした。次いで得られた粉末セルロースを、バッチ式媒体攪拌型ボールミル(三井鉱山株式会社製「アトライタ」:容器容積800mL、6mmφ鋼球を1400g充填、攪拌翼の直径65mm)に前記粉末状のセルロース100gを投入した。容器ジャケットに冷却水を通しながら、攪拌回転数600rpmで3時間粉砕処理を行い、粉末セルロース(結晶化度0%、重合度600、平均粒径40μm)を得た。この粉末セルロースの反応には更に32μm目開きの篩をかけた篩下品を使用した。
Production Example 1 (Production of Amorphized Powdered Cellulose)
First, a commercially available wood pulp sheet (Boregard pulp sheet, crystallinity 74%) was applied to a shredder (manufactured by Meiko Shokai Co., Ltd., “MSX2000-IVP440F”) to form a 1 cm square chip. Next, the obtained chip-like pulp was charged at 2 kg / hr into a twin-screw extruder ("EA-20" manufactured by Suehiro EPM Co., Ltd.) equipped with a kneading disk at the center of the screw, and a shear rate of 660 sec. -1 and powdered by one pass treatment with cooling water flowing from outside under the condition of screw rotation speed of 300 rpm. Next, 100 g of the powdered cellulose was put into a batch-type medium stirring ball mill (“Attritor” manufactured by Mitsui Mining Co., Ltd .: a container volume of 800 mL, 1400 g of 6 mmφ steel balls filled, a stirring blade diameter of 65 mm). did. While passing cooling water through the container jacket, pulverization was performed at a stirring rotational speed of 600 rpm for 3 hours to obtain powdered cellulose (crystallinity 0%, polymerization 600, average particle size 40 μm). For the reaction of the powdered cellulose, a sieved product having a sieve with an opening of 32 μm was used.
実施例1
1Lニーダー(株式会社入江商会製、PNV―1型)に、製造例1で得られた非晶化粉末セルロース(結晶化度0%、重合度600、平均粒径40μm、含水量5質量%)80.0g(グルコース単位換算0.47mol)及びクロロ酢酸ナトリウム(和光純薬工業株式会社製試薬)58.0g(0.50mol)を加え、窒素雰囲気下6時間攪拌した。次いで窒素雰囲気下50℃に昇温した後、48質量%の水酸化ナトリウム水溶液42.0g(NaOH量0.50mol)を2時間かけて滴下した後、そのまま50℃で6時間攪拌した。その間、セルロース及び生成物は全く凝集することなく流動性のある粉末状態を保っていた(セルロース及びその他原料由来の水分量の総和:セルロースに対して13質量%)。
反応終了後、室温まで冷却し、生成物をニーダーから取り出し、副生塩及び未反応物等を含水イソプロパノール(含水量15質量%)3000ml、及びイソプロパノール1000mlで洗浄して除去し、乾燥して114gの白色固体を得た。
赤外分光光度計(株式会社堀場製作所製FT−IR測定装置FT−710)を用いて、この白色固体をカルボキシメチルセルロース(Na塩)と同定した。その赤外吸収スペクトルを図1に示す。
置換基の導入量から求められるグルコース単位あたりのカルボキシメチル基の置換度は1.0であった。また、原料クロロ酢酸ナトリウム基準でのセルロースへの反応選択率は95%であり、反応はほぼ定量的に進行していた。
Example 1
A non-crystalline powdery cellulose obtained in Production Example 1 (crystallinity 0%, polymerization degree 600, average particle size 40 μm, water content 5 mass%) in a 1 L kneader (manufactured by Irie Shokai Co., Ltd., PNV-1 type) 80.0 g (0.47 mol in terms of glucose unit) and 58.0 g (0.50 mol) of sodium chloroacetate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred under a nitrogen atmosphere for 6 hours. Next, the temperature was raised to 50 ° C. in a nitrogen atmosphere, and 42.0 g of a 48 mass% sodium hydroxide aqueous solution (NaOH amount 0.50 mol) was added dropwise over 2 hours, followed by stirring at 50 ° C. for 6 hours. During that time, the cellulose and the product were kept in a fluid powder state without agglomeration at all (total amount of water derived from cellulose and other raw materials: 13% by mass with respect to cellulose).
