JP2010104874A - Gas-dissolved water supplying apparatus - Google Patents

Gas-dissolved water supplying apparatus Download PDF

Info

Publication number
JP2010104874A
JP2010104874A JP2008277260A JP2008277260A JP2010104874A JP 2010104874 A JP2010104874 A JP 2010104874A JP 2008277260 A JP2008277260 A JP 2008277260A JP 2008277260 A JP2008277260 A JP 2008277260A JP 2010104874 A JP2010104874 A JP 2010104874A
Authority
JP
Japan
Prior art keywords
oxygen
water
temperature
enriched
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008277260A
Other languages
Japanese (ja)
Other versions
JP5215126B2 (en
Inventor
Yoshiyasu Ito
良泰 伊藤
Yasunari Maeda
康成 前田
Kyoko Tsutsumi
恭子 堤
Shigeyuki Yamaguchi
重行 山口
Hitoshi Kitamura
仁史 北村
Hisanori Shibata
尚紀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008277260A priority Critical patent/JP5215126B2/en
Publication of JP2010104874A publication Critical patent/JP2010104874A/en
Application granted granted Critical
Publication of JP5215126B2 publication Critical patent/JP5215126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-dissolved water supplying apparatus with variation of the flowing rate of oxygen-enriched air due to variation of the surrounding temperature controlled. <P>SOLUTION: The gas-dissolved water supplying apparatus causes a negative pressure generated in the water flow in a water pipe 1 to act on an oxygen-enriching means 3 through introduction piping 4 to generate oxygen-enriched air, introduces the oxygen-enriched air generated by the oxygen-enriching means 3 from the introduction piping 4 into the water pipe 1, dissolves the introduced oxygen-enriched air in water in a dissolving tank 5 to generate gas-dissolved water and discharges the gas-dissolved water from a discharge outlet 7. The oxygen-enriching means 3 is provided with a temperature detecting means 32 for detecting the temperature of an oxygen-enriching membrane 31 or the temperature of the atmosphere near the oxygen-enriching membrane 31 and a heating means 33 for heating the oxygen-enriching membrane 31 or the atmosphere near the oxygen-enriching membrane 31, and the oxygen-enriching membrane 31 or the atmosphere near the oxygen-enriching membrane 31 is heated by the heating means 33 according to a temperature detected by the temperature detecting means 32 so that the temperature of the oxygen-enriching membrane 31 of the oxygen-enriching means 3 or that of the atmosphere near the oxygen-enriching membrane 31 is kept at a predetermined temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、気体溶解水供給装置に関するものである。   The present invention relates to a gas-dissolved water supply device.

従来より、酸素富化装置で生成した酸素富化空気を、浴槽の浴槽水をポンプで循環させる管路に導入して浴槽水に酸素富化空気を混入し、これを再び浴槽内に吐出する酸素富化給湯装置が知られている(例えば、特許文献1参照)。   Conventionally, oxygen-enriched air generated by an oxygen-enriching device is introduced into a pipe that circulates bathtub water in the bathtub with a pump, oxygen-enriched air is mixed into the bathtub water, and this is again discharged into the bathtub. An oxygen-enriched hot water supply apparatus is known (see, for example, Patent Document 1).

この酸素富化給湯装置は、管路に絞り部を設けてこの絞り部で生ずる負圧により酸素富化装置で生成した酸素富化空気を管路に導入している。酸素富化装置では酸素富化膜が使用されており、この酸素富化膜において酸素を選択的に透過させて酸素富化空気を生成している。酸素富化膜の特性上、環境温度によって透過流量が変動するため、上記酸素富化給湯装置では、管路に導入される酸素富化空気の流量にバラツキが生じ、このバラツキが管路のポンプ内部での気液混合比を変動させ、気体の比率が高い場合にはポンプがエアロックしてしまう等の問題が生じるおそれがあった。そこで、所望の気体流量を確保するために、真空ポンプを設け、酸素富化膜に真空ポンプによる真空圧を作用させて酸素富化空気を過剰に吸引し、全部もしくはその一部を管路に導入することが考えられる。すなわち、想定される最悪温度条件(低温条件)下でも所望の流量が得られるように流量設定しておき、高温条件下において空気が多すぎる場合には余剰空気を他へ排出することが考えられるが、真空ポンプや別経路が必要になる等のコスト高になるという問題があった。
特開2004−350932号公報
In this oxygen-enriched hot water supply apparatus, a throttle portion is provided in a pipe, and oxygen-enriched air generated by the oxygen enricher is introduced into the pipe by a negative pressure generated in the throttle. In the oxygen enrichment apparatus, an oxygen enriched film is used, and oxygen is selectively permeated through the oxygen enriched film to generate oxygen enriched air. Due to the characteristics of the oxygen-enriched membrane, the permeation flow rate varies depending on the environmental temperature. Therefore, in the oxygen-enriched hot water supply apparatus, the flow rate of oxygen-enriched air introduced into the pipe line varies, and this variation is the pump of the pipe line. When the gas-liquid mixing ratio in the interior is changed and the gas ratio is high, there is a possibility that a problem such as air lock of the pump may occur. Therefore, in order to secure a desired gas flow rate, a vacuum pump is provided, the vacuum pressure by the vacuum pump is applied to the oxygen-enriched membrane, and oxygen-enriched air is excessively sucked, and all or part of it is placed in the pipe line. It is possible to introduce. That is, it is conceivable that the flow rate is set so that a desired flow rate is obtained even under the assumed worst temperature condition (low temperature condition), and excess air is discharged to others when there is too much air under high temperature conditions. However, there is a problem that the cost becomes high, such as the need for a vacuum pump or another route.
JP 2004-350932 A

本発明は、以上のとおりの事情に鑑みてなされたものであり、環境温度の変動による酸素富化空気の流量のバラツキを抑制した気体溶解水供給装置を提供することを課題としている。   This invention is made | formed in view of the above situations, and makes it a subject to provide the gas-dissolved water supply apparatus which suppressed the dispersion | variation in the flow volume of oxygen-enriched air by the fluctuation | variation of environmental temperature.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

通水管と、通水管の途中に設けられて通水管内の水を送液し水流を発生させるポンプと、酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管と、導入配管の導入口の下流側の通水管に設けられて通水管に導入された酸素富化空気を水に溶解させる溶解タンクと、溶解タンクの下流側に設けられて気体を溶解させた水を吐出する吐出口とを備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入し、導入された酸素富化空気を溶解タンクで水に溶解して気体溶解水を生成しこれを吐出口から吐出する気体溶解水供給装置であって、前記酸素富化手段には、酸素富化膜の温度またはその近傍の雰囲気温度を検知する温度検知手段と、酸素富化膜またはその近傍の雰囲気を加熱する加熱手段が設けられており、酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度が予め設定した温度に保持されるように温度検知手段で検知した温度に応じて酸素富化膜またはその近傍の雰囲気を加熱手段で加熱する。   A water pipe, a pump provided in the middle of the water pipe to send water in the water pipe to generate a water flow, an oxygen enrichment means having an oxygen enriched membrane and generating oxygen enriched air, and the oxygen The oxygen-enriched air introduced into the water pipe installed in the water inlet pipe downstream of the inlet of the inlet pipe and the oxygen-enriched air generated by the enrichment means is dissolved in water. And a discharge port provided on the downstream side of the dissolution tank for discharging water in which gas is dissolved, and negative pressure generated in the water flow of the water pipe is applied to the oxygen enrichment means from the introduction pipe. The oxygen-enriched air generated by the oxygen-enriching means is introduced from the introduction pipe into the water pipe, and the introduced oxygen-enriched air is dissolved in water in the dissolution tank to generate gas-dissolved water, which is discharged from the discharge port. A gas-dissolved water supply device, wherein the oxygen-enriching means includes a temperature of the oxygen-enriched membrane. Or a temperature detecting means for detecting the ambient temperature in the vicinity thereof, and a heating means for heating the oxygen enriched film or the atmosphere in the vicinity thereof, and the temperature of the oxygen enriched film in the oxygen enriched means or the atmosphere in the vicinity thereof. The oxygen-enriched film or the atmosphere in the vicinity thereof is heated by the heating means according to the temperature detected by the temperature detection means so that the temperature is maintained at a preset temperature.

本発明によれば、酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度が予め設定した温度に保持されるように温度検知手段で検知した温度に応じて酸素富化膜またはその近傍の雰囲気を加熱手段で加熱するため、酸素富化手段の環境温度が変動しても、所定温度の酸素富化膜に対応した流量が確保されることになり、酸素富化空気の流量のバラツキが抑制される。そしてこの酸素富化空気の流量のバラツキが抑制されると、ポンプ内部での気液混合比の変動も抑制され、ポンプにエアロックが生じる問題がなくなり、気体溶解水供給装置を快適に駆動させることができる。また真空ポンプや余剰空気を排出する別経路を設置する必要がなくなりコスト安になるほか、真空ポンプや別経路の設置空間を確保することが不要になり、装置としての小型化設計が可能になる。   According to the present invention, the oxygen-enriched film or the oxygen-enriched film according to the temperature detected by the temperature detecting means so that the temperature of the oxygen-enriched film of the oxygen-enriched means or the ambient temperature in the vicinity thereof is maintained at a preset temperature. Since the surrounding atmosphere is heated by the heating means, even if the environmental temperature of the oxygen enrichment means fluctuates, a flow rate corresponding to the oxygen enriched film at a predetermined temperature is secured, and the flow rate of the oxygen enriched air is reduced. Variation is suppressed. When the variation in the flow rate of the oxygen-enriched air is suppressed, the fluctuation of the gas-liquid mixing ratio inside the pump is also suppressed, and there is no problem of causing an air lock in the pump, and the gas dissolved water supply device is driven comfortably. be able to. In addition, it is not necessary to install a vacuum pump or a separate path for exhausting excess air, and the cost is reduced, and it is not necessary to secure a space for installing the vacuum pump or another path, and the device can be downsized. .

本発明は前記のとおりの特徴をもつものであるが、以下に、本発明を実施するための最良の形態を説明する。   The present invention has the features as described above. The best mode for carrying out the present invention will be described below.

図1は、本発明の一実施形態である浴槽用の気体溶解水供給装置の概略構成図である。   Drawing 1 is a schematic structure figure of the gas dissolution water supply device for bathtubs which is one embodiment of the present invention.

浴槽9の側壁には、吸入口6と吐出口7が設けられており、吸入口6において浴槽9内の浴槽水Wを吸入し、吐出口7においてその浴槽水Wに酸素富化空気を溶解させた気体溶解水を吐出するようになっている。   A suction port 6 and a discharge port 7 are provided on the side wall of the bathtub 9, and the bathtub water W in the bathtub 9 is sucked into the suction port 6, and oxygen-enriched air is dissolved in the bathtub water W at the discharge port 7. The dissolved gas dissolved water is discharged.

吸入口6と吐出口7は浴槽9の外部に配設された浴槽水循環用の通水管1で連通されており、その通水管1の途中にはポンプ2が配設され、ポンプ2の駆動により浴槽9内の浴槽水Wを吸入口6から吸入し、通水管1を経由して吐出口7から浴槽9内に吐出するようになっている。   The suction port 6 and the discharge port 7 are connected to each other by a water pipe 1 for bath water circulation disposed outside the bath 9, and a pump 2 is disposed in the middle of the water pipe 1. Bath water W in the bathtub 9 is sucked from the suction port 6 and discharged from the discharge port 7 into the bathtub 9 through the water conduit 1.

ポンプ2の上流側の通水管1には気体導入部8が設けられ、この気体導入部8に導入配管4が接続されている。さらに、この導入配管4の上流側には酸素富化手段3が配設されており、酸素富化手段3で作り出された酸素富化空気が導入配管4を経由して気体導入部8から通水管1に導入されるようになっている。   A gas introduction part 8 is provided in the water flow pipe 1 on the upstream side of the pump 2, and an introduction pipe 4 is connected to the gas introduction part 8. Further, an oxygen enrichment means 3 is disposed upstream of the introduction pipe 4, and oxygen-enriched air produced by the oxygen enrichment means 3 passes from the gas introduction section 8 via the introduction pipe 4. It is introduced into the water pipe 1.

酸素富化手段3は、窒素と酸素を分離して酸素を選択的に透過させる酸素富化膜31で構成されており、大気圧よりも低い負圧をこの酸素富化膜31の酸素が透過する側(酸素富化膜31の下流側)に作用させることにより酸素富化膜31の上流側の空気から酸素が選択的に多く取り込まれて相対的に酸素濃度の高い空気(酸素富化空気)が生成されるようになっている。酸素富化膜31の近傍には透過しにくい窒素が富化された空気が滞留する。このため本実施形態では酸素富化膜31の表面を換気する換気ファン34が設けられている。   The oxygen-enriching means 3 is composed of an oxygen-enriched film 31 that separates nitrogen and oxygen and selectively permeates oxygen, and oxygen in the oxygen-enriched film 31 permeates a negative pressure lower than atmospheric pressure. By acting on the side (downstream of the oxygen-enriched film 31), oxygen is selectively taken in from the air upstream of the oxygen-enriched film 31 and air having a relatively high oxygen concentration (oxygen-enriched air) ) Is generated. In the vicinity of the oxygen-enriched film 31, air enriched with nitrogen that is difficult to permeate stays. For this reason, in this embodiment, the ventilation fan 34 which ventilates the surface of the oxygen enrichment film | membrane 31 is provided.

この酸素富化膜31は一般に次のような特性を有している。すなわち、酸素富化膜31に作用させる負圧を一定とした場合、酸素富化膜31の温度が高くなればその透過流量は増大し、酸素富化膜31透過後の空気の酸素濃度は低下する。逆に温度が低くなれば透過流量が低下し、酸素富化膜31透過後の空気の酸素濃度は高くなる。そして酸素富化膜31透過後の空気の酸素濃度と透過流量との積で決定される酸素富化空気の供給量は、一般的に温度が高いほど増大する傾向にある。したがって、酸素富化膜31近傍の環境温度が変動すると、酸素富化膜31の透過流量が変動して酸素富化空気の流量が変動する。   This oxygen-enriched film 31 generally has the following characteristics. That is, when the negative pressure applied to the oxygen-enriched film 31 is constant, the permeate flow rate increases as the temperature of the oxygen-enriched film 31 increases, and the oxygen concentration of air after permeating the oxygen-enriched film 31 decreases. To do. On the contrary, if the temperature is lowered, the permeation flow rate is lowered, and the oxygen concentration of the air after permeating the oxygen-enriched film 31 is increased. The supply amount of oxygen-enriched air determined by the product of the oxygen concentration of the air after permeating the oxygen-enriched film 31 and the permeation flow rate generally tends to increase as the temperature increases. Therefore, when the environmental temperature in the vicinity of the oxygen-enriched film 31 varies, the permeate flow rate of the oxygen-enriched film 31 varies and the flow rate of oxygen-enriched air varies.

そこで、本実施形態では、図1に示すように、酸素富化膜31の温度またはその近傍の雰囲気温度を検知する温度検知手段32と、酸素富化膜31またはその近傍の雰囲気を加熱する加熱手段33を設けて、酸素富化手段3の酸素富化膜31の温度またはその近傍の雰囲気温度が予め設定した温度に保持されるようにしている。   Therefore, in the present embodiment, as shown in FIG. 1, the temperature detection means 32 for detecting the temperature of the oxygen-enriched film 31 or the ambient temperature in the vicinity thereof, and the heating for heating the oxygen-enriched film 31 or the atmosphere in the vicinity thereof. Means 33 is provided so that the temperature of the oxygen-enriched film 31 of the oxygen-enriching means 3 or the ambient temperature in the vicinity thereof is maintained at a preset temperature.

温度検知手段32は、例えば、サーミスタ321で構成され、酸素富化膜31および換気ファン34を収納するケース35の内部に設置されて酸素富化膜31近傍の雰囲気温度を常時検知するようになっている。加熱手段33は、例えば、電熱線、ランプやPTC等のヒータ331で構成され、上記サーミスタ321と同様にケース35の内部に設置されており、サーミスタ321およびヒータ331と電気的に接続されている制御部によってサーミスタ321で検知した温度に応じて酸素富化膜31またはその近傍の雰囲気をヒータ331で加熱するようにしている。なお、サーミスタ321およびヒータ331はそれぞれ酸素富化手段3の酸素富化膜31近傍に設置され、酸素富化膜31やその近傍の雰囲気温度を検知し加熱することができれば、それらの設置箇所は上記の箇所に限定されるものではない。   The temperature detection means 32 is composed of, for example, a thermistor 321 and is installed inside a case 35 that houses the oxygen-enriched film 31 and the ventilation fan 34, and always detects the ambient temperature in the vicinity of the oxygen-enriched film 31. ing. The heating means 33 is composed of, for example, a heater 331 such as a heating wire, a lamp, or a PTC, and is installed inside the case 35 similarly to the thermistor 321, and is electrically connected to the thermistor 321 and the heater 331. The oxygen enriched film 31 or the atmosphere in the vicinity thereof is heated by the heater 331 according to the temperature detected by the thermistor 321 by the control unit. The thermistor 321 and the heater 331 are each installed in the vicinity of the oxygen-enriched film 31 of the oxygen-enriching means 3, and if the oxygen-enriched film 31 and the ambient temperature in the vicinity thereof can be detected and heated, their installation locations are It is not limited to the above location.

設定温度は、好ましくは酸素富化手段3が設置される屋内よりも高い温度、例えば、40℃〜50℃の間の一定温度に設定しておくことが好ましい。これによって、ヒータ331の電源のオン/オフで温度コントロールが可能になるからである。仮に50℃に設定した場合、サーミスタ321で検知した温度が50℃未満であれば、検知温度が50℃になるまでヒータ331の電源をオン状態にしてケース35内部を加熱して酸素富化膜31の温度またはその近傍の雰囲気温度を上げるようにする。そして検知温度が50℃になればヒータ331の電源をオフ状態にする。これを繰り返すことで酸素富化手段3の酸素富化膜31の温度またはその近傍の雰囲気温度を一定範囲内で温度コントロールが可能になる。酸素富化空気の供給量は、その温度範囲内の酸素富化膜31に対応した流量になるため、酸素富化空気の流量のバラツキが抑制される。   The set temperature is preferably set to a temperature higher than the room where the oxygen enriching means 3 is installed, for example, a constant temperature between 40 ° C. and 50 ° C. This is because the temperature can be controlled by turning the heater 331 on / off. If the temperature detected by the thermistor 321 is less than 50 ° C. when set to 50 ° C., the heater 331 is turned on to heat the inside of the case 35 until the detected temperature reaches 50 ° C. The temperature of 31 or the ambient temperature in the vicinity thereof is raised. When the detected temperature reaches 50 ° C., the heater 331 is turned off. By repeating this, the temperature of the oxygen-enriched film 31 of the oxygen-enriching means 3 or the ambient temperature in the vicinity thereof can be controlled within a certain range. Since the supply amount of oxygen-enriched air becomes a flow rate corresponding to the oxygen-enriched film 31 within the temperature range, variation in the flow rate of oxygen-enriched air is suppressed.

通水管1の気体導入部8はエジェクタ構造となっており、ポンプ2の駆動により発生した水流が通過すると負圧が発生し、この負圧を導入配管4から酸素富化手段3の酸素富化膜31に作用させることで、酸素富化手段3で生成された酸素富化空気を導入配管4から通水管1に導入するようにしている。通水管1に酸素富化空気が導入されると、通水管1内を流れる浴槽水Wに酸素富化空気が混入して気液混合水が生成する。この気液混合水は通水管1に導入される酸素富化空気の流量のバラツキが抑制されることによりポンプ2にエアロックが生じるような高い気体比率とはならない。   The gas introduction part 8 of the water flow pipe 1 has an ejector structure. When the water flow generated by driving the pump 2 passes, a negative pressure is generated, and this negative pressure is supplied from the introduction pipe 4 to the oxygen enrichment means 3. By acting on the membrane 31, the oxygen-enriched air generated by the oxygen enriching means 3 is introduced from the introduction pipe 4 to the water pipe 1. When oxygen-enriched air is introduced into the water conduit 1, the oxygen-enriched air is mixed into the bathtub water W flowing through the water conduit 1 to generate gas-liquid mixed water. This gas-liquid mixed water does not have such a high gas ratio that an air lock is generated in the pump 2 by suppressing variations in the flow rate of the oxygen-enriched air introduced into the water pipe 1.

ポンプ2と吐出口7の間の通水管1には溶解タンク5が配設されており、溶解タンク5内において蛇行した経路に気液混合水を通過させたり、気液混合水を攪拌したりすることで浴槽水Wに酸素富化空気を溶解させて気体溶解水を生成している。   A dissolution tank 5 is disposed in the water pipe 1 between the pump 2 and the discharge port 7, and the gas-liquid mixed water is passed through a meandering path in the dissolution tank 5 or the gas-liquid mixed water is stirred. Thus, oxygen-enriched air is dissolved in the bathtub water W to generate gas-dissolved water.

溶解タンク5で生成された気体溶解水は、吐出口7から浴槽9内に吐出される。   The dissolved gas produced in the dissolution tank 5 is discharged from the discharge port 7 into the bathtub 9.

以上の構成の気体溶解水供給装置は、ポンプ2にエアロックが生じる問題がなく、快適に駆動させることができる。また、酸素富化空気の流量のバラツキの抑制にあたり、真空ポンプや余剰空気を排出する別経路を設置する必要がなくコスト安になるほか、真空ポンプや別経路の設置空間を確保することも不要になり、装置としての小型化設計が可能になる。   The gas-dissolved water supply device having the above-described configuration can be driven comfortably without the problem of air lock in the pump 2. In addition, it is not necessary to install a vacuum pump or a separate route for exhausting excess air to reduce the variation in the flow rate of oxygen-enriched air, and it is not necessary to secure a space for installing the vacuum pump or another route. Therefore, it is possible to design the device as a small size.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。例えば、本発明の気体溶解水供給装置を浴槽に適用した場合を説明したが、シャワー装置等に適用してもよい。シャワー装置に適用する場合には、例えば、通水管を水道管に連結して水道管からの水道水に酸素富化空気を導入し、溶解タンクを経てシャワーヘッドから気体溶解水を吐出するようにしてもよい。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, although the case where the gas-dissolved water supply device of the present invention is applied to a bathtub has been described, it may be applied to a shower device or the like. When applied to a shower device, for example, a water pipe is connected to a water pipe, oxygen-enriched air is introduced into the tap water from the water pipe, and gas dissolved water is discharged from the shower head through the dissolution tank. May be.

本発明の一実施形態である浴槽用の気体溶解水供給装置の概略構成図である。It is a schematic block diagram of the gas dissolved water supply apparatus for bathtubs which is one Embodiment of this invention.

符号の説明Explanation of symbols

1 通水管
2 ポンプ
3 酸素富化手段
31 酸素富化膜
32 温度検知手段
321 サーミスタ
33 加熱手段
331 ヒータ
34 換気ファン
35 ケース
4 導入配管
5 溶解タンク
6 吸入口
7 吐出口
8 気体導入部
9 浴槽
W 浴槽水
DESCRIPTION OF SYMBOLS 1 Water pipe 2 Pump 3 Oxygen enrichment means 31 Oxygen enrichment film 32 Temperature detection means 321 Thermistor 33 Heating means 331 Heater 34 Ventilation fan 35 Case 4 Introducing piping 5 Dissolution tank 6 Intake port 7 Discharge port 8 Gas introduction part 9 Bathtub W Bathtub water

Claims (1)

通水管と、通水管の途中に設けられて通水管内の水を送液し水流を発生させるポンプと、酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管と、導入配管の導入口の下流側の通水管に設けられて通水管に導入された酸素富化空気を水に溶解させる溶解タンクと、溶解タンクの下流側に設けられて気体を溶解させた水を吐出する吐出口とを備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入し、導入された酸素富化空気を溶解タンクで水に溶解して気体溶解水を生成しこれを吐出口から吐出する気体溶解水供給装置であって、前記酸素富化手段には、酸素富化膜の温度またはその近傍の雰囲気温度を検知する温度検知手段と、酸素富化膜またはその近傍の雰囲気を加熱する加熱手段が設けられており、酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度が予め設定した温度に保持されるように温度検知手段で検知した温度に応じて酸素富化膜またはその近傍の雰囲気を加熱手段で加熱することを特徴とする気体溶解水供給装置。   A water pipe, a pump provided in the middle of the water pipe to send water in the water pipe to generate a water flow, an oxygen enrichment means having an oxygen enriched membrane and generating oxygen enriched air, and the oxygen The oxygen-enriched air introduced into the water pipe installed in the water inlet pipe downstream of the inlet of the inlet pipe and the oxygen-enriched air generated by the enrichment means is dissolved in water. And a discharge port provided on the downstream side of the dissolution tank for discharging water in which gas is dissolved, and negative pressure generated in the water flow of the water pipe is applied to the oxygen enrichment means from the introduction pipe. The oxygen-enriched air generated by the oxygen-enriching means is introduced from the introduction pipe into the water pipe, and the introduced oxygen-enriched air is dissolved in water in the dissolution tank to generate gas-dissolved water, which is discharged from the discharge port. A gas-dissolved water supply device, wherein the oxygen-enriching means includes a temperature of the oxygen-enriched membrane. Or a temperature detecting means for detecting the ambient temperature in the vicinity thereof, and a heating means for heating the oxygen enriched film or the atmosphere in the vicinity thereof, and the temperature of the oxygen enriched film in the oxygen enriched means or the atmosphere in the vicinity thereof. A gas-dissolved water supply apparatus, wherein an oxygen-enriched film or an atmosphere in the vicinity thereof is heated by a heating means in accordance with the temperature detected by the temperature detection means so that the temperature is maintained at a preset temperature.
JP2008277260A 2008-10-28 2008-10-28 Gas dissolved water supply device Expired - Fee Related JP5215126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277260A JP5215126B2 (en) 2008-10-28 2008-10-28 Gas dissolved water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277260A JP5215126B2 (en) 2008-10-28 2008-10-28 Gas dissolved water supply device

Publications (2)

Publication Number Publication Date
JP2010104874A true JP2010104874A (en) 2010-05-13
JP5215126B2 JP5215126B2 (en) 2013-06-19

Family

ID=42294856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277260A Expired - Fee Related JP5215126B2 (en) 2008-10-28 2008-10-28 Gas dissolved water supply device

Country Status (1)

Country Link
JP (1) JP5215126B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066387A (en) * 2003-08-25 2005-03-17 Mdk:Kk Apparatus for preparing oxygen-enriched water
JP2005147501A (en) * 2003-11-14 2005-06-09 Matsushita Electric Ind Co Ltd Hot-water heating apparatus
JP2005195221A (en) * 2004-01-06 2005-07-21 Matsushita Electric Ind Co Ltd Air-conditioner
JP2006136655A (en) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd Microbubble generating bathtub

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066387A (en) * 2003-08-25 2005-03-17 Mdk:Kk Apparatus for preparing oxygen-enriched water
JP2005147501A (en) * 2003-11-14 2005-06-09 Matsushita Electric Ind Co Ltd Hot-water heating apparatus
JP2005195221A (en) * 2004-01-06 2005-07-21 Matsushita Electric Ind Co Ltd Air-conditioner
JP2006136655A (en) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd Microbubble generating bathtub

Also Published As

Publication number Publication date
JP5215126B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5466817B2 (en) Ozone water production equipment
JP2018034147A (en) Water feeding pump-less hydrogen water manufacturing apparatus and hydrogen water manufacturing method
JP2007167856A (en) Air diffusion device
JP2005081203A (en) Air diffuser and air diffusion system
JPH09162118A (en) Deaerator of treatment liquid for substrate
JP5215126B2 (en) Gas dissolved water supply device
JP2018517456A5 (en)
JP5266015B2 (en) Oxygen-enriched air introduction device
JP2011078858A (en) Method for generating microbubble and microbubble generator
JP2009106352A (en) Oxygen-enriched air supplying apparatus
JP2010104873A (en) Oxygen-enriched air introducing apparatus
JP7274407B2 (en) Water heater
CN109046057B (en) Microbubble device and water heater
JP2006102304A (en) Oxygen enrichment warm-water supplying apparatus
JP2003236353A (en) Apparatus for producing ozonized water
JP2005055101A (en) Hot water supply device
JP2005199166A (en) Oxygen enriching apparatus
JP2007136349A (en) Porous membrane type air cleaner
JP7260348B2 (en) Aeration system and method of operating the aeration system
JP2006064271A (en) Oxygen enrichment hot water supply apparatus
JP2010051842A (en) Oxygen enrichment device
JP4374920B2 (en) Oxygen-enriched water heater
JP2005110913A (en) Oxygen enriched hot water supply device
JP2006006682A (en) Oxygen enriching hot-water supply apparatus
JP6425067B2 (en) Membrane separation activated sludge treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120418

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees