JP2010101207A - High-frequency wave generator for spark-ignition internal combustion engine - Google Patents

High-frequency wave generator for spark-ignition internal combustion engine Download PDF

Info

Publication number
JP2010101207A
JP2010101207A JP2008271427A JP2008271427A JP2010101207A JP 2010101207 A JP2010101207 A JP 2010101207A JP 2008271427 A JP2008271427 A JP 2008271427A JP 2008271427 A JP2008271427 A JP 2008271427A JP 2010101207 A JP2010101207 A JP 2010101207A
Authority
JP
Japan
Prior art keywords
frequency
frequency wave
spark
resistor
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008271427A
Other languages
Japanese (ja)
Other versions
JP5072797B2 (en
Inventor
Ryohei Kusunoki
亮平 楠
Morihito Asano
守人 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008271427A priority Critical patent/JP5072797B2/en
Publication of JP2010101207A publication Critical patent/JP2010101207A/en
Application granted granted Critical
Publication of JP5072797B2 publication Critical patent/JP5072797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein, when an air-fuel mixture is ignited by reacting the plasma generated in a combustion chamber through a microwave by spark discharge with an ignition plug, since the microwave is reflected in a transmission line including a waveguide leading the microwave to the combustion chamber and the electric power of the microwave is varied by reflection of the microwave, it is difficult to correctly adjust the output of magnetron if the magnitude of the reflection is not grasped. <P>SOLUTION: This high-frequency wave generator for a spark-ignition internal combustion engine electrically connected to the high-frequency wave supply part of the spark-ignition internal combustion engine igniting the air-fuel mixture by reacting the plasma generated in the combustion chamber through a high-frequency wave by the spark discharge with the ignition plug includes: a high-frequency wave generating source outputting the high-frequency wave for generating the plasma; a resistor connected in series to the high-frequency wave supply part between the high-frequency wave generating source and the high-frequency wave supply part; and a characteristic adjusting means estimating the heating state of the resistor by measuring the voltage at either end of the resistor and adjusting the characteristic of the high-frequency wave output by the high-frequency wave generating source based on the estimated heating state of the resistor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼室内にプラズマを生成させ、プラズマと点火プラグによる火花放電とにより混合気に着火する火花点火式内燃機関にて用いられる高周波発生装置に関するものである。   The present invention relates to a high-frequency generator used in a spark ignition internal combustion engine that generates plasma in a combustion chamber and ignites an air-fuel mixture by plasma and spark discharge by a spark plug.

従来、車両、特には自動車に搭載される火花点火式内燃機関においては、点火プラグの中心電極と接地電極との間の火花放電により、点火時期毎に燃焼室内の混合気に着火している。このような点火プラグによる着火にあって、例えば燃料を直接気筒内に噴射する型式の内燃機関において、噴射した燃料を点火プラグの火花放電の位置に分布させないと、着火しないことが希に生じる。   2. Description of the Related Art Conventionally, in a spark ignition internal combustion engine mounted on a vehicle, particularly an automobile, an air-fuel mixture in a combustion chamber is ignited at each ignition timing by spark discharge between a center electrode and a ground electrode of a spark plug. In such ignition by an ignition plug, for example, in an internal combustion engine of a type in which fuel is directly injected into a cylinder, if the injected fuel is not distributed at the spark discharge position of the ignition plug, it rarely occurs.

このため、このような内燃機関では、点火プラグの火花放電を補うために、例えば特許文献1に記載のもののように、点火プラグの放電領域にプラズマ雰囲気を生成しておき、プラズマ雰囲気中にアーク放電を行うことにより、従来に比べて高い電圧を印加することなく燃焼室内の混合気に確実に着火し、安定した火炎を得ることができるように構成したものが知られている。
特開2007‐32349号公報
For this reason, in such an internal combustion engine, a plasma atmosphere is generated in the discharge region of the spark plug, for example, as described in Patent Document 1, in order to compensate for the spark discharge of the spark plug, and an arc is generated in the plasma atmosphere. It is known that the discharge is performed to surely ignite the air-fuel mixture in the combustion chamber without applying a higher voltage than in the past and to obtain a stable flame.
JP 2007-32349 A

ところで、大気圧下でプラズマを生成する方法として、マグネトロンを用いるものが考えられている。マグネトロンを用いる場合、マグネトロンの出力を調整することにより、生成するプラズマのエネルギを変化させることが可能である。このようにプラズマのエネルギを調整することにより、内燃機関の運転状態に応じて最適化することができる。   By the way, as a method for generating plasma under atmospheric pressure, a method using a magnetron is considered. When using a magnetron, it is possible to change the energy of the plasma to be generated by adjusting the output of the magnetron. By adjusting the plasma energy in this way, it can be optimized according to the operating state of the internal combustion engine.

しかしながら、プラズマのエネルギの調整は、マグネトロンの出力を調整するものであるため、マグネトロンから出力されて導波管などを介して燃焼室に放射されるマイクロ波の電力を検出しなければならない。ところが、マイクロ波を燃焼室に導く導波管を含む伝送線路では、マイクロ波の反射が生じ、その反射によりマイクロ波の電力が変わるため、反射の大きさを把握しなければ、マグネトロンの正確な出力調整は困難であった。   However, since the adjustment of the plasma energy is to adjust the output of the magnetron, it is necessary to detect the power of the microwave output from the magnetron and radiated to the combustion chamber through a waveguide or the like. However, in the transmission line including the waveguide that guides the microwave to the combustion chamber, the reflection of the microwave occurs, and the power of the microwave changes due to the reflection. Output adjustment was difficult.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明の火花点火式内燃機関用高周波発生装置は、高周波により燃焼室内に生成されるプラズマと点火プラグによる火花放電とを反応させて混合気に着火する火花点火式内燃機関の高周波供給部に電気的に接続される火花点火式内燃機関用高周波発生装置であって、プラズマを生成するための高周波を出力する高周波発生源と、高周波発生源と高周波供給部との間に高周波供給部に対して直列に接続する抵抗と、抵抗の両端電圧を計測して抵抗の発熱状態を推定し、推定した抵抗の発熱状態に基づいて高周波発生源が出力する高周波の特性を調整する特性調整手段とを備えることを特徴とする。   That is, the high-frequency generator for a spark-ignition internal combustion engine according to the present invention is a high-frequency supply unit for a spark-ignition internal combustion engine that ignites an air-fuel mixture by reacting plasma generated in a combustion chamber by high frequency with spark discharge by an ignition plug. A spark ignition internal combustion engine high-frequency generator electrically connected to a high-frequency generator that outputs a high-frequency for generating plasma, and a high-frequency supply unit between the high-frequency generator and the high-frequency supply unit A resistor connected in series, and a characteristic adjusting means for measuring a voltage across the resistor to estimate a heat generation state of the resistor, and adjusting a high frequency characteristic output from the high frequency generation source based on the estimated heat generation state of the resistor; It is characterized by providing.

このような構成によれば、抵抗に高周波を流した場合の抵抗の両端電圧と、抵抗の発熱状態との間に相関関係があるので、両端電圧を計測することで高周波発生源と高周波供給部との間の線路における発熱状態が把握できる。この発熱は、高周波の反射に起因するものであり、目標となる発熱状態となるように、したがって反射が小さくなるように特性調整手段が高周波発生源の出力する電磁波の特性を調整するもので、前記線路の破損を抑えることが可能である。   According to such a configuration, since there is a correlation between the voltage at both ends of the resistor when a high frequency is passed through the resistor and the heat generation state of the resistor, the high frequency generation source and the high frequency supply unit are measured by measuring the voltage at both ends. The heat generation state in the line between the two can be grasped. This heat generation is caused by high-frequency reflection, and the characteristic adjusting means adjusts the characteristics of the electromagnetic wave output from the high-frequency generation source so that the target heat generation state is obtained, and thus the reflection becomes small. It is possible to suppress breakage of the line.

以上の構成において、高周波の特性としては、高周波の位相、及び高周波の周波数が挙げられる。   In the above configuration, the high frequency characteristics include a high frequency phase and a high frequency.

本発明は、以上説明したような構成であり、抵抗に高周波を流した場合の抵抗の両端電圧と、抵抗の発熱状態との間に相関関係があるので、両端電圧を計測することで高周波発生源と点火プラグとの間の線路における発熱状態が把握できる。そして把握した発熱状態に応じて、特性調整手段が高周波発生源の出力する電磁波の特性を調整することで、高周波発生源と点火プラグとの間の線路の破損を抑えることができる。   The present invention is configured as described above, and since there is a correlation between the voltage across the resistor when a high frequency is passed through the resistor and the heat generation state of the resistor, high-frequency generation is achieved by measuring the voltage across the resistor. The heat generation state in the line between the source and the spark plug can be grasped. And according to the grasped heat generation state, the characteristic adjusting means adjusts the characteristic of the electromagnetic wave output from the high-frequency generation source, so that damage to the line between the high-frequency generation source and the spark plug can be suppressed.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

以下に説明する実施形態の高周波発生装置HFGは、点火プラグ1を備える火花点火式内燃機関(以下、エンジンと称す)100に設けられる高周波供給部たるアンテナATに電気的に接続されるものである。   A high-frequency generator HFG according to an embodiment described below is electrically connected to an antenna AT which is a high-frequency supply unit provided in a spark ignition internal combustion engine (hereinafter referred to as an engine) 100 including a spark plug 1. .

図1に、1気筒における点火プラグ1の取付部分を拡大して示す火花点火式内燃機関であるエンジン100は、例えば3気筒のダブルオーバーヘッドカムシャフト(DOHC)形式のもので、吸気ポート2の開口3及び排気ポート4の開口5が、燃焼室6の天井部分のほぼ中央に取り付けられる点火プラグ1を中心として対向配置されて、1気筒当たりそれぞれ2ヶ所に開口するものである。すなわち、このエンジン100は、シリンダブロック7に取り付けられ、燃焼室6の天井部分を形成しているシリンダヘッド8には、吸気側と排気側とにそれぞれカムシャフト9、10が取り付けてある。シリンダヘッド8の吸気ポート2は、カムシャフト9が回転することにより往復作動する吸気弁11により、また排気ポート4は、カムシャフト10が回転することにより往復作動する排気弁12によりそれぞれ開閉されるものである。そして、燃焼室6の天井部分には、点火プラグ1に加えて、プラズマを生成するための電磁波であるマイクロ波を燃焼室6内に供給する伝送線路の一部をなすマイクロ波供給路13が設けてある。アンテナATは、このマイクロ波給電路13の先端に設けられるもので、外側に向かって広がるホーン部を有するホーン型のアンテナである。アンテナATの内部には、燃焼室6から圧力が漏洩しないように、誘電体15が充填してある。   FIG. 1 shows an engine 100, which is a spark ignition type internal combustion engine, showing an enlarged mounting portion of a spark plug 1 in one cylinder, for example, of a three-cylinder double overhead camshaft (DOHC) type. 3 and the opening 5 of the exhaust port 4 are arranged opposite to each other centering on a spark plug 1 attached to substantially the center of the ceiling portion of the combustion chamber 6 and are opened at two locations per cylinder. That is, the engine 100 is attached to the cylinder block 7, and the camshafts 9 and 10 are attached to the intake side and the exhaust side of the cylinder head 8 forming the ceiling portion of the combustion chamber 6, respectively. The intake port 2 of the cylinder head 8 is opened and closed by an intake valve 11 that reciprocates when the camshaft 9 rotates, and the exhaust port 4 is opened and closed by an exhaust valve 12 that reciprocates when the camshaft 10 rotates. Is. In addition to the spark plug 1, a microwave supply path 13 that forms part of a transmission line for supplying microwaves, which are electromagnetic waves for generating plasma, into the combustion chamber 6 is provided on the ceiling portion of the combustion chamber 6. It is provided. The antenna AT is provided at the tip of the microwave feed path 13 and is a horn type antenna having a horn portion that spreads outward. The antenna AT is filled with a dielectric 15 so that pressure does not leak from the combustion chamber 6.

この実施形態の高周波発生装置HFGは、図2に示すように、プラズマを生成するための高周波を出力する高周波発生源16と、高周波発生源16と高周波供給部であるアンテナATとの間にアンテナATに対して直列に接続する抵抗17と、抵抗17の両端電圧を計測して抵抗17の発熱状態を推定し、推定した抵抗17の発熱状態に基づいて高周波発生源16が出力する高周波の特性を調整する特性調整手段たる位相調整器18とを備えている。   As shown in FIG. 2, the high-frequency generator HFG of this embodiment includes an antenna between a high-frequency generator 16 that outputs a high frequency for generating plasma and an antenna AT that is a high-frequency supply unit 16 and a high-frequency supply unit. A resistor 17 connected in series to the AT and a voltage at both ends of the resistor 17 are measured to estimate a heat generation state of the resistor 17, and a high frequency characteristic output from the high frequency generation source 16 based on the estimated heat generation state of the resistor 17 And a phase adjuster 18 which is characteristic adjusting means for adjusting.

高周波発生源16は、高周波であるマイクロ波を出力する例えばマグネトロンと、そのマグネトロンの動作を制御する制御回路とを備える。マグネトロン自体は、マイクロ波加熱などの分野でよく知られているものを適用するものであってよい。また、制御回路は、マグネトロンの出力、マイクロ波の位相及び出力時期を制御するものである。   The high-frequency generation source 16 includes, for example, a magnetron that outputs a high-frequency microwave, and a control circuit that controls the operation of the magnetron. The magnetron itself may be one that is well known in the field of microwave heating or the like. The control circuit controls the output of the magnetron, the phase of the microwave, and the output timing.

抵抗17は、マグネトロンの出力電圧が高圧であるので、数オーム程度の抵抗値のものである。この抵抗17は、マイクロ波の伝送線路19の一部をなすとともに、伝送線路19において反射波と進行波とが合成されて出現する定在波の電流値を検出する電流検出器の一部として機能する。   The resistor 17 has a resistance value of several ohms because the magnetron output voltage is high. The resistor 17 forms a part of the microwave transmission line 19 and also serves as a part of a current detector that detects a current value of a standing wave that appears by combining the reflected wave and the traveling wave in the transmission line 19. Function.

位相調整器18は、例えばマイクロプロセッサを備えてなり、ソフトウエアにより、入力される抵抗17の両端電圧を測定するとともに、測定した両端電圧に基づいて抵抗17の発熱状態を推定するものである。抵抗17の発熱状態は、アンテナATまでの伝送線路19において発生する定在波の電流に実質的に比例するので、抵抗17の発熱状態から伝送線路19の発熱状態が推定し得るものである。そして、推定した発熱状態から、マグネトロンが出力するマイクロ波の位相を調整する指令(信号)を高周波発生源16に対して出力する。位相を制御することにより、進行波と反射波との位相を最小限にするものである。   The phase adjuster 18 includes, for example, a microprocessor, and measures the voltage across the input resistor 17 by software and estimates the heat generation state of the resistor 17 based on the measured voltage across the resistor 17. Since the heat generation state of the resistor 17 is substantially proportional to the standing wave current generated in the transmission line 19 to the antenna AT, the heat generation state of the transmission line 19 can be estimated from the heat generation state of the resistor 17. Then, a command (signal) for adjusting the phase of the microwave output from the magnetron is output to the high frequency generation source 16 from the estimated heat generation state. By controlling the phase, the phase of the traveling wave and the reflected wave is minimized.

このような構成において、このエンジン100は、燃焼室6内の混合気に点火プラグ1を用いて着火する場合に、点火プラグ1の火花放電を燃焼室6内に生成するプラズマと反応させることにより、点火プラグ1の火花放電をプラズマと反応させない場合の火花放電に比較して、大きくしている。   In such a configuration, when the air-fuel mixture in the combustion chamber 6 is ignited using the spark plug 1, the engine 100 reacts the spark discharge of the spark plug 1 with the plasma generated in the combustion chamber 6. The spark discharge of the spark plug 1 is made larger than the spark discharge when not reacting with plasma.

点火に際しては、点火プラグ1に点火コイル(図示しない)により火花放電を発生させて、火花放電とほぼ同時あるいはその直後にマイクロ波により高周波電界を発生させてプラズマを生成させることにより、燃焼室6内の混合気を急速に燃焼させる構成である。   At the time of ignition, a spark discharge is generated in the spark plug 1 by an ignition coil (not shown), and a high-frequency electric field is generated by microwaves almost simultaneously with or immediately after the spark discharge to generate plasma, whereby the combustion chamber 6 It is the structure which burns the inside air-fuel mixture rapidly.

具体的には、点火プラグ1による火花放電が高周波電界中でプラズマになり、火炎が大きくなる。   Specifically, the spark discharge by the spark plug 1 becomes plasma in a high-frequency electric field, and the flame becomes large.

これは、火花放電による電子の流れ及び火花放電によって生じたイオンやラジカルが、高周波電界の影響を受け振動、蛇行することで行路長が長くなり、周囲の水分子や窒素分子と衝突する回数が飛躍的に増加することによるものである。イオンやラジカルの衝突を受けた水分子や窒素分子は、OHラジカルやNラジカルになると共に、イオンやラジカルの衝突を受けた周囲の気体は電離した状態、言換するとプラズマ状態となることで、飛躍的に火炎が大きくなるものである。   This is because the flow of electrons due to the spark discharge and the ions and radicals generated by the spark discharge oscillate and meander due to the influence of the high-frequency electric field, resulting in a longer path length and the number of collisions with surrounding water and nitrogen molecules. This is due to a dramatic increase. Water molecules and nitrogen molecules that have been struck by ions and radicals become OH radicals and N radicals, and the surrounding gas that has been struck by ions and radicals is ionized, in other words, a plasma state. The flame will increase dramatically.

この結果、高周波電界と反応することにより増大した火花放電により混合気に着火するため、着火領域が拡大し、点火プラグ1のみの二次元的な着火から三次元的な着火になる。したがって、初期燃焼が安定し、上述したラジカルの増加に伴って燃焼が燃焼室6内に急速に伝播し、高い燃焼速度で燃焼が拡大する。   As a result, the air-fuel mixture is ignited by the spark discharge increased by reacting with the high-frequency electric field, so that the ignition region is expanded and the two-dimensional ignition of only the spark plug 1 is changed to the three-dimensional ignition. Therefore, the initial combustion is stabilized, and the combustion rapidly propagates into the combustion chamber 6 as the radicals increase, and the combustion expands at a high combustion rate.

マイクロ波をアンテナATから燃焼室6に放射する間、伝送線路19にあっては定在波が現れる。これは、伝送線路19及びマイクロ波供給路13のインピーダンスと、アンテナATのインピーダンスとの整合にずれがあり、反射波が発生する場合に生じるものである。そして、定在波の電流が大きくなると、抵抗17の両端電圧も大きくなる。したがって、抵抗17の両端電圧を測定して、伝送線路の発熱を推定し、推定した発熱状態に基づいて位相調整器18がマイクロ波の位相を調整することで、定在波の電流を減らすことができる。したがって、伝送線路19を損傷することなく、マイクロ波を燃焼室6に供給することができる。   While the microwave is radiated from the antenna AT to the combustion chamber 6, a standing wave appears in the transmission line 19. This occurs when there is a mismatch between the impedance of the transmission line 19 and the microwave supply path 13 and the impedance of the antenna AT, and a reflected wave is generated. When the standing wave current increases, the voltage across the resistor 17 also increases. Accordingly, the voltage across the resistor 17 is measured to estimate the heat generation of the transmission line, and the phase adjuster 18 adjusts the phase of the microwave based on the estimated heat generation state, thereby reducing the standing wave current. Can do. Therefore, microwaves can be supplied to the combustion chamber 6 without damaging the transmission line 19.

なお、本発明は、上述の実施形態に限定されるものではない。   In addition, this invention is not limited to the above-mentioned embodiment.

上述の実施形態においては、特性調整手段として、マイクロ波の位相を調整するものを説明したが、マイクロ波の特性としては、マイクロ波の周波数であってもよい。この場合、マグネトロンの陽極に流れる陽極電流を制御することにより、マイクロ波の周波数を調整するものである。   In the above-described embodiment, the characteristic adjustment unit that adjusts the phase of the microwave has been described. However, the microwave characteristic may be a microwave frequency. In this case, the frequency of the microwave is adjusted by controlling the anode current flowing through the anode of the magnetron.

又、高周波発生源としては、上述のようなマグネトロン以外に、進行波管などであってよく、さらには半導体によるマイクロ波発振回路を備えるものであってもよい。   In addition to the magnetron as described above, the high frequency generation source may be a traveling wave tube or the like, and may further include a semiconductor microwave oscillation circuit.

加えて、上述の実施形態においては、ビーム型のアンテナを説明したが、モノポール型のアンテナであってもよい。   In addition, although the beam type antenna has been described in the above-described embodiment, a monopole type antenna may be used.

さらには、点火プラグ1の中心電極をアンテナとして機能させて、高周波給電部とするものであってもよい。この場合、高周波を一定の電圧で中心電極に継続して印加すると、中心電極の温度が過剰に上昇するため、中心電極の耐熱温度に基づいて設定する上限温度を下回るように、高周波の電圧を制御するものである。   Furthermore, the center electrode of the spark plug 1 may function as an antenna to form a high-frequency power feeding unit. In this case, if the high frequency is continuously applied to the center electrode at a constant voltage, the temperature of the center electrode rises excessively, so the high frequency voltage is set to be lower than the upper limit temperature set based on the heat resistance temperature of the center electrode. It is something to control.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の活用例として、ガソリンや液化天然ガスを燃料として点火プラグによる火花放電を着火に必要とする火花点火式内燃機関に活用することができる。   As an application example of the present invention, it can be used for a spark ignition type internal combustion engine that uses gasoline or liquefied natural gas as fuel and requires spark discharge by an ignition plug for ignition.

本発明の一実施形態を適用するエンジンの要部を拡大して示す断面図。1 is an enlarged sectional view showing a main part of an engine to which an embodiment of the present invention is applied. 同実施形態の構成を示すブロック図。The block diagram which shows the structure of the embodiment.

符号の説明Explanation of symbols

1…点火プラグ
6…燃焼室
16…高周波発生源
17…抵抗
18…位相調整器
AT…アンテナ
HFG…高周波発生装置
DESCRIPTION OF SYMBOLS 1 ... Spark plug 6 ... Combustion chamber 16 ... High frequency generation source 17 ... Resistance 18 ... Phase adjuster AT ... Antenna HFG ... High frequency generator

Claims (3)

高周波により燃焼室内に生成されるプラズマと点火プラグによる火花放電とを反応させて混合気に着火する火花点火式内燃機関の高周波供給部に電気的に接続される火花点火式内燃機関用高周波発生装置であって、
プラズマを生成するための高周波を出力する高周波発生源と、
高周波発生源と高周波供給部との間に高周波供給部に対して直列に接続する抵抗と、
抵抗の両端電圧を計測して抵抗の発熱状態を推定し、推定した抵抗の発熱状態に基づいて高周波発生源が出力する高周波の特性を調整する特性調整手段とを備える火花点火式内燃機関用高周波発生装置。
A high-frequency generator for a spark-ignition internal combustion engine that is electrically connected to a high-frequency supply unit of a spark-ignition internal combustion engine that reacts plasma generated in a combustion chamber with a high frequency and spark discharge by an ignition plug to ignite an air-fuel mixture Because
A high-frequency generator that outputs a high frequency for generating plasma;
A resistor connected in series with the high-frequency supply unit between the high-frequency generation source and the high-frequency supply unit;
A high-frequency for a spark ignition internal combustion engine comprising a characteristic adjusting means for measuring a voltage across the resistor to estimate a heat generation state of the resistor and adjusting a high-frequency characteristic output from a high-frequency generation source based on the estimated heat generation state of the resistance Generator.
高周波の特性が、高周波の位相である請求項1記載の火花点火式内燃機関用高周波発生装置。   2. A spark ignition internal combustion engine high frequency generator according to claim 1, wherein the high frequency characteristic is a high frequency phase. 高周波の特性が、高周波の周波数である請求項1記載の火花点火式内燃機関用高周波発生装置。   The spark-ignition internal combustion engine high-frequency generator according to claim 1, wherein the high-frequency characteristic is a high-frequency frequency.
JP2008271427A 2008-10-21 2008-10-21 Spark-ignition high-frequency generator for internal combustion engines Expired - Fee Related JP5072797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271427A JP5072797B2 (en) 2008-10-21 2008-10-21 Spark-ignition high-frequency generator for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271427A JP5072797B2 (en) 2008-10-21 2008-10-21 Spark-ignition high-frequency generator for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2010101207A true JP2010101207A (en) 2010-05-06
JP5072797B2 JP5072797B2 (en) 2012-11-14

Family

ID=42292069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271427A Expired - Fee Related JP5072797B2 (en) 2008-10-21 2008-10-21 Spark-ignition high-frequency generator for internal combustion engines

Country Status (1)