After completion of the reaction, the mixture is cooled to room temperature, the product is taken out from the kneader, and by-product salts and unreacted substances are removed by washing with 3000 ml of water-containing isopropanol (water content: 15% by mass) and 1000 ml of isopropanol, and dried to give 114 g. Of a white solid was obtained.
This white solid was identified as carboxymethyl cellulose (Na salt) using an infrared spectrophotometer (FT-IR measuring device FT-710 manufactured by Horiba, Ltd.). The infrared absorption spectrum is shown in FIG.
The degree of substitution of the carboxymethyl group per glucose unit determined from the amount of substituent introduced was 1.0. Further, the reaction selectivity to cellulose on the basis of the raw material sodium chloroacetate was 95%, and the reaction proceeded almost quantitatively.
実施例2
1Lニーダー(株式会社入江商会製、PNV―1型)に、製造例1で得られた非晶化セルロース(結晶化度0%、重合度600、平均粒径40μm、含水量5質量%)70.0g(グルコース単位換算0.41mol)及びクロロ酢酸ナトリウム(和光純薬工業株式会社製試薬)70.0g(0.60mol)を加え、窒素雰囲気下6時間攪拌した。次いで窒素雰囲気下50℃に昇温した後、48質量%の水酸化ナトリウム水溶液52.0g(NaOH量0.62mol)を5時間かけて滴下した後、そのまま50℃で12時間攪拌した。その間、セルロース及び生成物は全く凝集することなく流動性のある粉末状態を保っていた(セルロース及びその他原料由来の水分量の総和:セルロースに対して15質量%)。
反応終了後、室温まで冷却し、生成物をニーダーから取り出し、副生塩及び未反応物等を含水イソプロパノール(含水量15質量%)3000ml、及びイソプロパノール1000mlで洗浄して除去し、乾燥した結果、115gのカルボキシメチルセルロース(Na塩型)を白色固体として得た。
置換基の導入量から求められるグルコース単位あたりのカルボキシメチル基の置換度は1.4であった。また原料クロロ酢酸ナトリウム基準でのセルロースへの反応選択率は97%であり、反応はほぼ定量的に進行していた。
Example 2
A non-crystalline cellulose obtained in Production Example 1 (crystallinity 0%, polymerization degree 600, average particle size 40 μm, water content 5 mass%) 70 in a 1 L kneader (manufactured by Irie Shokai Co., Ltd., PNV-1 type) 0.0 g (0.41 mol in terms of glucose unit) and 70.0 g (0.60 mol) of sodium chloroacetate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred for 6 hours in a nitrogen atmosphere. Next, after raising the temperature to 50 ° C. in a nitrogen atmosphere, 52.0 g of a 48 mass% sodium hydroxide aqueous solution (NaOH amount 0.62 mol) was added dropwise over 5 hours, and the mixture was stirred at 50 ° C. for 12 hours. In the meantime, the cellulose and the product kept a fluid powder state without agglomeration at all (total amount of water derived from cellulose and other raw materials: 15% by mass with respect to cellulose).
After completion of the reaction, it was cooled to room temperature, the product was removed from the kneader, and by-product salts and unreacted substances were washed away with 3000 ml of hydrous isopropanol (water content 15% by mass) and 1000 ml of isopropanol, and dried, 115 g of carboxymethylcellulose (Na salt type) was obtained as a white solid.
The degree of substitution of the carboxymethyl group per glucose unit determined from the amount of substituent introduced was 1.4. The reaction selectivity to cellulose based on the raw material sodium chloroacetate was 97%, and the reaction proceeded almost quantitatively.
比較例1
粉末セルロースとして、市販の粉末セルロース(日本製紙ケミカル株式会社製セルロースパウダー;KCフロック、結晶化度74%、平均粒径45μm、含水量5質量%)を用いた以外は実施例1と同様にして反応を行ったところ、反応の進行とともに部分的な凝集が見られ、反応混合物は極めて不均一で十分な混合は行えていなかったが、そのまま操作を続行し、実施例1と同様に副生塩及び未反応物等の除去、乾燥を行った。
置換基の導入量から求められるグルコース単位あたりのカルボキシメチル基の置換度は0.93、原料クロロ酢酸ナトリウム基準でのセルロースへの反応選択率は89%であった。
Comparative Example 1
As powdered cellulose, the same procedure as in Example 1 was used except that commercially available powdered cellulose (cellulose powder manufactured by Nippon Paper Chemical Co., Ltd .; KC floc, crystallinity 74%, average particle size 45 μm, water content 5 mass%) was used. When the reaction was carried out, partial aggregation was observed with the progress of the reaction, and the reaction mixture was very heterogeneous and sufficient mixing was not possible, but the operation was continued as it was and the byproduct salt was the same as in Example 1. Then, unreacted substances and the like were removed and dried.
The degree of substitution of the carboxymethyl group per glucose unit determined from the amount of substituent introduced was 0.93, and the reaction selectivity to cellulose on the basis of raw material sodium chloroacetate was 89%.
本発明の方法によれば、カルボキシメチルセルロースを効率的、選択的、かつ簡便に製造することができる。このため、本発明方法は工業的に極めて有利である。
また、得られるカルボキシメチルセルロースは、増粘剤、分散剤、乳化剤、保護コロイド剤、安定化剤等の配合成分として、また他のセルロースエーテル誘導体製造の出発原料として広範に利用することができる。
According to the method of the present invention, carboxymethylcellulose can be produced efficiently, selectively and simply. For this reason, the method of the present invention is extremely advantageous industrially.
The obtained carboxymethyl cellulose can be widely used as a blending component such as a thickener, a dispersant, an emulsifier, a protective colloid agent, a stabilizer and the like, and as a starting material for producing other cellulose ether derivatives.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008281760A JP5552224B2 (en) | 2008-10-31 | 2008-10-31 | Method for producing carboxymethylcellulose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008281760A JP5552224B2 (en) | 2008-10-31 | 2008-10-31 | Method for producing carboxymethylcellulose |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010106197A true JP2010106197A (en) | 2010-05-13 |
JP5552224B2 JP5552224B2 (en) | 2014-07-16 |
Family
ID=42295966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008281760A Expired - Fee Related JP5552224B2 (en) | 2008-10-31 | 2008-10-31 | Method for producing carboxymethylcellulose |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5552224B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012150700A1 (en) * | 2011-05-02 | 2012-11-08 | 花王株式会社 | Method for producing alkali cellulose |
KR20140144268A (en) * | 2012-04-05 | 2014-12-18 | 스토라 엔소 오와이제이 | Method for the preparation of cellulose ethers with a high solids process, product obtained and uses of the product |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094401A (en) * | 1983-10-31 | 1985-05-27 | Asahi Chem Ind Co Ltd | Cellulose dervative having excellent liquid absorption characteristic, its production and structure containing the same |
JPS62236801A (en) * | 1986-04-08 | 1987-10-16 | Asahi Chem Ind Co Ltd | Production of soluble cellulose |
JPH10251301A (en) * | 1997-03-07 | 1998-09-22 | Nippon Paper Ind Co Ltd | Cellulose derivatives and production of the same |
JP2000513042A (en) * | 1997-04-25 | 2000-10-03 | ロディア アセトウ | Reactive cellulose and method for producing the same |
JP2003064184A (en) * | 2001-08-24 | 2003-03-05 | Toray Ind Inc | Method for producing cellulose solution and thermoplastic cellulose ester |
JP2004331918A (en) * | 2003-05-12 | 2004-11-25 | Asahi Kasei Chemicals Corp | Amorphous cellulose fine powder |
JP2008056889A (en) * | 2006-08-01 | 2008-03-13 | Nippon Paper Chemicals Co Ltd | Amorphous cellulose derivative |
-
2008
- 2008-10-31 JP JP2008281760A patent/JP5552224B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094401A (en) * | 1983-10-31 | 1985-05-27 | Asahi Chem Ind Co Ltd | Cellulose dervative having excellent liquid absorption characteristic, its production and structure containing the same |
JPS62236801A (en) * | 1986-04-08 | 1987-10-16 | Asahi Chem Ind Co Ltd | Production of soluble cellulose |
JPH10251301A (en) * | 1997-03-07 | 1998-09-22 | Nippon Paper Ind Co Ltd | Cellulose derivatives and production of the same |
JP2000513042A (en) * | 1997-04-25 | 2000-10-03 | ロディア アセトウ | Reactive cellulose and method for producing the same |
JP2003064184A (en) * | 2001-08-24 | 2003-03-05 | Toray Ind Inc | Method for producing cellulose solution and thermoplastic cellulose ester |
JP2004331918A (en) * | 2003-05-12 | 2004-11-25 | Asahi Kasei Chemicals Corp | Amorphous cellulose fine powder |
JP2008056889A (en) * | 2006-08-01 | 2008-03-13 | Nippon Paper Chemicals Co Ltd | Amorphous cellulose derivative |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012150700A1 (en) * | 2011-05-02 | 2012-11-08 | 花王株式会社 | Method for producing alkali cellulose |
JP2012246479A (en) * | 2011-05-02 | 2012-12-13 | Kao Corp | Method for producing alkali cellulose |
US9416199B2 (en) | 2011-05-02 | 2016-08-16 | Kao Corporation | Method for producing alkali cellulose |
KR20140144268A (en) * | 2012-04-05 | 2014-12-18 | 스토라 엔소 오와이제이 | Method for the preparation of cellulose ethers with a high solids process, product obtained and uses of the product |
JP2015514153A (en) * | 2012-04-05 | 2015-05-18 | ストラ エンソ オーワイジェイ | Method for preparing cellulose ether by high solids method, resulting product and use of the product |
KR101989651B1 (en) * | 2012-04-05 | 2019-06-14 | 스토라 엔소 오와이제이 | Method for the preparation of cellulose ethers with a high solids process, product obtained and uses of the product |
Also Published As
Publication number | Publication date |
---|---|
JP5552224B2 (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8916700B2 (en) | Method for producing cellulose ether derivative | |
JP5237618B2 (en) | Method for producing hydroxypropyl cellulose | |
JP5683092B2 (en) | Method for producing cationized hydroxypropylcellulose | |
EP2204386B1 (en) | Method for producing cellulose ether derivative | |
JP5237609B2 (en) | Method for producing cationized cellulose | |
JP2012012553A (en) | Method of producing carboxymethylcellulose | |
WO2011108505A1 (en) | Method for producing cationized cellulose and method for producing cationized hydroxyalkyl cellulose | |
JP2009263641A (en) | Method for producing polyuronate | |
JP5552224B2 (en) | Method for producing carboxymethylcellulose | |
US8440817B2 (en) | Method for producing methyl cellulose | |
JP2010254798A (en) | Method for producing cellulose ester | |
JP2012036375A (en) | Method for producing carboxymethyl cellulose | |
JP5193637B2 (en) | Method for producing methylcellulose | |
JP5352179B2 (en) | Method for producing hydroxyethyl cellulose | |
JP5237612B2 (en) | Method for producing cellulose derivative | |
JP2012188472A (en) | Method for producing polyuronic acid salt | |
JP5193591B2 (en) | Method for producing methylcellulose | |
JP2017128629A (en) | Process for producing hydroxypropyl cellulose | |
JP5426216B2 (en) | Method for producing carboxyalkyl cellulose derivative | |
JP2013133398A (en) | Method for producing carboxymethylcellulose | |
JP2016130285A (en) | Production method of powdery hydroxyalkyl cellulose | |
JP2010037384A (en) | Method for producing carbonated cellulose | |
JP2010037385A (en) | Method for producing carbonated cellulose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140526 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5552224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |