JP2010104360A - Method for judging gene polymorph - Google Patents

Method for judging gene polymorph Download PDF

Info

Publication number
JP2010104360A
JP2010104360A JP2009164468A JP2009164468A JP2010104360A JP 2010104360 A JP2010104360 A JP 2010104360A JP 2009164468 A JP2009164468 A JP 2009164468A JP 2009164468 A JP2009164468 A JP 2009164468A JP 2010104360 A JP2010104360 A JP 2010104360A
Authority
JP
Japan
Prior art keywords
polymorphism
determination
allele
reaction
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009164468A
Other languages
Japanese (ja)
Other versions
JP5532713B2 (en
Inventor
Toru Harada
亨 原田
Kazuya Kawakami
一弥 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009164468A priority Critical patent/JP5532713B2/en
Publication of JP2010104360A publication Critical patent/JP2010104360A/en
Application granted granted Critical
Publication of JP5532713B2 publication Critical patent/JP5532713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for judging gene polymorph, capable of accurately judging the mating type of polymorph part without concerning to the DNA amount. <P>SOLUTION: The method for judging the mating type of the gene polymorph comprises performing invader reaction generating a first fluorescence derived from a first oligonucleotide and a second fluorescence derived from a second oligonucleotide by mixing the target DNA with the first oligonucleotide complementary to the target sequence containing a first allele composing the gene polymorph of the target DNA and the second oligonucleotide complementary to the target sequence containing a second allele forming the gene polymorph and controlling the temperature, approximating the curves representing temporal changes of the first and second fluorescence intensities at the predetermined judging section after the reaction start are approximated by quadratic equations, respectively, and using the ratio of the secondary coefficient of the first and second secondary approximation formulae as the judging index, or performing secondary differentiation of each of the curves representing temporal changes of the first and second fluorescence intensities and using the ratio of the maximum values of the first and second secondary differentiation values as the judging index. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ゲノムDNAの遺伝子多型を判定するための方法に関し、特に、インベーダー反応を利用した遺伝子多型を判定するための方法に関する。   The present invention relates to a method for determining a genetic polymorphism of genomic DNA, and more particularly to a method for determining a genetic polymorphism using an invader reaction.

遺伝子多型とは、遺伝子を構成しているDNAの塩基配列の個体差であり、一般には集団の1%以上の頻度で出現するものと定義されている。遺伝子多型としては、DNA塩基配列の一塩基のみが変異する一塩基多型(SNP:single nucleotide polymorphism)の他、2から4塩基程度の一単位の繰り返し数の差であるマイクロサテライト多型(microsatellite polymorphism)、塩基の欠損、挿入がある。遺伝子多型には、病気の罹り易さや薬物代謝等に影響を及ぼすものがあることが知られており、病気罹患率の診断や投与薬物の効果、副作用の予測等のためにSNP部位の塩基の判別が行われている。   A gene polymorphism is an individual difference in the base sequence of DNA constituting a gene, and is generally defined to occur at a frequency of 1% or more of a population. In addition to single nucleotide polymorphism (SNP: single nucleotide polymorphism) in which only one base of a DNA base sequence is mutated, the gene polymorphism is a microsatellite polymorphism that is the difference in the number of repeating units of about 2 to 4 bases ( microsatellite polymorphism), base deficiency, insertion. It is known that some gene polymorphisms affect the susceptibility to illness and drug metabolism. The base of the SNP site is used for diagnosing the disease morbidity, the effect of the administered drug, and predicting side effects. Is being determined.

遺伝子多型を判定する方法の一つにインベーダー反応を用いた方法がある。インベーダー反応では、例えば一塩基多型の接合型を判定する場合、一塩基多型が生じている部位(SNP部位)の塩基配列を認識する2種類のオリゴヌクレオチド(アレルオリゴ)、SNP部位において判定対象遺伝子にハイブリダイズしたアレルオリゴと判定対象遺伝子の間に侵入するオリゴヌクレオチド(インベーダーオリゴ)、オリゴヌクレオチドが重なり合った構造(侵入構造)を認識して切断する酵素(クリベース:登録商標)、SNPを構成する2種類のアレルに対応した異なる蛍光物質を含む2種類のフレットプローブ(FRETTMプローブ)を含むインベーダー反応試薬が用いられる。 One method for determining genetic polymorphism is to use an invader reaction. In the invader reaction, for example, when judging the single nucleotide polymorphism junction type, two types of oligonucleotides (allele oligos) that recognize the nucleotide sequence of the site where the single nucleotide polymorphism occurs (SNP site) are subject to determination at the SNP site. Constructs an SNP comprising an allele oligo hybridized to a gene and an oligonucleotide (invader oligo) that invades between the gene to be judged, an enzyme that recognizes and cleaves the structure where the oligonucleotide overlaps (invasion structure) (Crybase: registered trademark) An invader reaction reagent containing two types of fret probes (FRET probes) containing different fluorescent substances corresponding to two types of alleles is used.

前記インベーダー反応試薬を判定対象のSNPを含むDNAと混合してインベーダー反応を実行させると、各アレルオリゴに対応するSNPの有無に応じて蛍光信号が発生する。この蛍光信号の強度を蛍光検出器によって検出することにより、各アレルオリゴに対応したSNPの有無や、そのSNPがホモ接合体であるかヘテロ接合体であるかを判定することができる(特許文献1、特許文献2参照)。   When the invader reaction reagent is mixed with DNA containing the SNP to be determined and the invader reaction is performed, a fluorescence signal is generated depending on the presence or absence of the SNP corresponding to each allele oligo. By detecting the intensity of the fluorescence signal with a fluorescence detector, it is possible to determine the presence or absence of an SNP corresponding to each allele oligo and whether the SNP is a homozygote or a heterozygote (Patent Document 1). , See Patent Document 2).

特開2002-300894号公報Japanese Patent Laid-Open No. 2002-300894 WO 2006/106867 A1WO 2006/106867 A1

反応試薬には過剰なアレルオリゴやフレットプローブが含まれており、過剰なアレルオリゴ等によってインベーダー反応は繰り返され、これにより蛍光信号が増幅される。従って、蛍光検出器によって検出される蛍光信号強度は反応開始から徐々に上昇し、やがてプラトーに達する。このため、従来は反応開始から特定の時間が経過した時点における蛍光信号強度や、蛍光信号強度がプラトーに到達するまでの時間とそのときの蛍光信号強度等からSNPの判定を行っていた。   The reaction reagent contains an excessive allele oligo or fret probe, and the invader reaction is repeated by the excessive allele oligo or the like, thereby amplifying the fluorescence signal. Therefore, the fluorescence signal intensity detected by the fluorescence detector gradually increases from the start of the reaction and eventually reaches a plateau. For this reason, conventionally, the SNP is determined from the fluorescence signal intensity when a specific time has elapsed from the start of the reaction, the time until the fluorescence signal intensity reaches the plateau, the fluorescence signal intensity at that time, and the like.

ところが、特定の時点における蛍光信号強度は、DNA量やインベーダー反応効率の違い等、様々な要因によって変動する。また、蛍光信号強度のプラトー到達は、単位時間当たりの信号強度変化値(信号強度曲線の傾き)から判定しているが、DNA量が少ないとインベーダー反応の立ち上がりが悪く、プラトー到達の判定に誤差が生じやすい。インベーダー反応時間を長くすれば、DNA量に関係なくプラトー到達時間を正確に判定することができるが、この場合はSNPの判定までに要する時間が長くなる。
また、判定対象のDNAに存在しないアレルに対応する蛍光信号は本来は検出されないはずであるが、非特異的な反応によって判定対象のDNAに存在しないアレルに対応する蛍光信号強度が上昇することがある。このような場合に、特定時点の蛍光信号強度に基づきSNP判定を行うと、誤判定する可能性が大きい。
However, the fluorescence signal intensity at a specific time varies depending on various factors such as a difference in DNA amount and invader reaction efficiency. In addition, the arrival of the fluorescence signal intensity at the plateau is determined from the change in signal intensity per unit time (the slope of the signal intensity curve). Is likely to occur. If the invader reaction time is increased, the plateau arrival time can be accurately determined regardless of the amount of DNA, but in this case, the time required for determination of SNP is increased.
In addition, fluorescent signals corresponding to alleles not present in the DNA to be judged should not be detected originally, but the intensity of fluorescent signals corresponding to alleles not present in the DNA to be judged may increase due to non-specific reactions. is there. In such a case, if the SNP determination is performed based on the fluorescence signal intensity at a specific time, there is a high possibility of erroneous determination.

本発明が解決しようとする課題は、判定対象のDNA量に関係なく多型部位の接合型を正確に判定することができる遺伝子多型判定方法を提供することである。   The problem to be solved by the present invention is to provide a gene polymorphism determination method capable of accurately determining the polymorphic site junction type regardless of the amount of DNA to be determined.

上記課題を解決するために成された本発明に係る遺伝子多型判定方法の第1の形態は、標的DNAを、前記標的DNAの遺伝子多型を構成する第1のアレルを含む標的配列と相補的な第1のオリゴヌクレオチド及び前記遺伝子多型を構成する第2のアレルを含む標的配列と相補的な第2のオリゴヌクレオチドと混合して温度制御することにより、前記第1のオリゴヌクレオチドに由来する第1の蛍光及び前記第2のオリゴヌクレオチドに由来する第2の蛍光を発生させるインベーダー反応を行い、前記第1及び/または第2の蛍光強度より前記遺伝子多型のアレル接合型を判定する方法であって、
前記インベーダー反応開始後の所定の判定区間における前記第1及び前記第2の蛍光強度の経時変化を表す曲線をそれぞれ2次式で近似し、当該第1及び第2の2次近似式の2次係数の比を判定指標として遺伝子多型の接合型を判定することを特徴とする。
The first form of the genetic polymorphism determination method according to the present invention, which has been made to solve the above-mentioned problems, is to complement a target DNA with a target sequence comprising a first allele constituting the genetic polymorphism of the target DNA. Derived from the first oligonucleotide by controlling the temperature by mixing with a second oligonucleotide complementary to the target sequence containing the target first oligonucleotide and the second allele constituting the gene polymorphism Performing an invader reaction for generating first fluorescence and second fluorescence derived from the second oligonucleotide, and determining the allele junction type of the gene polymorphism from the first and / or second fluorescence intensity A method,
Curves representing temporal changes in the first and second fluorescence intensities in a predetermined determination section after the start of the invader reaction are approximated by a quadratic expression, respectively, and the second order of the first and second quadratic approximate expressions. It is characterized in that a genetic polymorphism junction type is determined using a coefficient ratio as a determination index.

また、本発明の遺伝子多型判定方法の第2の形態は、標的DNAを、前記標的DNAの遺伝子多型を構成する第1のアレルを含む標的配列と相補的な第1のオリゴヌクレオチド及び前記遺伝子多型を構成する第2のアレルを含む標的配列と相補的な第2のオリゴヌクレオチドと混合して温度制御することにより、前記第1のオリゴヌクレオチドに由来する第1の蛍光及び前記第2のオリゴヌクレオチドに由来する第2の蛍光を発生させるインベーダー反応を行い、前記第1及び/または第2の蛍光強度より前記遺伝子多型のアレル接合型を判定する方法であって、
前記インベーダー反応開始後の所定の判定区間における前記第1及び前記第2の蛍光強度の経時変化を表す曲線をそれぞれ2次微分し、当該第1及び第2の2次微分値の最大値の比を判定指標として遺伝子多型の接合型を判定することを特徴とする。
The second form of the gene polymorphism determination method of the present invention is the first oligonucleotide complementary to the target sequence containing the first allele constituting the gene polymorphism of the target DNA and the target oligonucleotide By mixing with a second oligonucleotide complementary to a target sequence containing a second allele that constitutes a gene polymorphism and controlling the temperature, the first fluorescence derived from the first oligonucleotide and the second Performing an invader reaction that generates second fluorescence derived from the oligonucleotide of the above, and determining the allelic junction type of the gene polymorphism from the first and / or second fluorescence intensity,
The curves representing the time-dependent changes in the first and second fluorescence intensities in the predetermined determination section after the start of the invader reaction are respectively second-order differentiated, and the ratio of the maximum values of the first and second second-order derivative values. It is characterized in that a genetic polymorphism junction type is determined using as a determination index.

この場合、前記標的DNAの判定指標を内部標準DNAの判定指標で正規化し、正規化後の判定指標に基づき遺伝子多型の接合型を判定しても良い。ここで、内部標準DNAとは、判定対象多型部位とは異なる多型部位であってヘテロ接合型である多型部位を持つDNAをいう。
また、前記第1及び第2の蛍光強度の経時変化を表す曲線の1次微分値が最大となるときを前記判定区間の終期とすることが好ましい。
In this case, the determination index of the target DNA may be normalized with the determination index of the internal standard DNA, and the genetic polymorphism mating type may be determined based on the normalized determination index. Here, the internal standard DNA refers to a DNA having a polymorphic site that is a polymorphic site different from the polymorphic site to be determined and is heterozygous.
In addition, it is preferable that the end of the determination interval is a time when the first-order differential value of the curve representing the temporal change in the first and second fluorescence intensities is maximized.

ところで、インベーダー反応は、インベーダー反応試薬と標的DNAを含むサンプルとを混合し、この混合液をインベーダー反応の至適温度に維持することにより行われる。蛍光強度は温度依存性を有しており、一般に温度が上昇すると蛍光強度が低下する。このため、従来は、インベーダー反応の至適温度に到達する前の蛍光強度を含む蛍光強度曲線からその傾きが予め設定された閾値以下になる点を求め、判定区間の開始点としていた。
ところが、実際にはインベーダー反応は至適温度に近づくと開始するため、反応開始点付近の蛍光強度の変化は混合液中の標的DNA量にも依存することになる。混合液中の標的DNA量は、サンプル中の標的DNA濃度、インベーダー反応試薬やサンプルの分注精度等によって変動する。このため、蛍光強度曲線の傾きと閾値との比較から単純に判定区間の開始点を決定することは難しかった。
そこで、本発明の遺伝子多型判定方法では、第1及び第2の蛍光強度を発生させるインベーダー反応の反応系が所定の反応温度に到達したときを前記判定区間の始期とする。ここで、所定の反応温度とは、インベーダー反応が実際に開始する温度をいい、インベーダー反応の至適温度、或いは至適温度付近の適宜の温度に設定することができる。このような方法によれば、標的DNA濃度や分注精度等に関係なく判定区間の始期を正確に決定することができる。
By the way, the invader reaction is performed by mixing an invader reaction reagent and a sample containing a target DNA, and maintaining this mixed solution at an optimum temperature for the invader reaction. The fluorescence intensity has temperature dependence, and generally the fluorescence intensity decreases as the temperature increases. For this reason, conventionally, a point at which the slope is equal to or less than a preset threshold value is obtained from a fluorescence intensity curve including the fluorescence intensity before reaching the optimum temperature of the invader reaction, and is used as the starting point of the determination section.
However, since the invader reaction actually starts when it approaches the optimum temperature, the change in the fluorescence intensity near the reaction start point also depends on the amount of target DNA in the mixture. The amount of target DNA in the mixture varies depending on the target DNA concentration in the sample, the invader reaction reagent, the accuracy of sample dispensing, and the like. For this reason, it is difficult to simply determine the start point of the determination section from the comparison between the slope of the fluorescence intensity curve and the threshold value.
Therefore, in the gene polymorphism determination method of the present invention, the time when the reaction system of the invader reaction that generates the first and second fluorescence intensities reaches a predetermined reaction temperature is set as the beginning of the determination section. Here, the predetermined reaction temperature refers to a temperature at which the invader reaction actually starts, and can be set to an optimum temperature for the invader reaction or an appropriate temperature in the vicinity of the optimum temperature. According to such a method, it is possible to accurately determine the start period of the determination interval regardless of the target DNA concentration, dispensing accuracy, and the like.

本発明の遺伝子多型判定方法によれば、標的DNAの量が少なく、インベーダー反応の立ち上がりが悪いときでも、DNA量を反映した判定指標に基づき遺伝子多型の接合型を判定することができる。また、標的DNAの遺伝子多型を構成する第1及び第2のアレルを含む標的配列に対応する第1及び第2の蛍光強度の経時変化を表す曲線からそれぞれ求めた2次係数の比、或いは2次微分値の最大値の比を判定指標としたため、非特異的な反応による蛍光強度の変化が判定指標に及ぼす影響を小さくすることができる。従って、より正確な判定を行うことができる。   According to the gene polymorphism determination method of the present invention, even when the amount of target DNA is small and the rise of the invader reaction is poor, the mating type of the gene polymorphism can be determined based on the determination index reflecting the DNA amount. Further, the ratio of the secondary coefficients obtained from the curves representing the time-dependent changes in the first and second fluorescence intensities corresponding to the target sequences including the first and second alleles constituting the gene polymorphism of the target DNA, or Since the ratio of the maximum value of the secondary differential values is used as the determination index, the influence of the change in the fluorescence intensity due to the nonspecific reaction on the determination index can be reduced. Therefore, more accurate determination can be performed.

本発明に係るインベーダー反応の概略図。Schematic of the invader reaction according to the present invention. インベーダープラス法の概略図。Schematic of the Invader Plus method. 2種類の標識蛍光による蛍光強度の経時変化を示す図。The figure which shows the time-dependent change of the fluorescence intensity by two types of label | marker fluorescence. アレル1の蛍光信号強度曲線の1次微分値の経時変化を蛍光信号強度の経時変化と共に示す図。The figure which shows the time-dependent change of the 1st derivative value of the fluorescence signal intensity curve of the allele 1 with the time-dependent change of the fluorescence signal intensity. アレル1の蛍光信号強度曲線の2次微分値の経時変化を蛍光信号強度の経時変化と共に示す図。The figure which shows the time-dependent change of the second derivative value of the fluorescence signal intensity curve of allele 1 with the time-dependent change of the fluorescence signal intensity. アレル2の蛍光信号強度曲線の1次微分値の経時変化を蛍光信号強度の経時変化と共に示す図。The figure which shows the time-dependent change of the 1st derivative value of the fluorescence signal intensity curve of the allele 2 with the time-dependent change of the fluorescence signal intensity. アレル2の蛍光信号強度曲線の2次微分値の経時変化を蛍光信号強度の経時変化と共に示す図。The figure which shows the time-dependent change of the second derivative of the fluorescence signal intensity curve of the allele 2 with the time-dependent change of the fluorescence signal intensity. 判定結果に対する判定指標R(i)と閾値との関係を示す表。The table | surface which shows the relationship between the determination parameter | index R (i) with respect to a determination result, and a threshold value. ワルファリン関連SNPの一つであるVKORC1 1173 C>Tの接合型と判定指標との関係を示す図。The figure which shows the relationship between the junction type of VKORC1 1173 C> T which is one of the warfarin related SNPs, and the determination index. ワルファリン関連SNPの一つであるCYP2C9*3 の接合型と判定指標との関係を示す図。The figure which shows the relationship between the joining type | mold of CYP2C9 * 3 which is one of warfarin related SNP, and a determination parameter | index. インベーダープラス法により標的DNAの遺伝子多型の型判定を行う場合のインベーダー反応開始後の蛍光信号強度の経時変化の測定例を示す図。The figure which shows the example of a measurement of the time-dependent change of the fluorescence signal intensity after the start of the invader reaction in the case of performing the type determination of the gene polymorphism of the target DNA by the invader plus method. インベーダープラス法により標的DNAの遺伝子多型の型判定を行う場合のインベーダー反応開始後の蛍光信号強度の経時変化の他の測定例を示す図。The figure which shows the other example of a measurement of the time-dependent change of the fluorescence signal intensity after the start of the invader reaction in the case of carrying out type determination of the gene polymorphism of the target DNA by the invader plus method.

以下に、本発明の実施の形態を説明する。
本発明の遺伝子多型判定方法では、インベーダー反応を利用する。インベーダー反応を用いた遺伝子多型判定方法は、特開2002-300894号公報、特表2005-160481号公報等に詳細に開示されている。
Hereinafter, embodiments of the present invention will be described.
In the genetic polymorphism determination method of the present invention, an invader reaction is used. A method for determining a gene polymorphism using an invader reaction is disclosed in detail in JP-A-2002-300894, JP-A-2005-160481, and the like.

判定対象の遺伝子多型を、経口抗凝固剤ワルファリンの感受性に大きく影響があると報告されているVKORC1のイントロン1領域の1173位における遺伝子多型を例にインベーダー反応の説明を行う。図1には、インベーダー反応の概略図を示し、この図をもとに説明を行う。   The invader reaction will be described by taking the genetic polymorphism at the 1173 position in the intron 1 region of VKORC1, which has been reported to have a significant effect on the sensitivity of the oral anticoagulant warfarin as an example. FIG. 1 shows a schematic diagram of the invader reaction, and the explanation will be made based on this figure.

VKORC1のイントロン1領域の1173位は、野生型ではC/Cのホモ接合型であるのに対して、変異型としてC/Tのヘテロ接合型とT/Tのホモ接合型が知られている。よって、1173位の遺伝子多型を構成するアレルはCとTとなる。インベーダー反応では、標的DNA11のアレルCを含む標的配列31aに相補的な第1のオリゴヌクレオチド41a(以下、第1のアレルオリゴということがある)と標的DNA21のアレルTを含む標的配列31bに相補的な第2のオリゴヌクレオチド41b(以下、第2のアレルオリゴ、ということがある)が、標的DNA11,21の多型部位を含む5'下流側に選択的にハイブリダイズする。つづいて、多型部位に非特異的一塩基をもつインベーダーオリゴ51a,51bが、標的DNAの多型部位を含む3'上流側にハイブリダイズし、その結果、多型部位にて一塩基が挿入された三重鎖構造が形成される。第1のオリゴヌクレオチド及び第2オリゴヌクレオチドの5'末端には各々フラップ配列42a,42bが更に突出して設計されている。フラップ配列は、ゲノムDNAに対して非相補的配列であり、アレルオリゴごとに異なる配列に決定されている。ここで、エンドヌクレアーゼの一種であるクリベースがこの多型部位に形成された三重鎖構造を認識してフラップ配列42a,42bを切断して遊離させる。   The 1173th position in the intron 1 region of VKORC1 is C / C homozygous in the wild type, whereas C / T heterozygous and T / T homozygous are known as mutant types. . Therefore, the alleles composing the 1173rd gene polymorphism are C and T. In the invader reaction, the first oligonucleotide 41a complementary to the target sequence 31a containing the allele C of the target DNA 11 (hereinafter sometimes referred to as the first allele oligo) and the target sequence 31b containing the allele T of the target DNA 21 are complementary. The second oligonucleotide 41b (hereinafter sometimes referred to as the second allele oligo) selectively hybridizes 5 'downstream including the polymorphic sites of the target DNAs 11 and 21. Subsequently, invader oligos 51a and 51b having a non-specific single base at the polymorphic site hybridize to the 3 ′ upstream side including the polymorphic site of the target DNA. The formed triple chain structure is formed. Flap sequences 42a and 42b are designed to further protrude from the 5 ′ ends of the first oligonucleotide and the second oligonucleotide, respectively. The flap sequence is a non-complementary sequence with respect to genomic DNA, and is determined to be a different sequence for each allele oligo. Here, Chrybase, a kind of endonuclease, recognizes the triple-stranded structure formed at this polymorphic site and cleaves and releases the flap sequences 42a and 42b.

次に、各フラップ配列42a,42bが、各々と相補的配列を持つ2種類のFRETプローブ61a,61bにハイブリダイズし、フラップ配列とFRETプローブにて三重鎖構造が形成される。この三重鎖構造を再度クリベースが認識し、FRETプローブに結合されていた蛍光物質が切断され遊離する。蛍光物質はそれまで近接していた消光物質Qより離れ、蛍光を発する。FRETプローブ61a,61bには、互いに異なる蛍光波長を発する蛍光物質、例えば、アレルCに対してはFAM(図中、Fと記載)、アレルTに対してはRED(図中、Rと記載)が結合しており、クリベースによる切断及び遊離の結果、第1の蛍光信号と第2の蛍光信号が得られる。このように、インベーダー反応を利用した遺伝子多型判定法では、第1のアレルに由来する第1の蛍光信号強度と第2のアレルに由来する第2の蛍光信号強度の値により、遺伝子多型の第1及び/又は第2のアレルの接合型を判定する。このインベーダー反応は、反応系をクリベースが酵素活性を有する温度(60〜65℃)、例えば63℃に温度制御することにより開始される。   Next, each of the flap sequences 42a and 42b hybridizes to two types of FRET probes 61a and 61b having complementary sequences to each other, and a triple-stranded structure is formed by the flap sequences and the FRET probe. This triple-stranded structure is recognized again by CLIBASE, and the fluorescent substance bound to the FRET probe is cleaved and released. The fluorescent substance is separated from the quenching substance Q that has been close to the fluorescent substance and emits fluorescence. The FRET probes 61a and 61b include fluorescent substances that emit different fluorescence wavelengths, for example, FAM for the allele C (denoted as F in the figure) and RED for the allele T (denoted as R in the figure). Are bound, and as a result of cleavage and release by the chestnut base, a first fluorescence signal and a second fluorescence signal are obtained. Thus, in the gene polymorphism determination method using the invader reaction, the gene polymorphism is determined based on the values of the first fluorescence signal intensity derived from the first allele and the second fluorescence signal intensity derived from the second allele. The joining type of the first and / or second alleles is determined. This invader reaction is started by controlling the temperature of the reaction system at a temperature (60 to 65 ° C.) at which the chestnut has enzyme activity, for example, 63 ° C.

インベーダー反応に適した試薬は、インベーダーアッセイキット (Third Wave Technology社製)として市販されている。後述するように、判定対象として用意したゲノムDNAをPCR等の遺伝子増幅反応に供した後、インベーダー反応を行う場合は、遺伝子増幅反応及びインベーダー反応を同一反応系で行ってもよい。このようにインベーダー法と遺伝子増幅反応とを組み合わせた手法はインベーダープラス法と呼ばれ、この手法に適した試薬はInvader Plusキット(Third Wave Technology社製)として市販されている。   A reagent suitable for the invader reaction is commercially available as an invader assay kit (manufactured by Third Wave Technology). As will be described later, when an invader reaction is performed after a genomic DNA prepared as a determination target is subjected to a gene amplification reaction such as PCR, the gene amplification reaction and the invader reaction may be performed in the same reaction system. A technique combining the invader method and the gene amplification reaction in this way is called an invader plus method, and a reagent suitable for this technique is commercially available as an Invader Plus kit (manufactured by Third Wave Technology).

図2は、インベーダープラス法の概略図を示している。インベーダープラス法は、DNAサンプル10,20、PCR反応に適した試薬、上述のインベーダー反応試薬を反応容器に所定量ずつ添加し、これらを混合した混合液を温度調節することによって、PCR反応の温度サイクル及びインベーダー反応の至適温度で処理することによって行う。
PCR反応試薬は、DNAサンプル10,20の多型部位を挟むように設計されたプライマー対(フォワードプライマー71a,72a及びリバースプライマー71b,72b)と、Taqポリメラーゼ等のDNA合成酵素、及び4種類のデオキシリボヌクレオチド三リン酸(dNTP)、及び塩類を少なくとも含むものである。
FIG. 2 shows a schematic diagram of the Invader Plus method. Invader Plus is a method for adding DNA samples 10 and 20, a reagent suitable for PCR reaction, and the above-mentioned invader reaction reagent to a reaction container in a predetermined amount, and adjusting the temperature of the mixed solution to adjust the temperature of the PCR reaction. The treatment is carried out at the optimum temperature for the cycle and invader reaction.
PCR reaction reagents consist of a primer pair (forward primer 71a, 72a and reverse primer 71b, 72b) designed to sandwich the polymorphic site of DNA sample 10,20, DNA synthase such as Taq polymerase, and 4 types of It contains at least deoxyribonucleotide triphosphate (dNTP) and salts.

PCR反応の温度サイクルは、変性工程、プライマー付着(アニーリング)工程、及びプライマー伸長工程の3工程、又は変性工程と、プライマー付着及びプライマー伸長を同時に行うプライマー付着・伸長工程との2工程を含み、インベーダー反応用のオリゴヌクレオチド(第1及び第2のオリゴヌクレオチド41a,41b、及びインベーダーオリゴ51a,51b、)がアニールしない条件とする。PCR反応の温度サイクルを所定の回数繰り返すことにより、反応容器内において、DNAサンプルのうちプライマー対71a,71b及び72a,72bで挟まれる領域が増幅される。   The temperature cycle of the PCR reaction includes three steps of a denaturation step, a primer attachment (annealing) step, and a primer extension step, or two steps of a denaturation step and a primer attachment / extension step that simultaneously performs primer attachment and primer extension, The conditions are such that the oligonucleotides for invader reaction (the first and second oligonucleotides 41a and 41b and the invader oligos 51a and 51b) are not annealed. By repeating the temperature cycle of the PCR reaction a predetermined number of times, the region sandwiched between the primer pairs 71a, 71b and 72a, 72b in the DNA sample is amplified in the reaction vessel.

PCR反応の温度サイクルを所定の回数繰り返した後、反応容器を高温(例えば99℃)で加熱することによってポリメラーゼを失活させる(ヒートキル処理)。その後、一定時間に亘って、インベーダー反応の至適温度(例えば63℃)に維持することによってインベーダー反応を行わせる。このとき、DNAサンプル10,20由来の各PCR産物が標的DNA11,21として、上述したインベーダー反応が行われる。   After repeating the temperature cycle of the PCR reaction a predetermined number of times, the polymerase is inactivated by heating the reaction vessel at a high temperature (for example, 99 ° C.) (heat kill treatment). Thereafter, the invader reaction is carried out by maintaining the optimum temperature of the invader reaction (for example, 63 ° C.) for a certain period of time. At this time, the above-described invader reaction is performed using the PCR products derived from the DNA samples 10 and 20 as the target DNAs 11 and 21, respectively.

本発明において遺伝子多型判定対象とする標的DNAは、ゲノムDNAやmRNAから合成されたcDNAなどとすることができる。ゲノムDNAは、ヒトをはじめとする動物、植物、ウイルス由来から選択することができる。ゲノムDNAやmRNAは、血液由来試料、尿、毛などの生体由来試料から、適宜、抽出、さらには精製処理を行って得たゲノムDNAでもよく、さらには抽出、精製処理を行っていない生体由来試料中に存在するゲノムDNAもしくはmRNAでもよい。これらのゲノムDNAおよびmRNAから合成されたcDNAは、ポリメラーゼチェーンリアクション(Polymerase chain reaction;PCR)法、リガーゼ連鎖反応(ligase chain reaction:LCR)法など周知の増幅反応にて増幅処理を行ってもよい。また、ゲノムDNAやmRNAに複数存在する多型を判定対象とするときは、その多型を含む領域が増幅されるように設計された複数対のプライマーを用いたマルチプレックスPCRにより増幅し、インベーダー反応に供することができる。   In the present invention, the target DNA to be subjected to genetic polymorphism determination can be genomic DNA or cDNA synthesized from mRNA. Genomic DNA can be selected from animals including humans, plants, and viruses. Genomic DNA and mRNA may be genomic DNA obtained by appropriately extracting and purifying blood-derived samples, biological samples such as urine, hair, etc., and derived from living organisms that have not been extracted or purified. It may be genomic DNA or mRNA present in the sample. The cDNA synthesized from these genomic DNA and mRNA may be subjected to amplification treatment by a known amplification reaction such as polymerase chain reaction (PCR) method or ligase chain reaction (LCR) method. . When multiple polymorphisms existing in genomic DNA or mRNA are to be judged, amplification is performed by multiplex PCR using multiple pairs of primers designed to amplify the region containing the polymorphism. Can be subjected to reaction.

インベーダー反応を行うための反応容器は、通常のPCR用の反応チューブ、複数の反応チューブが連結されたもの、マイクロタイタープレート等用いることができる。複数の反応容器には、判定対象のSNPに対応して設計されたアレルオリゴ、インベーダーオリゴ、フレットプローブが個別に存在する。
また、上記のインベーダー反応、PCR反応、及び蛍光検出は個別の装置で行ってもよく、あるいは、サーマルサイクラーと蛍光検出器の機能を兼ね備えた一台の装置(例えば、温調機能付きマイクロプレートリーダ等)で行ってもよい。
さらに、上記のインベーダープラス法による遺伝子多型の判定に用いる反応容器としては、汎用的なPCR用のシングルチューブや連結チューブ、又はマイクロプレート等を用いることができる他、基板上に多数のウェルを形成して成るマイクロチップ(例えば特開2003-070456、WO/2008/053751参照)を利用することもできる。
As a reaction vessel for performing the invader reaction, a normal PCR reaction tube, a tube in which a plurality of reaction tubes are connected, a microtiter plate, or the like can be used. In a plurality of reaction vessels, there are individually allele oligos, invader oligos, and fret probes designed to correspond to the SNP to be determined.
The invader reaction, PCR reaction, and fluorescence detection described above may be performed by separate devices, or a single device that combines the functions of a thermal cycler and a fluorescence detector (for example, a microplate reader with a temperature control function). Etc.).
Furthermore, as a reaction vessel used for the determination of gene polymorphism by the above-described Invader Plus method, a general-purpose single tube or connection tube for PCR, a microplate or the like can be used, and a large number of wells are formed on a substrate. A microchip formed (see, for example, Japanese Patent Application Laid-Open No. 2003-070456, WO / 2008/053751) can also be used.

次に本発明の遺伝子多型判定法について実施例をもとに説明を行う。
[実施例1]
本実施例では、上述したVKORC1遺伝子の1173位におけるSNP(VKORC1 1173C>T)を有する標的DNAを用意してインベーダー反応を行い、標的DNAの多型の型判定を行った。アレル1をC、アレル2をTとした。
Next, the genetic polymorphism determination method of the present invention will be described based on examples.
[Example 1]
In this example, a target DNA having an SNP at position 1173 of the VKORC1 gene (VKORC1 1173C> T) was prepared and an invader reaction was performed to determine the polymorphism of the target DNA. Allele 1 was C and allele 2 was T.

図3に、インベーダー反応によって得られた蛍光信号強度の経時変化を示す。図3中、実線はアレル1由来の蛍光信号強度の経時変化を、破線はアレル2由来の蛍光信号強度の経時変化を示している。図3の左縦軸及び右縦軸は、それぞれアレル1、アレル2由来の蛍光信号強度(任意単位)を示しており、横軸はインベーダー反応開始後、すなわちインベーダー反応に必要な温度に設定した後の経過時間(反応時間:秒)を示している。   FIG. 3 shows the change over time of the fluorescence signal intensity obtained by the invader reaction. In FIG. 3, the solid line shows the change over time in the fluorescence signal intensity derived from allele 1, and the broken line shows the change over time in the fluorescence signal intensity derived from allele 2. The left vertical axis and right vertical axis in FIG. 3 indicate the fluorescence signal intensities (arbitrary units) derived from allele 1 and allele 2, respectively, and the horizontal axis is set to the temperature necessary for the invader reaction after the start of the invader reaction. The elapsed time (reaction time: second) is shown.

図3から、アレル1由来の蛍光信号強度は、反応開始から初期の段階で急激に上昇し、反応開始から約400秒が経過した後はプラトーに達することが分かる。一方、アレル2由来の蛍光強度は、反応時間の経過と共に徐々に増加することが分かる。   From FIG. 3, it can be seen that the fluorescence signal intensity derived from allele 1 rapidly increases in the initial stage from the start of the reaction, and reaches a plateau after about 400 seconds have elapsed from the start of the reaction. On the other hand, it can be seen that the fluorescence intensity derived from allele 2 gradually increases as the reaction time elapses.

本実施例では、図3に示されるアレル1及びアレル2についての蛍光強度の経時変化について、以下の手順(1)〜(4)に従い、所定の判定区間における蛍光強度の経時変化を表す曲線(以下、「蛍光信号強度曲線」という)の2次微分値の最大値を求め、アレル1とアレル2の当該最大値の比に基づいてSNPの接合型判定を行う。
(1)アレル1、アレル2由来の蛍光信号強度曲線のそれぞれについて、蛍光信号の立ち上がりから傾き(即ち、1次微分値)が最大になるまでの区間D(i,j)のデータを抽出する。この区間D(i,j)が本発明の判定区間に相当する。なお、「i」はSNPの種類を表し、本実施例ではVKORC1の1173位である。また、「j」はアレルの種類を表し、ここでは、j=1,2となる。
(2)区間D(i,j)における蛍光信号強度曲線の2次微分値の最大値M(i,j)(j=1,2)を求める。
(3)判定指標として、工程(2)で求めた最大値M(i,1)及びM(i,2)の比R(i)を求める(R(i)=log(M(i,1)/M(i,2)))。
(4) 工程(3)にて求めた判定指標R(i)と、予め設定された4種類の閾値とを比較し、SNPの接合型判定を行う。
In this example, with respect to the temporal change in fluorescence intensity for allele 1 and allele 2 shown in FIG. 3, a curve representing the temporal change in fluorescence intensity in a predetermined determination section according to the following procedures (1) to (4) ( Hereinafter, the maximum value of the secondary differential value of “fluorescence signal intensity curve” is obtained, and the SNP junction type determination is performed based on the ratio of the maximum values of allele 1 and allele 2.
(1) For each of the fluorescence signal intensity curves derived from allele 1 and allele 2, data of the section D (i, j) from the rise of the fluorescence signal to the maximum slope (ie, first derivative value) is extracted. . This section D (i, j) corresponds to the determination section of the present invention. “I” represents the type of SNP, which is 1173rd in VKORC1 in this example. “J” represents the type of the allele, and j = 1, 2 here.
(2) The maximum value M (i, j) (j = 1,2) of the secondary differential value of the fluorescence signal intensity curve in the section D (i, j) is obtained.
(3) As a determination index, a ratio R (i) between the maximum values M (i, 1) and M (i, 2) obtained in step (2) is obtained (R (i) = log (M (i, 1 ) / M (i, 2))).
(4) The determination index R (i) obtained in step (3) is compared with four preset threshold values, and SNP junction type determination is performed.

図4及び図5に、アレル1由来の蛍光信号強度曲線の1次微分曲線、2次微分曲線を表す。図6及び図7に、アレル2由来の蛍光信号強度曲線の1次微分曲線、2次微分曲線を表す。図8に、判定指標R(i)と判定指標についての4つの閾値との関係の場合分け、及び各々の場合の判定結果を示す。4つの閾値としては、アレル1のホモ最小値、ヘテロ最大値、ヘテロ最小値、及び、アレル2のホモ最大値である。図8から、例えば判定指標R(i)の値がヘテロ最小値以上かつヘテロ最大値以下の値となるサンプルは、アレル1とアレル2のヘテロ接合型であると判定され、判定指標R(i)の値がアレル1ホモ最小値以上の値となるサンプルは、アレル1のホモ接合型であると判定される。判定指標R(i)の値がヘテロ最大値とアレル1ホモ最小値の間、あるいはアレル2ホモ最大値とヘテロ最小値の間の値となるサンプルは、判定不能とされる。このような判定不能ゾーンを設けることにより、判定確度の低いデータを排除し、誤判定を防ぐことができる。   4 and 5 show a first derivative curve and a second derivative curve of the fluorescence signal intensity curve derived from allele 1. FIG. 6 and 7 show the first derivative curve and second derivative curve of the fluorescence signal intensity curve derived from allele 2. FIG. FIG. 8 shows the case classification of the relationship between the determination index R (i) and the four threshold values for the determination index, and the determination results in each case. The four threshold values are the homo minimum value, hetero maximum value, hetero minimum value of allele 1, and homo maximum value of allele 2. From FIG. 8, for example, a sample in which the value of the determination index R (i) is not less than the hetero-minimum value and not more than the hetero-maximum value is determined to be a heterozygous type of allele 1 and allele 2, and the determination index R (i ) Is determined to be a homozygous allele 1 sample. A sample in which the value of the determination index R (i) is between the hetero maximum value and the allele 1 homo minimum value or between the allele 2 homo maximum value and the hetero minimum value is determined to be undecidable. By providing such a determination impossible zone, data with low determination accuracy can be eliminated and erroneous determination can be prevented.

[実施例2]
本実施例では、実施例1に記載の方法で、経口抗凝固剤ワルファリンの効果の強さに大きく影響する2種類のSNP(VKORC1 1173C>T、及び、CYP2C9*3)を有し、これらのSNPの接合型が既知のゲノムDNA255検体について判定指標R(i)を求め、求めた判定指標R(i)による接合型判定が有効かどうかの検証を行った。用意したゲノムDNAは、上述の通りVKORC1の1173位及びCYP2C9*3について、アレル1のヘテロ接合型、アレル2のヘテロ接合型及びホモ接合型のうちいずれの接合型か既知のゲノムDNAである。ここで、各SNPを構成するアレルは、アレル1、アレル2と便宜上省略し記載する。図9にVKORC1の1173位の結果を、図10にCYP2C9*3の結果を示す。図9及び図10中、縦軸は判定指標の値を、横軸はSNPの接合型を示し、判定不能ゾーンを各図中の2本の帯状部分により記載している。すなわち、上の帯状部分の上限値が図8に示すアレル1ホモ最小値に、下限値がヘテロ最大値に相当する。また、下の帯状部分の下限値が図8に示すアレル2ホモ最大値に、上限値がヘテロ最小値に相当する。図9及び図10は、各検体について、求めた判定指標R(i)の値と既知情報に基づく各SNPの接合型との交点をプロットすることにより作成した。
[Example 2]
In this example, the method described in Example 1 has two types of SNPs (VKORC1 1173C> T and CYP2C9 * 3) that greatly affect the strength of the oral anticoagulant warfarin. A determination index R (i) was obtained for 255 samples of genomic DNA with a known SNP mating type, and it was verified whether the mating type determination based on the obtained determination index R (i) was effective. As described above, the prepared genomic DNA is genomic DNA that is known to be any of the heterozygous type of allele 1, heterozygous type, and homozygous type of allele 2 for position 1173 and CYP2C9 * 3 of VKORC1. Here, alleles constituting each SNP are omitted and described as allele 1 and allele 2. FIG. 9 shows the result of position 1173 of VKORC1, and FIG. 10 shows the result of CYP2C9 * 3. 9 and 10, the vertical axis represents the value of the determination index, the horizontal axis represents the SNP junction type, and the non-determinable zone is described by the two strips in each figure. That is, the upper limit value of the upper band-like portion corresponds to the allele 1 homo minimum value shown in FIG. 8, and the lower limit value corresponds to the hetero maximum value. Further, the lower limit value of the lower belt-like portion corresponds to the allele 2 homo maximum value shown in FIG. 8, and the upper limit value corresponds to the hetero minimum value. FIG. 9 and FIG. 10 were prepared by plotting the intersection of the obtained determination index R (i) value and the junction type of each SNP based on the known information for each specimen.

図9及び図10に示すように、求めた判定指標R(i)は概ね閾値範囲(すなわち、判定結果が、アレル1ホモ接合型、ヘテロ接合型、アレル2ホモ接合型のいずれかの判定範囲内)に収まり、また用意したゲノムDNAが各々正しく接合型判定されたことを確認した。従って、上述の判定方法は、SNP部位の接合型判定に有効であることが分かる。   As shown in FIG. 9 and FIG. 10, the obtained determination index R (i) is approximately in the threshold range (that is, the determination result is any one of the allele 1 homozygous type, the heterozygous type, and the allele 2 homozygous type). It was confirmed that each of the prepared genomic DNAs was correctly conjugated. Therefore, it can be seen that the above-described determination method is effective for determining the junction type of the SNP site.

また、本実施例では、インベーダー反応の初期の判定区間を利用してSNP部位の塩基配列を判定するため、インベーダー反応を短時間で終わらせることができる。
サンプル中のDNA量が少なくインベーダー反応の立ち上がりが悪いときでも、反応初期の判定区間の蛍光信号強度曲線を利用するため、DNA量に関係なく正確な判定指標を得ることができる。
SNPの2種類の塩基配列のそれぞれに対応する蛍光信号強度曲線から求めた2次微分値の最大値の比を判定指標としているため、非特異的な蛍光信号による信号強度の上昇による影響を小さく抑えることができ、より正確な判定指標を得ることができる。
Moreover, in this example, since the base sequence of the SNP site is determined using the initial determination section of the invader reaction, the invader reaction can be completed in a short time.
Even when the amount of DNA in the sample is small and the rise of the invader reaction is poor, an accurate determination index can be obtained regardless of the amount of DNA because the fluorescence signal intensity curve in the determination interval at the initial stage of the reaction is used.
Since the ratio of the maximum value of the second derivative obtained from the fluorescence signal intensity curve corresponding to each of the two types of SNP base sequences is used as a judgment index, the influence of the increase in signal intensity due to nonspecific fluorescence signals is reduced. Therefore, a more accurate determination index can be obtained.

[実施例3]
本実施例では、判定区間におけるアレル1及びアレル2由来の蛍光信号強度曲線を各々2次式(y=Ax2+Bx+C)で近似し、2次の係数の比を判定指標として用いてSNPを判定する。蛍光信号強度曲線の2次近似式は、最小二乗法等、周知の方法を用いて求めることができる。本実施例では、実施例1において求めた最大値M(i,j)に代えて2次の係数A(i,j)を用いて比R(i)=log(A(i,1)/A(i,2))を求める他は、実施例1と同様の方法で多型の接合型判定を行う。
Jeff G.Hallらの論文(PNAS 2000 vol.97 no.15(8272-8277))によれば、蛍光信号強度曲線を2次式で近似した場合、2次の係数にインベーダー反応の効率、つまりDNA量は含まれる。従って、2次の係数を用いることにより、DNA量を反映した判定指標を求めることができる。
[Example 3]
In this example, the fluorescence signal intensity curves derived from allele 1 and allele 2 in the determination section are approximated by a quadratic expression (y = Ax2 + Bx + C), respectively, and the ratio of the quadratic coefficient is used as a determination index. Determine. The quadratic approximate expression of the fluorescence signal intensity curve can be obtained using a known method such as a least square method. In the present embodiment, a ratio R (i) = log (A (i, 1) /) using a second-order coefficient A (i, j) instead of the maximum value M (i, j) obtained in the first embodiment. Except for obtaining A (i, 2)), polymorphic joint type determination is performed in the same manner as in the first embodiment.
According to Jeff G. Hall et al. (PNAS 2000 vol.97 no.15 (8272-8277)), when the fluorescence signal intensity curve is approximated by a quadratic equation, the efficiency of the invader reaction, that is, the quadratic coefficient, The amount of DNA is included. Therefore, by using a second-order coefficient, a determination index reflecting the amount of DNA can be obtained.

[実施例4]
本実施例では、実施例1もしくは実施例3で求めた判定指標R(i)を、内部標準DNAについて求めた判定指標により正規化を行う。具体的な手順は次の通りである。
[Example 4]
In this example, the determination index R (i) obtained in Example 1 or Example 3 is normalized by the determination index obtained for the internal standard DNA. The specific procedure is as follows.

(4-1)実施例1における工程(1)〜(3)の手順に従い内部標準DNAについて比R(a)を求める。内部標準DNAとは、先に述べたとおり、判定対象多型部位とは異なる多型部位であってヘテロ接合型である多型部位を持つDNAを指す。複数の内部標準DNAについて、それぞれ比R(a)を求めた場合は、その平均値を内部標準DNAの比R(a)とする。
(4-2)判定対象ゲノムDNAについて実施例1の工程(1)〜(3)の手順で求めた比R(i)を内部標準DNAの比R(a)で割って正規化し、その対数を求めて判定指標a(i)とする(a(i)=log(R(i)/R(a)))。
以降の判定方法は、実施例1の工程(4)と同様に行う。
(4-1) The ratio R (a) is determined for the internal standard DNA according to the procedure of steps (1) to (3) in Example 1. As described above, the internal standard DNA refers to DNA having a polymorphic site that is a polymorphic site different from the polymorphic site to be determined and is heterozygous. When the ratio R (a) is obtained for each of a plurality of internal standard DNAs, the average value is taken as the internal standard DNA ratio R (a).
(4-2) Normalize the target genomic DNA by dividing the ratio R (i) obtained by the procedure of steps (1) to (3) of Example 1 by the ratio R (a) of the internal standard DNA, and logarithmically Is determined as a determination index a (i) (a (i) = log (R (i) / R (a))).
The subsequent determination method is performed in the same manner as in step (4) of the first embodiment.

[実施例5]
本実施例は、PCR反応とインベーダー反応とを組み合わせた手法であるインベーダープラス法により標的DNAの多型の型判定を行う場合に、ヒートキル処理の加熱条件によってインベーダー反応を開始してからインベーダー反応温度に到達するまでの時間が異なることを示したものである。
標的DNAには実施例1〜4と同様、VKORC1遺伝子の1173位におけるSNP(VKORC1 1173C>T)を有するDNAを用いた。
[Example 5]
This example shows the invader reaction temperature after starting the invader reaction according to the heating conditions of the heat kill process when the polymorphism of the target DNA is determined by the invader plus method, which is a method combining the PCR reaction and the invader reaction. It shows that the time to reach is different.
Similar to Examples 1 to 4, the target DNA was a DNA having an SNP at position 1173 of the VKORC1 gene (VKORC1 1173C> T).

本実施例のインベーダープラス法では、前変性処理、PCR反応、ヒートキル処理、インベーダー反応を順に行った。
前変性処理では、反応系を95℃で10秒間加熱した。
PCR反応は変性工程とプライマー付着・伸長工程の2工程を含み、その温度サイクルは変性工程が95℃で5秒間、プライマー付着・伸長工程が68℃で8秒間とした。このような温度サイクルを28回繰り返すことにより標的DNA11,21上の標的配列31a,31bを含む領域が増幅される。
その後、反応系を高温で加熱することによりポリメラーゼを失活させるヒートキル処理を行った後、反応系を62℃に300秒間維持することによってインベーダー反応を行わせた。
In the invader plus method of this example, pre-denaturation treatment, PCR reaction, heat kill treatment, and invader reaction were performed in this order.
In the pre-denaturing treatment, the reaction system was heated at 95 ° C. for 10 seconds.
The PCR reaction included two steps, a denaturation step and a primer attachment / extension step, and the temperature cycle was 95 ° C for 5 seconds at the denaturation step and primer attachment / extension step at 68 ° C for 8 seconds. By repeating such a temperature cycle 28 times, the regions containing the target sequences 31a and 31b on the target DNAs 11 and 21 are amplified.
Then, after heat-killing which inactivates polymerase by heating the reaction system at a high temperature, an invader reaction was performed by maintaining the reaction system at 62 ° C. for 300 seconds.

図11は、ヒートキル処理の加熱条件を97℃、180秒としたときの、インベーダー反応開始後(即ち、ヒートキル処理終了後)から300秒が経過するまでの間にインベーダー反応によって得られた蛍光信号強度の経時変化の測定例を示す。
一方、図12は、ヒートキル処理の加熱条件を99℃120秒としたときの、インベーダー反応開始後(即ち、ヒートキル処理終了後)から300秒が経過するまでの間にインベーダー反応によって得られた蛍光信号強度の経時変化の測定例を示す。
いずれの測定例も、蛍光信号強度の測定を5秒毎に行い、インベーダー反応の至適温度である62℃に到達した時点を測光データに記録した。
FIG. 11 shows the fluorescence signal obtained by the invader reaction after the invader reaction was started (ie, after the heat kill process was completed) until 300 seconds passed when the heating condition of the heat kill treatment was 97 ° C. for 180 seconds. An example of measurement of intensity change with time is shown.
On the other hand, FIG. 12 shows the fluorescence obtained by the invader reaction after the elapse of 300 seconds from the start of the invader reaction (ie, after the end of the heat kill process) when the heating condition of the heat kill treatment is 99 ° C. for 120 seconds. An example of measurement of changes in signal intensity over time is shown.
In each measurement example, the fluorescence signal intensity was measured every 5 seconds, and the time when the temperature reached 62 ° C., which is the optimum temperature for the invader reaction, was recorded in the photometric data.

図11に示すように、ヒートキル処理の加熱条件を97℃、180秒としたときは、インベーダー反応開始から35秒経過後にインベーダー反応の至適温度(62℃)に到達した。一方、図12に示すように、ヒートキル処理の加熱条件を99℃120秒としたときは、インベーダー反応開始から30秒経過後にインベーダー反応の至適温度(62℃)に到達した。
このことから、ヒートキル処理の加熱温度や加熱時間によって、インベーダー反応を開始してから至適温度に到達するまでの時間が異なることが分かる。
従って、インベーダー反応の至適温度の到達点を記録し、その到達点を判定区間の始期とすれば、標的DNAの濃度やインベーダー反応液の分注精度等が判定区間の始期に及ぼす影響を極力小さくできると考えられる。
なお、判定区間の始期を決定するための温度としては、インベーダー反応の至適温度に限らず、至適温度付近の適宜の温度であればよい。
As shown in FIG. 11, when the heating condition of the heat kill process was 97 ° C. and 180 seconds, the optimum temperature (62 ° C.) of the invader reaction was reached after 35 seconds from the start of the invader reaction. On the other hand, as shown in FIG. 12, when the heating condition of the heat kill process was 99 ° C. for 120 seconds, the optimum temperature for the invader reaction (62 ° C.) was reached after 30 seconds from the start of the invader reaction.
From this, it can be seen that the time from starting the invader reaction to reaching the optimum temperature differs depending on the heating temperature and heating time of the heat kill treatment.
Therefore, if the arrival point of the optimum temperature of the invader reaction is recorded and that arrival point is set as the start of the determination section, the influence of the target DNA concentration and the dispensing accuracy of the invader reaction solution on the start of the determination section is minimized. It is thought that it can be made smaller.
Note that the temperature for determining the start of the determination section is not limited to the optimum temperature for the invader reaction, and may be any suitable temperature in the vicinity of the optimum temperature.

その他の実施例として、実施例1において、2次微分値の比の対数を取らずに比そのもの(M(i,1)/M(i,2))を判定指標としてもよい。また、判定指標の比は、実施例1に示した比の逆比を用いても良い。即ち、判定指標R(i)=M(i,2)/M(i,1)としてもよい。これらは、実施例3についても同様に当てはまる。   As another embodiment, in the first embodiment, the ratio itself (M (i, 1) / M (i, 2)) may be used as a determination index without taking the logarithm of the ratio of the secondary differential values. Further, the ratio of the determination index may be an inverse ratio of the ratio shown in the first embodiment. That is, the determination index R (i) = M (i, 2) / M (i, 1) may be used. These apply to Example 3 as well.

本発明は、人間を初めとして動物や植物のゲノムDNAの多型、特に一塩基多型を検出することができ、その結果を用いて病気罹患率の診断や投与薬剤の種類と効果及び副作用の関係などの診断、植物や動物の品種判定、感染症診断等に利用することができる。   The present invention can detect genomic DNA polymorphisms, particularly single nucleotide polymorphisms of animals and plants, including humans, and use the results to diagnose disease prevalence, types and effects of administered drugs, and side effects. It can be used for diagnosis of relationships, plant / animal breed determination, infectious disease diagnosis, and the like.

10,20…DNAサンプル
11,21…標的DNA
31a,31b…標的配列
41a,41b…第1、第2のオリゴヌクレオチド
42a,42b…フラップ断片
51a,51b…インベーダーオリゴ
61a,61b…FRETプローブ
71a,72a…フォワードプライマー
71b,72b…リバースプライマー
F、R…蛍光物質
Q…消光物質
10,20… DNA sample
11,21… Target DNA
31a, 31b… Target sequence
41a, 41b ... first and second oligonucleotides
42a, 42b… Flap fragment
51a, 51b ... Invader Oligo
61a, 61b… FRET probe
71a, 72a… Forward primer
71b, 72b ... Reverse primer F, R ... Fluorescent substance Q ... Quenching substance

Claims (5)

標的DNAを、前記標的DNAの遺伝子多型を構成する第1のアレルを含む標的配列と相補的な第1のオリゴヌクレオチド及び前記遺伝子多型を構成する第2のアレルを含む標的配列と相補的な第2のオリゴヌクレオチドと混合して温度制御することにより、前記第1のオリゴヌクレオチドに由来する第1の蛍光及び前記第2のオリゴヌクレオチドに由来する第2の蛍光を発生させるインベーダー反応を行い、前記第1及び/または第2の蛍光強度より前記遺伝子多型のアレル接合型を判定する遺伝子多型判定方法において、
前記インベーダー反応開始後の所定の判定区間における前記第1及び前記第2の蛍光強度の経時変化を表す曲線をそれぞれ2次式で近似し、当該第1及び第2の2次近似式の2次係数の比を判定指標として遺伝子多型の接合型を判定することを特徴とする遺伝子多型判定方法。
A target DNA is complementary to a target sequence comprising a first oligonucleotide complementary to a target sequence comprising a first allele constituting the gene polymorphism of the target DNA and a second allele constituting the gene polymorphism. And an invader reaction that generates the first fluorescence derived from the first oligonucleotide and the second fluorescence derived from the second oligonucleotide by controlling the temperature by mixing with the second oligonucleotide. In the gene polymorphism determination method for determining the allele junction type of the gene polymorphism from the first and / or second fluorescence intensity,
Curves representing temporal changes in the first and second fluorescence intensities in a predetermined determination section after the start of the invader reaction are approximated by a quadratic expression, respectively, and the second order of the first and second quadratic approximate expressions. A genetic polymorphism determination method characterized by determining a polymorphism of a genetic polymorphism using a coefficient ratio as a determination index.
標的DNAを、前記標的DNAの遺伝子多型を構成する第1のアレルを含む標的配列と相補的な第1のオリゴヌクレオチド及び前記遺伝子多型を構成する第2のアレルを含む標的配列と相補的な第2のオリゴヌクレオチドと混合して温度制御することにより、前記第1のオリゴヌクレオチドに由来する第1の蛍光及び前記第2のオリゴヌクレオチドに由来する第2の蛍光を発生させるインベーダー反応を行い、前記第1及び/または第2の蛍光強度より前記遺伝子多型のアレル接合型を判定する遺伝子多型判定方法において、
前記インベーダー反応開始後の所定の判定区間における前記第1及び前記第2の蛍光強度の経時変化を表す曲線をそれぞれ2次微分し、当該第1及び第2の2次微分値の最大値の比を判定指標として遺伝子多型の接合型を判定することを特徴とする遺伝子多型判定方法。
A target DNA is complementary to a target sequence comprising a first oligonucleotide complementary to a target sequence comprising a first allele constituting the gene polymorphism of the target DNA and a second allele constituting the gene polymorphism. And an invader reaction that generates the first fluorescence derived from the first oligonucleotide and the second fluorescence derived from the second oligonucleotide by controlling the temperature by mixing with the second oligonucleotide. In the gene polymorphism determination method for determining the allele junction type of the gene polymorphism from the first and / or second fluorescence intensity,
The curves representing the time-dependent changes in the first and second fluorescence intensities in the predetermined determination section after the start of the invader reaction are respectively second-order differentiated, and the ratio of the maximum values of the first and second second-order derivative values. A genetic polymorphism determination method comprising determining a polymorphism of a gene polymorphism using as a determination index.
前記標的DNAの判定指標を内部標準DNAの判定指標で正規化し、正規化後の判定指標に基づき遺伝子多型の接合型を判定することを特徴とする請求項1又は2に記載の遺伝子多型判定方法。   The genetic polymorphism according to claim 1 or 2, wherein the target DNA determination index is normalized with an internal standard DNA determination index, and the polymorphism of the gene polymorphism is determined based on the normalized determination index. Judgment method. 前記第1及び第2の蛍光強度の経時変化を表す曲線の1次微分値が最大となるときを、それぞれ前記判定区間の終期とすることを特徴とする請求項1〜3のいずれかに記載の遺伝子多型判定方法。   The time when the first derivative value of the curve representing the temporal change of the first and second fluorescence intensities is maximized is set as the end of the determination section, respectively. Genetic polymorphism determination method. 第1及び第2の蛍光強度を発生させるインベーダー反応の反応系が所定の反応温度に到達したときを前記判定区間の始期とすることを特徴とする請求項1〜4のいずれかに記載の遺伝子多型判定方法。   The gene according to any one of claims 1 to 4, wherein when the reaction system of the invader reaction that generates the first and second fluorescence intensities reaches a predetermined reaction temperature, the determination period starts. Polymorphism determination method.
JP2009164468A 2008-10-01 2009-07-13 Genetic polymorphism determination method Expired - Fee Related JP5532713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164468A JP5532713B2 (en) 2008-10-01 2009-07-13 Genetic polymorphism determination method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008255928 2008-10-01
JP2008255928 2008-10-01
JP2009164468A JP5532713B2 (en) 2008-10-01 2009-07-13 Genetic polymorphism determination method

Publications (2)

Publication Number Publication Date
JP2010104360A true JP2010104360A (en) 2010-05-13
JP5532713B2 JP5532713B2 (en) 2014-06-25

Family

ID=42294439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164468A Expired - Fee Related JP5532713B2 (en) 2008-10-01 2009-07-13 Genetic polymorphism determination method

Country Status (1)

Country Link
JP (1) JP5532713B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129542A1 (en) * 2012-02-29 2013-09-06 独立行政法人理化学研究所 Method for detecting hla-a*31:01 allele
JP2015073506A (en) * 2013-10-10 2015-04-20 凸版印刷株式会社 Method for determining genetic polymorphism
JP2016002082A (en) * 2014-09-11 2016-01-12 株式会社島津製作所 Gene polymorphism analysis device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013049476; Proceedings of the National Academy of Sciences of the United States of America. 2000 Jul 18, Vol.97 *
JPN6013049477; Mutation research. 2005, Vol.573, No.1-2, p.103-110 *
JPN6013049478; The Journal of molecular diagnostics. 2004, Vol.6, No.2, p.137-144 *
JPN6013049479; 四方田聡、外10名: 'オーダーメイド医療に向けた全自動遺伝子解析システムの開発とフィールド評価' 島津評価 第63巻,第3・4号(季刊), 20080424, p.169-175 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129542A1 (en) * 2012-02-29 2013-09-06 独立行政法人理化学研究所 Method for detecting hla-a*31:01 allele
JPWO2013129542A1 (en) * 2012-02-29 2015-07-30 国立研究開発法人理化学研究所 Method for detecting HLA-A * 31: 01 allele
US9879314B2 (en) 2012-02-29 2018-01-30 Riken Method for detecting HLA-A*31:01 allele
JP2015073506A (en) * 2013-10-10 2015-04-20 凸版印刷株式会社 Method for determining genetic polymorphism
JP2016002082A (en) * 2014-09-11 2016-01-12 株式会社島津製作所 Gene polymorphism analysis device

Also Published As

Publication number Publication date
JP5532713B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
Germer et al. Single-tube genotyping without oligonucleotide probes
US9938570B2 (en) Methods and compositions for universal detection of nucleic acids
CN103201394B (en) Mutation detecting analysis
JP4814479B2 (en) Methods for quantifying genes using internal standards in real time
US7078168B2 (en) Method for determining allele frequencies
TWI527905B (en) Method of snp detection by using gene detection technique in bead-based microfluidics
EA020593B1 (en) Single-cell nucleic acid analysis
CA2442936A1 (en) New method for genotype determination
EP2180066B1 (en) Single nucleotide polymorphism genotyping detection via the real-time invader assay microarray platform
JP2017225468A (en) Mutation detection in highly homologous genomic regions
KR101684832B1 (en) A composition for determining the feline blood types by realtime PCR and a detection method using it
JP5532713B2 (en) Genetic polymorphism determination method
JP4122317B2 (en) Genetic testing method
JP5564795B2 (en) DNA quantification method and gene analysis method
Kubista Emerging real-time PCR application
US20180245140A1 (en) Kit and method for detecting single nucleotide polymorphism
CA2896616C (en) Improved calibration of high resolution melting
Ünsal et al. A novel method of multiplex SNP genotyping assay through variable fragment length allele-specific polymerase chain reaction: Multiplex VFLASP-ARMS
Evrard et al. Real-time PCR
WO2022010917A1 (en) Methods, compositions, and systems for detecting pnpla3 allelic variants
JP2010158183A (en) Method for determining dna, and method for analyzing gene
JP2004226396A (en) Polynucleotide analyzing method
JP2015073506A (en) Method for determining genetic polymorphism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5532713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees