JP2010106119A - Semiconductor nanoparticle phosphor - Google Patents

Semiconductor nanoparticle phosphor Download PDF

Info

Publication number
JP2010106119A
JP2010106119A JP2008278316A JP2008278316A JP2010106119A JP 2010106119 A JP2010106119 A JP 2010106119A JP 2008278316 A JP2008278316 A JP 2008278316A JP 2008278316 A JP2008278316 A JP 2008278316A JP 2010106119 A JP2010106119 A JP 2010106119A
Authority
JP
Japan
Prior art keywords
semiconductor nanoparticle
group
nanoparticle phosphor
light emitting
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278316A
Other languages
Japanese (ja)
Inventor
Hajime Saito
肇 齊藤
Tatsuya Ryorin
達也 両輪
Junichi Kinomoto
純一 木野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008278316A priority Critical patent/JP2010106119A/en
Publication of JP2010106119A publication Critical patent/JP2010106119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor nanoparticle phosphor excellent in controllability of emission wavelength and obtaining a desired luminescent color. <P>SOLUTION: The semiconductor nanoparticle phosphor includes two or more emitting regions independently presents different quantum effects and a barrier region and has a laminated structure in which the two or more emitting regions are isolated by the barrier region, wherein the two or more emitting regions have the same quantum level across the barrier region. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ナノ粒子蛍光体に関する。さらに詳細には、コアおよび複数のシェルを有するコアシェル型の半導体ナノ粒子蛍光体に関する。   The present invention relates to a semiconductor nanoparticle phosphor. More specifically, the present invention relates to a core-shell type semiconductor nanoparticle phosphor having a core and a plurality of shells.

地球環境危機への懸念が高まるなか、省エネルギー・リサイクルなど環境保全技術への取り組みが必要になっている。なかでも照明分野では、従来の管球型光源から環境性能に優れた半導体素子への代替えが検討されており、特に半導体ナノ粒子を蛍光体として用いた光源に注目が集まっている。   Amid growing concerns about the global environmental crisis, efforts for environmental conservation technologies such as energy conservation and recycling are required. In particular, in the illumination field, the replacement of a conventional tube-type light source with a semiconductor element having excellent environmental performance is being studied. In particular, attention is focused on a light source using semiconductor nanoparticles as a phosphor.

半導体ナノ粒子中の材料の電子は、量子力学的な閉じ込め効果と表面状態によって、バルク状態では見られない特異な光学応答を示す。たとえば、バルク状態の半導体ではバンドギャップは材料により一定であるのに対し、ナノ粒子では体積によってバンドギャップが変化する。すなわち、発光波長を連続的に変化させることができるため、従来の希土類賦活型や有機色素を用いた蛍光体に比べて発光スペクトルの設計自由度が格段に高い。また、ナノ粒子の発光寿命はおよそ1から数十ナノ秒で、現在使われている蛍光体に比べて5桁ほども短く、吸収・発光のサイクルを素早く繰り返すことが出来るため、強い励起光に対しても耐久性の高い発光デバイスが得られる。更に、量子効果により吸収率と発光遷移確率が向上する効果が期待される。このように、半導体ナノ粒子は非常に明るい蛍光体として光電変換や有機ELデバイスや太陽電池への研究が盛んであり、新型発光材料として注目されている。   Electrons of materials in semiconductor nanoparticles exhibit a unique optical response not seen in the bulk state due to quantum mechanical confinement effects and surface states. For example, in a bulk semiconductor, the band gap is constant depending on the material, whereas in a nanoparticle, the band gap changes depending on the volume. That is, since the emission wavelength can be continuously changed, the degree of freedom in designing the emission spectrum is significantly higher than that of a conventional phosphor using a rare earth activated type or an organic dye. In addition, the emission lifetime of nanoparticles is about 1 to several tens of nanoseconds, which is about 5 orders of magnitude shorter than phosphors currently in use, and the absorption / emission cycle can be repeated quickly. In contrast, a highly durable light-emitting device can be obtained. Furthermore, an effect of improving the absorption rate and the light emission transition probability by the quantum effect is expected. As described above, semiconductor nanoparticles are very bright phosphors, and researches on photoelectric conversion, organic EL devices, and solar cells have been actively conducted, and are attracting attention as new light-emitting materials.

このようにナノサイズの半導体粒子がもつ量子サイズ効果によってエネルギーギャップを制御し、所望の発光色を得る種々の蛍光体が知られている。例えば、特開2006−310131号公報(特許文献1)においては、(In1-xGax)P(ここで、0<x<1)で表される組成比を満たす半導体材料からなる蛍光体超微粒子を含んだ色変換膜が開示されている。特に、蛍光体超微粒子が内核(以下「コア」と記す)と外殻(以下「シェル」と記す)からなるいわゆるコアシェル構造においては、蛍光体超微粒子の物理的化学的特性を好ましく変化させることができる旨が記されている。このような蛍光体を、以下では「半導体ナノ粒子蛍光体」と統一して呼称する。 As described above, various phosphors are known in which the energy gap is controlled by the quantum size effect of the nano-sized semiconductor particles to obtain a desired emission color. For example, in Japanese Patent Laid-Open No. 2006-310131 (Patent Document 1), a phosphor made of a semiconductor material that satisfies a composition ratio represented by (In 1-x Ga x ) P (where 0 <x <1). A color conversion film containing ultrafine particles is disclosed. In particular, in the so-called core-shell structure in which the ultrafine phosphor particles are composed of an inner core (hereinafter referred to as “core”) and an outer shell (hereinafter referred to as “shell”), the physical and chemical characteristics of the ultrafine phosphor particles are preferably changed. It is written that you can. Hereinafter, such a phosphor is collectively referred to as “semiconductor nanoparticle phosphor”.

半導体ナノ粒子蛍光体の発光波長を変化させるには、その粒子径を厳密に制御する必要がある。近年、合成技術の進展により、製造工程において発光波長のロット間再現性については向上してきたが、所望する任意の発光波長を得るための制御性についてはまだ多くの課題を残している。これは次のような理由による。   In order to change the emission wavelength of the semiconductor nanoparticle phosphor, it is necessary to strictly control the particle diameter. In recent years, the progress of synthesis technology has improved the reproducibility of the emission wavelength between lots in the manufacturing process, but there are still many problems regarding the controllability for obtaining a desired arbitrary emission wavelength. This is due to the following reason.

図8に、InP半導体ナノ粒子の粒子径と、エネルギーギャップ波長(エネルギーギャップを波長に換算した値で、損失を考慮していないため、実際の発光波長とは若干のずれがある)の関係を理論計算によって求めた結果を示すが、人が視認できる数nm程度の波長を粒子径で制御しようとすると、0.1Å(1Å=0.1nm)の単位で粒子径を制御する必要がある。しかし、原子の半径が0.5Å〜2Å程度であることを考えればこれは現実的ではない。   FIG. 8 shows the relationship between the particle diameter of the InP semiconductor nanoparticles and the energy gap wavelength (the energy gap is converted into a wavelength, and loss is not considered, so there is a slight deviation from the actual emission wavelength). Although the result calculated | required by the theoretical calculation is shown, when it is going to control the wavelength of about several nanometer which a person can visually recognize with a particle diameter, it is necessary to control a particle diameter in a unit of 0.1? (1? = 0.1nm). However, this is not realistic considering that the radius of the atoms is about 0.5-2.

また、例えば非特許文献1に示されるように、所望する発光波長よりも長波長を呈する大きさの半導体ナノ粒子を合成し、表面を徐々にエッチングすることによって所望の粒子径に制御する手法がある。しかし、半導体ナノ粒子は高々数百個の原子から構成されており、所望の波長を得るためには数個〜数十個の精度でエッチング除去する原子の数を制御しなければならない。更に、上述のコアシェル構造においては、コア粒子を形成後エッチングを行って粒子径を調整した後にシェルを形成しなければならず、工程数およびコストの増大や、シェル形成の不均一による光学特性のばらつきが生じる。
特開2006−310131号公報 「J. Chem. Phys. 123,084796(2005)」
In addition, for example, as shown in Non-Patent Document 1, there is a method of controlling semiconductor particles having a size longer than a desired emission wavelength and controlling the particle size to a desired size by gradually etching the surface. is there. However, semiconductor nanoparticles are composed of at most several hundred atoms, and in order to obtain a desired wavelength, the number of atoms to be etched away must be controlled with accuracy of several to several tens. Further, in the above-described core-shell structure, the core particle must be formed and then etched to adjust the particle diameter, and then the shell must be formed. This increases the number of processes and costs, and the optical characteristics due to uneven shell formation. Variation occurs.
JP 2006-310131 A "J. Chem. Phys. 123, 084796 (2005)"

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、発光波長の制御性に優れ、所望の発光色を得ることのできる半導体ナノ粒子蛍光体を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor nanoparticle phosphor that has excellent controllability of emission wavelength and can obtain a desired emission color. There is.

本発明の半導体ナノ粒子蛍光体は、単独では異なる量子効果を呈する2以上の発光領域と障壁領域とを有する半導体ナノ粒子蛍光体であって、前記2以上の発光領域が障壁領域によって隔てられるような積層構造を有し、前記2以上の発光領域が前記障壁領域を介して同じ量子準位を有することを特徴とする。   The semiconductor nanoparticle phosphor of the present invention is a semiconductor nanoparticle phosphor having two or more light-emitting regions and a barrier region that exhibit different quantum effects independently, so that the two or more light-emitting regions are separated by the barrier region. The two or more light emitting regions have the same quantum level through the barrier region.

また、本発明の半導体ナノ粒子蛍光体において、上記2以上の発光領域は組成または体積の少なくとも一方が異なることが好ましい。   Moreover, in the semiconductor nanoparticle phosphor of the present invention, it is preferable that the two or more light emitting regions differ in at least one of composition and volume.

本発明の半導体ナノ粒子蛍光体において、障壁領域の最大層厚は10nm以下であることが好ましい。   In the semiconductor nanoparticle phosphor of the present invention, the maximum layer thickness of the barrier region is preferably 10 nm or less.

本発明の半導体ナノ粒子蛍光体において、コアおよびシェルは、B,Al,GaおよびInから選択される1種以上のIII族元素と、N,P,AsおよびSbから選択される1種以上のV族元素とを含むIII−V族化合物半導体を含むことが好ましく、更にIII族元素がAl,GaおよびInから選択され、かつV族元素がNおよびPから選択されることが好ましい。   In the semiconductor nanoparticle phosphor of the present invention, the core and the shell are one or more group III elements selected from B, Al, Ga and In, and one or more types selected from N, P, As and Sb. It is preferable to include a group III-V compound semiconductor containing a group V element, and it is preferable that the group III element is selected from Al, Ga and In, and the group V element is selected from N and P.

本発明の半導体ナノ粒子蛍光体の別の態様において、コアおよびシェルは、Be,Zn,CdおよびMgから選択される1種以上のII族元素と、O,S,SeおよびTeから選択される1種以上のVI族元素とを含むII−VI族化合物半導体を含むことが好ましく、更にII族元素がZnおよびMgから選択され、かつVI族元素がO,SおよびTeから選択されることが好ましい。   In another embodiment of the semiconductor nanoparticle phosphor of the present invention, the core and shell are selected from one or more Group II elements selected from Be, Zn, Cd and Mg, and O, S, Se and Te. It is preferable to include a II-VI group compound semiconductor containing at least one group VI element, wherein the group II element is selected from Zn and Mg, and the group VI element is selected from O, S and Te. preferable.

本発明の半導体ナノ粒子蛍光体のさらに別の態様において、コアおよびシェルは、ZnおよびCdから選択される1種以上のII族元素と、Si,GeおよびSnから選択される1種以上のIV族元素と、PおよびAsから選択される1種以上のV族元素とを含むII−IV−V2族化合物半導体を含むことが好ましく、更にII族元素がZnであり、かつV族元素がPであることが好ましい。 In still another embodiment of the semiconductor nanoparticle phosphor of the present invention, the core and the shell are one or more group II elements selected from Zn and Cd and one or more IV selected from Si, Ge and Sn. It is preferable to include a II-IV-V2 group 2 compound semiconductor containing a group element and one or more group V elements selected from P and As, and further, the group II element is Zn, and the group V element is P is preferred.

本発明の半導体ナノ粒子蛍光体のさらに別の態様において、コアおよびシェルは、CuおよびAgから選択される1種以上のI族元素と、Al,GaおよびInから選択されるIII族元素と、S,SeおよびTeから選択される1種以上のVI族元素とを含むI−III−VI2族化合物半導体を含むことが好ましく、更にVI族元素がSおよびTeから選択されることが好ましい。 In still another embodiment of the semiconductor nanoparticle phosphor of the present invention, the core and the shell are one or more group I elements selected from Cu and Ag, and a group III element selected from Al, Ga and In; It is preferable to include an I-III-VI Group 2 compound semiconductor containing one or more Group VI elements selected from S, Se and Te, and it is preferable that the Group VI elements are selected from S and Te.

本発明の半導体ナノ粒子蛍光体において、発光領域の数は2であることが好ましい。また、発光領域の一つが積層構造のコアであることが好ましい。さらに、本発明の半導体ナノ粒子蛍光体において、前記積層構造の最外層が発光領域ではないことが好ましく、特に直鎖状あるいは樹状有機分子で被覆されていることが好ましい。   In the semiconductor nanoparticle phosphor of the present invention, the number of light emitting regions is preferably two. Moreover, it is preferable that one of the light emitting regions is a core having a laminated structure. Furthermore, in the semiconductor nanoparticle phosphor of the present invention, the outermost layer of the laminated structure is preferably not a light emitting region, and is preferably coated with a linear or dendritic organic molecule.

本発明の半導体ナノ粒子蛍光体は、2以上の発光領域が前記障壁領域を介して同じ量子効果を有することにより、各発光領域の単独の量子準位の中間の量子準位を有する半導体ナノ粒子蛍光体を得ることができるため、発光波長の制御性に優れ、温度や保持時間などの製造条件を精密にしても実現することができなかった所望の発光色を発する蛍光体を得ることができ、さらに高い発光効率を有する半導体ナノ粒子蛍光体を高い歩留まりで得ることが出来る。   The semiconductor nanoparticle phosphor of the present invention is a semiconductor nanoparticle having two or more light emitting regions having the same quantum effect through the barrier region, thereby having a quantum level intermediate between the single quantum levels of each light emitting region. Since it is possible to obtain a phosphor, it is possible to obtain a phosphor that emits a desired emission color that is excellent in controllability of the emission wavelength and that could not be realized even with precise manufacturing conditions such as temperature and holding time. In addition, a semiconductor nanoparticle phosphor having higher luminous efficiency can be obtained with a high yield.

図1は、本発明の半導体ナノ粒子蛍光体の実施の形態の一例を示す模式的な断面図である。図1に示す半導体ナノ粒子蛍光体100は、コア101表面に1層目の第1シェル102が被覆され、該第1シェル表面には2層目の第2シェル102が被覆されている。コア101と第2シェル103はいずれも励起光を吸収して発光する領域(発光領域)である(以下、コア101を第1発光領域、第2シェル103を第2発光領域と呼ぶことがある。)。一方、両発光領域の界面に形成された第1シェル102は、励起光を透過すると共にコア101(第1発光領域)および第2シェル103(第2発光領域)を空間的に分離する役目を果たす障壁領域である。コアおよびシェル(発光領域および障壁領域)はいずれも半導体材料で形成されており、コア101(第1発光領域)と第2シェル102(第2発光領域)は体積ないしは組成が異なる。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a semiconductor nanoparticle phosphor of the present invention. In the semiconductor nanoparticle phosphor 100 shown in FIG. 1, the first layer 102 of the first layer is coated on the surface of the core 101, and the second shell 102 of the second layer is coated on the surface of the first shell. The core 101 and the second shell 103 are both regions that absorb excitation light and emit light (hereinafter, the core 101 may be referred to as a first light-emitting region and the second shell 103 may be referred to as a second light-emitting region). .) On the other hand, the first shell 102 formed at the interface between the two light emitting regions transmits the excitation light and spatially separates the core 101 (first light emitting region) and the second shell 103 (second light emitting region). It is a barrier area to fulfill. The core and the shell (the light emitting region and the barrier region) are both made of a semiconductor material, and the volume or composition of the core 101 (first light emitting region) and the second shell 102 (second light emitting region) are different.

本発明の作用を説明するための比較例として、発光領域を1つだけ有する半導体ナノ粒子蛍光体を図2および図3に示す。図2に示す比較例の半導体ナノ粒子蛍光体200はコア201と第1シェル202のみからなり、図1の半導体ナノ粒子蛍光体100のように第2シェル103(第2発光領域)を設けていない。一方、図3に示す比較例の半導体ナノ粒子蛍光体300は、図1の半導体ナノ粒子蛍光体100のようにコアを第1発光領域とせずに、中心まで第1シェル102(障壁領域)と同じ構造のコア302としている。   As a comparative example for explaining the operation of the present invention, a semiconductor nanoparticle phosphor having only one light emitting region is shown in FIGS. The semiconductor nanoparticle phosphor 200 of the comparative example shown in FIG. 2 includes only a core 201 and a first shell 202, and a second shell 103 (second light emitting region) is provided like the semiconductor nanoparticle phosphor 100 of FIG. Absent. On the other hand, the semiconductor nanoparticle phosphor 300 of the comparative example shown in FIG. 3 does not have the core as the first light emitting region like the semiconductor nanoparticle phosphor 100 of FIG. 1, and the first shell 102 (barrier region) extends to the center. The core 302 has the same structure.

図1と図2に示される半導体ナノ粒子蛍光体を比較すると、コア101とコア201(発光領域)は互いに同じ体積かつ同じ組成であり、第1シェル102とシェル202も互いに同じ体積かつ同じ組成である。図1と図3に示される半導体ナノ粒子蛍光体を比較すると、第2シェル103とシェル303(発光領域)は互いに同じ体積かつ同じ組成であり、コア302は体積が異なるものの102および202と同じ組成である。   Comparing the semiconductor nanoparticle phosphors shown in FIG. 1 and FIG. 2, the core 101 and the core 201 (light emitting region) have the same volume and the same composition, and the first shell 102 and the shell 202 also have the same volume and the same composition. It is. Comparing the semiconductor nanoparticle phosphors shown in FIG. 1 and FIG. 3, the second shell 103 and the shell 303 (light emitting region) have the same volume and the same composition, and the core 302 is the same as 102 and 202 although the volumes are different. Composition.

図4は、実施例1(図1の半導体ナノ粒子蛍光体100の構造を有する)、比較例1(図2の半導体ナノ粒子蛍光体200の構造を有する)および比較例2(図3の半導体ナノ粒子蛍光体300の構造を有する)の半導体ナノ粒子蛍光体を、同じ条件で励起し発光スペクトルを比較したものである。半導体ナノ粒子蛍光体200と300(比較例1、2)は、互いに体積ないしは組成が異なる発光領域を有しているので、その量子効果は互いに異なり、その結果発光スペクトルも異なっている。量子効果とは、電子の閉じ込めによって状態密度が離散化することに伴う物理的特性変化であり、ここでは主に粒子径が小さくなるにつれてバンドギャップエネルギーが増加する効果のことである。半導体ナノ粒子蛍光体100(実施例1)は、両方の発光領域を有しているにもかかわらずそのスペクトルは比較例1、2の足し合わせにはならず、比較例と略同じスペクトル幅を保ちながら波長ピークのみが両者の中間にシフトしている。   4 shows Example 1 (having the structure of the semiconductor nanoparticle phosphor 100 of FIG. 1), Comparative Example 1 (having the structure of the semiconductor nanoparticle phosphor 200 of FIG. 2) and Comparative Example 2 (semiconductor of FIG. 3). The semiconductor nanoparticle phosphor (having the structure of the nanoparticle phosphor 300) was excited under the same conditions and the emission spectra were compared. Since the semiconductor nanoparticle phosphors 200 and 300 (Comparative Examples 1 and 2) have emission regions having different volumes or compositions, the quantum effects thereof are different from each other, and as a result, the emission spectra are also different. The quantum effect is a change in physical characteristics that accompanies discretization of the state density due to electron confinement. Here, the quantum effect is mainly an effect that the band gap energy increases as the particle diameter decreases. Although the semiconductor nanoparticle phosphor 100 (Example 1) has both light-emitting regions, its spectrum is not the sum of Comparative Examples 1 and 2, but has substantially the same spectral width as that of the Comparative Example. Only the wavelength peak is shifted between the two while maintaining.

これは、半導体ナノ粒子蛍光体100において、第1発光領域101と第2発光領域103は独立して発光しているのではなく、励起光によって発生した電子の波動関数が障壁領域102をトンネルして両発光領域の中間の量子準位を形成することにより、スペクトル形状を保ったまま波長ピークがシフトしたものと考えられる。量子準位とは、上述の量子効果によって形成される離散化したエネルギー準位のことである。このことにより、粒子径制御が極めて難しい半導体ナノ粒子蛍光体においても、発光波長の制御が容易となって所望の発光色が得られるのである。   This is because in the semiconductor nanoparticle phosphor 100, the first light emitting region 101 and the second light emitting region 103 do not emit light independently, but the wave function of electrons generated by the excitation light tunnels through the barrier region 102. By forming a quantum level intermediate between the two light emitting regions, it is considered that the wavelength peak has shifted while maintaining the spectral shape. The quantum level is a discretized energy level formed by the quantum effect described above. As a result, even in a semiconductor nanoparticle phosphor that is extremely difficult to control the particle diameter, the emission wavelength can be easily controlled and a desired emission color can be obtained.

上記の比較例において、半導体ナノ粒子蛍光体200と300の各々の発光領域が略同じ量子効果を有する場合には、発光スペクトルも略同じとなり、障壁領域を介して両発光領域が量子的に結合しても波長シフト効果は生じない。ナノサイズの半導体材料においては、体積ないしは組成が量子効果を決定するので、本発明の半導体ナノ粒子蛍光体100において2つの発光領域は互いに体積ないしは組成が異なっている必要があり、特に組成が略同じで体積が異なっていることが好ましい。組成が略同じであれば、合成プロセスにおける条件変更が少なくなるなどの利点があるためである。   In the above comparative example, when the light emitting regions of the semiconductor nanoparticle phosphors 200 and 300 have substantially the same quantum effect, the light emission spectrum is also substantially the same, and both the light emitting regions are quantumally coupled through the barrier region. However, the wavelength shift effect does not occur. In a nano-sized semiconductor material, the volume or composition determines the quantum effect, and therefore, in the semiconductor nanoparticle phosphor 100 of the present invention, the two light-emitting regions must have different volumes or compositions from each other. Preferably they are the same and have different volumes. This is because if the compositions are substantially the same, there are advantages such as fewer changes in conditions in the synthesis process.

本発明において、2以上の発光領域の組成が略同じで体積が異なっている場合は、ある一つの発光領域の体積を1としたときの他の発光領域の体積の比率が0.3〜0.8または1.2〜3.4であることが好ましく、さらに好ましくは0.5〜0.7または1.4 〜2である。   In the present invention, when the composition of two or more light-emitting regions is substantially the same and the volumes are different, the ratio of the volume of another light-emitting region when the volume of one light-emitting region is 1 is 0.3 to 0. 0.8 or 1.2 to 3.4, more preferably 0.5 to 0.7 or 1.4 to 2.

本発明の効果を確実に得るためには、障壁領域の厚さが0.2〜10nmであることが好ましく、さらに好ましくは0.5〜3nmである。10nmより厚いと、両発光領域における電子の波動関数が障壁領域をトンネルしにくくなり、発光領域が量子的に結合せず両発光領域のスペクトルの足し合わせになる。このような双峰性の発光スペクトルは単色性に劣るので、ディスプレイなどに要求される高い色再現領域を実現することが難しく、混色によっても任意の発光色を得られにくい。一方、0.2nmより薄くなる(原子2〜3層分より薄くなる)と、障壁領域を均一に形成することが難しくなるので両発光領域が空間的につながってしまい、所望の波長シフト効果が得られなくなる虞がある。   In order to reliably obtain the effects of the present invention, the thickness of the barrier region is preferably 0.2 to 10 nm, and more preferably 0.5 to 3 nm. If it is thicker than 10 nm, the wave function of electrons in both light emitting regions will not easily tunnel through the barrier region, and the light emitting regions will not be coupled quantumly, resulting in the sum of the spectra of both light emitting regions. Since such a bimodal emission spectrum is inferior in monochromaticity, it is difficult to realize a high color reproduction region required for a display or the like, and it is difficult to obtain an arbitrary emission color even by color mixture. On the other hand, if it becomes thinner than 0.2 nm (thinner than 2 to 3 layers), it becomes difficult to form the barrier region uniformly, so that both light emitting regions are spatially connected, and the desired wavelength shift effect is obtained. There is a risk that it will not be obtained.

本発明の半導体ナノ粒子蛍光体における発光領域および障壁領域の材料としては、種々の半導体材料を用いることができる。とりわけ、直接遷移型のバンド構造や可視光領域に等しいエネルギーギャップを実現できる等の好ましい発光材料として、以下が挙げられる。   Various semiconductor materials can be used as the material of the light emitting region and the barrier region in the semiconductor nanoparticle phosphor of the present invention. In particular, preferred light emitting materials that can realize a direct transition band structure and an energy gap equal to the visible light region include the following.

1)III−V族化合物半導体:III族元素とV族元素との化合物を含む半導体であって、III族元素にB,Al,Ga,Inのいずれかを含み、V族元素にN,P,As,Sbのいずれかを含む半導体。たとえば、BN,AlN,GaN,GaAlN,InN,InAlN,InP,InAlP,GaP,GaAlP、GaAs,GaAlAs,InAs,InAlAs,GaSb,GaAlSb,InSbおよびこれらの混晶などが挙げられる。特に、III族元素がAl,Ga,Inから選択され、かつV族元素がN,Pから選択される材料は、環境や人体に悪影響を及ぼす元素を含まないので好ましい。   1) Group III-V compound semiconductor: a semiconductor including a compound of a group III element and a group V element, wherein the group III element includes any one of B, Al, Ga, and In, and the group V element includes N, P , As and Sb. Examples thereof include BN, AlN, GaN, GaAlN, InN, InAlN, InP, InAlP, GaP, GaAlP, GaAs, GaAlAs, InAs, InAlAs, GaSb, GaAlSb, InSb, and mixed crystals thereof. In particular, a material in which the group III element is selected from Al, Ga, and In and the group V element is selected from N and P is preferable because it does not include an element that adversely affects the environment and the human body.

2)II−VI族化合物半導体:II族元素とVI族元素との化合物を含む半導体であって、II族元素にBe,Zn,Cd,Mgのいずれかを含み、VI族元素にO,S,Se,Teのいずれかを含む半導体。たとえば、BeSe,BeTe,BeS,CdTe,CdSe,CdS,ZnTe,ZnTe,ZnS,ZnO,MgO,CdO,CdZnO,ZnMgOおよびこれらの混晶などが挙げられる。特に、II族元素がZn,Mgから選択され、かつVI族元素がO,S,Teから選択される材料は、環境や人体に悪影響を及ぼす元素を含まないので好ましい。   2) Group II-VI compound semiconductor: a semiconductor including a compound of a group II element and a group VI element, wherein the group II element includes any of Be, Zn, Cd, and Mg, and the group VI element includes O, S , Se, or a semiconductor containing Te. Examples thereof include BeSe, BeTe, BeS, CdTe, CdSe, CdS, ZnTe, ZnTe, ZnS, ZnO, MgO, CdO, CdZnO, ZnMgO, and mixed crystals thereof. In particular, a material in which the group II element is selected from Zn and Mg and the group VI element is selected from O, S, and Te is preferable because it does not include an element that adversely affects the environment and the human body.

3)II−IV−V2型化合物半導体:II族元素とIV族元素とV族元素との化合物を含む半導体であって、II族元素にZn,Cdのいずれかを含み、IV族元素にSi,Ge,Snのいずれかを含み、V族元素にP,Asのいずれかを含む半導体。たとえば、CdSnP2,CdGeAs2,CdGeP2,CdSiAs2,CdSiP2,ZnSnSb2,ZnSnAs2,ZnSnP2,ZnGeAs2,ZnGeP2,ZnSiAs2などが挙げられる。特に、II族元素がZnであり、かつV族元素がPである材料は、環境や人体に悪影響を及ぼす元素を含まないので好ましい。 3) II-IV-V type 2 compound semiconductor: a semiconductor containing a compound of a group II element, a group IV element and a group V element, the group II element containing either Zn or Cd, and the group IV element A semiconductor containing any of Si, Ge, and Sn and containing any of P and As as a group V element. Examples thereof include CdSnP 2 , CdGeAs 2 , CdGeP 2 , CdSiAs 2 , CdSiP 2 , ZnSnSb 2 , ZnSnAs 2 , ZnSnP 2 , ZnGeAs 2 , ZnGeP 2 and ZnSiAs 2 . In particular, a material in which the group II element is Zn and the group V element is P is preferable because it does not include an element that adversely affects the environment or the human body.

4)I−III−VI2型化合物半導体:I族元素とIII族元素とVI族元素との化合物を含む半導体であって、I族元素にCu,Agのいずれかを含み、III族元素にAl,Ga,Inのいずれかを含み、VI族元素にS,Se,Teのいずれかを含む半導体。たとえば、AgInTe2,AgInSe2,AgInS2,AgGaTe2,AgGaSe2,AgGaS2,CuInTe2,CuInSe2,CuInS2,CuGaTe2,CuGaSe2,CuGaS2,CuAlTe2,CuAlSe2などが挙げられる。特に、VI族元素がS,Teから選択される材料は、環境や人体に悪影響を及ぼす元素を含まないので好ましい。 4) I-III-VI type 2 compound semiconductor: a semiconductor containing a compound of a group I element, a group III element, and a group VI element, the group I element containing either Cu or Ag, and the group III element A semiconductor containing any one of Al, Ga and In and containing any one of S, Se and Te as a group VI element. For example, AgInTe 2, AgInSe 2, AgInS 2, AgGaTe 2, AgGaSe 2, AgGaS 2, CuInTe 2, CuInSe 2, CuInS 2, CuGaTe 2, CuGaSe 2, CuGaS 2, CuAlTe 2, etc. CuAlSe 2 and the like. In particular, a material in which the group VI element is selected from S and Te is preferable because it does not include an element that adversely affects the environment or the human body.

発光領域とは、励起光のエネルギーを吸収して蛍光を発する半導体を含む部材の領域である。このような発光領域に用いられる半導体は、量子効果を有するサイズのナノ粒子においてそのエネルギーギャップが励起光のエネルギーを吸収できるような半導体から選択される。具体的な材料としては、InN,InGaN,InAlN,InP,InAlP,GaAs,InAs,InAlAs,GaSb,GaAlSb,InSb,BeSe,BeTe,CdTe,CdSe,ZnSe,ZnTe,CdO,CdZnO,CdSnP2,CdSnAs2,CdGeAs2,CdGeP2,CdSiAs2,ZnSnSb2,ZnSnAs2,ZnSnP2,ZnGeAs2,AgInTe2,AgInSe2,AgInS2,AgGaTe2,AgGaSe2,CuInTe2,CuInSe2,CuInS2,CuGaTe2,CuGaSe2,CuGaS2が挙げられ、これらのなかでも、InP、InAs、InN、InGaN、CdSe、CdTe、CuInS2、CuGaS2、ZnSnP2、InGaN、GaSb、InSb、ZnSe、ZnTeが好ましい。 The light emitting region is a region of a member including a semiconductor that emits fluorescence by absorbing energy of excitation light. The semiconductor used for such a light emitting region is selected from semiconductors whose energy gap can absorb the energy of excitation light in nanoparticles having a size having a quantum effect. Specific materials include InN, InGaN, InAlN, InP, InAlP, GaAs, InAs, InAlAs, GaSb, GaAlSb, InSb, BeSe, BeTe, CdTe, CdSe, ZnSe, ZnTe, CdO, CdZnO, CdSnP 2 and CdSnP 2 , CdGeAs 2, CdGeP 2, CdSiAs 2, ZnSnSb 2, ZnSnAs 2, ZnSnP 2, ZnGeAs 2, AgInTe 2, AgInSe 2, AgInS 2, AgGaTe 2, AgGaSe 2, CuInTe 2, CuInSe 2, CuInS 2, CuGaTe 2, CuGaSe 2, CuGaS 2 and the like, of these, InP, InAs, InN, InGaN , CdSe, CdTe, CuInS 2, CuGaS 2, ZnSnP 2, InGa , GaSb, InSb, ZnSe, ZnTe is preferable.

一方、障壁領域は、2以上の発光領域の間に介在して障壁の役割をなす部材の領域であり、励起光のエネルギーを透過する半導体からなるものである。このような障壁領域に用いられる半導体は、量子効果を有するサイズのナノ粒子において発光領域より大きなエネルギーギャップの半導体が選択される。具体的な材料としては、BN,GaN,AlN,GaAlN,GaP,GaAlP,AlAs,GaAlAs,BeS,CdS,ZnS,ZnO,MgO,ZnMgO,CdSiP2,ZnGeP2,ZnSiAs2,ZnSiP2,AgGaS2,AgAlTe2,AgAlSe2,AgAlS2,CuGaTe2,CuGaSe2,CuAlTe2,CuAlSe2,CuAlS2が挙げられ、これらのなかでも、InGaP、ZnS、AlN、GaN、GaP、AlAs、GaAlAs、ZnO、MgO、ZnMgO、CuAlS2、AgAlS2、AgGaS2、ZnSiP2が好ましい。 On the other hand, the barrier region is a region of a member that functions as a barrier interposed between two or more light emitting regions, and is made of a semiconductor that transmits the energy of excitation light. As a semiconductor used for such a barrier region, a semiconductor having a larger energy gap than that of the light emitting region is selected for nanoparticles having a size having a quantum effect. As a specific material, BN, GaN, AlN, GaAlN , GaP, GaAlP, AlAs, GaAlAs, BeS, CdS, ZnS, ZnO, MgO, ZnMgO, CdSiP 2, ZnGeP 2, ZnSiAs 2, ZnSiP 2, AgGaS 2, AgAlTe 2 , AgAlSe 2 , AgAlS 2 , CuGaTe 2 , CuGaSe 2 , CuAlSe 2 , CuAlSe 2 , CuAlS 2 are mentioned, and among these, InGaP, ZnS, AlN, GaN, GaP, AlAs, GaAlAs, ZnO, MgO, ZnMgO, CuAlS 2 , AgAlS 2 , AgGaS 2 , and ZnSiP 2 are preferable.

また、発光領域と障壁領域は積層構造を形成するため、格子定数や結晶構造が近い同族の材料(上記1)〜4)の4種の半導体で同じ種類の材料)を選択することが好ましい。   In addition, since the light emitting region and the barrier region form a stacked structure, it is preferable to select the same family materials (same types of materials of the above four types of semiconductors 1) to 4) that have close lattice constants and crystal structures.

本発明において、発光領域は2つである必要はなく、障壁領域を介して多数積層することが出来る。障壁領域は多層構造であってもよい。また、必ずコアが発光領域である必要はなく、障壁領域と発光領域を交互に形成するのであれば、コアが障壁領域であってもよい。しかし、可視光領域において視認できる発光波長の精度は、2つの発光領域の中間の量子状態によってほぼ実現可能である。一方、積層数が多くなると工程数やコストが増大する。よって、発光領域の数は2であることが好ましい。   In the present invention, the number of light emitting regions is not necessarily two, and a large number of light emitting regions can be stacked through a barrier region. The barrier region may have a multilayer structure. In addition, the core is not necessarily a light emitting region, and the core may be a barrier region as long as the barrier regions and the light emitting regions are alternately formed. However, the accuracy of the emission wavelength visible in the visible light region can be almost realized by the quantum state between the two light emitting regions. On the other hand, as the number of layers increases, the number of processes and costs increase. Therefore, the number of light emitting regions is preferably 2.

更に、コアを第1発光領域とし、2層目のシェルを第2発光領域とすることが好ましい。発光領域は界面面積が小さいほど欠陥による失活が少なく、発光領域の体積制御はシェルよりもコアの方が容易であることなどから、多層構造では外殻側ほど発光効率が低下し、特性ばらつきも大きくなる虞があるためである。     Furthermore, it is preferable that the core is the first light emitting region and the second shell is the second light emitting region. In the light emitting region, the smaller the interface area, the less the deactivation due to defects, and the volume control of the light emitting region is easier for the core than for the shell. This is because there is a possibility of increasing.

2以上の発光領域は、単独での量子効果が外殻側ほど大きいことが好ましい。すなわち、外殻側ほど体積が小さいかあるいはエネルギーギャップが大きくなるような組成を有することが好ましい。本発明の発光領域の体積は非常に小さく且つ半導体材料で構成されているため、高い効率で発光している状態では、余剰な励起光は透過されてコア方向へ到達しやすくなり、コア側と外殻側で励起効率に差異は生じにくい。しかし、極く弱い励起においては主に外殻側のみで吸収発光が生じ、所望の波長シフト効果が得られにくくなる虞がある。     In two or more light emitting regions, it is preferable that the quantum effect alone is larger toward the outer shell side. That is, it is preferable that the outer shell side has a composition that has a smaller volume or a larger energy gap. Since the light emitting region of the present invention has a very small volume and is made of a semiconductor material, in the state where light is emitted with high efficiency, excess excitation light is easily transmitted and reaches the core direction. Differences in excitation efficiency are unlikely to occur on the outer shell side. However, in the case of very weak excitation, absorption light emission occurs mainly only on the outer shell side, which may make it difficult to obtain a desired wavelength shift effect.

本発明の半導体ナノ粒子蛍光体は、その最表面が発光領域以外で終端されていることが好ましく、障壁領域と同じ組成の半導体あるいはSiO2などの酸化物絶縁体やSi34などの窒化物絶縁体で終端されていてもよい。最表面は最も欠陥密度が大きいため、発光領域以外で終端する方が発光効率が向上する。 The semiconductor nanoparticle phosphor of the present invention, nitriding of it is preferable that the outermost surface is terminated with other than the light emitting region, an oxide insulator or a Si 3 N 4, such as a semiconductor or SiO 2 having the same composition as the barrier region It may be terminated with an insulator. Since the outermost surface has the highest defect density, the light emission efficiency is improved by terminating it outside the light emitting region.

更に最表面が有機分子で覆われていてもよい。有機分子は直鎖状あるいは樹状であることが好ましい。有機分子は、半導体ナノ粒子蛍光体を樹脂やガラス、溶液などの母材中に混合する場合に凝集を防止する役割を有するが、直鎖状あるいは樹状であれば、半導体ナノ粒子蛍光体表面を均一に覆うと共に嵩密度を上げることができる。また、有機分子の終端に好ましい官能基を用いることにより、半導体ナノ粒子蛍光体表面に強固に固着することができる。このことにより、母材中での安定性と分散性を向上させ、半導体ナノ粒子蛍光体間の距離を均一に保つことが出来るので、耐久性や発光のムラおよび自己吸収による発光効率の低下を防止することができる。   Furthermore, the outermost surface may be covered with organic molecules. The organic molecule is preferably linear or dendritic. The organic molecule has a role of preventing aggregation when the semiconductor nanoparticle phosphor is mixed in a base material such as resin, glass or solution, but if it is linear or dendritic, the surface of the semiconductor nanoparticle phosphor Can be uniformly covered and the bulk density can be increased. Further, by using a preferable functional group at the end of the organic molecule, it can be firmly fixed on the surface of the semiconductor nanoparticle phosphor. This improves stability and dispersibility in the base material and keeps the distance between the semiconductor nanoparticle phosphors uniform, thus reducing durability, uneven emission, and self-absorption emission efficiency. Can be prevented.

このような有機分子としては、アクリル酸、メタクリル酸、スチレン、トリアルキルフォスフィン、トリアルキルフォスフィンオキシド、ポリフォスフェート、チオール化合物、アルキルアミン、イミダゾール、二トリル、イソシアネート、アルコール類、フェノール類、ケトン類、アルデヒド類、カルボン酸、エステル類、有機珪素化合物、有機チタン化合物、nビニル高分子、ポリアルキレングリコールなどを用いることが出来る。   Examples of such organic molecules include acrylic acid, methacrylic acid, styrene, trialkylphosphine, trialkylphosphine oxide, polyphosphate, thiol compound, alkylamine, imidazole, nitrile, isocyanate, alcohols, phenols, Ketones, aldehydes, carboxylic acids, esters, organosilicon compounds, organotitanium compounds, n-vinyl polymers, polyalkylene glycols, and the like can be used.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
実施例1では、InP/InGaP/InPのコアシェル構造による半導体ナノ粒子蛍光体を作製した。
<Example 1>
In Example 1, a semiconductor nanoparticle phosphor having an InP / InGaP / InP core-shell structure was produced.

(1)InPコア(第1発光領域)の形成
市販の溶媒蒸留装置(ビードレックス製)を用い、加熱槽でトリオクチルフォスフィン(TOP)溶媒に溶かした塩化インジウム(InCl3)およびトリオクチルフォスフィンオキシド(TOPO)を反応させた第1溶液を合成した後、第1溶液の温度を285℃に上昇させた。
(1) Formation of InP core (first light emitting region) Indium chloride (InCl 3 ) and trioctylphosphine dissolved in trioctylphosphine (TOP) solvent in a heating tank using a commercially available solvent distillation apparatus (made by Beadrex) After synthesizing the first solution reacted with fin oxide (TOPO), the temperature of the first solution was raised to 285 ° C.

次に、TOP溶媒にトリメチルシリルフォスフィン(P(SiMe33)を溶解させてなる第2溶液を作製し、第2溶液を加熱槽中の第1溶液にシリンジで注入し、温度を285℃に保持した。30分後に冷却、精製および単離の操作を行ない、InPコア粒子を含むコロイド溶液を回収した。回収したコロイド溶液はフッ化水素酸(HF)エッチング溶液(重量比でHF:純水:n−ブタノール=1:2:17)中で6時間攪拌し、失活要因となるInPコア粒子表面の欠陥や異物を取り除いた後に有機溶媒で洗浄した。 Next, a second solution is prepared by dissolving trimethylsilylphosphine (P (SiMe 3 ) 3 ) in a TOP solvent, and the second solution is injected into the first solution in the heating tank with a syringe, and the temperature is 285 ° C. Held on. After 30 minutes, cooling, purification and isolation operations were performed, and a colloidal solution containing InP core particles was recovered. The collected colloidal solution was stirred in a hydrofluoric acid (HF) etching solution (weight ratio of HF: pure water: n-butanol = 1: 2: 17) for 6 hours, and the surface of the InP core particles that became a deactivation factor was stirred. After removing defects and foreign matters, the substrate was washed with an organic solvent.

(2)InGaP第1シェル(障壁領域)の形成
InPコア粒子を含むコロイド溶液を再び加熱槽に入れ、塩化インジウムと塩化ガリウムの混合溶液(物質量比1:1)を加えて温度を285℃に上昇させた。前述の第2溶液を加熱槽にシリンジで注入して285℃に保持し、30分後に冷却、精製および単離の操作を行なって、InPコア表面にGaInPシェルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄した。
(2) Formation of InGaP first shell (barrier region) A colloidal solution containing InP core particles is again placed in a heating tank, and a mixed solution of indium chloride and gallium chloride (substance ratio of 1: 1) is added to bring the temperature to 285 ° C. Was raised. The above-mentioned second solution was injected into the heating tank with a syringe and maintained at 285 ° C. After 30 minutes, cooling, purification and isolation were performed, and a colloidal solution in which a GaInP shell was formed on the InP core surface was recovered. The collected colloidal solution was washed with an organic solvent after performing the etching process described above.

(3)InP第2シェル(第2発光領域)の形成
InPコア/GaInPシェル粒子を含むコロイド溶液を三たび加熱槽に入れ、保持温度を300℃とした他はInPコア形成と同じ操作を行って、GaInPシェル表面にInPシェルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄した。
(3) Formation of InP second shell (second light emitting region) The same operation as in InP core formation was performed except that a colloidal solution containing InP core / GaInP shell particles was placed in a heating bath three times and the holding temperature was set to 300 ° C. Thus, a colloidal solution having an InP shell formed on the surface of the GaInP shell was recovered. The collected colloidal solution was washed with an organic solvent after performing the etching process described above.

以上の操作により、図1の構造を有する本発明の半導体ナノ粒子蛍光体100が得られた。   By the above operation, the semiconductor nanoparticle phosphor 100 of the present invention having the structure of FIG. 1 was obtained.

透過型電子顕微鏡(TEM)およびエネルギー分散型蛍光X線分析装置(EDX)を用いて構造および組成を確認した結果は次の通りであった。   The results of confirming the structure and composition using a transmission electron microscope (TEM) and an energy dispersive X-ray fluorescence spectrometer (EDX) were as follows.

Figure 2010106119
Figure 2010106119

また、TEM観察では、チャージアップ現象により最表面に有機分子が固着している可能性が示唆され、質量分析の結果TOPOと確認された。     In addition, the TEM observation suggested that organic molecules may adhere to the outermost surface due to the charge-up phenomenon, and as a result of mass spectrometry, it was confirmed as TOPO.

<比較例1>
比較例1として、InP第2シェルの形成を行わなかった他は実施例1と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図2の構造を有し、組成および体積は表1のコアおよび第1シェルと同じであった。また、比較例1においても最表面にTOPOの修飾が認められた。
<Comparative Example 1>
As Comparative Example 1, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 1 except that the InP second shell was not formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 2, and the composition and volume were the same as those of the core and the first shell of Table 1. In Comparative Example 1 as well, TOPO modification was observed on the outermost surface.

<比較例2>
比較例2として、コア粒子をInPではなくInGaPで形成し、その粒子径を3.5nmとした後にInPシェルを形成した他は実施例1と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図3の構造を有し、InPシェルの組成および体積は表1の第2シェルと同じであった。また、比較例2においても最表面にTOPOの修飾が認められた。
<Comparative example 2>
As Comparative Example 2, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 1 except that the core particles were formed of InGaP instead of InP, the particle diameter was changed to 3.5 nm, and the InP shell was formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 3, and the composition and volume of the InP shell were the same as those of the second shell of Table 1. Also in Comparative Example 2, the modification of TOPO was observed on the outermost surface.

<実施例1、比較例1、2の発光スペクトル>
実施例1、比較例1および2を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを蛍光分光光度計で測定したところ、図4の結果が得られた。図4に示されるように、実施例1の半導体ナノ粒子蛍光体の発光スペクトルは単峰性を示し、比較例1と比較例2の間の波長ピークであることが確認された。この波長ピークを有する半導体ナノ粒子蛍光体は、比較例1および比較例2の構造では、温度や保持時間などの合成条件を精密に制御しても実現することが出来なかった。
<Emission spectra of Example 1 and Comparative Examples 1 and 2>
When Example 1 and Comparative Examples 1 and 2 were irradiated with an InGaN blue light-emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured with a fluorescence spectrophotometer, the result of FIG. 4 was obtained. It was. As shown in FIG. 4, the emission spectrum of the semiconductor nanoparticle phosphor of Example 1 was unimodal, and it was confirmed that the wavelength peak was between Comparative Example 1 and Comparative Example 2. The semiconductor nanoparticle phosphor having this wavelength peak could not be realized in the structures of Comparative Examples 1 and 2 even if the synthesis conditions such as temperature and holding time were precisely controlled.

<比較例3>
比較例3として、第1シェル(障壁領域102)の層厚を20nmとした他は実施例1と同様にして半導体ナノ粒子蛍光体を形成した。
<Comparative Example 3>
As Comparative Example 3, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 1 except that the thickness of the first shell (barrier region 102) was 20 nm.

波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを測定したところ、図5のような双峰性の発光スペクトルになった。   When irradiating with an InGaN blue light emitting diode element having a wavelength peak of 450 nm and measuring only the emission spectrum from the semiconductor nanoparticle phosphor, a bimodal emission spectrum as shown in FIG. 5 was obtained.

<実施例2>
実施例2では、InP/ZnS/InAsのコアシェル構造による半導体ナノ粒子蛍光体を作製した。
<Example 2>
In Example 2, a semiconductor nanoparticle phosphor having an InP / ZnS / InAs core-shell structure was produced.

(1)InPコア(第1発光領域)の形成
実施例1と同様にして、InPコア粒子を合成した。
(1) Formation of InP core (first light emitting region) InP core particles were synthesized in the same manner as in Example 1.

(2)ZnS第1シェル(障壁領域)の形成
InPコア粒子を含むコロイド溶液を再び加熱槽に入れて180℃に保持し、硫黄(S)とアセチルアセトナート亜鉛(ZnAcac)の混合溶液(物質量比1:1)をゆっくりと滴下しながら攪拌した。3時間後に冷却、精製および単離の操作を行なって、InPコア表面にZnSシェルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄した。
(2) Formation of ZnS first shell (barrier region) A colloidal solution containing InP core particles is again placed in a heating bath and maintained at 180 ° C., and a mixed solution (substance) of sulfur (S) and acetylacetonate zinc (ZnAcac) The mixture was stirred while the dropwise addition of a ratio of 1: 1). After 3 hours, cooling, purification and isolation were performed, and a colloidal solution in which a ZnS shell was formed on the surface of the InP core was recovered. The collected colloidal solution was washed with an organic solvent after performing the etching process described above.

(3)InAs第2シェル(第2発光領域)の形成
InPコア/ZnSシェル粒子のコロイド溶液を、実施例1における第1溶液と共に加熱槽に入れて加熱し、TOP溶媒中にトリメチルシリルアルシン(As(SiMe33)を溶解させてなる第2溶液を作製して、第2溶液を加熱槽にシリンジで注入し、温度を285℃に保持した。30分後、冷却、精製および単離の操作を行ない、ZnSシェル表面にInAsシェルを形成したコロイド溶液を回収した。その他の作製工程は実施例1と同様である。
(3) Formation of InAs second shell (second light emitting region) A colloidal solution of InP core / ZnS shell particles was placed in a heating tank together with the first solution in Example 1 and heated, and trimethylsilylarsine (As A second solution in which (SiMe 3 ) 3 ) was dissolved was prepared, and the second solution was injected into the heating tank with a syringe, and the temperature was maintained at 285 ° C. After 30 minutes, cooling, purification, and isolation were performed, and a colloidal solution in which an InAs shell was formed on the surface of the ZnS shell was collected. Other manufacturing steps are the same as those in Example 1.

TEMおよびEDXを用いて構造および組成を確認した結果は次の通りであった。   The results of confirming the structure and composition using TEM and EDX were as follows.

Figure 2010106119
Figure 2010106119

<比較例4>
比較例4として、InAs第2シェルの形成を行わなかった他は実施例2と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図2の構造を有し、組成およおび体積は表2のコアおよび第1シェルと同じであった。
<Comparative example 4>
As Comparative Example 4, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 2 except that the InAs second shell was not formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 2, and the composition and volume were the same as those of the core and the first shell of Table 2.

<比較例5>
比較例5として、コア粒子をInPではなくZnSで形成し、その粒子径を2.6nmとした後にInAsシェルを形成した他は実施例2と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図3の構造を有し、InAsシェルの組成および体積は表2の第2シェルと同じであった。
<Comparative Example 5>
As Comparative Example 5, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 2 except that the core particle was formed of ZnS instead of InP, the particle diameter was 2.6 nm, and an InAs shell was formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 3, and the composition and volume of the InAs shell were the same as those of the second shell in Table 2.

<実施例2、比較例4、5の発光スペクトル>
実施例2、比較例4および5を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを蛍光分光光度計で測定したところ、図6の結果が得られた。図6に示されるように、実施例2の半導体ナノ粒子蛍光体の発光スペクトルは単峰性を示し、比較例4と比較例5の間の波長ピークであることが確認された。この波長ピークを有する半導体ナノ粒子蛍光体は、比較例4および比較例5の構造では、温度や保持時間などの合成条件を精密に制御しても実現することが出来なかった。
<Emission spectra of Example 2 and Comparative Examples 4 and 5>
When Example 2 and Comparative Examples 4 and 5 were irradiated with an InGaN blue light-emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured with a fluorescence spectrophotometer, the result of FIG. 6 was obtained. It was. As shown in FIG. 6, the emission spectrum of the semiconductor nanoparticle phosphor of Example 2 was unimodal, and it was confirmed that the wavelength peak was between Comparative Example 4 and Comparative Example 5. The semiconductor nanoparticle phosphor having this wavelength peak could not be realized in the structures of Comparative Example 4 and Comparative Example 5 even if the synthesis conditions such as temperature and holding time were precisely controlled.

<実施例3〜6>
実施例3〜6では、実施例1の半導体ナノ粒子蛍光体の最表面を、表3に記載の金属アルコキシドを原料とする酸化物絶縁体で被覆した。
<Examples 3 to 6>
In Examples 3 to 6, the outermost surface of the semiconductor nanoparticle phosphor of Example 1 was coated with an oxide insulator using the metal alkoxide described in Table 3 as a raw material.

まず、表3の原料欄に示す金属アルコキシド、エタノール、イオン交換水、12規定塩酸を重量比50:75:40:1.5で混合し、48時間、50℃で重合させた。重合してできたゲルをイオン交換水で5倍に希釈し5時間撹拌した。   First, metal alkoxide, ethanol, ion-exchanged water, and 12 N hydrochloric acid shown in the raw material column of Table 3 were mixed at a weight ratio of 50: 75: 40: 1.5 and polymerized at 50 ° C. for 48 hours. The gel formed by polymerization was diluted 5-fold with ion-exchanged water and stirred for 5 hours.

実施例1の半導体ナノ粒子蛍光体コロイド溶液に3−メルカプトプロピルトリメトキシシランを添加して攪拌し、半導体ナノ粒子蛍光体表面を修飾している有機分子をシロキサンモノマーで置換し水溶性とした。これを上記ゲル水溶液に添加し、攪拌しながら温度を80℃に上昇させて20分間保持した後冷却し、イオン交換水で希釈して遠心分離器で沈殿物を分離し乾燥した。   3-Mercaptopropyltrimethoxysilane was added to the semiconductor nanoparticle phosphor colloidal solution of Example 1 and stirred to replace the organic molecules modifying the surface of the semiconductor nanoparticle phosphor with a siloxane monomer to make it water-soluble. This was added to the gel aqueous solution, and the temperature was raised to 80 ° C. with stirring and kept for 20 minutes, followed by cooling, dilution with ion-exchanged water, separation of the precipitate with a centrifuge, and drying.

得られた沈殿物は、半導体ナノ粒子蛍光体表面が酸化物絶縁体で被覆されていることがTEM観察により確認された。   The obtained precipitate was confirmed by TEM observation that the surface of the semiconductor nanoparticle phosphor was coated with an oxide insulator.

実施例1、3〜6の半導体ナノ粒子蛍光体の量子収率を積分球で測定したところ、表3の結果が得られた。   When the quantum yield of the semiconductor nanoparticle phosphors of Examples 1 and 3 to 6 was measured with an integrating sphere, the results shown in Table 3 were obtained.

Figure 2010106119
Figure 2010106119

表3に示されるように、最表面を発光領域以外の絶縁体で終端することにより、発光効率が向上することが確認された。   As shown in Table 3, it was confirmed that the light emission efficiency was improved by terminating the outermost surface with an insulator other than the light emitting region.

<実施例7>
実施例7では、実施例1の半導体ナノ粒子蛍光体において、表面を修飾する有機分子として次式に示す樹状分子(デンドリマー)を用いた。式中、nは1〜5の整数を示す。
<Example 7>
In Example 7, a dendritic molecule (dendrimer) represented by the following formula was used as an organic molecule for modifying the surface in the semiconductor nanoparticle phosphor of Example 1. In formula, n shows the integer of 1-5.

Figure 2010106119
Figure 2010106119

上記デンドリマーをベンゼンに溶解させ、実施例1の半導体ナノ粒子蛍光体のコロイド溶液を作成後、コロイド溶液中にベンゼン溶液を滴下して24時間攪拌し、TOPOと置換した。   The above dendrimer was dissolved in benzene to prepare a colloidal solution of the semiconductor nanoparticle phosphor of Example 1, and then the benzene solution was dropped into the colloidal solution and stirred for 24 hours to replace TOPO.

実施例1と実施例7の半導体ナノ粒子蛍光体のコロイド溶液濃度(吸収率で規定)を変化させて量子収率を測定したところ、表4の結果が得られた。   When the quantum yield was measured by changing the colloid solution concentration (specified by the absorption rate) of the semiconductor nanoparticle phosphors of Example 1 and Example 7, the results shown in Table 4 were obtained.

Figure 2010106119
Figure 2010106119

表4の結果より、デンドリマーで表面修飾した半導体ナノ粒子蛍光体は、溶液濃度が高くなっても量子収率が低下しないことがわかった。この理由は、デンドリマーが半導体ナノ粒子蛍光体表面を均一に覆うことで嵩密度が上がり、粒子同士の距離が長くなって自己吸収を防止することが出来るためであると考えられる。   From the results in Table 4, it was found that the semiconductor nanoparticle phosphor surface-modified with dendrimer did not decrease the quantum yield even when the solution concentration was increased. The reason for this is considered that the dendrimer uniformly covers the surface of the semiconductor nanoparticle phosphor to increase the bulk density, and the distance between the particles is increased to prevent self-absorption.

<実施例8>
実施例8では、InN/AlN/InGaNのコアシェル構造による半導体ナノ粒子蛍光体を作製した。
<Example 8>
In Example 8, a semiconductor nanoparticle phosphor having an InN / AlN / InGaN core-shell structure was produced.

(1)InN(第1発光領域)の形成
酸素濃度1ppm未満の高気密グローブボックス内で、InCl3および窒化リチウム(Li3N)を質量比1:1の割合でトリオクチルアミン(TOA)溶媒に溶解した。この溶液を空気に触れないようにオートクレーブ合成装置のハステロイ製リアクタに注入し、350℃、2MPaの条件で3時間保持した。その後冷却、精製および単離の操作を行ない、InNコア粒子を含むコロイド溶液を回収した。回収したコロイド溶液は実施例1と同様のエッチング処理を施し、失活要因となるInNコア粒子表面の欠陥や異物を取り除いた後に有機溶媒で洗浄した。
(1) Formation of InN (first light emitting region) In a highly airtight glove box with an oxygen concentration of less than 1 ppm, InCl 3 and lithium nitride (Li 3 N) are mixed in a ratio of 1: 1 by mass ratio of trioctylamine (TOA) solvent. Dissolved in. This solution was poured into a Hastelloy reactor of an autoclave synthesizer so as not to be exposed to air, and kept at 350 ° C. and 2 MPa for 3 hours. Thereafter, cooling, purification and isolation operations were performed, and a colloidal solution containing InN core particles was recovered. The collected colloidal solution was subjected to the same etching treatment as in Example 1, and after removing defects and foreign matters on the surface of the InN core particles, which became a deactivation factor, it was washed with an organic solvent.

(2)AlN第1シェル(障壁領域)の形成
前記グローブボックス内で、三塩化アルミニウム(AlCl3)およびLi3Nを質量比1:1の割合でTOA溶媒に溶解した。この溶液をInNコア粒子を含むコロイド溶液に加え、再び前記オートクレーブ合成装置を用いて420℃、5MPaの条件で1時間保持した。その後冷却、精製および単離の操作を行ない、InNコア表面にAlNシェルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄した。
(2) Formation of AlN first shell (barrier region) In the glove box, aluminum trichloride (AlCl 3 ) and Li 3 N were dissolved in a TOA solvent at a mass ratio of 1: 1. This solution was added to the colloidal solution containing InN core particles, and again held for 1 hour at 420 ° C. and 5 MPa using the autoclave synthesizer. Thereafter, cooling, purification and isolation operations were performed, and a colloidal solution in which an AlN shell was formed on the surface of the InN core was recovered. The collected colloidal solution was washed with an organic solvent after performing the etching process described above.

(3)InGaN第2シェル(第2発光領域)の形成
前記高気密グローブボックス内で、GaCl3、InCl3およびLi3Nを質量比3:7:10の割合でTOA溶媒に溶解した。この溶液をInNコア/AlNシェル粒子を含むコロイド溶液に加え、三たび前記オートクレーブ合成装置を用いて320℃、1.6MPaの条件で5時間保持した。その後冷却、精製および単離の操作を行ない、AlNシェル表面にInGaNシェルを形成したコロイド溶液を回収した。回収したコロイド溶液は前述のエッチング処理を行った後に有機溶媒で洗浄した。
(3) Formation of InGaN second shell (second light emitting region) In the highly airtight glove box, GaCl 3 , InCl 3 and Li 3 N were dissolved in a TOA solvent at a mass ratio of 3: 7: 10. This solution was added to a colloidal solution containing InN core / AlN shell particles, and held for 3 hours at 320 ° C. and 1.6 MPa using the autoclave synthesizer three times. Thereafter, cooling, purification and isolation operations were performed, and a colloidal solution having an InGaN shell formed on the surface of the AlN shell was recovered. The collected colloidal solution was washed with an organic solvent after performing the etching process described above.

以上の操作により、図1と同様の構造を有する本発明の半導体ナノ粒子蛍光体100が得られた。   Through the above operation, the semiconductor nanoparticle phosphor 100 of the present invention having the same structure as that of FIG. 1 was obtained.

TEMおよびEDXを用いて構造および組成を確認した結果は次の通りであった。   The results of confirming the structure and composition using TEM and EDX were as follows.

Figure 2010106119
Figure 2010106119

また、TEM観察では、チャージアップ現象により最表面に有機分子が固着している可能性が示唆され、質量分析の結果TOAと確認された。   In addition, the TEM observation suggested that organic molecules may adhere to the outermost surface due to the charge-up phenomenon, and as a result of mass spectrometry, it was confirmed as TOA.

<比較例6>
比較例6として、InGaN第2シェルの形成を行わなかった他は実施例8と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図2の構造を有し、組成および体積は表5のコアおよび第1シェルと同じであった。また、比較例6においても最表面にTOAの修飾が認められた。
<Comparative Example 6>
As Comparative Example 6, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 8 except that the InGaN second shell was not formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 2, and the composition and volume were the same as those of the core and the first shell of Table 5. In Comparative Example 6, modification of TOA was observed on the outermost surface.

<比較例7>
比較例7として、コア粒子をInNではなくAlNで形成し、その粒子径を3.5nmとした後にInGaNシェルを形成した他は実施例8と同様にして半導体ナノ粒子蛍光体を形成した。TEM観察およびEDX分析の結果、この半導体ナノ粒子蛍光体は図3の構造を有し、In0.7Ga0.3Nシェルの組成および体積は表5の第2シェルと同じであった。また、比較例7においても最表面にTOPOの修飾が認められた。
<Comparative Example 7>
As Comparative Example 7, a semiconductor nanoparticle phosphor was formed in the same manner as in Example 8 except that the core particles were formed of AlN instead of InN, the particle diameter was changed to 3.5 nm, and the InGaN shell was formed. As a result of TEM observation and EDX analysis, this semiconductor nanoparticle phosphor had the structure of FIG. 3, and the composition and volume of the In 0.7 Ga 0.3 N shell were the same as those of the second shell in Table 5. In Comparative Example 7, the modification of TOPO was recognized on the outermost surface.

<実施例8、比較例6、7の発光スペクトル>
実施例8、比較例6および7を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを蛍光分光光度計で測定したところ、図7の結果が得られた。図7に示されるように、実施例8の半導体ナノ粒子蛍光体の発光スペクトルは単峰性を示し、比較例6と比較例7の間の波長ピークであることが確認された。この波長ピークを有する半導体ナノ粒子蛍光体は、比較例6および比較例7の構造では、温度や保持時間などの合成条件を精密に制御しても実現することが出来なかった。
<Emission spectra of Example 8 and Comparative Examples 6 and 7>
When Example 8 and Comparative Examples 6 and 7 were irradiated with an InGaN blue light-emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured with a fluorescence spectrophotometer, the result of FIG. 7 was obtained. It was. As shown in FIG. 7, the emission spectrum of the semiconductor nanoparticle phosphor of Example 8 was unimodal, and it was confirmed that the wavelength peak was between Comparative Example 6 and Comparative Example 7. The semiconductor nanoparticle phosphor having this wavelength peak could not be realized in the structures of Comparative Examples 6 and 7 even if the synthesis conditions such as temperature and holding time were precisely controlled.

<実施例9>
実施例9では、CdSe/ZnS/CdTeのコアシェル構造による半導体ナノ粒子蛍光体を作製した。
<Example 9>
In Example 9, a semiconductor nanoparticle phosphor having a core-shell structure of CdSe / ZnS / CdTe was produced.

(1)CdSe(第1発光領域)の形成
実施例1の有機溶媒蒸留装置を用い、300℃のTOP溶媒中にジメチルカドミウム(Cd(Me)2)、トリオクチルフォスフィンセレナイド(TOP−Se)およびヘキサデシルアミン(HDA)をシリンジで注入した後、温度を200℃に急冷した。Cd(Me)2とTOP−Seは物質量比で4:3となるようにした。その後30分で250℃まで温度を上昇させ、10分間保持した後に冷却、精製および単離の操作を行ない、CdSeコア粒子を含むコロイド溶液を回収した。
(1) Formation of CdSe (first emission region) Using the organic solvent distillation apparatus of Example 1, dimethylcadmium (Cd (Me) 2 ), trioctylphosphine selenide (TOP-Se) in a TOP solvent at 300 ° C. ) And hexadecylamine (HDA) were injected with a syringe, and the temperature was rapidly cooled to 200 ° C. Cd (Me) 2 and TOP-Se were made to have a mass ratio of 4: 3. Thereafter, the temperature was raised to 250 ° C. in 30 minutes, and after 10 minutes, cooling, purification and isolation were performed, and a colloidal solution containing CdSe core particles was recovered.

(2)ZnS第1シェル(障壁領域)の形成
実施例2と同様にして、CdSeコアの表面にZnS第1シェルを形成した。
(2) Formation of ZnS first shell (barrier region) In the same manner as in Example 2, a ZnS first shell was formed on the surface of the CdSe core.

(3)CdTe第2シェル(第2発光領域)の形成
ZnSeコア/ZnSシェル粒子を含むコロイド溶液を三たび加熱槽に入れて180℃に保持し、Cd(Me)2、テルル酸ナトリウム(NaHTe)およびHDAをシリンジで注入した(物質量比1:1)後、温度を150℃に急冷した。Cd(Me)2とNaHTeは物質量比で2:1となるようにした。その後30分で200℃まで温度を上昇させ、10分間保持した後に、冷却、精製および単離の操作を行ない、ZnSシェル表面にCdTeシェルを形成したコロイド溶液を回収した。
(3) Formation of CdTe second shell (second light emitting region) A colloidal solution containing ZnSe core / ZnS shell particles was placed in a heating bath three times and kept at 180 ° C., and Cd (Me) 2 , sodium tellurate (NaHTe) ) And HDA were injected with a syringe (mass ratio 1: 1), and then the temperature was rapidly cooled to 150 ° C. Cd (Me) 2 and NaHTe were adjusted to have a mass ratio of 2: 1. Thereafter, the temperature was raised to 200 ° C. in 30 minutes, and after maintaining for 10 minutes, cooling, purification and isolation were performed, and a colloidal solution in which a CdTe shell was formed on the surface of the ZnS shell was recovered.

以上の操作により、図1と同様の構造を有する本発明の半導体ナノ粒子蛍光体100が得られた。なお、本実施例ではエッチング処理は施さなかった。   Through the above operation, the semiconductor nanoparticle phosphor 100 of the present invention having the same structure as that of FIG. 1 was obtained. In this example, no etching process was performed.

TEMおよびEDXを用いて構造および組成を確認した結果は次の通りであった。   The results of confirming the structure and composition using TEM and EDX were as follows.

Figure 2010106119
Figure 2010106119

また、TEM観察では、チャージアップ現象により最表面に有機分子が固着している可能性が示唆され、質量分析の結果HDAと確認された。     In addition, the TEM observation suggested that organic molecules may adhere to the outermost surface due to the charge-up phenomenon, and as a result of mass spectrometry, it was confirmed as HDA.

実施例9の半導体ナノ粒子蛍光体を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを測定したところ、波長ピーク490nm、半値幅80nmの単峰性の発光スペクトルを示した。   When the semiconductor nanoparticle phosphor of Example 9 was irradiated with an InGaN blue light-emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured, it was unimodal with a wavelength peak of 490 nm and a half-value width of 80 nm. The emission spectrum was shown.

<実施例10>
実施例10では、CuInS2/ZnS/CuGaS2のコアシェル構造による半導体ナノ粒子蛍光体を作製した。
<Example 10>
In Example 10, a semiconductor nanoparticle phosphor having a core-shell structure of CuInS 2 / ZnS / CuGaS 2 was produced.

(1)CuInS2コア(第1発光領域)の形成
実施例1の有機溶媒蒸留装置を用い、加熱槽でオレイルアミン(C1837N)溶媒にヨウ化インジウム(InI)とヨウ化銅(CuI)(物質量比1:1)およびTOPOを溶かした第1溶液を合成した後、第1溶液の温度を200℃に上昇させた。
(1) Formation of CuInS 2 core (first light emitting region) Using the organic solvent distillation apparatus of Example 1, in an oleylamine (C 18 H 37 N) solvent in a heating tank, indium iodide (InI 3 ) and copper iodide ( After synthesizing a first solution in which CuI) (substance ratio 1: 1) and TOPO were dissolved, the temperature of the first solution was raised to 200 ° C.

次に、TOP溶媒にエタンチオアミド(C25NS)を溶解させてなる第2溶液を作製し、第2溶液を加熱槽中の第1溶液にシリンジで注入し、温度を200℃に保持した。30分後に冷却、精製および単離の操作を行ない、CuInS2コア粒子を含むコロイド溶液を回収した。 Next, a second solution is prepared by dissolving ethanethioamide (C 2 H 5 NS) in a TOP solvent, and the second solution is injected into the first solution in the heating tank with a syringe, and the temperature is maintained at 200 ° C. did. After 30 minutes, cooling, purification and isolation were performed, and a colloidal solution containing CuInS 2 core particles was recovered.

(2)ZnS第1シェル(障壁領域)の形成
実施例2と同様にして、CdSeコアの表面にZnS第1シェルを形成した。
(2) Formation of ZnS first shell (barrier region) In the same manner as in Example 2, a ZnS first shell was formed on the surface of the CdSe core.

(3)CuGaS2第2シェル(第2発光領域)の形成
1837N溶媒にCuIおよびヨウ化ガリウム(GaI3)を溶かした第3溶液(物質量比1:1)を合成した後、CuInS2コア/ZnSシェル粒子を含むコロイド溶液と共に三たび加熱槽に入れて180℃に保持し、上述の第2溶液を作製して加熱槽にシリンジで注入し、温度を200℃に保持した。30分後、冷却、精製および単離の操作を行ない、ZnSシェル表面にCuGaS2シェルを形成したコロイド溶液を回収した。その他の作製工程は実施例1と同様である。
(3) Formation of CuGaS 2 second shell (second light emitting region) After synthesizing a third solution (substance ratio 1: 1) in which CuI and gallium iodide (GaI 3 ) are dissolved in a C 18 H 37 N solvent The colloidal solution containing CuInS 2 core / ZnS shell particles was placed in a heating bath three times and held at 180 ° C., the second solution was prepared and injected into the heating bath with a syringe, and the temperature was maintained at 200 ° C. . After 30 minutes, cooling, purification and isolation were performed, and a colloidal solution in which a CuGaS 2 shell was formed on the surface of the ZnS shell was recovered. Other manufacturing steps are the same as those in Example 1.

以上の操作により、図1と同様の構造を有する本発明の半導体ナノ粒子蛍光体100が得られた。   Through the above operation, the semiconductor nanoparticle phosphor 100 of the present invention having the same structure as that of FIG. 1 was obtained.

TEMおよびEDXを用いて構造および組成を確認した結果は次の通りであった。   The results of confirming the structure and composition using TEM and EDX were as follows.

Figure 2010106119
Figure 2010106119

また、TEM観察では、チャージアップ現象により最表面に有機分子が固着している可能性が示唆され、質量分析の結果TOPOと確認された。   In addition, the TEM observation suggested that organic molecules may adhere to the outermost surface due to the charge-up phenomenon, and as a result of mass spectrometry, it was confirmed as TOPO.

実施例10の半導体ナノ粒子蛍光体を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを測定したところ、波長ピーク520nm、半値幅100nmの単峰性の発光スペクトルを示した。   When the semiconductor nanoparticle phosphor of Example 10 was irradiated with an InGaN blue light-emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured, it was unimodal with a wavelength peak of 520 nm and a half-value width of 100 nm. The emission spectrum was shown.

<実施例11>
実施例11では、実施例10のコアシェル構造において、コア(第1発光領域101)をZnSnP2で構成した。
<Example 11>
In Example 11, in the core-shell structure of Example 10, the core (first light emitting region 101) was made of ZnSnP 2 .

実施例1の有機溶媒蒸留装置を用い、加熱槽でC1837N溶媒にヨウ化亜鉛(ZnI2)とヨウ化スズ(IV)(SnI4)(物質量比1:1)およびTOPOを溶かした第1溶液を合成した後、第1溶液の温度を200℃に上昇させた。 Using the organic solvent distillation apparatus of Example 1, zinc iodide (ZnI 2 ), tin iodide (IV) (SnI 4 ) (substance ratio 1: 1) and TOPO were added to a C 18 H 37 N solvent in a heating tank. After synthesizing the dissolved first solution, the temperature of the first solution was raised to 200 ° C.

次に、TOP溶媒にP(SiMe33を溶解させてなる第2溶液を作製し、第2溶液を加熱槽中の第1溶液にシリンジで注入し、温度を200℃に保持した。30分後に冷却、精製および単離の操作を行ない、ZnSnP2コア粒子を含むコロイド溶液を回収した。 Next, a second solution was prepared by dissolving P (SiMe 3 ) 3 in a TOP solvent, and the second solution was injected into the first solution in the heating tank with a syringe, and the temperature was maintained at 200 ° C. After 30 minutes, cooling, purification and isolation were performed, and a colloidal solution containing ZnSnP 2 core particles was recovered.

その後のZnS第1シェルおよびCuGaS2第2シェルの形成は、実施例10と同様である。 The subsequent formation of the ZnS first shell and the CuGaS 2 second shell is the same as in Example 10.

以上の操作により、図1と同様の構造を有する本発明の半導体ナノ粒子蛍光体100が得られた。   Through the above operation, the semiconductor nanoparticle phosphor 100 of the present invention having the same structure as that of FIG. 1 was obtained.

実施例11の半導体ナノ粒子蛍光体を波長ピーク450nmのInGaN青色発光ダイオード素子で照射し、半導体ナノ粒子蛍光体からの発光スペクトルのみを測定したところ、波長ピーク500nm、半値幅90nmの単峰性の発光スペクトルを示した。   When the semiconductor nanoparticle phosphor of Example 11 was irradiated with an InGaN blue light emitting diode element having a wavelength peak of 450 nm and only the emission spectrum from the semiconductor nanoparticle phosphor was measured, it was unimodal with a wavelength peak of 500 nm and a half width of 90 nm. The emission spectrum was shown.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の好ましい一実施形態の半導体ナノ粒子蛍光体を模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor nanoparticle fluorescent substance of preferable one Embodiment of this invention. 比較例の半導体ナノ粒子蛍光体を模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor nanoparticle fluorescent substance of a comparative example. 別の比較例の半導体ナノ粒子蛍光体を模式的に示す断面図である。It is sectional drawing which shows typically the semiconductor nanoparticle fluorescent substance of another comparative example. 実施例1、比較例1および2の半導体ナノ粒子蛍光体の発光スペクトルである。It is an emission spectrum of the semiconductor nanoparticle phosphor of Example 1 and Comparative Examples 1 and 2. 比較例3の半導体ナノ粒子蛍光体の発光スペクトルである。It is an emission spectrum of the semiconductor nanoparticle phosphor of Comparative Example 3. 実施例2、比較例4および5の半導体ナノ粒子蛍光体の発光スペクトルである。It is an emission spectrum of the semiconductor nanoparticle phosphor of Example 2 and Comparative Examples 4 and 5. 実施例8、比較例6および7の半導体ナノ粒子蛍光体の発光スペクトルである。It is an emission spectrum of the semiconductor nanoparticle phosphor of Example 8 and Comparative Examples 6 and 7. InP半導体ナノ粒子の粒子径と、エネルギーギャップ波長の関係を表すグラフである。It is a graph showing the relationship between the particle diameter of an InP semiconductor nanoparticle, and an energy gap wavelength.

符号の説明Explanation of symbols

100,200,300 半導体ナノ粒子蛍光体、101,201,302 コア、102 第1シェル、103 第2シェル、202,303 シェル。   100, 200, 300 Semiconductor nanoparticle phosphor, 101, 201, 302 core, 102 first shell, 103 second shell, 202, 303 shell.

Claims (15)

単独では異なる量子効果を呈する2以上の発光領域と障壁領域とを有する半導体ナノ粒子蛍光体であって、
前記2以上の発光領域が障壁領域によって隔てられるような積層構造を有し、前記2以上の発光領域が前記障壁領域を介して同じ量子準位を有することを特徴とする半導体ナノ粒子蛍光体。
A semiconductor nanoparticle phosphor having two or more light-emitting regions and barrier regions that exhibit different quantum effects by themselves,
The semiconductor nanoparticle phosphor, wherein the two or more light emitting regions have a laminated structure separated by a barrier region, and the two or more light emitting regions have the same quantum level through the barrier region.
前記2以上の発光領域は組成または体積の少なくとも一方が異なる、請求項1に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 1, wherein at least one of the two or more light emitting regions is different in composition or volume. 前記障壁領域の層厚が0.2〜10nmである請求項1または2に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 1 or 2, wherein the barrier region has a layer thickness of 0.2 to 10 nm. 前記発光領域および障壁領域は、B,Al,GaおよびInから選択される1種以上のIII族元素と、N,P,AsおよびSbから選択される1種以上のV族元素とを含むIII−V族化合物半導体を含む、請求項1〜3のいずれかに記載の半導体ナノ粒子蛍光体。   The light emitting region and the barrier region include one or more group III elements selected from B, Al, Ga and In, and one or more group V elements selected from N, P, As and Sb. The semiconductor nanoparticle phosphor according to any one of claims 1 to 3, comprising a -V group compound semiconductor. 前記III族元素がAl,GaおよびInから選択され、かつ前記V族元素がNおよびPから選択される、請求項4に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 4, wherein the group III element is selected from Al, Ga, and In, and the group V element is selected from N and P. 前記発光領域および障壁領域は、Be,Zn,CdおよびMgから選択される1種以上のII族元素と、O,S,SeおよびTeから選択される1種以上のVI族元素とを含むII−VI族化合物半導体を含む、請求項1〜3のいずれかに記載の半導体ナノ粒子蛍光体。   The light emitting region and the barrier region include one or more group II elements selected from Be, Zn, Cd and Mg, and one or more group VI elements selected from O, S, Se and Te. The semiconductor nanoparticle phosphor according to any one of claims 1 to 3, comprising a -VI group compound semiconductor. 前記II族元素がZnおよびMgから選択され、かつ前記VI族元素がO,SおよびTeから選択される、請求項6に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 6, wherein the group II element is selected from Zn and Mg, and the group VI element is selected from O, S, and Te. 前記発光領域および障壁領域は、ZnおよびCdから選択される1種以上のII族元素と、Si,GeおよびSnから選択される1種以上のIV族元素と、PおよびAsから選択される1種以上のV族元素とを含むII−IV−V2族化合物半導体を含む、請求項1〜3のいずれかに記載の半導体ナノ粒子蛍光体。 The light emitting region and the barrier region are selected from one or more group II elements selected from Zn and Cd, one or more group IV elements selected from Si, Ge and Sn, and P and As. The semiconductor nanoparticle phosphor according to any one of claims 1 to 3, comprising a II-IV-V2 group 2 compound semiconductor containing at least one group V element. 前記II族元素がZnであり、かつ前記V族元素がPである請求項8に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 8, wherein the group II element is Zn and the group V element is P. 前記発光領域および障壁領域は、CuおよびAgから選択される1種以上のI族元素と、Al,GaおよびInから選択されるIII族元素と、S,SeおよびTeから選択される1種以上のVI族元素とを含むI−III−VI2族化合物半導体を含む、請求項1〜3のいずれかに記載の半導体ナノ粒子蛍光体。 The light emitting region and the barrier region are one or more group I elements selected from Cu and Ag, a group III element selected from Al, Ga and In, and one or more types selected from S, Se and Te. The semiconductor nanoparticle phosphor according to any one of claims 1 to 3, comprising a Group I-III-VI Group 2 compound semiconductor containing the Group VI element. 前記VI族元素がSおよびTeから選択される、請求項10に記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 10, wherein the group VI element is selected from S and Te. 前記発光領域の数が2である、請求項1〜11のいずれかに記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to any one of claims 1 to 11, wherein the number of the light emitting regions is two. 前記発光領域の一つが前記積層構造のコアである、請求項1〜12のいずれかに記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 1, wherein one of the light emitting regions is a core of the laminated structure. 前記積層構造の最外層が発光領域ではない、請求項1〜13のいずれかに記載の半導体ナノ粒子蛍光体。   The semiconductor nanoparticle phosphor according to claim 1, wherein the outermost layer of the laminated structure is not a light emitting region. さらに、最表面が直鎖状あるいは樹状有機分子で被覆されている、請求項14に記載の半導体ナノ粒子蛍光体。   Furthermore, the semiconductor nanoparticle fluorescent substance of Claim 14 with which the outermost surface is coat | covered with the linear or dendritic organic molecule.
JP2008278316A 2008-10-29 2008-10-29 Semiconductor nanoparticle phosphor Pending JP2010106119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278316A JP2010106119A (en) 2008-10-29 2008-10-29 Semiconductor nanoparticle phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278316A JP2010106119A (en) 2008-10-29 2008-10-29 Semiconductor nanoparticle phosphor

Publications (1)

Publication Number Publication Date
JP2010106119A true JP2010106119A (en) 2010-05-13

Family

ID=42295895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278316A Pending JP2010106119A (en) 2008-10-29 2008-10-29 Semiconductor nanoparticle phosphor

Country Status (1)

Country Link
JP (1) JP2010106119A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087220A (en) * 2010-10-20 2012-05-10 Sharp Corp Semiconductor nanoparticle phosphor
WO2014136750A1 (en) * 2013-03-05 2014-09-12 シャープ株式会社 Core-shell particle, up-conversion layer, and photoelectric conversion element
JP2015093881A (en) * 2013-11-08 2015-05-18 シャープ株式会社 Nanoparticle phosphor and optical device comprising nanoparticle phosphor
JP2015147726A (en) * 2014-02-05 2015-08-20 三星電子株式会社Samsung Electronics Co.,Ltd. Nanocrystal particles, processes for producing the same, and devices
JP2015209524A (en) * 2014-04-30 2015-11-24 シャープ株式会社 Nanoparticle phosphor and production method thereof
US9281447B2 (en) 2011-05-30 2016-03-08 Fujifilm Corporation Method for synthesizing indium phosphide nanoparticles
WO2017169932A1 (en) * 2016-03-28 2017-10-05 富士フイルム株式会社 Process for producing semiconductor quantum dots and semiconductor quantum dots
US10081764B2 (en) 2015-07-03 2018-09-25 National University Corporation Nagoya University Tellurium compound nanoparticles, composite nanoparticles, and production methods therefor
CN108699434A (en) * 2016-01-19 2018-10-23 纳米系统公司 INP quantum dots and its manufacturing method with GaP and AlP shells
US10233389B2 (en) 2015-07-22 2019-03-19 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US10563122B2 (en) 2016-03-18 2020-02-18 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP2021172713A (en) * 2020-04-22 2021-11-01 スタンレー電気株式会社 Group III nitride semiconductor nanoparticles
US11597876B2 (en) 2020-04-14 2023-03-07 Samsung Display Co., Ltd. Quantum dots, composites, and device including the same
US11795392B2 (en) 2020-04-20 2023-10-24 Samsung Electronics Co., Ltd. Cadmium-free quantum dot, quantum dot-polymer composite, and electronic device including the same
US12031070B2 (en) 2020-03-13 2024-07-09 Samsung Display Co., Ltd. Quantum well nanocrystals with quaternary alloy structure for improved light absorption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533892A (en) * 2002-07-23 2005-11-10 マサチューセッツ・インスティテュート・オブ・テクノロジー Generation of photon atoms
WO2007145089A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Medical & Graphic, Inc. Three-layer semiconductor particle
JP2008544013A (en) * 2005-06-15 2008-12-04 イッサム リサーチ デベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム III-V semiconductor core-heteroshell nanocrystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533892A (en) * 2002-07-23 2005-11-10 マサチューセッツ・インスティテュート・オブ・テクノロジー Generation of photon atoms
JP2008544013A (en) * 2005-06-15 2008-12-04 イッサム リサーチ デベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム III-V semiconductor core-heteroshell nanocrystal
WO2007145089A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Medical & Graphic, Inc. Three-layer semiconductor particle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087220A (en) * 2010-10-20 2012-05-10 Sharp Corp Semiconductor nanoparticle phosphor
US9281447B2 (en) 2011-05-30 2016-03-08 Fujifilm Corporation Method for synthesizing indium phosphide nanoparticles
WO2014136750A1 (en) * 2013-03-05 2014-09-12 シャープ株式会社 Core-shell particle, up-conversion layer, and photoelectric conversion element
JPWO2014136750A1 (en) * 2013-03-05 2017-02-09 シャープ株式会社 Core-shell particles, up-conversion layer and photoelectric conversion element
JP2015093881A (en) * 2013-11-08 2015-05-18 シャープ株式会社 Nanoparticle phosphor and optical device comprising nanoparticle phosphor
JP2015147726A (en) * 2014-02-05 2015-08-20 三星電子株式会社Samsung Electronics Co.,Ltd. Nanocrystal particles, processes for producing the same, and devices
US10179876B2 (en) 2014-02-05 2019-01-15 Samsung Electronics Co., Ltd. Semiconductor nanocrystals and processes for synthesizing the same
JP2015209524A (en) * 2014-04-30 2015-11-24 シャープ株式会社 Nanoparticle phosphor and production method thereof
US10081764B2 (en) 2015-07-03 2018-09-25 National University Corporation Nagoya University Tellurium compound nanoparticles, composite nanoparticles, and production methods therefor
US11174429B2 (en) 2015-07-22 2021-11-16 National University Corporation Tokai National Higher Education And Research System Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US10717925B2 (en) 2015-07-22 2020-07-21 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US10233389B2 (en) 2015-07-22 2019-03-19 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP2019504811A (en) * 2016-01-19 2019-02-21 ナノシス・インク. InP quantum dots having GaP and AlP shells and method for producing the same
CN108699434A (en) * 2016-01-19 2018-10-23 纳米系统公司 INP quantum dots and its manufacturing method with GaP and AlP shells
US10563122B2 (en) 2016-03-18 2020-02-18 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US11162024B2 (en) 2016-03-18 2021-11-02 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US11788003B2 (en) 2016-03-18 2023-10-17 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JPWO2017169932A1 (en) * 2016-03-28 2019-02-14 富士フイルム株式会社 Semiconductor quantum dot manufacturing method and semiconductor quantum dot
US10947112B2 (en) 2016-03-28 2021-03-16 Fujifilm Corporation Method of manufacturing semiconductor quantum dot and semiconductor quantum dot
WO2017169932A1 (en) * 2016-03-28 2017-10-05 富士フイルム株式会社 Process for producing semiconductor quantum dots and semiconductor quantum dots
US12031070B2 (en) 2020-03-13 2024-07-09 Samsung Display Co., Ltd. Quantum well nanocrystals with quaternary alloy structure for improved light absorption
US11597876B2 (en) 2020-04-14 2023-03-07 Samsung Display Co., Ltd. Quantum dots, composites, and device including the same
US11795392B2 (en) 2020-04-20 2023-10-24 Samsung Electronics Co., Ltd. Cadmium-free quantum dot, quantum dot-polymer composite, and electronic device including the same
JP2021172713A (en) * 2020-04-22 2021-11-01 スタンレー電気株式会社 Group III nitride semiconductor nanoparticles

Similar Documents

Publication Publication Date Title
JP2010106119A (en) Semiconductor nanoparticle phosphor
Cho et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
Sharma et al. Two-dimensional CdSe-based nanoplatelets: their heterostructures, doping, photophysical properties, and applications
US10066164B2 (en) Semiconductor nanocrystals used with LED sources
JP5416359B2 (en) Nanocrystal, method for producing the same, and electronic device including the same
US20200087572A1 (en) Semiconducting light emitting nanoparticle
KR20180135063A (en) Stable INP quantum dot with thick shell coating and its manufacturing method
JP2011502333A (en) Device containing quantum dots without blinking
Li et al. I-III-VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications
US20190367810A1 (en) Cd-free colloidal quantum dot capable of emitting visible fluorescence, and method for producing same
WO2020162622A1 (en) Semiconductor nanoparticles and method for producing same
US20220204845A1 (en) Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot
JP2012087220A (en) Semiconductor nanoparticle phosphor
KR20210116633A (en) Small Molecule Passivation of Quantum Dots for Increased Quantum Yield
JP2013525244A (en) Method for producing lead selenide quantum dots
JP2020152904A (en) Semiconductor nanoparticle and method for producing the same, and light-emitting device
US20150315463A1 (en) Nanoparticle phosphor and method for manufacturing the same, semiconductor nanoparticle phosphor and light emitting element containing semiconductor nanoparticle phosphor, wavelength converter and light emitting device
KR20180076386A (en) Polymer coating quantem dot and method of manufacturing light emitting diode phosphor sealant using the same
JP2007238712A (en) Phosphor
JP2005197317A (en) Solid-state lighting element
Mandal et al. Progressive advancement of ZnS-based quantum dot LED
JP5008631B2 (en) Phosphor, method for producing the same, and light emitting device using the same
JP2019218524A (en) Semiconductor nanoparticle, method for producing the same and light emitting device
JP2015151456A (en) Light-emitting particle, production method of light-emitting particle, optical member, method for manufacturing optical member, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02