Country Link
JP (1) JP5072797B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080873A1 (en) * 2011-11-28 2013-06-06 ダイハツ工業株式会社 Combustion state determination device for internal combustion engine
CN107035599A (en) * 2017-05-12 2017-08-11 中国科学院合肥物质科学研究院 A kind of new automobile Iganition control system
CN107422186A (en) * 2017-05-12 2017-12-01 中国科学院合肥物质科学研究院 Automobile microwave igniting impedance measurement module
US10772184B2 (en) 2018-09-12 2020-09-08 Denso Corporation Ignition device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165399A (en) * 1983-03-09 1984-09-18 株式会社東芝 High frequency heater
JP2007032349A (en) * 2005-07-25 2007-02-08 Denso Corp Ignition device for internal combustion engine
JP2007113570A (en) * 2005-09-20 2007-05-10 Imagineering Kk Ignition device, internal combustion engine, ignition plug, plasma device, exhaust gas decomposition device, ozone generation/sterilization/infection device, and deodorizing device
JP2008032528A (en) * 2006-07-28 2008-02-14 Tokyo Electron Ltd Section and method for measuring stationary wave in waveguide, electromagnetic utilization device, and plasma processing system and method
WO2008068485A2 (en) * 2006-12-08 2008-06-12 Medical Device Innovations Limited Microwave array applicator for hyperthermia

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165399A (en) * 1983-03-09 1984-09-18 株式会社東芝 High frequency heater
JP2007032349A (en) * 2005-07-25 2007-02-08 Denso Corp Ignition device for internal combustion engine
JP2007113570A (en) * 2005-09-20 2007-05-10 Imagineering Kk Ignition device, internal combustion engine, ignition plug, plasma device, exhaust gas decomposition device, ozone generation/sterilization/infection device, and deodorizing device
JP2008032528A (en) * 2006-07-28 2008-02-14 Tokyo Electron Ltd Section and method for measuring stationary wave in waveguide, electromagnetic utilization device, and plasma processing system and method
WO2008068485A2 (en) * 2006-12-08 2008-06-12 Medical Device Innovations Limited Microwave array applicator for hyperthermia

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080873A1 (en) * 2011-11-28 2013-06-06 ダイハツ工業株式会社 Combustion state determination device for internal combustion engine
CN107035599A (en) * 2017-05-12 2017-08-11 中国科学院合肥物质科学研究院 A kind of new automobile Iganition control system
CN107422186A (en) * 2017-05-12 2017-12-01 中国科学院合肥物质科学研究院 Automobile microwave igniting impedance measurement module
CN107422186B (en) * 2017-05-12 2019-12-31 中国科学院合肥物质科学研究院 Automobile microwave ignition impedance measuring module
US10772184B2 (en) 2018-09-12 2020-09-08 Denso Corporation Ignition device

Also Published As

Publication number Publication date
JP5072797B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2011001548A1 (en) Method for controlling spark-ignition internal combustion engine and spark plug
JP5137778B2 (en) Spark ignition internal combustion engine
JP2010101174A (en) Ignition plug of spark-ignition internal combustion engine
JP5072797B2 (en) Spark-ignition high-frequency generator for internal combustion engines
JP6064138B2 (en) Internal combustion engine and plasma generator
WO2013080873A1 (en) Combustion state determination device for internal combustion engine
JP5283576B2 (en) Operation control method for spark ignition internal combustion engine
JP5294960B2 (en) Spark ignition internal combustion engine
JP2011007163A (en) Spark-ignition internal combustion engine
JP5219732B2 (en) Spark plug for spark ignition internal combustion engine
JP2010096144A (en) Spark-ignition internal combustion engine
JP2010249029A (en) Spark ignition type internal combustion engine
JP5235600B2 (en) Spark plug arrangement for a spark ignition internal combustion engine
JP2010096145A (en) Wave guide
US9523342B2 (en) Ignition device for spark-ignition internal combustion engine
JP5000623B2 (en) Control method for spark ignition internal combustion engine
JP5225185B2 (en) Spark ignition internal combustion engine
JP2010101173A (en) Method for controlling operation of spark-ignition internal combustion engine
JP2010101179A (en) Spark-ignition type internal combustion engine
JP5106444B2 (en) Spark ignition internal combustion engine
JP5058122B2 (en) Operation control method for spark ignition internal combustion engine
JP2011007162A (en) Method for controlling spark-ignition internal combustion engine
JP5584484B2 (en) Control method for spark ignition internal combustion engine
JP2017075591A (en) Ignition device
JP5289156B2 (en) Spark plug for spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees