JP2010105005A - Metallic material-micronizing device - Google Patents

Metallic material-micronizing device Download PDF

Info

Publication number
JP2010105005A
JP2010105005A JP2008277983A JP2008277983A JP2010105005A JP 2010105005 A JP2010105005 A JP 2010105005A JP 2008277983 A JP2008277983 A JP 2008277983A JP 2008277983 A JP2008277983 A JP 2008277983A JP 2010105005 A JP2010105005 A JP 2010105005A
Authority
JP
Japan
Prior art keywords
space
pressurizing
axis
pressure receiving
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008277983A
Other languages
Japanese (ja)
Inventor
Cho Kuroda
超 黒田
Atsunao Ito
厚直 伊東
Tomohiro Aikawa
智広 相川
Naoyuki Kanetake
直幸 金武
Toshinori Takizawa
利憲 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Art Metal Manufacturing Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Art Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Art Metal Manufacturing Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008277983A priority Critical patent/JP2010105005A/en
Publication of JP2010105005A publication Critical patent/JP2010105005A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/063Friction heat forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new metallic material-micronizing device which efficiently micronizes a metallic material. <P>SOLUTION: The device includes: a pressurizing body 2 with a pressurizing face 20 fitted to the working space 10 of a base part 1 along an axis P1 and pressurizing a metallic material in a pressurizing space 15; a pressure receiving body 3 with a pressure receiving face 30 fitted to the working space 10 of the base part 1; and a block member 4 partitioning the working space 10 into the pressuring space 15 on the side of the pressurizing body 2 and the pressure receiving space 16 on the side of the pressure receiving body 3. The block member 4 has a material passage 40. The material passage 40 passes through the block member 4 so as to communicate the pressurizing space 15 with the pressure receiving space 16. While pressurizing the material in the pressurizing space 15 by the progress of the pressurizing body 2, the material passage 40 causes the material to flow to the pressure receiving space 16 while applying strain to the material going from the pressurizing space 15 to the pressure receiving space 16 by shear deformation by turning at least one selected from the block member 4, the base part 1 and the pressurizing body 2 with respect to the axis P1 of the working space 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は金属材料の組織を微細化できる金属材料微細化装置に関する。   The present invention relates to a metal material refinement apparatus that can refine the structure of a metal material.

特許文献1には、金属材料を装填する材料収容室をもつコンテナを上パンチおよび下パンチから独立させて回動自在とし、上パンチおよび/または下パンチを金属材料に押しつけた状態で、上パンチおよび/または下パンチをこれの軸芯回りで回動させて材料を相対的に剪断変形させ、これにより材料収容室内の金属材料に剪断変形に歪を繰り返して負荷させる技術が開示されている。このものによれば、材料収容室内の金属材料に剪断変形による歪を繰り返して与えるため、金属材料の組織を微細化させることができると記載されている。   In Patent Document 1, a container having a material storage chamber for loading a metal material is made independent of an upper punch and a lower punch so that the container can be rotated, and the upper punch and / or the lower punch are pressed against the metal material. In addition, a technique is disclosed in which the lower punch is rotated about its axis to relatively shear the material, thereby repeatedly applying a strain to the metal material in the material accommodating chamber. According to this document, it is described that the structure of the metal material can be refined because the strain due to the shear deformation is repeatedly applied to the metal material in the material accommodation chamber.

特許文献2には、ダイス孔をもつコンテナの材料収容室内に装填された材料をパンチで押し込む前方押し出し法において、コンテナまたはパンチを回動させつつ、コンテナ内の材料をパンチによりダイス孔からこれの前方に押し出すねじり前方押し出し方法が開示されている。このものにおいても、材料収容室内の金属材料に剪断変形による歪を繰り返して与えるため、金属材料の組織を微細化させることができると記載されている。
特許第3616591号公報 特開2005−990号公報
In Patent Document 2, in a forward extrusion method in which a material loaded in a material storage chamber of a container having a die hole is pushed by a punch, the material in the container is punched from the die hole while rotating the container or the punch. A torsional forward extrusion method that pushes forward is disclosed. Also in this case, it is described that the structure of the metal material can be refined because the metal material in the material storage chamber is repeatedly subjected to strain due to shear deformation.
Japanese Patent No. 3616591 JP-A-2005-990

特許文献1に係る技術によれば、上パンチおよび/または下パンチを金属材料に押しつけた状態で、上パンチおよび/または下パンチを回動させた材料を相対的に剪断変形させる方式を採用しており、材料に与えられる剪断変形は必ずしも充分ではなく、材料を微細化させる効果についても必ずしも充分ではない。   According to the technology according to Patent Document 1, a method is adopted in which the material obtained by rotating the upper punch and / or the lower punch is relatively shear-deformed while the upper punch and / or the lower punch are pressed against the metal material. Therefore, the shear deformation imparted to the material is not necessarily sufficient, and the effect of miniaturizing the material is not necessarily sufficient.

また特許文献2に係る技術によれば、材料を収容するコンテナまたはパンチを回動させて材料に剪断変形を与える方式を採用しているため、材料に与えられる剪断変形は必ずしも充分ではなく、材料を微細化させる効果についても必ずしも充分ではない。そこで産業界では、金属材料の組織を効率よく微細化させる装置の更なる開発が進められている。   Further, according to the technique according to Patent Document 2, since a method of applying a shear deformation to a material by rotating a container or punch that accommodates the material is employed, the shear deformation applied to the material is not necessarily sufficient. Also, the effect of reducing the size is not always sufficient. Therefore, in the industry, further development of an apparatus for efficiently miniaturizing a metal material structure is underway.

本発明は上記した実情に鑑みてなされたものであり、金属系の材料における組織の微細化を効率よく図ることができる新規な金属材料微細化装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel metal material refining apparatus capable of efficiently miniaturizing a structure of a metal-based material.

本発明に係る金属材料微細化装置は、(i)軸芯を有する加工空間を備える基部と、(ii)基部の加工空間に軸芯に沿って前進可能に嵌合され前進により加圧空間の金属系の材料を加圧する加圧面を有する加圧体と、(iii)加圧体の加圧面に所定間隔を隔てて対向するように基部の加工空間に嵌合された受圧面を有する受圧体と、(iv)加工空間において加圧体の加圧面と受圧体の受圧面との間に設けられ、加工空間を加圧体側の加圧空間と受圧体側の前記受圧空間とに分け、且つ、加圧空間から受圧空間に向かう材料に対して障害となる障害部材とを具備しており、(v)障害部材は、加圧空間と受圧空間とを連通させるよう設けられ、かつ、加圧体の前進により加圧空間の材料を加圧しつつ、障害部材、基部および加圧体のうちの少なくとも一つを加工空間の軸芯に対して回動させるとき、加圧空間から受圧空間に向かう材料に剪断変形を与えつつ材料を受圧空間に流動させる材料通過路を備えていることを特徴とする。回動は、材料、要請される微細化の程度等によって適宜調整でき、連続的な回動でも良いし、間欠的な回動でも良い。回動角度は特に限定されず、360°以上で軸芯回りを複数回回動しても良いし、材料、要請される微細化の程度等によっては360°以下でも良い。   A metal material refinement apparatus according to the present invention includes: (i) a base having a machining space having an axial core; and (ii) a processing space of the base that is fitted so as to be able to advance along the axial core. A pressure body having a pressure surface that pressurizes a metal-based material; and (iii) a pressure receiver having a pressure reception surface fitted in the processing space of the base so as to face the pressure surface of the pressure body with a predetermined interval. And (iv) provided in the processing space between the pressure surface of the pressure body and the pressure receiving surface of the pressure receiving body, dividing the processing space into the pressure space on the pressure body side and the pressure receiving space on the pressure body side, and And (v) the obstruction member is provided so as to communicate the pressurization space and the pressure reception space, and the pressurization body. While pressing the material of the pressurizing space by the advance of the obstruction member, the base and the pressurizing body It is characterized in that when at least one is rotated with respect to the axial center of the processing space, a material passage is provided that allows the material to flow into the pressure receiving space while applying shear deformation to the material from the pressure space toward the pressure receiving space. To do. The rotation can be appropriately adjusted depending on the material, the required degree of miniaturization, etc., and may be continuous rotation or intermittent rotation. The rotation angle is not particularly limited, and may be rotated around the axis at a plurality of 360 ° or more, or may be 360 ° or less depending on the material, the required degree of miniaturization, and the like.

本発明に係る金属材料微細化装置によれば、加圧体の前進により加圧空間の材料が加圧されるため、加圧空間の材料は、障害部材の材料通過路を通過して受圧空間に向かう。更に、障害部材、基部および加圧体のうちの少なくとも一つが加工空間の軸芯に対して回動される。これにより加圧空間から受圧空間に向かう材料が障害部材の材料通過路を通過するとき、材料通過路を通過する材料に剪断変形による歪が与えられる。このため材料の組織を細かくできる。   According to the metal material refinement apparatus according to the present invention, since the material of the pressurizing space is pressurized by the advancement of the pressurizing body, the material of the pressurizing space passes through the material passage of the obstacle member and receives the pressure receiving space. Head for. Furthermore, at least one of the obstruction member, the base, and the pressurizing body is rotated with respect to the axial center of the processing space. Thereby, when the material which goes to a pressure receiving space from a pressurization space passes the material passage way of an obstruction member, distortion by shear deformation is given to the material which passes a material passage way. For this reason, the structure of the material can be made fine.

殊に、金属系の材料が母相に硬質相を分散させている材料である場合には、材料に剪断変形を与えるとき、硬質相を剪断により分断させることを期待できる。この場合、材料の組織に含まれている硬質相が粗大化しているときであっても、硬質相をを細かくさせることを期待できる。硬質相とは、材料の母相よりも硬質であり、母相に分散している相を意味する。硬質相としては初晶、金属間化合物、酸化物、炭化物、硅化物等が例示される。   In particular, when the metal-based material is a material in which the hard phase is dispersed in the matrix phase, it can be expected that the hard phase is divided by shearing when the material is subjected to shear deformation. In this case, even when the hard phase contained in the structure of the material is coarsened, it can be expected to make the hard phase fine. The hard phase means a phase that is harder than the matrix of the material and dispersed in the matrix. Examples of the hard phase include primary crystals, intermetallic compounds, oxides, carbides, and silicides.

ところで、障害部材、基部および加圧体のうちの少なくとも一つを加工空間の軸芯に対して回動させて材料に剪断変形による歪を与えるにあたり、加圧空間内の軸直角方向における中央領域と、加圧空間内の軸直角方向における外縁領域とでは、軸芯からの回動半径が相対的に相違する等のため、剪断力の大きさが異なり、ひいては剪断変形による歪による微細化効果が一様ではないおそれがある。   By the way, when rotating at least one of the obstruction member, the base, and the pressurizing body with respect to the axial center of the processing space to give the material distortion due to shear deformation, the central region in the direction perpendicular to the axis in the pressurizing space And the outer edge region in the direction perpendicular to the axis in the pressurization space have different rotational radii from the shaft core, etc. May not be uniform.

すなわち、加圧空間内の軸直角方向における中央領域では、軸芯からの回動半径が相対的に小さいため、材料の流動速度が相対的に低めであり、剪断力が小さいかあるいは存在しない中立位置または疑似中立位置となり易い。このため中央領域における材料微細化効果は、外縁領域における材料微細化効果に比較して相対的に少ない。これに対して、加圧空間内の軸直角方向における外縁領域では、軸直角方向における中央領域に比較すると、軸芯からの回動半径が相対的に大きいため、剪断力の大きさが大きく、剪断変形、ひいては剪断変形による歪に基づく微細化効果が相対的に大きい。このため、障害部材の中央領域と外縁領域との双方において材料を微細化させると、微細化効果のばらつきが大きくなるおそれがある。   That is, in the central region in the direction perpendicular to the axis in the pressurizing space, the rotational radius from the axis is relatively small, so that the flow rate of the material is relatively low, and there is little or no shear force. It is easy to become a position or a pseudo neutral position. For this reason, the material refinement effect in the central region is relatively small compared to the material refinement effect in the outer edge region. On the other hand, in the outer edge region in the direction perpendicular to the axis in the pressurizing space, since the turning radius from the axis is relatively large compared to the central region in the direction perpendicular to the axis, the magnitude of the shearing force is large, The effect of miniaturization based on shear deformation, and hence strain due to shear deformation, is relatively large. For this reason, if the material is refined in both the central region and the outer edge region of the obstacle member, the variation in the refinement effect may be increased.

そこで、本発明によれば、微細化効果のばらつきを低減させるべく、加工空間の軸芯に対する軸直角方向の中央領域については、障害部材において、加圧空間内の材料の流れに対して障害となる障害領域が設けられており、材料通過路は軸直角方向において障害部材の障害領域の外側に位置していることが好ましい(請求項2)。この場合、障害部材のうち材料組織の微細化のばらつきの要因となる軸直角方向における中央領域、すなわち障害領域(中立位置または疑似中立位置となり易い)において、剪断変形による歪に基づく組織微細化処理は抑えられている。この結果、材料全体において組織微細化効果のばらつきを低減させるのに有利となる。   Therefore, according to the present invention, in order to reduce the variation in the miniaturization effect, the central region in the direction perpendicular to the axis of the machining space axis is obstructed by the obstacle member against the material flow in the pressurizing space. Preferably, the material passage is located outside the obstacle region of the obstacle member in the direction perpendicular to the axis (claim 2). In this case, in the obstructing member, in the central region in the direction perpendicular to the axis, which causes variation in the refinement of the material structure, that is, in the obstructing region (prone to become a neutral position or a pseudo-neutral position), the structure refining process based on strain due to shear deformation Is suppressed. As a result, it is advantageous to reduce the variation in the structure refinement effect in the entire material.

また、本発明によれば、障害部材は、加工空間の軸芯に対する軸直角方向の中央領域において、加圧空間内の材料の流れに対して障害となり得る障害領域を備えており、障害領域における材料を材料通過路に向けて流動させる材料案内部が障害領域に設けられていることが好ましい(請求項3)。この場合、障害領域における材料が材料案内部により材料通過路に向けて流動されるため、障害領域に材料が停滞することが材料案内部により抑制される。この場合、材料の停滞を抑制しつつ微細化処理を図るのに有利となる。   Further, according to the present invention, the obstruction member includes an obstruction area that can obstruct the flow of the material in the pressurization space in the central area in a direction perpendicular to the axis with respect to the axial center of the processing space. It is preferable that a material guide part for allowing the material to flow toward the material passage is provided in the obstacle region. In this case, since the material in the obstacle region flows toward the material passage by the material guide portion, the material guide portion suppresses the material from staying in the obstacle region. In this case, it is advantageous to achieve the miniaturization process while suppressing the stagnation of the material.

また本発明によれば、加圧体を障害部材に近づける方向に移動させる第1駆動部と、受圧体を障害部材から遠ざける方向に移動させる第2駆動部とが設けられていることが好ましい。この場合、第1駆動部により加圧体を障害部材に近づけつつ、第2駆動部により受圧体を障害部材から遠ざけることができる。このため加圧空間内の材料を材料通過路を経て加圧空間から受圧空間内に流動させることが容易となる。   Further, according to the present invention, it is preferable that a first drive unit that moves the pressure member in a direction to approach the obstacle member and a second drive unit that moves the pressure receiver in a direction to move away from the obstacle member are preferably provided. In this case, the pressure body can be moved away from the obstacle member by the second drive section while the pressure body is brought closer to the obstacle member by the first drive section. For this reason, it becomes easy to flow the material in the pressurizing space from the pressurizing space into the pressure receiving space through the material passage.

また本発明によれば、加工空間の軸芯回りで障害部材、基部および加圧体のうちの少なくとも一つを回動させるための駆動源が設けられており、駆動源は、障害部材、基部、加圧体のうちの少なくとも一つの外周部に形成された歯部に噛み合う駆動歯部を有する駆動部材と、歯部と駆動部材の駆動歯部との噛み合いを進行させることにより、加工空間の軸芯回りで障害部材、基部、加圧体のうちの少なくとも一つを回動させる駆動モータとを有することが好ましい(請求項4)。この場合、駆動モータが回転駆動すると、駆動部材の駆動歯部と障害部材、基部、加圧体のうちの少なくとも一つの歯部との噛み合いが進行する。これにより障害部材、基部、加圧体のうちの少なくとも一つが、加工空間の軸芯回りで回動される。これにより障害部材の材料通過路を通過する材料に剪断変形による歪を与えることができ、材料の組織を細かくできる。   According to the invention, there is provided a drive source for rotating at least one of the obstacle member, the base, and the pressurizing body around the axis of the processing space, and the drive source is the obstacle member, the base. The drive member having a drive tooth portion that meshes with a tooth portion formed on the outer peripheral portion of at least one of the pressurizing bodies and the engagement between the tooth portion and the drive tooth portion of the drive member are advanced, so that the processing space is increased. It is preferable to have a drive motor that rotates at least one of the obstacle member, the base, and the pressurizing body around the axis. In this case, when the drive motor is driven to rotate, the engagement between the drive tooth portion of the drive member and at least one tooth portion of the obstacle member, the base portion, and the pressurizing body proceeds. Accordingly, at least one of the obstacle member, the base, and the pressurizing body is rotated around the axis of the processing space. As a result, the material passing through the material passage of the obstacle member can be distorted by shear deformation, and the material structure can be made fine.

また本発明によれば、障害部材をこれの厚み方向に切断した断面において、材料通過路は、第1孔芯を有する第1孔部分と、第1孔部分の第1孔芯と異なる方向に傾斜する第2孔芯を備えると共に第1孔部分に連通する第2孔部分とを少なくとも備えていることが好ましい(請求項5)。この場合、材料通過路を通過する材料に剪断変形による歪が効果的に与えられるため、材料の組織が細かくなる。   Further, according to the present invention, in the cross section obtained by cutting the obstacle member in the thickness direction, the material passage is in a direction different from the first hole portion having the first hole core and the first hole core of the first hole portion. It is preferable that at least a second hole core that includes the inclined second hole core and communicates with the first hole portion is provided. In this case, distortion due to shear deformation is effectively applied to the material passing through the material passage, so that the structure of the material becomes fine.

また本発明によれば、障害部材をこれの厚み方向に切断した断面において、材料通過路は、材料が加圧空間において障害部材に対して相対的に流れる方向と異なる方向に材料を流すように傾斜されていることが好ましい(請求項6)。この場合、材料通過路を通過する材料に与えられる歪量が大きくなるため、材料の組織が細かくなる。   Further, according to the present invention, in the cross section obtained by cutting the obstacle member in the thickness direction, the material passage way allows the material to flow in a direction different from the direction in which the material flows relative to the obstacle member in the pressurized space. It is preferable to be inclined (claim 6). In this case, since the amount of strain applied to the material passing through the material passage becomes large, the material structure becomes fine.

また本発明によれば、障害部材をこれの厚み方向に切断した断面において、材料通過路は、加工空間の軸芯と平行な方向に沿った孔芯を備えることが好ましい(請求項7)。この場合、材料通過路を通過する材料に剪断変形による歪が与えられるため、材料の組織が細かくなる。   According to the present invention, in the cross section obtained by cutting the obstructing member in the thickness direction, the material passage path preferably includes a hole core along a direction parallel to the axial center of the processing space. In this case, since the material passing through the material passage is distorted by shear deformation, the material structure becomes fine.

また本発明によれば、加工空間の軸芯と平行な方向において材料通過路を視認するとき、材料通過路は、円形状、四角形状、三角形状、五角形状、六角形状のうちの少なくとも一つの形状をなしていることが好ましい。円形状は真円、楕円、長円などを含む。   According to the present invention, when the material passage is viewed in a direction parallel to the axial center of the processing space, the material passage is at least one of a circular shape, a quadrangular shape, a triangular shape, a pentagonal shape, and a hexagonal shape. It is preferable to have a shape. The circular shape includes a perfect circle, an ellipse, an ellipse, and the like.

本発明によれば、材料が加圧される加圧空間と材料を受ける受圧空間とを分ける障害部材は、材料通過路を備えている。材料通過路は、加圧空間と受圧空間とを連通させ、かつ、加圧体の前進により加圧空間の材料を加圧しつつ、障害部材、基部および加圧体のうちの少なくとも一つを加工空間の軸芯に対して回動させる。これにより加圧空間から受圧空間に向かう材料に剪断変形による歪を与えることができ、材料通過路を流れる金属系の材料の組織の微細化を効率よく図ることができる。   According to the present invention, the obstacle member that divides the pressurizing space in which the material is pressurized and the pressure receiving space for receiving the material includes the material passage. The material passageway processes the at least one of the obstacle member, the base, and the pressurizing body while communicating the pressurizing space and the pressure receiving space and pressurizing the material of the pressurizing space by the advancement of the pressurizing body. Rotate with respect to the space axis. Thereby, distortion due to shear deformation can be applied to the material from the pressurizing space to the pressure receiving space, and the structure of the metal-based material flowing through the material passage can be efficiently refined.

(実施形態1)
本発明の実施形態1を図1および図2を参照しつつ説明する。図1に示すように、本実施形態に係る金属材料微細化装置は、基部1と、加圧体2と、受圧体3と、障害部材4とを有する。基部1は、鉛直方向に延びる軸芯P1を有する縦形の円筒形状をなす加工空間10を備える。基部1は、軸芯P1が延設されている方向において2分割されており、コンテナとして機能する上側の円柱状の第1基部11と、コンテナとして機能する下側の円柱状の第2基部12とを備えている。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the metal material refinement apparatus according to the present embodiment includes a base 1, a pressure body 2, a pressure receiver 3, and an obstacle member 4. The base 1 includes a machining space 10 having a vertical cylindrical shape having an axial core P1 extending in the vertical direction. The base 1 is divided into two in the direction in which the axis P1 extends, and an upper cylindrical first base 11 that functions as a container and a lower cylindrical second base 12 that functions as a container. And.

加圧体2は上パンチとして機能することができ、基部1の第1基部11の加工空間10において軸芯P1に沿って前進および後退可能に嵌合されており、軸直角方向に沿った円形状をなす平坦な加圧面20を有する。加圧体2は、前進方向(矢印Y1方向)に前進することにより加工空間10に装填されている金属系の材料を加圧する。加圧体2は、加圧面20を有する鍔状の加圧部21と、加圧部21に同軸的に上方に向けて連設された軸部22とを有する。軸部22の先端部は、加圧体2を前進および後退させる第1駆動部28に接続されている。第1駆動部28は油圧機構または空気圧機構などの流体圧機構とされている。   The pressurizing body 2 can function as an upper punch and is fitted in the machining space 10 of the first base portion 11 of the base portion 1 so as to be capable of moving forward and backward along the axis P1, and is a circle along the direction perpendicular to the axis. It has a flat pressure surface 20 that is shaped. The pressurizing body 2 pressurizes the metal-based material loaded in the machining space 10 by moving forward in the forward direction (arrow Y1 direction). The pressurizing body 2 has a bowl-shaped pressurizing portion 21 having a pressurizing surface 20 and a shaft portion 22 that is coaxially and continuously connected to the pressurizing portion 21 upward. The distal end portion of the shaft portion 22 is connected to a first drive portion 28 that moves the pressurizing body 2 forward and backward. The first drive unit 28 is a fluid pressure mechanism such as a hydraulic mechanism or a pneumatic mechanism.

図1に示すように、受圧体3は下パンチとして機能することができ、加圧された材料を受ける軸直角方向に沿った円形状をなす平坦な受圧面30を有する。受圧体3は、加圧体2の加圧面20に所定間隔を隔てて対向するように、基部1の第2基部12の加工空間10に嵌合されている。受圧体3は、受圧面30を有する鍔状の受圧部31と、受圧部31に連設された軸部32とを有する。軸部32の先端部は、受圧面30を前進および後退させる第2駆動部39に接続されている。第2駆動部39は油圧機構または空気圧機構などの流体圧機構とされている。   As shown in FIG. 1, the pressure receiving body 3 can function as a lower punch, and has a flat pressure receiving surface 30 having a circular shape along a direction perpendicular to the axis for receiving the pressurized material. The pressure receiving body 3 is fitted in the processing space 10 of the second base portion 12 of the base portion 1 so as to face the pressure surface 20 of the pressure body 2 with a predetermined interval. The pressure receiving body 3 includes a bowl-shaped pressure receiving portion 31 having a pressure receiving surface 30, and a shaft portion 32 connected to the pressure receiving portion 31. The distal end portion of the shaft portion 32 is connected to a second drive portion 39 that moves the pressure receiving surface 30 forward and backward. The second drive unit 39 is a fluid pressure mechanism such as a hydraulic mechanism or a pneumatic mechanism.

図1に示すように、障害部材4は、互いに背向する上面4uおよび下面4dを有する板状をなしており、加圧体2の加圧面20と受圧体3の受圧面30との間に位置する加工空間10内に設けられており、加工空間10の径方向に横断している。この結果、障害部材4は、加工空間10を加圧体2側の円筒形状をなす加圧空間15と、受圧体3側の円筒形状をなす受圧空間16とに仕切る。   As shown in FIG. 1, the obstruction member 4 has a plate shape having an upper surface 4 u and a lower surface 4 d facing each other, and between the pressure surface 20 of the pressure body 2 and the pressure surface 30 of the pressure body 3. It is provided in the processing space 10 located and traverses in the radial direction of the processing space 10. As a result, the obstacle member 4 partitions the processing space 10 into a pressurizing space 15 having a cylindrical shape on the pressure body 2 side and a pressure receiving space 16 having a cylindrical shape on the pressure body 3 side.

図2は障害部材4の平面図を示す。図2に示すように、障害部材4は、複数の材料通過路40を形成する剪断付与部として機能できる複数の腕状の連結部41を有する。複数の連結部41は、加工空間10の径方向に横断するように、且つ、軸芯P1に対して周方向において均等角度θ(120°)をなすように、障害部材4の軸芯P1に対して放射方向に延設されている。なお、腕状の連結部4の数としては3個に限定されず、2個、4個、5個以上とすることができる。   FIG. 2 shows a plan view of the obstruction member 4. As shown in FIG. 2, the obstruction member 4 has a plurality of arm-shaped connecting portions 41 that can function as shear applying portions that form a plurality of material passage paths 40. The plurality of connecting portions 41 are arranged on the axis P1 of the obstacle member 4 so as to cross in the radial direction of the machining space 10 and to make an equal angle θ (120 °) in the circumferential direction with respect to the axis P1. On the other hand, it extends in the radial direction. The number of arm-shaped connecting portions 4 is not limited to three, and may be two, four, five or more.

加圧空間15と受圧空間16とを連通させるように、材料通過路40は障害部材4の厚み方向に貫通しており、図2に示すように、円弧状をなす壁面40a,放射状をなす壁面40b,40cで区画されている。加工空間10の軸芯P1と平行な方向において材料通過路40を視認するとき、材料通過路40は、障害部材4の軸芯P1から軸直角方向(矢印X方向,障害部材4の径方向)において遠ざかるにつれて次第に拡開するような形状、すなわち、軸芯P1側を狭くしたほぼ扇形状をなしている。障害部材4は、基部1に対して独立して軸芯P1まわりで回動できるようにされている。   The material passageway 40 penetrates in the thickness direction of the obstacle member 4 so as to allow the pressurizing space 15 and the pressure receiving space 16 to communicate with each other. As shown in FIG. 2, the arcuate wall surface 40a and the radial wall surface are formed. It is divided by 40b and 40c. When the material passage 40 is viewed in a direction parallel to the axis P1 of the processing space 10, the material passage 40 is perpendicular to the axis P1 of the obstruction member 4 (arrow X direction, radial direction of the obstruction member 4). The shape gradually expands with increasing distance, that is, a substantially fan shape in which the axis P1 side is narrowed. The obstruction member 4 is configured to be able to rotate about the axis P1 independently of the base 1.

図1に示すように、障害部材4の外周側に形成されているリング部42は、軸芯P1回りで1周しており、リング状をなす第1摺動面47と、リング状をなす第2摺動面48とを有する。ここで、図略の駆動源(例えば駆動モータまたは流体圧シリンダ装置等)によりリング部42が軸芯P1回りで回動され、ひいては、基部1が固定している状態で障害部材4が軸芯P1回りで連続的にまたは間欠的に回動する。   As shown in FIG. 1, the ring portion 42 formed on the outer peripheral side of the obstacle member 4 makes one round around the axis P <b> 1, and forms a ring shape with the first sliding surface 47 that forms a ring shape. And a second sliding surface 48. Here, the ring member 42 is rotated around the axis P1 by an unillustrated drive source (for example, a drive motor or a fluid pressure cylinder device), and as a result, the obstacle member 4 is in the state where the base 1 is fixed. It rotates continuously or intermittently around P1.

図2において、矢印X方向は、加工空間10の軸芯P1に対する軸直角方向を示す。障害部材4において、軸直角方向(矢印X方向,径方向)における中央領域4cにおいて、障害領域43が形成されている。障害領域43は、加工空間15から受圧空間16に向かう材料の流れに対して障害となり、材料の流れを制限する領域である。図2に示すように、障害領域43は、軸直角方向(矢印X方向,径方向)に延設された連結部41の内端部同士を連結している領域とされている。加圧空間15の材料が加圧体2の加圧面20に加圧されて障害領域43に当たって障害領域43に干渉されると、加圧空間15内の材料が受圧空間16に直接的に向かう流動は制限され、障害領域43から材料通過路40に向けて径外方向(矢印DA方向)に流れることになる。このため、材料通過路40は、軸直角方向(矢印X方向)において障害部材4の障害領域43の外側に設けられている(図2参照)。   In FIG. 2, an arrow X direction indicates a direction perpendicular to the axis P <b> 1 of the machining space 10. In the obstruction member 4, an obstruction area 43 is formed in the central area 4 c in the direction perpendicular to the axis (arrow X direction, radial direction). The obstruction area 43 is an area that obstructs the material flow from the processing space 15 toward the pressure receiving space 16 and restricts the material flow. As shown in FIG. 2, the obstacle region 43 is a region that connects the inner ends of the connecting portion 41 that extends in the direction perpendicular to the axis (the direction of the arrow X, the radial direction). When the material of the pressurizing space 15 is pressed against the pressurizing surface 20 of the pressurizing body 2 and hits the obstacle region 43 and interferes with the obstacle region 43, the material in the pressurizing space 15 flows directly toward the pressure receiving space 16. Is restricted and flows from the obstacle region 43 toward the material passage 40 in the radially outward direction (arrow DA direction). For this reason, the material passage 40 is provided outside the obstacle region 43 of the obstacle member 4 in the direction perpendicular to the axis (the arrow X direction) (see FIG. 2).

本実施形態によれば、障害部材4は、加工空間10の軸芯P1の回りにおいて回動可能とされており、加圧空間15内の材料に対して矢印R1方向に回動する回動部材として機能することができる。本実施形態によれば、図1に示すように、障害部材4は、内側部材44と内側部材44に連設された外側部材45とを備えている。内側部材44は、材料通過路40、連結部41および障害領域43を有する。   According to the present embodiment, the obstacle member 4 is rotatable around the axis P <b> 1 of the processing space 10, and is a rotating member that rotates in the direction of the arrow R <b> 1 with respect to the material in the pressurizing space 15. Can function as. According to the present embodiment, as shown in FIG. 1, the obstruction member 4 includes an inner member 44 and an outer member 45 connected to the inner member 44. The inner member 44 has a material passage 40, a connecting portion 41, and a failure region 43.

図1に示すように、外側部材45は、軸直角方向(矢印X方向)において内側部材44よりも外側に位置するように内側部材44と一体化されている。外側部材45のリング部42は、第1基部11の外周側の第1案内面11iに案内されて回動する第1摺動面47と、第2基部12の外周側の第2案内面12iに案内されて回動する第2摺動面48とを有する。従って、障害部材4は、内側部材44および外側部材45と共に、第1基部11の第1案内面11iと第2基部12の第2案内面12iとに案内され、軸芯P1回りで回動する。なお、第1案内面11iおよび第2案内面12iにより、障害部材4の回動姿勢は安定化される。   As shown in FIG. 1, the outer member 45 is integrated with the inner member 44 so as to be positioned outside the inner member 44 in the direction perpendicular to the axis (the direction of the arrow X). The ring portion 42 of the outer member 45 includes a first sliding surface 47 that rotates while being guided by the first guide surface 11 i on the outer peripheral side of the first base portion 11, and a second guide surface 12 i on the outer peripheral side of the second base portion 12. And a second sliding surface 48 that is guided and rotated. Therefore, the obstruction member 4 is guided by the first guide surface 11i of the first base portion 11 and the second guide surface 12i of the second base portion 12 together with the inner member 44 and the outer member 45, and rotates around the axis P1. . In addition, the rotation attitude | position of the obstruction member 4 is stabilized by the 1st guide surface 11i and the 2nd guide surface 12i.

なお、第1案内面11iと第1摺動面47との間には潤滑剤47rが介在する。第2案内面12iと第2摺動面48との間には潤滑剤48rが介在する。潤滑剤47r,48rは、黒鉛、二硫化モリブデン等の固体潤滑剤でも、潤滑油等の液体潤滑剤でも良い。なお潤滑剤に代えて軸受を介在させても良い。   A lubricant 47r is interposed between the first guide surface 11i and the first sliding surface 47. A lubricant 48r is interposed between the second guide surface 12i and the second sliding surface 48. The lubricants 47r and 48r may be solid lubricants such as graphite and molybdenum disulfide, or liquid lubricants such as lubricating oil. A bearing may be interposed instead of the lubricant.

さて使用の際には、所定のサイズの金属系の材料を加圧空間15内に収容する。加圧空間15に装填される材料は熱間状態、温間状態、冷間状態のうちのいずれでも良いが、材料の流動性を確保する等のためには熱間状態、温間状態が好ましい。材料が加圧空間15内に収容された状態で、第1駆動部28により加圧体2を軸芯P1に沿って加圧方向(矢印Y1方向,下方向)に前進させる。これにより加圧空間15の材料は、障害部材4に当接しつつ障害部材4の材料通過路40を少量ずつ通過し、加圧空間15から受圧空間16に向けて矢印DB方向(図1参照)に流動する。更に、障害部材4が加工空間10の軸芯P1に対して連続的にまたは間欠的に回動する。   In use, a metal material of a predetermined size is accommodated in the pressurized space 15. The material loaded in the pressurized space 15 may be any of a hot state, a warm state, and a cold state, but the hot state and the warm state are preferable in order to ensure the fluidity of the material. . In a state where the material is accommodated in the pressurizing space 15, the pressurizing body 2 is advanced in the pressurizing direction (arrow Y1 direction, downward direction) along the axis P1 by the first driving unit 28. As a result, the material of the pressurizing space 15 passes through the material passage 40 of the obstructing member 4 little by little while contacting the obstructing member 4, and the arrow DB direction from the pressurizing space 15 toward the pressure receiving space 16 (see FIG. 1). To flow. Further, the obstacle member 4 rotates continuously or intermittently with respect to the axis P1 of the machining space 10.

本実施形態によれば、障害部材4の回動速度および回動総数は、材料の組成、加圧空間15に装填される材料の体積、材料が硬質相を有する場合には硬質相の材質等に応じて適宜選択されるが、0.1〜20rpm、0.3〜10rpm、0.5〜5rpmが例示される。但しこれらに限定されるものではない。加圧空間15の材料を加工させるにあたり、回動総数としては2〜100回、3〜50回、5〜20回、7〜12回が例示される。但しこれらに限定されるものではない。回動は、連続的な回動でも間欠的な回動でも良い。   According to this embodiment, the rotation speed and total number of rotations of the obstruction member 4 are the composition of the material, the volume of the material loaded in the pressurized space 15, the material of the hard phase when the material has a hard phase, etc. Although it selects suitably according to, 0.1-20 rpm, 0.3-10 rpm, 0.5-5 rpm is illustrated. However, it is not limited to these. In processing the material of the pressurized space 15, the total number of rotations is 2 to 100 times, 3 to 50 times, 5 to 20 times, and 7 to 12 times. However, it is not limited to these. The rotation may be continuous rotation or intermittent rotation.

上記したように障害部材4が回動すると、加圧空間15から材料通過路40を通過して受圧空間16に向かう材料に、剪断変形による歪が与えられる。加圧空間15は受圧空間16とは材料通過路40により連通しているため、加圧空間15から材料通過路40を通過して受圧空間16に向かう材料の全部または大部分に剪断変形による歪が与えられる。この結果、上記した加工処理された材料の組織の微細化が進行する。   As described above, when the obstruction member 4 rotates, the material that passes from the pressurizing space 15 through the material passage 40 toward the pressure receiving space 16 is strained by shear deformation. Since the pressurizing space 15 communicates with the pressure receiving space 16 via the material passage 40, all or most of the material passing from the pressurizing space 15 through the material passage 40 toward the pressure receiving space 16 is strained by shear deformation. Is given. As a result, refinement of the texture of the processed material proceeds.

殊に、金属系の材料が母相に硬質相を分散させている材料である場合には、材料に剪断変形による歪を与えるとき、材料の母相に分散されている硬質相を剪断により分断させることにより、硬質相を細かくさせることを期待できる。このため硬質相が粗大であったとしても、硬質相を微細化できる。故に、材料の強度等の機械的特性を向上させることができ、材料の品質を高めることができる。   In particular, when the metal-based material is a material in which a hard phase is dispersed in the matrix phase, when the material is subjected to strain due to shear deformation, the hard phase dispersed in the matrix phase of the material is separated by shearing. By making it, it can be expected to make the hard phase fine. For this reason, even if a hard phase is coarse, a hard phase can be refined | miniaturized. Therefore, mechanical properties such as the strength of the material can be improved, and the quality of the material can be improved.

ここで、硬質相は母相よりも硬質であり、耐摩耗性を向上させ得るものの、相手攻撃性の過剰化、硬質相の脱落などが発生するおそれがあるため、粗大な硬質相は避けることが好ましい場合が多い。上記したように金属系の材料が母相に硬質相を分散させている材料である場合であっても、材料に剪断変形による歪を与えるとき、材料の組織を微細化させるばかりか、材料の母相に分散されている硬質相を剪断により分断させることができ、硬質相を細かくさせることを期待できる。このため材料の強度、耐摩耗性、摺動性等の機械的特性を一層向上させることができ、材料の品質を一層高めることができる。   Here, the hard phase is harder than the parent phase, and although it can improve wear resistance, there is a risk of excessive attack on the other party and loss of the hard phase, so avoid coarse hard phases. Is often preferred. As described above, even when the metal-based material is a material in which the hard phase is dispersed in the matrix phase, when the material is subjected to strain due to shear deformation, not only the structure of the material is refined, The hard phase dispersed in the matrix phase can be separated by shearing, and it can be expected to make the hard phase fine. For this reason, mechanical properties such as strength, wear resistance, and slidability of the material can be further improved, and the quality of the material can be further improved.

本実施形態によれば、上記したように材料を微細化させる処理を実施するとき、材料通過路40を通過した材料は受圧空間16に至ると、受圧体3の受圧面30で受けられる。材料を受圧面30で受けた受圧体3は、加圧体2の加圧方向(矢印Y1方向,下向き)と反対方向である受圧方向(矢印Y2方向,上向き)に付勢されている。   According to the present embodiment, when the processing for refining the material as described above is performed, the material that has passed through the material passage 40 is received by the pressure receiving surface 30 of the pressure receiving body 3 when reaching the pressure receiving space 16. The pressure receiving body 3 that has received the material at the pressure receiving surface 30 is biased in a pressure receiving direction (arrow Y2 direction, upward) opposite to the pressurizing direction (arrow Y1 direction, downward) of the pressure body 2.

本実施形態によれば、加圧空間15に装填される材料としては、アルミニウム合金、マグネシウム合金、銅合金、亜鉛合金、鉄合金等のいずれかが挙げられる。但し、これらに限定されるものではない。この場合、亜共晶組成、過共晶組成、共晶組成でも良い。アルミニウム合金はAl−Si系合金、Al−Mg系合金、Al−Cu系合金、Al−Zn系合金等が挙げられる。従ってアルミニウム合金はSi,Mg,Cu,Znのうちの1種または2種以上を含有できる。Al−Si系合金の場合、硬質相としてシリコン粒子を含むものを採用できる。アルミニウム合金の場合、質量比で、Si:0.5〜20%、Cu:0.5〜7%、Mg:0.5〜5%、Fe:1〜7%のうちの1種または2種以上を含むことができる。マグネシウム合金はMg−Al系合金、Mg−Zn系合金、Mg−Cu系合金、Mg−Si系合金等が挙げられる。従ってマグネシウム合金はAl,Si,Mg,Cu,Znのうちの1種または2種以上を含有できる。   According to this embodiment, examples of the material loaded in the pressurizing space 15 include an aluminum alloy, a magnesium alloy, a copper alloy, a zinc alloy, and an iron alloy. However, it is not limited to these. In this case, a hypoeutectic composition, a hypereutectic composition, or a eutectic composition may be used. Examples of the aluminum alloy include an Al—Si alloy, an Al—Mg alloy, an Al—Cu alloy, and an Al—Zn alloy. Accordingly, the aluminum alloy can contain one or more of Si, Mg, Cu, and Zn. In the case of an Al—Si alloy, one containing silicon particles as the hard phase can be employed. In the case of an aluminum alloy, one or two of Si: 0.5 to 20%, Cu: 0.5 to 7%, Mg: 0.5 to 5%, Fe: 1 to 7% by mass ratio The above can be included. Examples of the magnesium alloy include Mg—Al alloys, Mg—Zn alloys, Mg—Cu alloys, Mg—Si alloys, and the like. Accordingly, the magnesium alloy can contain one or more of Al, Si, Mg, Cu, and Zn.

本実施形態によれば、加圧空間15に装填される材料としては、熱間状態、温間状態、冷間状態のうちのいずれでも良いが、材料の流動性を確保する等のためには熱間状態、温間状態が好ましい。例えば材料がアルミニウム合金である場合には、材料の温度は150〜400℃、300〜370℃、340〜360℃に保持できる。但しこれらに限定されるものではない。材料が熱間状態または温間状態であるときには、第1基部11、第2基部12についても上記温度領域または上記温度領域付近に加熱しておくことが好ましい。同様に、加圧体2および受圧体3についても、上記温度領域または上記温度領域付近に加熱しておくことが好ましい。但し、条件によっては加熱せずとも良く、第1基部11、第2基部12、加圧体2および受圧体3は常温領域でも良い。   According to the present embodiment, the material loaded in the pressurized space 15 may be any one of a hot state, a warm state, and a cold state. However, in order to ensure the fluidity of the material, etc. A hot state and a warm state are preferable. For example, when the material is an aluminum alloy, the temperature of the material can be maintained at 150 to 400 ° C, 300 to 370 ° C, and 340 to 360 ° C. However, it is not limited to these. When the material is in a hot state or a warm state, it is preferable that the first base portion 11 and the second base portion 12 are also heated in the temperature region or in the vicinity of the temperature region. Similarly, the pressurizing body 2 and the pressure receiving body 3 are preferably heated in the temperature range or in the vicinity of the temperature range. However, it may not be heated depending on conditions, and the first base portion 11, the second base portion 12, the pressurizing body 2 and the pressure receiving body 3 may be in a normal temperature region.

以上説明したように本実施形態によれば、加圧体2の前進により加圧空間15の材料が加圧されるため、加圧空間15の材料は障害部材4の材料通過路40を通過して受圧空間16に向かう。ここで、基部11,12は固定されているものの、障害部材4が加工空間10の軸芯P1回りで連続的にまたは間欠的に回動される。これにより加圧空間15から受圧空間16に向かう材料が障害部材4の材料通過路40を通過するとき、材料通過路40を通過する材料に剪断変形による歪が与えられる。このように材料通過路40を通過する材料に剪断変形による歪が与えられるため、材料の組織が細かくなる。   As described above, according to the present embodiment, since the material of the pressurizing space 15 is pressurized by the advancement of the pressurizing body 2, the material of the pressurizing space 15 passes through the material passage 40 of the obstacle member 4. To the pressure receiving space 16. Here, although the bases 11 and 12 are fixed, the obstacle member 4 is rotated continuously or intermittently around the axis P <b> 1 of the machining space 10. Thereby, when the material which goes to the pressure receiving space 16 from the pressurization space 15 passes the material passageway 40 of the obstruction member 4, the material which passes the material passageway 40 is given distortion by shear deformation. In this way, since the material passing through the material passage 40 is distorted by shear deformation, the material structure becomes fine.

殊に、金属系の材料が母相に硬質相を分散させている材料である場合には、材料に剪断変形による歪を与えるとき、硬質相を剪断により分断させることにより、硬質相を細かくさせることを期待できる。   In particular, when the metal-based material is a material in which the hard phase is dispersed in the matrix phase, when the material is strained by shear deformation, the hard phase is divided by shearing to make the hard phase fine. I can expect that.

ところで、障害部材4を加工空間10の軸芯P1の回りで回動させて材料の組織を微細化させるにあたり、加圧空間15内の軸直角方向(矢印X方向,径方向)における中央領域4cと、加圧空間15内の軸直角方向(矢印X方向)における外縁領域4pとでは、剪断力の大きさは必ずしも一様ではない。その理由としては、加圧空間15内の軸直角方向(矢印X方向)における中央領域4cでは、軸芯P1からの回動半径が相対的に小さいため、材料の流動速度が相対的に低めであり、材料に与える剪断変形による歪は、外縁領域4pに比較して少なく、剪断変形による歪が少ないか発生しない中立位置または疑似中立位置となる。   By the way, when the obstacle member 4 is rotated around the axis P1 of the processing space 10 to refine the material structure, the central region 4c in the direction perpendicular to the axis (arrow X direction, radial direction) in the pressurizing space 15 is used. And the magnitude of the shearing force is not necessarily uniform between the outer edge region 4p in the direction perpendicular to the axis in the pressurizing space 15 (arrow X direction). The reason for this is that in the central region 4c in the direction perpendicular to the axis in the pressurizing space 15 (in the direction of the arrow X), the turning radius from the axis P1 is relatively small, so the material flow rate is relatively low. The strain due to the shear deformation applied to the material is small as compared with the outer edge region 4p, and the neutral position or the pseudo neutral position where the strain due to the shear deformation is small or not generated.

これに対して、加圧空間15内の軸直角方向(矢印X方向)における外縁領域4pでは、軸芯P1からの回動半径が相対的に大きいため、材料に与える剪断変形の歪は、中央側の障害領域43に比較して相対的に大きい。この場合、障害部材4の中央領域4cと外縁領域4pとにおいて組織の微細化を図ると、材料に与える剪断変形による歪がばらつく要因となるおそれがある。このため、障害部材4の中央領域4cと外縁領域4pとにおいて、材料の微細化効果がばらつく要因となるおそれがある。この場合、材料全体の均質化の観点からは改善の余地がある。   On the other hand, in the outer edge region 4p in the direction perpendicular to the axis in the pressurizing space 15 (arrow X direction), the rotational radius from the axis P1 is relatively large. It is relatively large compared to the fault area 43 on the side. In this case, if the structure is refined in the central region 4c and the outer edge region 4p of the obstacle member 4, the strain due to the shear deformation applied to the material may be a factor of variation. For this reason, there is a possibility that the material refinement effect may vary in the central region 4c and the outer edge region 4p of the obstacle member 4. In this case, there is room for improvement from the viewpoint of homogenization of the entire material.

この点について本実施形態によれば、障害部材4においては、加工空間10の軸芯P1に対する軸直角方向(矢印X方向,径方向)の中央領域4c(微細化効果が相対的に低い領域)に、加圧空間15内の材料の流れの障害となる障害領域43が設けられている。そして、軸直角方向(矢印X方向)において、材料通過路40は障害部材4の障害領域43の外側に設けられている。このような構成が採用されている本実施形態によれば、障害部材4のうち軸芯P1付近の中立位置または疑似中立位置となる中央領域4cにおいては、障害領域43に対面する材料は組織微細化効果は充分に実行されず、材料は、外側に位置する組織微細化効果が高い材料通過路40に向かうようになり、材料通過路40で微細化される。このため材料全体に対する微細化効果のばらつきが低減される。このため材料が粗大な硬質相(例えば初晶シリコン粒子)を有するときであっても、その硬質相を分断させて小さくすることができ、強度、耐摩耗性、相手攻撃性等といった材料の特性を改善することができる。   In this regard, according to the present embodiment, in the obstacle member 4, the central region 4c (region in which the micronization effect is relatively low) in the direction perpendicular to the axis P1 of the machining space 10 with respect to the axis P1 (arrow X direction, radial direction). In addition, an obstacle region 43 that obstructs the flow of material in the pressurized space 15 is provided. In the direction perpendicular to the axis (the direction of the arrow X), the material passage 40 is provided outside the obstacle region 43 of the obstacle member 4. According to the present embodiment in which such a configuration is adopted, in the central region 4c that is the neutral position or the pseudo-neutral position in the vicinity of the axis P1 of the obstacle member 4, the material facing the obstacle region 43 is fine in structure. The materializing effect is not sufficiently performed, and the material is directed to the material passage 40 located on the outside and having a high tissue refining effect, and is refined by the material passage 40. For this reason, the dispersion | variation in the refinement | miniaturization effect with respect to the whole material is reduced. For this reason, even when the material has a coarse hard phase (for example, primary crystal silicon particles), the hard phase can be divided and reduced in size, and the material characteristics such as strength, wear resistance, opponent attack, etc. Can be improved.

本実施形態によれば、図1に示すように、加圧体2を駆動させる第1駆動部28が設けられている。第1駆動部28は、加圧体2を障害部材4に近づける方向(矢印Y1方向)に移動させ得ると共に、障害部材4から遠ざかる方向(矢印Y2方向)に移動できる。更に受圧体3を駆動させる第2駆動部39が設けられている。第2駆動部39は、受圧体3を障害部材4に近づける方向(矢印Y2方向)に移動させると共に、受圧体3を障害部材4から遠ざける方向(矢印Y1方向)に移動させる。ここで、加圧体2が加圧方向(矢印Y1方向,下向き)に駆動する駆動力F1は、受圧体3が受圧方向(矢印Y2方向,上向き)に駆動する駆動力F2よりも大きくされている(F1>F2)。このため、加圧体2および受圧体3を互いに反対方向に付勢させつつ、加圧体2および受圧体3を加工進行方向(矢印Y1方向,下方)に移動させることができる。このため加圧空間15内の材料が材料通過路40を急激に通過することが抑えられる。従って、加圧空間15内の材料を材料通過路40に通過させる速度を抑えつつ、障害部材4の回動により加圧空間15内の材料に効果的に剪断変形による歪を与えることができ、ひいては材料を効果的に微細化させることができる。従って、材料が硬質相を含むときであっても、硬質相を効果的に分断させることができる。   According to this embodiment, as shown in FIG. 1, the 1st drive part 28 which drives the pressurization body 2 is provided. The first drive unit 28 can move the pressurizing body 2 in a direction (arrow Y1 direction) approaching the obstacle member 4 and can move in a direction away from the obstacle member 4 (arrow Y2 direction). Further, a second drive unit 39 for driving the pressure receiving body 3 is provided. The second drive unit 39 moves the pressure receiving body 3 in the direction approaching the obstruction member 4 (arrow Y2 direction) and moves the pressure receiving body 3 away from the obstruction member 4 (arrow Y1 direction). Here, the driving force F1 for driving the pressurizing body 2 in the pressurizing direction (arrow Y1 direction, downward) is made larger than the driving force F2 for driving the pressure receiving body 3 in the pressure receiving direction (arrow Y2 direction, upward). (F1> F2). For this reason, the pressurizing body 2 and the pressure receiving body 3 can be moved in the processing advancing direction (arrow Y1 direction, downward) while urging the pressurizing body 2 and the pressure receiving body 3 in opposite directions. For this reason, it is suppressed that the material in the pressurization space 15 passes the material passage 40 rapidly. Therefore, while suppressing the speed at which the material in the pressurizing space 15 passes through the material passage 40, the material in the pressurizing space 15 can be effectively strained by the shear deformation by the rotation of the obstacle member 4, As a result, the material can be effectively miniaturized. Therefore, even when the material includes a hard phase, the hard phase can be effectively divided.

なお、駆動力F1,F2は、加圧体2および受圧体3を加工進行方向に移動させる移動速度に応じて適宜設定する。駆動力F1,F2を調整すれば、材料が材料通過路40を通過する速度を調整できる。すなわち、基本的には、F1>F2の条件を満足させつつ、F1−F2=ΔFを小さくすれば、材料が材料通過路40を通過する速度を小さくできる。F1−F2=ΔFを大きくすれば、材料が材料通過路40を通過する速度を増加できる。   The driving forces F1 and F2 are appropriately set according to the moving speed at which the pressurizing body 2 and the pressure receiving body 3 are moved in the processing progress direction. By adjusting the driving forces F1 and F2, the speed at which the material passes through the material passage 40 can be adjusted. That is, basically, if F1−F2 = ΔF is reduced while satisfying the condition of F1> F2, the speed at which the material passes through the material passage 40 can be reduced. If F1−F2 = ΔF is increased, the speed at which the material passes through the material passage 40 can be increased.

更に本実施形態によれば、障害部材4の上面4uは軸直角方向に沿った平面状であり、加圧体3の加圧面20も軸直角方向に沿った平面状であるため、加圧面20と上面4uとで材料を効果的に挟持でき、加圧空間15の材料の全部または大部分を材料通過路40に通過させて微細化処理を実施するのに有利となる。   Furthermore, according to the present embodiment, the upper surface 4u of the obstruction member 4 has a planar shape along the direction perpendicular to the axis, and the pressing surface 20 of the pressing body 3 also has a planar shape along the direction perpendicular to the axis. And the upper surface 4 u can effectively hold the material, which is advantageous for carrying out the miniaturization process by passing all or most of the material of the pressurized space 15 through the material passage 40.

兵隊経たい状の加圧なお本実施形態によれば、第1基部11および第2基部12は金属またはセラミックスで形成できる。加圧体2および受圧体3は金属またはセラミックスで形成できる。金属の場合には耐熱鋼が採用できる。耐熱鋼としてはSKD材が例示される。   According to this embodiment, the first base portion 11 and the second base portion 12 can be made of metal or ceramics. The pressurizing body 2 and the pressure receiving body 3 can be formed of metal or ceramics. In the case of metal, heat resistant steel can be used. An example of the heat resistant steel is an SKD material.

(実施形態2)
図3〜図5は実施形態2を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。金属材料微細化装置は、基部1と、加圧体2と、受圧体3と、障害部材4とを有する。障害部材4において、複数の材料通過路40以外の部位は、材料に剪断変形による歪を与える剪断付与部として機能できる複数の連結部41を有する。障害部材4は上面4uおよび下面4dを有する板状をなしている。加圧空間15と受圧空間16とを連通させるように、材料通過路40は障害部材4をこれの厚み方向に貫通している。
(Embodiment 2)
3 to 5 show the second embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. The metal material refinement apparatus includes a base 1, a pressure body 2, a pressure receiver 3, and an obstacle member 4. In the obstructing member 4, portions other than the plurality of material passage paths 40 have a plurality of connecting portions 41 that can function as a shearing applying portion that imparts strain due to shear deformation to the material. The obstruction member 4 has a plate shape having an upper surface 4u and a lower surface 4d. The material passageway 40 penetrates the obstacle member 4 in the thickness direction thereof so that the pressurizing space 15 and the pressure receiving space 16 communicate with each other.

図4は、加工空間10の軸芯P1と平行な方向において材料通過路40を視認する平面図を示す。図5は、軸芯P1と平行な方向にそって切断した材料通過路40付近の断面図を示す。図4に示すように、材料通過路40は、円形状(真円、疑似真円を含む)をなす内壁面40fを有しており、軸芯P1と平行な孔芯maを有する。内壁面40fは孔芯maに沿って形成されている。障害部材4は、基部1に対して独立して軸芯P1まわりで回動できるようにされている。   FIG. 4 is a plan view in which the material passage 40 is visually recognized in a direction parallel to the axis P1 of the machining space 10. FIG. 5 shows a sectional view of the vicinity of the material passage 40 cut along a direction parallel to the axis P1. As shown in FIG. 4, the material passage 40 has an inner wall surface 40f having a circular shape (including a perfect circle and a pseudo perfect circle), and has a hole core ma parallel to the axis P1. The inner wall surface 40f is formed along the hole core ma. The obstruction member 4 is configured to be able to rotate about the axis P1 independently of the base 1.

障害部材4においては、加工空間10の軸芯P1に対する軸直角方向(矢印X方向)における中央領域4cにおいて障害領域43が形成されている。障害領域43は材料の流れに対して障害となり得る領域に相当する。図4に示すように、複数の材料通過路40は障害領域43を包囲している。ここで、加圧空間15の材料が障害領域43に当たって干渉されると、加圧空間15内の材料が受圧空間16に向かう前進は、制限される。材料通過路40は軸直角方向(矢印X方向)において障害部材4の障害領域43の外側に設けられている。障害部材4は、加工空間10の軸芯P1の回りで矢印R1方向に回動可能とされており、加圧空間15内の材料に対して回動する回動部材として機能できる。   In the obstruction member 4, an obstruction area 43 is formed in the central area 4 c in the direction perpendicular to the axis P 1 of the machining space 10 with respect to the axis P <b> 1. The obstruction area 43 corresponds to an area that can obstruct the material flow. As shown in FIG. 4, the plurality of material passages 40 surround the obstacle region 43. Here, when the material of the pressurizing space 15 hits the obstacle region 43 and interferes, the advance of the material in the pressurizing space 15 toward the pressure receiving space 16 is limited. The material passage 40 is provided outside the obstacle region 43 of the obstacle member 4 in the direction perpendicular to the axis (the direction of the arrow X). The obstruction member 4 is rotatable in the direction of the arrow R1 around the axis P1 of the processing space 10, and can function as a rotation member that rotates with respect to the material in the pressurizing space 15.

本実施形態によれば、図3に示すように、障害部材4は、内側部材44と、内側部材44に連設された外側部材45とを備えている。内側部材44は、材料通過路40、連結部41および障害領域43を有する。外側部材45は、軸直角方向(矢印X方向)において内側部材44よりも外側に位置するように内側部材44と一体化されている。   According to the present embodiment, as illustrated in FIG. 3, the obstacle member 4 includes an inner member 44 and an outer member 45 that is connected to the inner member 44. The inner member 44 has a material passage 40, a connecting portion 41, and a failure region 43. The outer member 45 is integrated with the inner member 44 so as to be positioned outside the inner member 44 in the direction perpendicular to the axis (the arrow X direction).

本実施形態においても、使用の際には、加圧空間15内に材料を収容する。加圧空間15に装填される材料は熱間状態、温間状態、冷間状態のうちのいずれでも良いが、材料の流動性を確保する等のためには熱間状態、温間状態が好ましい。例えば材料がアルミニウム合金である場合には、材料の温度は200〜400℃、300〜380℃、340〜360℃に保持できる。但しこれらに限定されるものではない。その状態で、第1駆動部28により加圧体2を軸芯P1に沿って前進方向(矢印Y1方向,下方向)に前進させる。これにより加圧空間15の材料は障害部材4の材料通過路40を通過し、加圧空間15から受圧空間16に向けて流動する。更に、障害部材4が加工空間10の軸芯P1に対して回動する。これにより加圧空間15から材料通過路40を通過して受圧空間16に向かう材料に剪断変形による歪が与えられる。この結果、材料の組織の微細化が進行する。殊に、加圧体2は前進方向に前進するため、材料は次第に加圧空間15から受圧空間16に移動される。   Also in the present embodiment, the material is accommodated in the pressurizing space 15 during use. The material loaded in the pressurized space 15 may be any of a hot state, a warm state, and a cold state, but the hot state and the warm state are preferable in order to ensure the fluidity of the material. . For example, when the material is an aluminum alloy, the temperature of the material can be maintained at 200 to 400 ° C, 300 to 380 ° C, and 340 to 360 ° C. However, it is not limited to these. In this state, the pressurizing body 2 is advanced in the forward direction (arrow Y1 direction, downward direction) along the axis P1 by the first drive unit 28. Thereby, the material of the pressurizing space 15 passes through the material passage 40 of the obstacle member 4 and flows from the pressurizing space 15 toward the pressure receiving space 16. Further, the obstacle member 4 rotates with respect to the axis P1 of the machining space 10. As a result, strain due to shear deformation is imparted to the material passing from the pressurizing space 15 through the material passage 40 toward the pressure receiving space 16. As a result, the refinement of the material structure proceeds. In particular, since the pressurizing body 2 advances in the forward direction, the material is gradually moved from the pressurizing space 15 to the pressure receiving space 16.

以上説明したように本実施形態によれば、前述したように、加圧体2の前進により加圧空間15の材料が加圧されるため、加圧空間15の材料は障害部材4の材料通過路40を通過して受圧空間16に向かう。更に、障害部材4が加工空間10の軸芯P1回りで回動される。これにより加圧空間15から受圧空間16に向かう材料が障害部材4の材料通過路40を通過するとき、障害部材4が軸芯P1回りで回動しているため、障害部材4の材料通過路40を通過する材料に剪断変形による歪が与えられる。このように材料通過路40を通過する材料に剪断変形による歪が与えられるため、材料の組織が細かくなる。殊に、金属系の材料が母相に硬質相を分散させている材料である場合には、材料に剪断変形による歪を与えるとき、硬質相を剪断により分断させることにより、硬質相を細かくさせることを期待できる。   As described above, according to the present embodiment, as described above, since the material of the pressurizing space 15 is pressurized by the advancement of the pressurizing body 2, the material of the pressurizing space 15 passes through the material of the obstacle member 4. It passes through the path 40 toward the pressure receiving space 16. Further, the obstacle member 4 is rotated around the axis P1 of the processing space 10. As a result, when the material from the pressurizing space 15 toward the pressure receiving space 16 passes through the material passage 40 of the obstacle member 4, the obstacle member 4 rotates around the axis P <b> 1. The material passing through 40 is distorted by shear deformation. In this way, since the material passing through the material passage 40 is distorted by shear deformation, the material structure becomes fine. In particular, when the metal-based material is a material in which the hard phase is dispersed in the matrix phase, when the material is strained by shear deformation, the hard phase is divided by shearing to make the hard phase fine. I can expect that.

ところで、実施形態1の場合と同様に、障害部材4を加工空間10の軸芯P1の回りで回動させて材料の組織を微細化処理するにあたり、加圧空間15内の軸直角方向(矢印X方向)における中央領域4cと、加圧空間15内の軸直角方向(矢印X方向)における外縁領域4pとでは、剪断力の大きさが必ずしも一様ではなく、ひいては微細化効果の程度が必ずしも一様ではない。その理由としては、加圧空間15内の軸直角方向(矢印X方向)における中央領域4cでは、軸芯P1からの回動半径が相対的に小さいため、材料の流動速度が相対的に低めであり、材料に与える剪断変形による歪の程度は、外縁領域4pに比較して少なく、剪断に対して中立位置または疑似中立位置となる。これに対して、加圧空間15内の軸直角方向(矢印X方向)における外縁領域4pでは、軸芯P1からの回動半径が相対的に大きいため、材料に与える剪断変形による歪の程度は、中央側の障害領域43に比較して相対的に大きい。この場合、中央領域4cと外縁領域4pとにおいて、材料に与える組織微細化効果がばらつき要因となるおそれがある。   By the way, as in the case of the first embodiment, when the obstacle member 4 is rotated around the axis P1 of the processing space 10 to refine the material structure, the direction perpendicular to the axis in the pressurizing space 15 (arrow) In the central region 4c in the X direction) and the outer edge region 4p in the direction perpendicular to the axis in the pressurizing space 15 (in the direction of the arrow X), the magnitude of the shearing force is not necessarily uniform, and thus the degree of the refinement effect is not necessarily limited. It is not uniform. The reason for this is that in the central region 4c in the direction perpendicular to the axis in the pressurizing space 15 (in the direction of the arrow X), the turning radius from the axis P1 is relatively small, so the material flow rate is relatively low. In addition, the degree of strain caused by shear deformation applied to the material is small as compared with the outer edge region 4p, and is in a neutral position or pseudo-neutral position with respect to shear. On the other hand, in the outer edge region 4p in the direction perpendicular to the axis in the pressurizing space 15 (the direction of the arrow X), the rotational radius from the axis P1 is relatively large. It is relatively larger than the obstacle region 43 on the center side. In this case, there is a possibility that the effect of refining the structure on the material is a cause of variation in the central region 4c and the outer edge region 4p.

この点について本実施形態によれば、障害部材4において、加工空間10の軸芯P1に対する軸直角方向(矢印X方向,径方向)の中央領域4cにおいて、組織微細化効果が少ないため、加圧空間15内の材料の流れを軽減させる障害となる障害領域43が設けられている。そして、軸直角方向(矢印X方向)において、材料通過路40は障害部材4の障害領域43の外側に設けられている。障害領域43に対面する材料は材料通過路40に流動し易くなり、材料通過路40で微細化される。   In this regard, according to the present embodiment, the obstacle member 4 is less pressurized in the central region 4c in the direction perpendicular to the axis P1 (the arrow X direction and the radial direction) of the machining space 10 because the structure refinement effect is small. A failure region 43 that is an obstacle to reduce the flow of material in the space 15 is provided. In the direction perpendicular to the axis (the direction of the arrow X), the material passage 40 is provided outside the obstacle region 43 of the obstacle member 4. The material facing the obstacle region 43 easily flows into the material passage 40 and is refined in the material passage 40.

上記した結果、加圧空間15の軸直角方向(矢印X方向)における剪断変形による歪のばらつきを低減させるのに有利となる。すなわち、少ない歪しか与えられなかった材料部分が受圧空間16に流動することが解消され、材料全体において微細化効果のばらつきが低減される。   As a result, it is advantageous to reduce variation in strain due to shear deformation in the direction perpendicular to the axis of the pressurizing space 15 (arrow X direction). That is, the material portion to which only a small amount of strain is applied is eliminated from flowing into the pressure receiving space 16, and the variation in the miniaturization effect is reduced in the entire material.

なお本実施形態によれば、障害部材4の回動速度および回動総数は、材料の組成、加圧空間15に装填される材料の体積、材料が硬質相を有する場合には、硬質相の材質等に応じて適宜選択されるが、0.1〜20rpm、0.3〜10rpm、0.5〜5rpmが例示される。但しこれらに限定されるものではない。加圧空間15の材料を加工させるにあたり、回動総数としては2〜100回、3〜50回、5〜20回、7〜12回が例示される。但しこれらに限定されるものではない。   According to the present embodiment, the rotation speed and the total number of rotations of the obstruction member 4 are determined based on the composition of the material, the volume of the material loaded in the pressurized space 15, and the hard phase when the material has a hard phase. Although it selects suitably according to a material etc., 0.1-20 rpm, 0.3-10 rpm, 0.5-5 rpm is illustrated. However, it is not limited to these. In processing the material of the pressurized space 15, the total number of rotations is 2 to 100 times, 3 to 50 times, 5 to 20 times, and 7 to 12 times. However, it is not limited to these.

(試験例)
図3および図4に示す装置を用いて試験片を微細化させる試験を実施した。加工処理前の材料で形成された試験片の材料は、アルミニウム−シリコン系合金の鋳造材であり、質量比で、Siを16.4%、Cuを2.9%、Mgを1.01%、Feを3.8%、Tiを0.2%未満、残部Alであった。加工前の試験片については、外径が10ミリメートル、長さが15ミリメートの円柱形状であり、温度が約350℃であった。第1基部11及び第2基部12の外径は45ミリメートル、加圧空間15および受圧空間16の内径はそれぞれ10ミリメートルであった。矢印Y1方向における第1基部11および第2基部12の軸長は50ミリメートルであった。材料通過路40は円形状をなしており、材料通過路40の内径は3ミリメートルであった。加圧体2の前進方向(矢印Y1方向)への駆動力は300MPaであった。図6は試験例の組織を顕微鏡で観察した写真の一例を示す。図6に示すように、アルミニウム合金の全体が図6の組織のように微細化されていた。殊に、Siを16.4%含有する鋳造材であるにも拘わらず、粗大な初晶シリコン粒子は分散していなかった。
(Test example)
The test which refines | miniaturizes a test piece using the apparatus shown in FIG. 3 and FIG. 4 was implemented. The material of the test piece formed from the material before processing is a cast material of an aluminum-silicon alloy, and by mass ratio, Si is 16.4%, Cu is 2.9%, and Mg is 1.01%. Fe was 3.8%, Ti was less than 0.2%, and the balance was Al. The test piece before processing had a cylindrical shape with an outer diameter of 10 millimeters and a length of 15 millimeters, and the temperature was about 350 ° C. The outer diameters of the first base portion 11 and the second base portion 12 were 45 millimeters, and the inner diameters of the pressure space 15 and the pressure receiving space 16 were 10 millimeters, respectively. The axial length of the first base portion 11 and the second base portion 12 in the arrow Y1 direction was 50 millimeters. The material passage 40 has a circular shape, and the inner diameter of the material passage 40 is 3 millimeters. The driving force of the pressure member 2 in the forward direction (arrow Y1 direction) was 300 MPa. FIG. 6 shows an example of a photograph of the structure of the test example observed with a microscope. As shown in FIG. 6, the whole aluminum alloy was refined like the structure of FIG. In particular, although the cast material contains 16.4% of Si, coarse primary crystal silicon particles were not dispersed.

(実施形態3)
図7〜図9は本発明の実施形態3を示す。障害部材4は内側部材44と外側部材45とを備えており、内側部材44において複数(3個)の材料通過路40を備えている。障害部材4は矢印R1方向に軸芯P1回りで連続的に回動する。図9は、図8におけるIX−IX線に沿った断面、つまり、障害部材4をこれの厚み方向に切断した断面を示す。
(Embodiment 3)
7 to 9 show Embodiment 3 of the present invention. The obstruction member 4 includes an inner member 44 and an outer member 45, and the inner member 44 includes a plurality (three) of material passage paths 40. The obstruction member 4 is continuously rotated around the axis P1 in the direction of the arrow R1. FIG. 9 shows a cross section taken along the line IX-IX in FIG. 8, that is, a cross section obtained by cutting the obstacle member 4 in the thickness direction thereof.

図9に示すように、材料通過路40は、第1孔芯mfを有する第1通路部分40fと、第2孔芯msを備える第2通路部分40sとを備えている。第1孔芯mfおよび第2孔芯msは、互いに異なる方向に傾斜する。第1通路部分40fおよび第2通路部分40sは、互いに連通している。   As shown in FIG. 9, the material passage 40 includes a first passage portion 40f having a first hole core mf and a second passage portion 40s having a second hole core ms. The first hole core mf and the second hole core ms are inclined in different directions. The first passage portion 40f and the second passage portion 40s communicate with each other.

ここで、矢印Ra方向は、加圧空間15内における材料が障害部材4に対して相対的に流れる方向を示す。この場合、障害部材4が材料通過路40と共に回動するため、材料通過路40を通過する材料に剪断変形による歪が与えられるため、材料の組織が細かくなる。図9に示すように、第1通路部分40fの第1孔芯mfと第2通路部分40sの第2孔芯msとでは傾斜方向が異なるため、障害部材4が矢印R1方向に回動するとき、材料に与えられる剪断変形による歪は複雑で且つ大きくなり、材料を細かくさせるのに有利である。材料が硬質相を含むときであっても、硬質相を効果的に分断させ得る。   Here, the direction of the arrow Ra indicates the direction in which the material in the pressurizing space 15 flows relative to the obstacle member 4. In this case, since the obstacle member 4 rotates together with the material passageway 40, the material passing through the material passageway 40 is subjected to distortion due to shear deformation, so that the material structure becomes fine. As shown in FIG. 9, since the inclination direction is different between the first hole core mf of the first passage portion 40f and the second hole core ms of the second passage portion 40s, the obstacle member 4 is rotated in the direction of the arrow R1. The strain due to shear deformation applied to the material is complicated and large, which is advantageous for making the material fine. Even when the material includes a hard phase, the hard phase can be effectively divided.

なお、図9に示すように、加圧空間15側の第1孔芯mfは、加圧空間15から受圧空間16に向かうにつれて矢印Ra方向と反対方向に向かうように傾斜している。受圧空間16側の第2孔芯msは、加圧空間15から受圧空間16に向かうにつれて矢印Ra方向と同じ方向に向かうように傾斜している。   As shown in FIG. 9, the first hole core mf on the pressurizing space 15 side is inclined so as to go in the direction opposite to the arrow Ra direction from the pressurizing space 15 toward the pressure receiving space 16. The second hole core ms on the pressure receiving space 16 side is inclined so as to go in the same direction as the arrow Ra direction from the pressurizing space 15 toward the pressure receiving space 16.

(実施形態4)
図10は実施形態4を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。図10は障害部材4をこれの厚み方向に切断した断面を示し、図8におけるIX−IX線に沿った断面に相当する。図10に示すように、加圧空間15から受圧空間16に向かうにつれて、材料通過路40の孔芯mtは、矢印Ra方向と反対方向に向かうように傾斜されている。この場合、材料通過路40を通過する材料に剪断変形による歪が効果的に与えられる。
(Embodiment 4)
FIG. 10 shows a fourth embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. FIG. 10 shows a cross section of the obstruction member 4 cut in the thickness direction, and corresponds to a cross section taken along line IX-IX in FIG. As shown in FIG. 10, the hole core mt of the material passage 40 is inclined in the direction opposite to the arrow Ra direction as it goes from the pressurizing space 15 to the pressure receiving space 16. In this case, distortion due to shear deformation is effectively applied to the material passing through the material passage 40.

(実施形態5)
図11は実施形態5を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。図11は障害部材4をこれの厚み方向に切断した断面を示し、図8におけるIX−IX線に沿った断面に相当する。図11に示すように、加圧空間15から受圧空間16に向かうにつれて、材料通過路40の孔芯muは、矢印Ra方向と同じ方向に向かうように傾斜されている。この場合、障害部材4が回動すると、材料が材料通過路40を通過するとき、材料に剪断変形による歪が与えられるため、材料の組織が細かくなる。材料などの種類に応じて材料に与える剪断変形による歪を過剰に強くしたくない場合に適する。
(Embodiment 5)
FIG. 11 shows a fifth embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. FIG. 11 shows a cross section of the obstruction member 4 cut in the thickness direction, and corresponds to a cross section taken along line IX-IX in FIG. As shown in FIG. 11, the hole core mu of the material passage 40 is inclined in the same direction as the direction of the arrow Ra as it goes from the pressurizing space 15 to the pressure receiving space 16. In this case, when the obstacle member 4 rotates, when the material passes through the material passage 40, the material is strained by shear deformation, so that the material structure becomes fine. This method is suitable when it is not desired to excessively increase the strain due to shear deformation applied to the material depending on the type of material.

(実施形態6)
図12(A)〜図12(D)は実施形態6に係る各例を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。図12は軸芯P1と平行な方向に沿って障害部材4を上方から視認した状態を示す。図12(A)に示すように、4個の円形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。図12(B)に示すように、5個の円形状の材料通過路40を軸芯P1回りで周方向に均等間隔で分散させて形成できる。図12(C)に示すように、3個の円形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。図12(D)に示すように、2個の円形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。なお、図12(A)〜図12(D)によれば、障害領域43は複数の材料通過路40で包囲されつつ、軸芯P1に対する軸直角方向(矢印X方向)において中央領域に配置されている。また連結部41は軸直角方向(矢印X方向)において横断するように形成されている。
(Embodiment 6)
12A to 12D show examples according to the sixth embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. FIG. 12 shows a state in which the obstacle member 4 is viewed from above along a direction parallel to the axis P1. As shown in FIG. 12 (A), four circular material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. As shown in FIG. 12B, five circular material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. As shown in FIG. 12C, the three circular material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. As shown in FIG. 12D, the two circular material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. 12A to 12D, the obstacle region 43 is surrounded by the plurality of material passages 40 and is disposed in the central region in the direction perpendicular to the axis P1 (in the direction of the arrow X). ing. The connecting portion 41 is formed so as to cross in the direction perpendicular to the axis (the direction of the arrow X).

(実施形態7)
図13(A)〜図13(C)は実施形態7に係る各例を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。図13(A)〜図13(C)は軸芯P1と平行な方向に沿って障害部材4を視認した状態を示す。図13(A)に示すように、3個の四角形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。図14(B)に示すように、4個の円形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。図14(C)に示すように、3個の楕円形状の材料通過路40を軸芯P1回りで周方向において均等間隔で分散させて形成できる。なお、図14(A)〜図14(C)によれば、障害領域43は複数の材料通過路40で包囲されつつ、軸芯P1に対する軸直角方向(矢印X方向)において中央領域に配置されている。
(Embodiment 7)
FIG. 13A to FIG. 13C show examples according to the seventh embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. FIG. 13A to FIG. 13C show a state where the obstacle member 4 is visually recognized along a direction parallel to the axis P1. As shown in FIG. 13A, three quadrangular material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. As shown in FIG. 14 (B), four circular material passages 40 can be formed by being dispersed at regular intervals around the axis P1 in the circumferential direction. As shown in FIG. 14C, three elliptical material passages 40 can be formed by being dispersed at equal intervals around the axis P1 in the circumferential direction. 14A to 14C, the obstacle region 43 is surrounded by a plurality of material passages 40 and is disposed in the central region in the direction perpendicular to the axis P1 (in the direction of the arrow X). ing.

(実施形態8)
図14は実施形態8を示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を奏する。本実施形態に係る金属材料微細化装置によれば、図14に示すように、基部1は、軸芯P1が延設されている方向において2分割されており、コンテナとして機能する円柱状の第1基部11と、コンテナとして機能する円柱状の第2基部12とを備えている。加工空間10の軸芯P1回りで障害部材4を回動させるための駆動源5が設けられている。
(Embodiment 8)
FIG. 14 shows an eighth embodiment. This embodiment has basically the same configuration and the same function and effect as the first embodiment. According to the metal material refinement apparatus according to the present embodiment, as shown in FIG. 14, the base 1 is divided into two in the direction in which the shaft core P <b> 1 extends, and the cylindrical first that functions as a container is used. 1 base part 11 and the cylindrical 2nd base part 12 which functions as a container are provided. A drive source 5 for rotating the obstacle member 4 around the axis P1 of the machining space 10 is provided.

駆動源5は、障害部材4の外側部材45のリング部42に形成された歯部42aに噛み合う第1駆動歯部51aを有する駆動部材としての第1駆動歯車51と、第1駆動歯車51と同軸的な中間歯車52と、中間歯車52の中間歯部52aに噛み合う第2駆動歯部53aを有する駆動部材としての第2駆動歯車53と、第2駆動歯車53を回転駆動させる駆動源としての駆動モータ54とを備えている。   The drive source 5 includes a first drive gear 51 as a drive member having a first drive tooth portion 51 a that meshes with a tooth portion 42 a formed on the ring portion 42 of the outer member 45 of the obstacle member 4, A second drive gear 53 as a drive member having a coaxial intermediate gear 52, a second drive tooth portion 53a meshing with the intermediate tooth portion 52a of the intermediate gear 52, and a drive source for rotating the second drive gear 53 And a drive motor 54.

駆動モータ54のモータ軸54cが回転駆動すると、第2駆動歯車53が回転駆動し、中間歯車52が回転し、第1駆動歯車51の第1駆動歯部51aと障害部材4の歯部42aとの噛み合いが進行し、障害部材4は加工空間10の軸芯P1回りで回動する。これにより前述したように加工空間10内の材料を微細化させることができる。第1駆動歯車51、中間歯車52、第2駆動歯車53は減速機構を構成する。このため駆動モータ54の駆動力を減速させて障害部材4に回動力として伝達でき、障害部材4を軸芯P1回りで回動させるトルク力を増加させることができる。ここで、障害部材4の外側部材45のリング部42に形成された歯部42aのピッチ円径をPD1とし、第1駆動歯車51のピッチ円径をPD2とすると、PD1<PD2の関係とされており、障害部材4を軸芯P1回りで回動させるトルク力を増加させることができる。従って、材料に剪断変形による歪を効果的に与えて材料の組織を微細化できる。   When the motor shaft 54c of the drive motor 54 is rotationally driven, the second drive gear 53 is rotationally driven, the intermediate gear 52 is rotated, and the first drive tooth portion 51a of the first drive gear 51 and the tooth portion 42a of the obstacle member 4 are rotated. The obstruction member 4 rotates around the axis P <b> 1 of the machining space 10. Thereby, as described above, the material in the processing space 10 can be miniaturized. The first drive gear 51, the intermediate gear 52, and the second drive gear 53 constitute a speed reduction mechanism. For this reason, the driving force of the drive motor 54 can be decelerated and transmitted to the obstruction member 4 as rotational power, and the torque force that rotates the obstruction member 4 about the axis P1 can be increased. Here, when the pitch circle diameter of the tooth portion 42a formed on the ring portion 42 of the outer member 45 of the obstacle member 4 is PD1, and the pitch circle diameter of the first drive gear 51 is PD2, PD1 <PD2. Thus, the torque force for rotating the obstacle member 4 around the axis P1 can be increased. Therefore, the material structure can be refined by effectively giving strain due to shear deformation to the material.

なお図14に示すように、障害部材4のリング部42と第1基部11との間には、リング状をなす軸受42xが設けられている。障害部材4のリング部42と第2基部12との間には、リング状をなす軸受42xが設けられている。軸受42xにより障害部材4の軸芯P1回りの回動が円滑化されている。軸受42xは必要に応じて設ければ良いものであり、場合によっては軸受42xを廃止しても良い。なお、軸受42xは、転動体を有するベアリングタイプでも良いし、多孔質体に潤滑剤を含浸させたタイプでも良い。   As shown in FIG. 14, a ring-shaped bearing 42 x is provided between the ring portion 42 of the obstacle member 4 and the first base portion 11. Between the ring portion 42 and the second base portion 12 of the obstacle member 4, a ring-shaped bearing 42 x is provided. The rotation of the obstacle member 4 around the axis P1 is smoothed by the bearing 42x. The bearing 42x may be provided as necessary, and the bearing 42x may be eliminated in some cases. The bearing 42x may be a bearing type having rolling elements or a type in which a porous body is impregnated with a lubricant.

(実施形態9)
図15は実施形態9を示す。本実施形態は実施形態1,2と基本的には同様の構成および同様の作用効果を奏する。図15は装置の断面図を示す。加圧空間15を形成する第1基部11の外周部を包囲するリング部142が形成されている。リング部142には歯部142aが形成されている。駆動源5は、加工空間15を形成する第1基部11のリング部142に形成された歯部142aに噛み合う第1駆動歯部51aを有する第1駆動部材としての第1駆動歯車51と、第1駆動歯車51を回転駆動させる駆動モータ54とを備えている。材料を微細化させるにあたり、駆動モータ54のモータ軸54cを回転駆動させて第1基部11を軸芯P1回りで回動させる。障害部材4は軸芯P1回りで回動しない固定タイプとされている。図15に示すように、障害領域43は、加圧体2の前進方向(矢印Y1方向)に向かうにつれて軸芯P1から径外方向に拡開するように傾斜する材料案内部43xを備えている。加圧空間15において障害領域43により流動が制限された材料は、材料案内部43xの傾斜に沿って材料通過路40に向けて良好に流動することができるので、材料の流動抵抗が軽減される。
(Embodiment 9)
FIG. 15 shows a ninth embodiment. This embodiment has basically the same configuration and the same function and effect as the first and second embodiments. FIG. 15 shows a cross-sectional view of the apparatus. A ring portion 142 surrounding the outer peripheral portion of the first base portion 11 forming the pressurizing space 15 is formed. The ring part 142 is formed with a tooth part 142a. The drive source 5 includes a first drive gear 51 as a first drive member having a first drive tooth portion 51a that meshes with a tooth portion 142a formed on the ring portion 142 of the first base portion 11 that forms the machining space 15, and a first drive gear 51. And a drive motor 54 for rotating and driving the one drive gear 51. In making the material fine, the motor shaft 54c of the drive motor 54 is rotationally driven to rotate the first base portion 11 around the axis P1. The obstruction member 4 is a fixed type that does not rotate around the axis P1. As shown in FIG. 15, the obstacle region 43 includes a material guide portion 43 x that is inclined so as to expand radially outward from the axis P <b> 1 as it goes in the forward direction (arrow Y <b> 1 direction) of the pressurizing body 2. . Since the material whose flow is restricted by the obstacle region 43 in the pressurizing space 15 can flow well toward the material passage 40 along the inclination of the material guide portion 43x, the flow resistance of the material is reduced. .

(実施形態10)
図16は実施形態10を示す。本実施形態は実施形態1,2と基本的には同様の構成および同様の作用効果を奏する。本実施形態では、材料を微細化させるにあたり、上パンチとして機能できる加圧体2を軸芯P1回りで回動させる。障害部材4は軸芯P1回りで回動しない固定タイプとされている。
(Embodiment 10)
FIG. 16 shows the tenth embodiment. This embodiment has basically the same configuration and the same function and effect as the first and second embodiments. In the present embodiment, when the material is miniaturized, the pressing body 2 that can function as an upper punch is rotated around the axis P1. The obstruction member 4 is a fixed type that does not rotate around the axis P1.

(検討形態)
図17は、障害部材4に形成する材料通過路40が円形状であり、3個形成されている場合における検討形態の一例を示す。図17に示すように、加圧空間15の直径をDとするとき、材料の流れの均一化を考慮すると、材料通過路40の中心40tは、軸芯P1を中心とする直径WDの仮想円PAに沿ってほぼ均等に配置されていることが好ましい。ここで、直径WD=(0.3〜0.7)×Dの範囲内とすることができ、殊に、(0.4〜0.6)×Dの範囲内とすることができる。材料通過路40の内径d=(0.1〜0.4)×Dの範囲内とすることができる。また、材料の流れの均一化を考慮すると、矢印XAとして示すように、材料通過路40の外縁同士が接触することは、好ましくない。矢印XBとして示すように、材料通過路40が加圧空間15の内縁に接触することも好ましくない。
(Examination form)
FIG. 17 shows an example of an examination form in the case where the material passage 40 formed in the obstacle member 4 is circular and three are formed. As shown in FIG. 17, when the diameter of the pressurizing space 15 is D, considering the uniform flow of the material, the center 40t of the material passage 40 is a virtual circle having a diameter WD with the axis P1 as the center. It is preferable that they are arranged substantially evenly along the PA. Here, the diameter WD can be in the range of (0.3 to 0.7) × D, and in particular, it can be in the range of (0.4 to 0.6) × D. The inner diameter d of the material passage 40 can be in the range of (= 0.1 to 0.4) × D. In consideration of the uniform flow of the material, it is not preferable that the outer edges of the material passage 40 are in contact with each other as shown by an arrow XA. As indicated by the arrow XB, it is also not preferable that the material passage 40 contacts the inner edge of the pressurizing space 15.

(他の実施形態)
上記した実施形態によれば、駆動モータの駆動により障害部材4を軸芯P1で回動させることにしているが、これに限らず、油圧シリンダまたは空気圧シリンダ等の流体圧シリンダ装置により障害部材4を軸芯P1回りで回動させることにしても良い。駆動モータは電動モータでも良いし、油圧モータでも良い。上記した実施形態によれば、加圧体2および受圧体3は垂直方向に沿って並設されているが、これに限らず、水平方向に沿って並設されていても良い。受圧体3は下パンチ状をなしており、可動タイプであるが、これに限らず、材料を微細化させるときに、受圧体3を移動させない固定タイプとしても良い。
(Other embodiments)
According to the above-described embodiment, the obstacle member 4 is rotated about the axis P1 by driving the drive motor. However, the present invention is not limited to this, and the obstacle member 4 is provided by a hydraulic cylinder device such as a hydraulic cylinder or a pneumatic cylinder. May be rotated around the axis P1. The drive motor may be an electric motor or a hydraulic motor. According to the above-described embodiment, the pressurizing body 2 and the pressure receiving body 3 are arranged side by side along the vertical direction, but not limited thereto, they may be arranged side by side along the horizontal direction. The pressure receiving body 3 has a lower punch shape and is a movable type. However, the pressure receiving body 3 is not limited to this, and may be a fixed type that does not move the pressure receiving body 3 when the material is miniaturized.

実施形態1によれば、障害部材4の上面4uは軸直角方向に沿った平面状であり、加圧体3の加圧面20も軸直角方向に沿った平面状であるが、これに限らず、多少傾斜していても良い。その他、本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施可能である。ある実施形態に特有の構造および機能は他の実施形態についても適用できる。   According to the first embodiment, the upper surface 4u of the obstacle member 4 has a planar shape along the direction perpendicular to the axis, and the pressurizing surface 20 of the pressurizing body 3 also has a planar shape along the direction perpendicular to the axis. It may be slightly inclined. In addition, the present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention. Structures and functions specific to one embodiment can be applied to other embodiments.

上記した記載から次の技術知的思想も把握できる。
[付記項1]軸芯を有する加工空間を備える基部と、前記基部の前記加工空間に前記軸芯に沿って前進可能に嵌合され前進により前記加圧空間の金属系の材料を加圧する加圧面を有する加圧体と、前記加圧体の前記加圧面に所定間隔を隔てて対向するように前記基部の前記加工空間に嵌合された受圧面を有する受圧体と、前記加工空間において前記加圧体の前記加圧面と前記受圧体の前記受圧面との間に設けられ、前記加工空間を前記加圧体側の加圧空間と前記受圧体側の前記受圧空間とに分け、且つ、前記加圧空間から前記受圧空間に向かう材料に対して障害となると共に、軸芯回りで回動可能な障害部材とを具備していることを特徴とする金属材料微細化装置。障害部材の回動により材料に剪断変形による歪が付与され、材料の組織が微細化される。
The following technical and intellectual ideas can also be grasped from the above description.
[Additional Item 1] A base having a machining space having an axis, and a pressurizing metal material in the pressurizing space by being forwardly fitted into the machining space of the base along the axis. A pressure body having a pressure surface, a pressure receiving body having a pressure receiving surface fitted in the processing space of the base so as to face the pressure surface of the pressure body with a predetermined interval, and in the processing space, The processing space is provided between the pressure surface of the pressure body and the pressure receiving surface of the pressure receiving body, and the processing space is divided into a pressure space on the pressure body side and the pressure receiving space on the pressure body side, and A metal material miniaturization apparatus comprising: an obstacle member capable of turning around an axis while being an obstacle to a material from the pressure space toward the pressure receiving space. By the rotation of the obstacle member, a strain due to shear deformation is given to the material, and the structure of the material is refined.

実施形態1に係り、金属材料微細化装置を示す断面図である。It is sectional drawing which concerns on Embodiment 1 and shows a metal material refinement | miniaturization apparatus. 材料通過路を有する障害部材を示す平面図である。It is a top view which shows the obstruction member which has a material passage. 実施形態2に係り、金属材料微細化装置を示す断面図である。It is sectional drawing which concerns on Embodiment 2 and shows a metal material refinement | miniaturization apparatus. 材料通過路を有する障害部材を示す平面図である。It is a top view which shows the obstruction member which has a material passage. 実施形態2に係り、材料通過路付近の断面図である。FIG. 10 is a cross-sectional view of the vicinity of a material passage according to the second embodiment. 試験例に係り、加工した後の材料の組織を光学顕微鏡で撮像した顕微鏡写真を示す図である。It is a figure which concerns on the test example and shows the microscope picture which imaged the structure | tissue of the material after processing with the optical microscope. 実施形態3に係り、材料通過路を有する障害部材を示す斜視図である。It is a perspective view which shows the obstruction member which concerns on Embodiment 3 and has a material passage. 材料通過路を有する障害部材を示す平面図である。It is a top view which shows the obstruction member which has a material passage. 実施形態3に係り、障害部材における材料通過路付近の断面図である。FIG. 10 is a cross-sectional view of the vicinity of a material passage in an obstacle member according to the third embodiment. 実施形態4に係り、障害部材における材料通過路付近の断面図である。FIG. 10 is a cross-sectional view of the obstacle member in the vicinity of the material passage according to the fourth embodiment. 実施形態5に係り、障害部材における材料通過路付近の断面図である。FIG. 10 is a cross-sectional view of the obstacle member in the vicinity of a material passageway according to the fifth embodiment. 実施形態6に係り、(A)〜(D)はそれぞれ材料通過路を有する障害部材を示す平面図である。FIG. 9A is a plan view illustrating an obstruction member having a material passage, according to the sixth embodiment. 実施形態7に係り、(A)〜(C)はそれぞれ材料通過路を有する障害部材を示す平面図である。FIG. 9A is a plan view showing an obstruction member having a material passage, according to the seventh embodiment. 実施形態8に係り、金属材料微細化装置を示す断面図である。It is sectional drawing which concerns on Embodiment 8 and shows a metal material refinement | miniaturization apparatus. 実施形態9に係り、金属材料微細化装置を示す断面図である。It is sectional drawing which concerns on Embodiment 9 and shows a metal material refinement | miniaturization apparatus. 実施形態10に係り、金属材料微細化装置を示す断面図である。It is sectional drawing which concerns on Embodiment 10 and shows a metal material refinement | miniaturization apparatus. 障害部材に形成する材料通過路が円形状であり、3個である場合の検討形態を示す図である。It is a figure which shows the examination form in case the material passageway formed in an obstruction member is circular shape and is three pieces.

符号の説明Explanation of symbols

1は基部、10は加工空間、11は第1基部、12は第2基部、P1は軸芯、15は加圧空間、16は受圧空間、2は加圧体、20は加圧面、21は加圧部、3は受圧体、30は受圧面、31は受圧部、4は障害部材、40は材料通過路、40fは第1通路部分、40sは第2通路部分、41は連結部、42はリング部、42aは歯部、43は障害領域、43xは材料案内部、44は内側部材、45は外側部材、5は駆動源、51は第1駆動歯車(駆動部材)、51aは第1駆動歯部、52は中間歯車、53は第2駆動歯車(駆動部材)、53aは第2駆動歯部、P1は加工空間の軸芯、maは材料通過路の孔芯、mfは第1通路部分の孔芯、msは第2通路部分の孔芯を示す。   DESCRIPTION OF SYMBOLS 1 is a base, 10 is a processing space, 11 is a 1st base, 12 is a 2nd base, P1 is an axial center, 15 is a pressurization space, 16 is a pressure receiving space, 2 is a pressurization body, 20 is a pressurization surface, 21 is Pressurizing part, 3 is a pressure receiving body, 30 is a pressure receiving surface, 31 is a pressure receiving part, 4 is an obstruction member, 40 is a material passage, 40f is a first passage part, 40s is a second passage part, 41 is a connecting part, 42 Is a ring part, 42a is a tooth part, 43 is an obstacle region, 43x is a material guide part, 44 is an inner member, 45 is an outer member, 5 is a drive source, 51 is a first drive gear (drive member), and 51a is a first part. Drive tooth portion, 52 is an intermediate gear, 53 is a second drive gear (drive member), 53a is a second drive tooth portion, P1 is an axis of a machining space, ma is a hole core of a material passage, and mf is a first passage. The hole core of the part, ms indicates the hole core of the second passage part.

Claims (7)

軸芯を有する加工空間を備える基部と、
前記基部の前記加工空間に前記軸芯に沿って前進可能に嵌合され前進により前記加圧空間の金属系の材料を加圧する加圧面を有する加圧体と、
前記加圧体の前記加圧面に所定間隔を隔てて対向するように前記基部の前記加工空間に嵌合された受圧面を有する受圧体と、
前記加工空間において前記加圧体の前記加圧面と前記受圧体の前記受圧面との間に設けられ、前記加工空間を前記加圧体側の加圧空間と前記受圧体側の前記受圧空間とに分け、且つ、前記加圧空間から前記受圧空間に向かう材料に対して障害となる障害部材とを具備しており、
前記障害部材は、
前記加圧空間と前記受圧空間とを連通させるように設けられ、かつ、前記加圧体の前進により前記加圧空間の材料を加圧しつつ、前記障害部材、前記基部および前記加圧体のうちの少なくとも一つを前記加工空間の前記軸芯に対して回動させるとき、前記加圧空間から前記受圧空間に向かう前記材料に剪断変形を与えつつ前記材料を前記受圧空間に流動させる材料通過路を備えていることを特徴とする金属材料微細化装置。
A base having a machining space having an axis;
A pressurizing body that is fitted in the processing space of the base portion so as to be able to advance along the axial center and has a pressurizing surface that pressurizes the metal-based material of the pressurizing space by advancement;
A pressure receiving body having a pressure receiving surface fitted in the processing space of the base so as to face the pressure surface of the pressure body at a predetermined interval;
The working space is provided between the pressure surface of the pressure body and the pressure receiving surface of the pressure receiving body, and the processing space is divided into a pressure space on the pressure body side and a pressure receiving space on the pressure body side. And an obstruction member that obstructs the material from the pressure space toward the pressure receiving space,
The obstacle member is
Among the obstruction member, the base, and the pressurizing body, the pressurizing space and the pressure receiving space are provided to communicate with each other and the pressurizing body is pressurized to pressurize the material of the pressurizing space. A material passage for causing the material to flow into the pressure receiving space while applying shear deformation to the material from the pressure space toward the pressure receiving space when at least one of them is rotated with respect to the axis of the processing space. A metal material miniaturization apparatus comprising:
請求項1において、前記障害部材は、前記加工空間の前記軸芯に対する軸直角方向の中央領域において、前記加圧空間内の前記材料の流れに対して障害となり得る障害領域を備えており、前記材料通過路は前記軸直角方向において前記障害部材の前記障害領域の外側に位置していることを特徴とする金属材料微細化装置。   In Claim 1, the said obstruction member is provided with an obstruction area which can become an obstacle to the flow of the material in the above-mentioned pressurization space in the central area of the axis perpendicular to the axis of the above-mentioned processing space, The metal material refinement apparatus, wherein the material passage is located outside the obstacle region of the obstacle member in the direction perpendicular to the axis. 請求項1において、前記障害部材は、前記加工空間の前記軸芯に対する軸直角方向の中央領域において、前記加圧空間内の前記材料の流れを制限して障害となり得る前記障害領域を備えており、前記障害領域における材料を前記材料通過路に向けて流動させる材料案内部が前記障害領域に設けられていることを特徴とする金属材料微細化装置。   In Claim 1, the said obstruction member is provided with the said obstruction area | region which restrict | limits the flow of the said material in the said pressurization space, and becomes an obstruction | occlusion in the center area | region of the axis orthogonal direction with respect to the said axial center of the said processing space. The metal material refinement apparatus is characterized in that a material guide for flowing the material in the obstacle region toward the material passage is provided in the obstacle region. 請求項1〜3のうちの一項において、前記加工空間の前記軸芯回りで前記障害部材、前記基部および前記加圧体のうちの少なくとも一つを回動させるための駆動源が設けられており、
前記駆動源は、前記障害部材、前記基部、前記加圧体のうちの少なくとも一つの外周部に形成された歯部に噛み合う駆動歯部を有する駆動部材と、前記歯部と前記駆動歯部との噛み合いを進行させることにより、前記障害部材、前記基部、前記加圧体のうちの少なくとも一つを前記加工空間の前記軸芯回りで回動させる駆動モータとを有することを特徴とする金属材料微細化装置。
4. The driving source for rotating at least one of the obstacle member, the base, and the pressurizing body is provided around the axis of the processing space according to claim 1. And
The drive source includes a drive member having a drive tooth portion meshing with a tooth portion formed on an outer peripheral portion of at least one of the obstacle member, the base portion, and the pressurizing body, the tooth portion, and the drive tooth portion. And a drive motor for rotating at least one of the obstruction member, the base, and the pressurizing body around the axis of the processing space by advancing the meshing of the metal. Miniaturization equipment.
請求項1〜4のうちの一項において、前記障害部材をこれの厚み方向に切断した断面において、前記材料通過路は、第1孔芯を有する第1孔部分と、前記第1孔部分の前記第1孔芯と異なる方向に傾斜する第2孔芯を備えると共に前記第1孔部分に連通する第2孔部分とを少なくとも備えていることを特徴とする金属材料微細化装置。   In one of Claims 1-4, In the cross section which cut | disconnected the said obstruction member in the thickness direction, the said material passageway is the 1st hole part which has a 1st hole core, and the said 1st hole part. A metal material refinement apparatus comprising a second hole core inclined in a different direction from the first hole core and at least a second hole portion communicating with the first hole portion. 請求項1〜4のうちの一項において、前記障害部材をこれの厚み方向に切断した断面において、前記材料通過路は、前記材料が前記加圧空間において前記障害部材に対して相対的に流れる方向と異なる方向に材料を流すように傾斜されていることを特徴とする金属材料微細化装置。   5. The cross-section obtained by cutting the obstacle member in the thickness direction of the obstacle member according to claim 1, wherein the material flows through the material relative to the obstacle member in the pressurizing space. A metal material refining apparatus, wherein the apparatus is inclined so that the material flows in a direction different from the direction. 請求項1〜4のうちの一項において、前記障害部材をこれの厚み方向に切断した断面において、前記材料通過路は、前記加工空間の前記軸芯と平行な方向に沿った孔芯を備えることを特徴とする金属材料微細化装置。   5. The cross-section obtained by cutting the obstacle member in the thickness direction thereof according to claim 1, wherein the material passage includes a hole core along a direction parallel to the axis of the processing space. A metal material refinement apparatus characterized by the above.
JP2008277983A 2008-10-29 2008-10-29 Metallic material-micronizing device Pending JP2010105005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277983A JP2010105005A (en) 2008-10-29 2008-10-29 Metallic material-micronizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277983A JP2010105005A (en) 2008-10-29 2008-10-29 Metallic material-micronizing device

Publications (1)

Publication Number Publication Date
JP2010105005A true JP2010105005A (en) 2010-05-13

Family

ID=42294963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277983A Pending JP2010105005A (en) 2008-10-29 2008-10-29 Metallic material-micronizing device

Country Status (1)

Country Link
JP (1) JP2010105005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173166A (en) * 2012-02-24 2013-09-05 Nagano Tanko Kk Method for superplastic forging of nickel-based alloy
JP2015508334A (en) * 2011-12-16 2015-03-19 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industry Foundation Torsional high strain processing method for conical metal pipes
JP2015223621A (en) * 2014-05-29 2015-12-14 荻野工業株式会社 Forging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508334A (en) * 2011-12-16 2015-03-19 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industry Foundation Torsional high strain processing method for conical metal pipes
JP2013173166A (en) * 2012-02-24 2013-09-05 Nagano Tanko Kk Method for superplastic forging of nickel-based alloy
JP2015223621A (en) * 2014-05-29 2015-12-14 荻野工業株式会社 Forging apparatus

Similar Documents

Publication Publication Date Title
CN109922917B (en) Method and apparatus for forming a channel in a workpiece
CA2668192C (en) Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
JP4462265B2 (en) Seamless pipe piercing and rolling plug, seamless pipe manufacturing apparatus, and seamless pipe manufacturing method using the same
JP5069428B2 (en) Friction stir welding equipment
EP3450082B1 (en) Devices and methods for increased wear resistance during low temperature friction stir processing
JP2008194749A (en) Twist extruding method with strain distribution control
JP2009107019A (en) Twist forward extruding method and twist forward extruding apparatus
Wang et al. Underwater friction stir welding of ultrafine grained 2017 aluminum alloy
JP2010105005A (en) Metallic material-micronizing device
Kumari et al. Friction stir welding by using counter-rotating twin tool
Sevvel et al. Effect of tool shoulder diameter to plate thickness ratio on mechanical properties and nugget zone characteristics during FSW of dissimilar Mg alloys
JP2006247734A (en) Twist-working method for hollow material
CN107099713A (en) A kind of magnesium alloy and its preparation method and application
CN109414761A (en) The method for manufacturing sintered component
CN107164674B (en) A kind of magnalium zinc gadolinium cerium alloy and its preparation method and application
JPWO2017159738A1 (en) Non-tempered steel bar
Manjunath et al. Tensile properties and tensile fracture characteristics of cast Al–Zn–Mg alloys processed by equal channel angular pressing
Jagadeesha FSW between Al alloy and Mg Alloy: the comparative study
JP4305163B2 (en) Unbiased torsion extrusion of materials
JP2005000991A (en) Twist-extruding method at high temperature for material
JP5431426B2 (en) Ni-base alloy large member, Ni-base alloy welded structure using Ni-base alloy large member, and manufacturing method thereof
CN106794548B (en) The plastic processing method of magnesium alloy
JP5616032B2 (en) High strength brass casting for sliding member and sliding member
JP4533883B2 (en) Rolling mill drive unit
JP5082867B2 (en) Method for manufacturing universal joint yoke