JP2010105871A - Method and apparatus for manufacturing optical device - Google Patents

Method and apparatus for manufacturing optical device Download PDF

Info

Publication number
JP2010105871A
JP2010105871A JP2008280943A JP2008280943A JP2010105871A JP 2010105871 A JP2010105871 A JP 2010105871A JP 2008280943 A JP2008280943 A JP 2008280943A JP 2008280943 A JP2008280943 A JP 2008280943A JP 2010105871 A JP2010105871 A JP 2010105871A
Authority
JP
Japan
Prior art keywords
molten glass
receiving surface
mold
manufacturing
glass lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280943A
Other languages
Japanese (ja)
Inventor
Shotaro Miyake
正太郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008280943A priority Critical patent/JP2010105871A/en
Publication of JP2010105871A publication Critical patent/JP2010105871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing the optical device by which the wear of a mold is suppressed while cutting waste in consistent manufacturing steps started from molten glass. <P>SOLUTION: The method of manufacturing the optical device GC has a step of receiving the molten glass on a receiving surface 33 of a supporting member 30 and holding to form a molten glass gob FG and transferring the molten glass gob FG on the receiving surface 33 into the mold 60 for press molding at the point of time when the logarithm logη of the viscosity (dPa s) of the molten glass gob FG becomes ≥1 and ≤6.65 and press-molding the molten glass gob FG in the mold 60. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子の製造技術に関する。   The present invention relates to a technique for manufacturing an optical element.

従来、光学素子の製造は、板ガラスから切り出したガラスを研磨加工し、光学素子に近似した形状に研磨し、この研磨物を加熱成形することで行われてきた。しかし、非球面レンズを作製する場合、かかる方法では、ガラス素材の研磨コストが嵩む。そこで、モールドで加圧成形することにより、非球面レンズを成形する方法が使用されている。   Conventionally, an optical element has been manufactured by polishing glass cut out from plate glass, polishing it into a shape approximate to the optical element, and heat-molding the polished product. However, when producing an aspheric lens, this method increases the polishing cost of the glass material. Therefore, a method of forming an aspheric lens by pressure molding with a mold is used.

近年、モールドプレス技術を用いつつ、溶融ガラスから一貫して光学素子を作製する方法が提案されている。例えば特許文献1及び2には、溶融ガラスを支持部材の受け面で受けて保持し、形成したプリフォームを金型内に移送してプレス成形する技術が開示されている。また、特許文献3には、溶融ガラスを直接的に支持部材の受け面で受けて保持し、形成された溶融ガラス塊を金型内に移送してプレス成形する技術が開示されている。
特開2004−203740号公報 特開2004−168660号公報 特開平6−340430号公報
In recent years, a method for consistently producing an optical element from molten glass while using a mold press technique has been proposed. For example, Patent Documents 1 and 2 disclose a technique in which molten glass is received and held by a receiving surface of a support member, and the formed preform is transferred into a mold and press-molded. Patent Document 3 discloses a technique in which molten glass is directly received and held by a receiving surface of a support member, and the formed molten glass lump is transferred into a mold and press-molded.
JP 2004-203740 A JP 2004-168660 A JP-A-6-340430

しかし、特許文献1及び2に示される方法では、金型への移送の際にプリフォームを再加熱する必要があるため、工程に無駄があり、リードタイムが非常に長い。他方、特許文献3に示される方法では、溶融ガラス塊の高温で金型が激しく消耗しやすい。   However, in the methods disclosed in Patent Documents 1 and 2, since the preform needs to be reheated during transfer to the mold, the process is wasted and the lead time is very long. On the other hand, in the method disclosed in Patent Document 3, the mold is easily consumed at a high temperature of the molten glass lump.

本発明は、以上の実情に鑑みてなされたものであり、溶融ガラスからの一貫した製造工程における無駄を省きつつ、金型の消耗を抑制できる光学素子の製造方法及び製造装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an optical element manufacturing method and a manufacturing apparatus capable of suppressing consumption of a mold while eliminating waste in a consistent manufacturing process from molten glass. Objective.

本発明者らは、金型への移送を、溶融ガラス塊の粘度が所定範囲になった時点で行うことで、移送時の再加熱を行うことなく、金型の消耗を抑制できることを見出し、本発明を完成するに至った。具体的に、本発明は以下のようなものを提供する。   The inventors have found that by performing the transfer to the mold when the viscosity of the molten glass lump is in a predetermined range, it is possible to suppress the consumption of the mold without performing reheating during the transfer, The present invention has been completed. Specifically, the present invention provides the following.

(1) 溶融ガラスを支持部材の受け面で受けて保持し、溶融ガラス塊を形成し、
前記受け面上の前記溶融ガラス塊を、その粘度(dPa・s)の対数logηが1以上6.65以下になった時点でプレス成形用の金型内へと移送し、
前記金型内の溶融ガラス塊をプレス成形する工程を有する光学素子の製造方法。
(1) Receive and hold the molten glass on the receiving surface of the support member to form a molten glass lump,
When the logarithm log η of the viscosity (dPa · s) is 1 or more and 6.65 or less, the molten glass lump on the receiving surface is transferred into a press molding die,
The manufacturing method of the optical element which has the process of press-molding the molten glass lump in the said metal mold | die.

(2) 前記溶融ガラス塊の移送は、前記受け面から前記金型への前記溶融ガラス塊の落下によって行う(1)記載の製造方法。   (2) The method according to (1), wherein the molten glass lump is transferred by dropping the molten glass lump from the receiving surface to the mold.

(3) 前記支持部材として、前記受け面が2以上に分割可能な多孔質部材からなるものを用い、
温度制御された気体を前記受け面から噴出して、溶融ガラス塊を浮上成形する(1)又は(2)記載の製造方法。
(3) The support member is made of a porous member whose receiving surface can be divided into two or more,
The manufacturing method according to (1) or (2), wherein a temperature-controlled gas is ejected from the receiving surface to float the molten glass lump.

(4) 溶融ガラス塊の温度が−700℃/分以上−100℃/分以下の速度で低下するように、前記気体を噴出する(3)記載の製造方法。   (4) The production method according to (3), wherein the gas is ejected so that the temperature of the molten glass block is decreased at a rate of −700 ° C./min or more and −100 ° C./min or less.

(5) (1)から(4)いずれか記載の製造方法で製造される光学素子を用いる光学機器の製造方法。   (5) A method for manufacturing an optical device using the optical element manufactured by the manufacturing method according to any one of (1) to (4).

(6) 溶融ガラスを受ける受け面を有する支持部材と、プレス成形用の金型を有するプレス成形装置と、前記受け面で保持され形成された溶融ガラス塊を前記金型内へと移送する移送手段と、を備える光学素子の製造装置であって、
前記溶融ガラス塊の温度を検知し、粘度を算出する検出手段と、
前記検出手段によって算出された粘度に基づいて前記移送手段を制御する移送制御手段と、を更に備える製造装置。
(6) A support member having a receiving surface for receiving molten glass, a press molding apparatus having a press molding die, and a transfer for transferring a molten glass mass held and formed by the receiving surface into the die. And an optical element manufacturing apparatus comprising:
Detecting means for detecting the temperature of the molten glass lump and calculating the viscosity;
And a transfer control means for controlling the transfer means based on the viscosity calculated by the detection means.

(7) 前記移送手段は、前記溶融ガラス塊を前記受け面から前記金型へと落下させる(6)記載の製造装置。   (7) The manufacturing apparatus according to (6), wherein the transfer unit drops the molten glass lump from the receiving surface onto the mold.

(8) 前記受け面は、2以上に分割可能な多孔質部材からなり、
前記製造装置は、温度制御された気体を前記受け面から噴出させる気体供給手段を更に備える(6)又は(7)記載の製造装置。
(8) The receiving surface is made of a porous member that can be divided into two or more,
The manufacturing apparatus according to (6) or (7), further including gas supply means for ejecting a temperature-controlled gas from the receiving surface.

(9) 前記検出手段によって検知された温度に基づいて前記気体供給手段を制御する供給制御手段を更に備える(8)記載の製造装置。   (9) The manufacturing apparatus according to (8), further comprising supply control means for controlling the gas supply means based on the temperature detected by the detection means.

(10) (6)から(9)いずれか記載の製造装置で製造される光学素子を用いて光学機器を製造する光学機器製造装置。   (10) An optical device manufacturing apparatus that manufactures an optical device using the optical element manufactured by the manufacturing device according to any one of (6) to (9).

本発明によれば、金型への移送を、溶融ガラス塊の粘度が所定範囲になった時点で行うので、再加熱の必要性が低く移送時間を短縮でき、また最適な温度で成形型に移送されるので、金型の消耗を抑制でき且つ成形時間も短縮できる。   According to the present invention, the transfer to the mold is performed when the viscosity of the molten glass lump reaches a predetermined range, so that the need for reheating is low and the transfer time can be shortened, and the mold is formed at an optimum temperature. Since it is transferred, the consumption of the mold can be suppressed and the molding time can be shortened.

以下、本発明の一実施形態について図面を参照しながら説明するが、これに本発明が限定されるものではない。   Hereinafter, although one embodiment of the present invention is described with reference to drawings, the present invention is not limited to this.

図1は、本発明の一実施形態に係る光学素子の製造装置を用いた光学素子の製造方法の手順を示す図である。図1に示されるように、光学素子の製造装置は、溶融ガラス供給装置20、支持部材30、移送手段としての移送部40、制御装置50、及び金型60を備える。以下、各構成要素を詳細に説明する。   FIG. 1 is a diagram showing a procedure of an optical element manufacturing method using an optical element manufacturing apparatus according to an embodiment of the present invention. As shown in FIG. 1, the optical element manufacturing apparatus includes a molten glass supply device 20, a support member 30, a transfer unit 40 as a transfer unit, a control device 50, and a mold 60. Hereinafter, each component will be described in detail.

溶融ガラス供給装置20は供給管21を有し、この供給管21の基部は、溶融ガラスを収容する図示しない溶融槽の内部に連通されている。これにより、溶融槽内の溶融ガラスは、供給管21を通じて流出する。   The molten glass supply device 20 has a supply pipe 21, and a base portion of the supply pipe 21 is communicated with the inside of a melting tank (not shown) that stores the molten glass. Thereby, the molten glass in the melting tank flows out through the supply pipe 21.

支持部材30は受け面33を有し、供給管21の下方に配置された受け面33で供給管21からの溶融ガラスを受ける。このように、受け面33は、極めて高温の溶融ガラスに接触するので、耐熱性に優れた素材で形成されることが好ましい。かかる受け面33上で溶融ガラスが保持されると、冷却され、やがて溶融ガラス塊FGが形成される。   The support member 30 has a receiving surface 33, and receives the molten glass from the supply tube 21 on the receiving surface 33 disposed below the supply tube 21. Thus, since the receiving surface 33 contacts extremely high-temperature molten glass, it is preferable that the receiving surface 33 be formed of a material having excellent heat resistance. When the molten glass is held on the receiving surface 33, the molten glass is cooled and eventually a molten glass lump FG is formed.

この間、支持部材30は、受け面33上に溶融ガラスを受けた後、移送部40によって供給管21の下方位置(以後、受け位置とも称する)から下型61の上方位置(以後、移送位置とも称する)へと移動させられる。本実施形態の移送部40は駆動源41を有し、この駆動源41の駆動力によって、支持部材30は、図示しないレール上に沿って受け位置から移送位置へと移動する。ただし、受け位置と移送位置は、互いに同じ位置であっても、異なる位置であってもよい。   During this time, after receiving the molten glass on the receiving surface 33, the support member 30 is moved from the lower position of the supply pipe 21 (hereinafter also referred to as the receiving position) to the upper position of the lower mold 61 (hereinafter referred to as the transfer position) by the transfer unit 40. To be called). The transfer unit 40 of the present embodiment has a drive source 41, and the support member 30 moves from a receiving position to a transfer position along a rail (not shown) by the driving force of the drive source 41. However, the receiving position and the transfer position may be the same position or different positions.

本発明の製造装置は、検出手段としての検出部51を更に備えており、この検出部51は受け面33上の溶融ガラス塊FGの温度を検知し、検知した温度、及び予め入力されているガラスの組成に基づいて、溶融ガラスFGの粘度ηを算出する。そして、検出部51は、粘度ηのデータを制御部53に送信する。   The manufacturing apparatus of the present invention further includes a detection unit 51 as detection means. This detection unit 51 detects the temperature of the molten glass lump FG on the receiving surface 33, and the detected temperature is input in advance. Based on the glass composition, the viscosity η of the molten glass FG is calculated. Then, the detection unit 51 transmits the viscosity η data to the control unit 53.

制御部53は移送制御手段としての移送制御部を有し、この移送制御部は、受信したデータの粘度ηに基づいて移送部40を制御する。具体的には、粘度(dPa・s)の対数logηが少なくとも1未満である間には溶融ガラス塊FGを金型60へと移送せず、logηが1以上6.65以下の任意の値になった時点で、溶融ガラス塊FGを金型60へと移送する。logηが1以上6.65以下の溶融ガラス塊FGは、適度な粘性を有しているため、移送時の衝撃にかかわらず破損しにくく且つ速やかに成形を行うことができ、また、適度に温度が低下しているため、金型60の消耗を抑制できる。logηの下限は、1.2であることがより好ましく、最も好ましくは1.5である。また、logηの上限は、6.5であることがより好ましく、最も好ましくは6.0である。   The control unit 53 has a transfer control unit as transfer control means, and this transfer control unit controls the transfer unit 40 based on the viscosity η of the received data. Specifically, while the logarithmic log η of the viscosity (dPa · s) is at least less than 1, the molten glass lump FG is not transferred to the mold 60, and the log η is an arbitrary value of 1 or more and 6.65 or less. At that point, the molten glass block FG is transferred to the mold 60. The molten glass block FG having a log η of 1 or more and 6.65 or less has an appropriate viscosity, so that the molten glass block FG is not easily damaged regardless of the impact at the time of transfer and can be quickly formed. Therefore, the consumption of the mold 60 can be suppressed. The lower limit of log η is more preferably 1.2, and most preferably 1.5. Further, the upper limit of log η is more preferably 6.5, and most preferably 6.0.

なお、本実施態様では、溶融ガラス塊FGごとに測温を行い、支持部材30の駆動を制御しているが、上記の粘度に至る時間が既に判明している場合には、その時間に基づいて支持部材30の駆動を制御してもよい。その場合、検出部51及び制御部53を設けなくてもよい。   In this embodiment, the temperature is measured for each molten glass block FG and the drive of the support member 30 is controlled. If the time to reach the above viscosity is already known, the temperature is determined based on that time. Then, the driving of the support member 30 may be controlled. In that case, the detection unit 51 and the control unit 53 may not be provided.

図1に示されるように、移送部40は、溶融ガラス塊FGを受け面33から金型60へと落下させることが好ましい。何らかの部材を用いて溶融ガラス塊FGを把持して移送する態様と異なり、溶融ガラス塊FGに接触する部材を介さないので、溶融ガラス塊FGの汚染を抑制できる。かかる態様では、金型60への落下衝撃による溶融ガラス塊FGの破損が懸念されるが、本発明では、溶融ガラス塊FGの粘度が所定範囲になった時点で移送を行うので、落下衝撃による溶融ガラス塊FGの破損であっても大幅に軽減できる。   As shown in FIG. 1, the transfer unit 40 preferably drops the molten glass lump FG from the surface 33 onto the mold 60. Unlike a mode in which the molten glass lump FG is held and transferred using any member, since no member that contacts the molten glass lump FG is interposed, contamination of the molten glass lump FG can be suppressed. In such an embodiment, there is a concern about the breakage of the molten glass lump FG due to the drop impact on the mold 60, but in the present invention, the transfer is performed when the viscosity of the molten glass lump FG falls within a predetermined range. Even if the molten glass block FG is broken, it can be greatly reduced.

本実施形態の支持部材30は、受け面33が2以上に分割可能(図1では、分割形成面34によって分割面331,333の2つに分割される)であり、アーム43によって2以上に分割及び一体化を繰り返して行うことができる。このアーム43は駆動源41によって駆動されており、前述の制御に従って移送を行う際には、受け面33を分割し、受け面33上の溶融ガラス塊を落下させる。なお、分割形成面34は、溶融ガラス塊FGを水平姿勢を保持しつつ落下しやすい点で、図1に示されるように受け面33の中央に形成されることが好ましいが、これに限られない。   In the support member 30 of this embodiment, the receiving surface 33 can be divided into two or more (in FIG. 1, it is divided into two divided surfaces 331 and 333 by the divided formation surface 34), and is divided into two or more by the arm 43. Division and integration can be repeated. The arm 43 is driven by a drive source 41, and when performing transfer according to the above-described control, the receiving surface 33 is divided and the molten glass lump on the receiving surface 33 is dropped. The split forming surface 34 is preferably formed at the center of the receiving surface 33 as shown in FIG. 1 in terms of being easy to drop while maintaining the horizontal posture of the molten glass block FG, but is not limited thereto. Absent.

更に、図1に示される受け面33は、多孔質部材からなる。そして、多孔質部材の底部には気体供給管37a,37bが設けられ、これら気体供給管37a,37bは図示しない気体供給源からの気体を多孔質部材へと供給する。ここで、多孔質部材の周囲は外壁35で被覆されているため、供給された気体は受け面33から溶融ガラスへと噴出することになる。これにより、溶融ガラスが受け面33から浮上するため、溶融ガラスが受け面33に付着する事態を抑制できる。   Further, the receiving surface 33 shown in FIG. 1 is made of a porous member. Gas supply pipes 37a and 37b are provided at the bottom of the porous member, and these gas supply pipes 37a and 37b supply gas from a gas supply source (not shown) to the porous member. Here, since the periphery of the porous member is covered with the outer wall 35, the supplied gas is ejected from the receiving surface 33 to the molten glass. Thereby, since a molten glass floats from the receiving surface 33, the situation where a molten glass adheres to the receiving surface 33 can be suppressed.

ただし、このように気体を溶融ガラスへと噴出する態様では、気体によって溶融ガラスが急冷され、移送時の粘度を前述の範囲に設定するのが困難になったり、溶融ガラスの表面と中央との温度差が過大になって、後述のプレス成形時のひび割れ等が生じたりする事態が懸念される。そこで、製造装置は、気体供給管に供給する気体を温度制御する温度制御装置を更に備えることが好ましい。これにより、温度制御された気体が受け面33から噴出されるので、溶融ガラスの急冷が抑制され、上記の懸念を解消できる。なお、気体供給管37a,37b、気体供給源、及び温度制御装置は、気体供給手段を構成する。   However, in such a mode in which the gas is ejected to the molten glass, the molten glass is rapidly cooled by the gas, and it becomes difficult to set the viscosity at the time of transfer to the aforementioned range, or between the surface and the center of the molten glass. There is a concern that the temperature difference becomes excessive, and cracks and the like during press molding described later occur. Therefore, it is preferable that the manufacturing apparatus further includes a temperature control device that controls the temperature of the gas supplied to the gas supply pipe. Thereby, since the temperature-controlled gas is ejected from the receiving surface 33, the rapid cooling of the molten glass is suppressed, and the above-mentioned concerns can be solved. The gas supply pipes 37a and 37b, the gas supply source, and the temperature control device constitute gas supply means.

本実施形態の制御部53は、供給制御手段としての供給制御部を有することが好ましく、この供給制御部は、検出部51によって検知された温度に基づいて、気体供給源及び/又は温度制御装置を制御する。具体的に供給制御部は、溶融ガラス塊FGの温度が−700℃/分以上−100℃/分以下の速度で低下するように制御を行う。これにより、移送時の溶融ガラス塊FGの粘度を前述の範囲に容易に設定できるとともに、溶融ガラスFGの表面と中央との温度差に起因するプレス成形時のひび割れ等を確実に抑制できる。溶融ガラス塊FGの温度低下の速度の下限は、−650℃/分であることがより好ましく、最も好ましくは−600℃/分である。また、溶融ガラス塊FGの温度低下の速度の上限は、−120℃/分であることがより好ましく、最も好ましくは−150℃/分である。   The control unit 53 of the present embodiment preferably includes a supply control unit as a supply control unit, and the supply control unit is based on the temperature detected by the detection unit 51 and is a gas supply source and / or a temperature control device. To control. Specifically, the supply control unit performs control so that the temperature of the molten glass gob FG decreases at a rate of −700 ° C./min or more and −100 ° C./min or less. Thereby, while the viscosity of the molten glass lump FG at the time of transfer can be easily set to the above-mentioned range, the crack at the time of the press molding resulting from the temperature difference of the surface and center of molten glass FG can be suppressed reliably. The lower limit of the temperature drop rate of the molten glass gob FG is more preferably −650 ° C./min, and most preferably −600 ° C./min. Further, the upper limit of the temperature decrease rate of the molten glass gob FG is more preferably −120 ° C./min, and most preferably −150 ° C./min.

ここで、温度低下の速度は、溶融ガラスが受け面33に受け止められた時点から、溶融ガラス塊FGが受け面33から金型60へと移送される時点までの任意の期間における平均値である。従って、検出部51は、溶融ガラス塊FGの温度検出を、受け位置から移送位置までの任意の2箇所以上で行う。   Here, the rate of temperature decrease is an average value in an arbitrary period from the time when the molten glass is received by the receiving surface 33 to the time when the molten glass lump FG is transferred from the receiving surface 33 to the mold 60. . Therefore, the detection unit 51 detects the temperature of the molten glass block FG at any two or more locations from the receiving position to the transfer position.

このようにして溶融ガラス塊FGは、受け面33から金型60へと移送される。本実施形態の金型60は、下型61及び上型63を有し、下型61の設置面611に溶融ガラス塊FGが設置される。ここで、上型63はプレス面631を有しており、このプレス面631は溶融ガラス塊FGが設置された設置面611と対向するように配置される。そして、上型63が下型61に接近すると、溶融ガラス塊FGがプレス面631及び設置面611で押圧され、光学レンズ等の光学素子GCが作製される。   In this way, the molten glass block FG is transferred from the receiving surface 33 to the mold 60. The mold 60 of the present embodiment has a lower mold 61 and an upper mold 63, and the molten glass block FG is installed on the installation surface 611 of the lower mold 61. Here, the upper mold 63 has a press surface 631, and the press surface 631 is disposed so as to face the installation surface 611 on which the molten glass block FG is installed. When the upper die 63 approaches the lower die 61, the molten glass block FG is pressed by the press surface 631 and the installation surface 611, and an optical element GC such as an optical lens is manufactured.

なお、本実施形態では、金型60が胴型65を更に有し、この胴型65が下型61及び上型63を包囲して、その接近及び離隔の軌道を規定する。これにより、下型61及び上型63の接近及び離隔の軌道が一定になるため、プレス条件が均一になり、光学素子の品質をより一定化できる。なお、接近及び離隔の軌道は、図1に示されるように下型61及び上型63の軸方向であることが一般的であるが、これに限られない。   In the present embodiment, the mold 60 further includes a body mold 65, and the body mold 65 surrounds the lower mold 61 and the upper mold 63 to define the approach and separation trajectories. As a result, the approaching and separation trajectories of the lower die 61 and the upper die 63 are constant, so that the pressing conditions are uniform, and the quality of the optical element can be made more constant. The approach and separation trajectories are generally in the axial direction of the lower die 61 and the upper die 63 as shown in FIG. 1, but are not limited thereto.

また、本実施形態の胴型65は筒状部材である。かかる胴型65は、下型61の鍔部613上に載置されるとともに、上型63が下方向へ移動してきた際に、上型63の鍔部633を支持することで、下型61及び上型63の衝突時における衝撃を緩和する。   Moreover, the trunk | drum 65 of this embodiment is a cylindrical member. The body die 65 is placed on the flange portion 613 of the lower die 61 and supports the flange portion 633 of the upper die 63 when the upper die 63 moves downward, thereby lowering the lower die 61. And the impact at the time of the collision of the upper mold | type 63 is relieved.

以上の金型60は、図示しない加熱機構によって加熱されることが好ましい。溶融ガラス塊FGは移送までの過程で外気によって冷却されているため、最も温度が低い表面から、最も温度が高い中心への温度勾配を有している。しかし、金型60に移送されると、溶融ガラス塊FGはその表面から設置面611及びプレス面631で加熱されるため、温度勾配が速やかに解消される。このため、プレス成形を行うのに好ましい状態、つまり全体に亘って温度が均一な状態が短期間で達成されるため、プレス成形時間を大幅に短縮できる点で有利である。   The above mold 60 is preferably heated by a heating mechanism (not shown). Since the molten glass block FG is cooled by the outside air in the process until transfer, it has a temperature gradient from the surface having the lowest temperature to the center having the highest temperature. However, when it is transferred to the mold 60, the molten glass block FG is heated from its surface by the installation surface 611 and the press surface 631, so that the temperature gradient is quickly eliminated. For this reason, a preferable state for performing press molding, that is, a state where the temperature is uniform over the entire state can be achieved in a short period of time, which is advantageous in that the press molding time can be greatly shortened.

以上の製造装置によれば、溶融ガラス塊FGの粘度が所定範囲になった時点で移送されるので、移送時の溶融ガラス塊FGの破損が生じにくく且つ金型60の消耗を抑制できる。かかる製造装置を用いて製造される光学素子は、本発明に包含される。   According to the above manufacturing apparatus, since it is transferred when the viscosity of the molten glass lump FG falls within a predetermined range, the molten glass lump FG is hardly damaged during the transfer, and consumption of the mold 60 can be suppressed. An optical element manufactured using such a manufacturing apparatus is included in the present invention.

<光学素子の製造方法>
本発明の一実施形態に係る光学素子の製造方法を、以上の製造装置を参照しつつ説明する。光学素子の製造方法では、溶融ガラスを支持部材30の受け面33で受けて保持し、溶融ガラス塊FGを形成し、受け面33上の溶融ガラス塊FGをプレス成形用の金型60内へと移送する。
<Optical element manufacturing method>
An optical element manufacturing method according to an embodiment of the present invention will be described with reference to the above manufacturing apparatus. In the manufacturing method of the optical element, the molten glass is received and held by the receiving surface 33 of the support member 30 to form a molten glass lump FG, and the molten glass lump FG on the receiving surface 33 is put into the press molding die 60. And transport.

本発明の製造方法では、溶融ガラス塊FGの移送を、その粘度(dPa・s)の対数logηが1以上6.65以下になった時点で行う。これにより、移送時の衝撃にかかわらず破損しにくく、また、適度に温度が低下しているため、金型60の消耗を抑制できる。   In the production method of the present invention, the molten glass block FG is transferred when the logarithmic log η of its viscosity (dPa · s) becomes 1 or more and 6.65 or less. Thereby, it is hard to be damaged irrespective of the impact at the time of transfer, and since the temperature is appropriately reduced, the consumption of the mold 60 can be suppressed.

溶融ガラス塊FGの移送は、図1に示されるように、受け面33から金型60へと落下させることにより行うことが好ましい。溶融ガラス塊FGに接触する部材を介さないので、溶融ガラス塊FGの汚染を抑制できる。また、本発明では、溶融ガラス塊FGの粘度が所定範囲になった時点で移送を行うので、落下衝撃による溶融ガラス塊FGの破損であっても大幅に軽減できる。   As shown in FIG. 1, the molten glass block FG is preferably transferred by dropping it from the receiving surface 33 onto the mold 60. Since no member that contacts the molten glass block FG is interposed, contamination of the molten glass block FG can be suppressed. Moreover, in this invention, since it transfers when the viscosity of the molten glass lump FG becomes a predetermined range, even if it is a failure | damage of the molten glass lump FG by a drop impact, it can reduce significantly.

支持部材30として、受け面33が2以上に分割可能な多孔質部材からなるものを用い、温度制御された気体を受け面33から噴出して、溶融ガラス塊FGを浮上成形することが好ましい。これにより、溶融ガラスが受け面33に付着する事態を抑制しつつ、温度制御された気体が受け面33から噴出されるので、溶融ガラスFGの急冷が抑制され、上記の懸念を解消できる。なお、かかる態様における溶融ガラス塊FGの移送は、受け面33を分割して落下させることにより行う。   The support member 30 is preferably made of a porous member having a receiving surface 33 that can be divided into two or more, and the temperature-controlled gas is ejected from the receiving surface 33 to float the molten glass lump FG. Thereby, since the temperature-controlled gas is ejected from the receiving surface 33 while suppressing the situation where the molten glass adheres to the receiving surface 33, the rapid cooling of the molten glass FG is suppressed, and the above-described concerns can be solved. In addition, the transfer of the molten glass block FG in this mode is performed by dividing the receiving surface 33 and dropping it.

ここで、溶融ガラス塊の温度が−700℃/分以上−100℃/分以下の速度で低下するように、気体を噴出することが好ましい。これにより、移送時の溶融ガラス塊FGの粘度を前述の範囲に容易に設定できるとともに、溶融ガラスFGの表面と中央との温度差に起因するプレス成形時のひび割れ等を確実に抑制できる。   Here, it is preferable to eject the gas so that the temperature of the molten glass block decreases at a rate of −700 ° C./min or more and −100 ° C./min or less. Thereby, while the viscosity of the molten glass lump FG at the time of transfer can be easily set to the above-mentioned range, the crack at the time of the press molding resulting from the temperature difference of the surface and center of molten glass FG can be suppressed reliably.

次に、光学素子の製造方法では、受け面33から金型60へと移送した溶融ガラス塊FGをプレス成形する。具体的には、プレス面631を溶融ガラス塊FGが設置された設置面611と対向するように配置し、上型63を下型61に接近する。すると、溶融ガラス塊FGがプレス面631及び設置面611で押圧され、光学レンズ等の光学素子GCが作製される。   Next, in the method for manufacturing an optical element, the molten glass block FG transferred from the receiving surface 33 to the mold 60 is press-molded. Specifically, the press surface 631 is disposed so as to face the installation surface 611 on which the molten glass block FG is installed, and the upper die 63 approaches the lower die 61. Then, the molten glass block FG is pressed by the press surface 631 and the installation surface 611, and an optical element GC such as an optical lens is manufactured.

以上の光学素子の製造方法は、溶融ガラス塊FGの粘度が所定範囲になった時点で移送するので、再加熱の必要性が低く移送時間を短縮でき、また最適な温度で成形型に移送されるので、金型の消耗を抑制でき且つ成形時間も短縮できる。また、かかる製造方法で製造される光学素子は光学機器において有用である。かかる光学素子を用いる光学機器の製造方法は、本発明に包含される。   Since the above-described optical element manufacturing method is transferred when the viscosity of the molten glass block FG reaches a predetermined range, the need for reheating is low and the transfer time can be shortened, and the molten glass block FG is transferred to the mold at an optimum temperature. Therefore, the consumption of the mold can be suppressed and the molding time can be shortened. Moreover, the optical element manufactured by this manufacturing method is useful in an optical instrument. A method for manufacturing an optical apparatus using such an optical element is included in the present invention.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

本発明の一実施形態に係る光学素子製造装置10を用いた光学素子製造方法の手順を示す図である。It is a figure which shows the procedure of the optical element manufacturing method using the optical element manufacturing apparatus 10 which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

30 支持部材
33 受け面
40 移送部(移送手段)
51 検出部(検出手段)
53 制御部(移送制御手段、供給制御手段)
60 金型
61 下型
63 上型
FG 溶融ガラス塊
GC 光学素子
30 Supporting member 33 Receiving surface 40 Transfer section (transfer means)
51 Detection part (detection means)
53 Control unit (transfer control means, supply control means)
60 Mold 61 Lower mold 63 Upper mold FG Molten glass block GC Optical element

Claims (10)

溶融ガラスを支持部材の受け面で受けて保持し、溶融ガラス塊を形成し、
前記受け面上の前記溶融ガラス塊を、その粘度(dPa・s)の対数logηが1以上6.65以下になった時点でプレス成形用の金型内へと移送し、
前記金型内の溶融ガラス塊をプレス成形する工程を有する光学素子の製造方法。
Receiving and holding the molten glass at the receiving surface of the support member, forming a molten glass lump,
When the logarithm log η of the viscosity (dPa · s) is 1 or more and 6.65 or less, the molten glass lump on the receiving surface is transferred into a press molding die,
The manufacturing method of the optical element which has the process of press-molding the molten glass lump in the said metal mold | die.
前記溶融ガラス塊の移送は、前記受け面から前記金型への前記溶融ガラス塊の落下によって行う請求項1記載の製造方法。   The method according to claim 1, wherein the molten glass lump is transferred by dropping the molten glass lump from the receiving surface to the mold. 前記支持部材として、前記受け面が2以上に分割可能な多孔質部材からなるものを用い、
温度制御された気体を前記受け面から噴出して、溶融ガラス塊を浮上成形する請求項1又は2記載の製造方法。
The support member is made of a porous member whose receiving surface can be divided into two or more,
The manufacturing method of Claim 1 or 2 which ejects the temperature-controlled gas from the said receiving surface, and float-molds a molten glass lump.
溶融ガラス塊の温度が−700℃/分以上−100℃/分以下の速度で低下するように、前記気体を噴出する請求項3記載の製造方法。   The manufacturing method of Claim 3 which ejects the said gas so that the temperature of a molten glass lump may fall at the rate of -700 degrees C / min or more and -100 degrees C / min or less. 請求項1から4いずれか記載の製造方法で製造される光学素子を用いる光学機器の製造方法。   The manufacturing method of the optical instrument using the optical element manufactured with the manufacturing method in any one of Claim 1 to 4. 溶融ガラスを受ける受け面を有する支持部材と、プレス成形用の金型を有するプレス成形装置と、前記受け面で保持され形成された溶融ガラス塊を前記金型内へと移送する移送手段と、を備える光学素子の製造装置であって、
前記溶融ガラス塊の温度を検知し、粘度を算出する検出手段と、
前記検出手段によって算出された粘度に基づいて前記移送手段を制御する移送制御手段と、を更に備える製造装置。
A support member having a receiving surface for receiving molten glass, a press molding apparatus having a mold for press molding, and a transfer means for transferring a molten glass lump formed by being held by the receiving surface into the mold, An optical element manufacturing apparatus comprising:
Detecting means for detecting the temperature of the molten glass lump and calculating the viscosity;
And a transfer control means for controlling the transfer means based on the viscosity calculated by the detection means.
前記移送手段は、前記溶融ガラス塊を前記受け面から前記金型へと落下させる請求項6記載の製造装置。   The manufacturing apparatus according to claim 6, wherein the transfer unit drops the molten glass lump from the receiving surface onto the mold. 前記受け面は、2以上に分割可能な多孔質部材からなり、
前記製造装置は、温度制御された気体を前記受け面から噴出させる気体供給手段を更に備える請求項6又は7記載の製造装置。
The receiving surface is made of a porous member that can be divided into two or more,
The said manufacturing apparatus is a manufacturing apparatus of Claim 6 or 7 further provided with the gas supply means which ejects the temperature-controlled gas from the said receiving surface.
前記検出手段によって検知された温度に基づいて前記気体供給手段を制御する供給制御手段を更に備える請求項8記載の製造装置。   The manufacturing apparatus according to claim 8, further comprising supply control means for controlling the gas supply means based on the temperature detected by the detection means. 請求項6から9いずれか記載の製造装置で製造される光学素子を用いて光学機器を製造する光学機器製造装置。   An optical device manufacturing apparatus for manufacturing an optical device using the optical element manufactured by the manufacturing device according to claim 6.
JP2008280943A 2008-10-31 2008-10-31 Method and apparatus for manufacturing optical device Pending JP2010105871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280943A JP2010105871A (en) 2008-10-31 2008-10-31 Method and apparatus for manufacturing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280943A JP2010105871A (en) 2008-10-31 2008-10-31 Method and apparatus for manufacturing optical device

Publications (1)

Publication Number Publication Date
JP2010105871A true JP2010105871A (en) 2010-05-13

Family

ID=42295698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280943A Pending JP2010105871A (en) 2008-10-31 2008-10-31 Method and apparatus for manufacturing optical device

Country Status (1)

Country Link
JP (1) JP2010105871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018484A1 (en) * 2011-07-29 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing glass molding
JP2017056982A (en) * 2015-09-17 2017-03-23 シコー株式会社 Packaging bag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018484A1 (en) * 2011-07-29 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing glass molding
JP2017056982A (en) * 2015-09-17 2017-03-23 シコー株式会社 Packaging bag

Similar Documents

Publication Publication Date Title
US20100120601A1 (en) Manufacturing method of glass molded body, manufacturing apparatus of glass molded body, and glass molded body
JP5198036B2 (en) Precision press molding preform manufacturing apparatus, precision press molding preform manufacturing method, and optical element manufacturing method
US8181484B2 (en) Process for producing a thin-plate form glass molded body
JP2010105871A (en) Method and apparatus for manufacturing optical device
CN101293728A (en) Device and method for manufacturing optical elements
JP2009007223A (en) Method and apparatus for producing glass formed article
JP2011116632A (en) Method and device for molding optical element
JP2005281106A (en) Mold press forming apparatus and method for manufacturing optical element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP5345228B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP2006290702A (en) Glass molding apparatus and glass molding method
JP2010138052A (en) Method of producing preform of optical device
JP5018503B2 (en) Molten glass droplet miniaturized member, glass gob manufacturing method, and glass molded body manufacturing method
JP4957623B2 (en) Method for miniaturizing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JP5200809B2 (en) Method for producing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JP5233807B2 (en) Method for producing glass molded body
JP2010173920A (en) Press-molding apparatus and method for manufacturing optical element
JP2010100499A (en) Molding mold and method of manufacturing glass molded body
JP5414222B2 (en) Preform for precision press molding and method for manufacturing optical element
JP2011084418A (en) Method and apparatus for manufacturing optical element
JP2011184248A (en) Optical element molding device
JP2015101515A (en) Method and apparatus for manufacturing a glass molding
WO2015111180A1 (en) Method and device for manufacturing glass molded article
JPWO2009035083A1 (en) Method for producing glass molded body