JP2010101003A - Method for checking pressure receiving slab - Google Patents

Method for checking pressure receiving slab Download PDF

Info

Publication number
JP2010101003A
JP2010101003A JP2008270837A JP2008270837A JP2010101003A JP 2010101003 A JP2010101003 A JP 2010101003A JP 2008270837 A JP2008270837 A JP 2008270837A JP 2008270837 A JP2008270837 A JP 2008270837A JP 2010101003 A JP2010101003 A JP 2010101003A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving plate
temperature
pressure
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008270837A
Other languages
Japanese (ja)
Inventor
Takefumi Ogata
武文 尾方
Kengo Oyama
謙吾 大山
Kotaro Hitomi
幸太郎 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirose and Co Ltd
Original Assignee
Hirose and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose and Co Ltd filed Critical Hirose and Co Ltd
Priority to JP2008270837A priority Critical patent/JP2010101003A/en
Publication of JP2010101003A publication Critical patent/JP2010101003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Retaining Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively check the presence/absence of rupture in a portion connected to a brace material by a simple method without destroying a pressure receiving slab. <P>SOLUTION: A temperature changing means for forcibly heating or cooling the pressure receiving slab, and a temperature-distribution measuring means for measuring the distribution of the temperature of the surface of the pressure receiving slab are used. A single pressure receiving slab or a plurality of them are forcibly heated or cooled from the outside by the temperature changing means, and then, the presence/absence of the rupture in the connected portion is checked on the basis of the temperature distribution of the surface of the pressure receiving slab which is measured by the temperature/distribution measuring means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は擁壁等の面状を呈する受圧版の背面(裏面)に控え材を連結した連結部における破断の有無を非破壊により検出する受圧版の調査方法に関するものである。   The present invention relates to a pressure receiving plate inspection method for detecting non-destructively the presence or absence of breakage in a connecting portion in which a backing material is connected to the back surface (back surface) of a pressure receiving plate having a planar shape such as a retaining wall.

各種素材の受圧版の背面に例えば鋼製、高分子製等の控え材を連結しつつ、受圧版の背面の地中にこれらの控え材を埋設することで斜面の安定化を図る工法は、古くから広く知られており、その施工実績も豊富である(特許文献1〜3)。   For example, a method of stabilizing the slope by burying these backing materials in the ground on the back side of the pressure plate while connecting back materials such as steel and polymer to the back side of the pressure plate of various materials. It has been widely known for a long time, and its construction results are also abundant (Patent Documents 1 to 3).

特公昭44−25174号公報Japanese Patent Publication No. 44-25174 特公平4−49609号公報Japanese Examined Patent Publication No. 4-49609 特開2000−8377号公報JP 2000-8377 A

近時この種の工法で施工した受圧版の一部が変形したり、その控え材の連結部の破損が疑われる事例が報告されており、このような事態を放置すると突発的な崩落事故を誘発するおそれがある。
(1)このような事態を回避するために、サンプル的に受圧版を破壊して控え材との連結部の状況を確認する方法が採られている。
しかしながら、このサンプリング方法は、コストが高くつくことと、施工性が悪いといった問題があるだけでなく、受圧版撤去後の復元に手間がかり、調査範囲が広範の場合は実用的ではない。
(2)また、受圧版を破壊せずに控え材との連結部の状況を確認する他の方法として、電磁波やエックス線等を用いる方法が考えられるが、検査機器が高価であり、かつ検査を行なうために専門資格や専門知識が必要である。
(3)以上のことから既設の受圧版を対象とした好適な調査方法が存在せず、受圧版背面の控え材との連結部の現況を正確、かつ低コストで効率よく調査できる技術の提案が切望されている。
Recently, there have been reports of cases in which a part of the pressure-receiving plate constructed by this type of method is deformed or the connection part of the retaining material is suspected to be damaged. There is a risk of triggering.
(1) In order to avoid such a situation, a method is adopted in which the pressure receiving plate is broken like a sample to check the state of the connecting portion with the backing material.
However, this sampling method not only has the problem of high cost and poor workability, but also takes time to restore after removing the pressure receiving plate, and is not practical when the investigation range is wide.
(2) As another method for confirming the state of the connecting portion with the backing material without destroying the pressure receiving plate, a method using electromagnetic waves, X-rays, etc. can be considered, but the inspection equipment is expensive and the inspection is performed. Professional qualifications and expertise are required to do so.
(3) Because of the above, there is no suitable investigation method for the existing pressure plate, and a proposal for a technology that can accurately and efficiently investigate the current state of the connection with the backing material on the back of the pressure plate Is anxious.

本発明は以上の点に鑑みてなされたもので、その目的とするところは、つぎの少なくとも一つの受圧版の調査技術を提供することにある。
(1)受圧版を破壊せずに、簡易な方法で以って低コストに控え材との連結部の破断の有無を調査できること。
(2)短時間に調査できて、調査結果の信頼性が高いこと。
(3)調査に専門資格を必要としないこと。
The present invention has been made in view of the above points, and an object of the present invention is to provide at least one pressure-sensitive plate inspection technique.
(1) The presence or absence of breakage of the connecting portion with the backing material can be investigated at a low cost by a simple method without destroying the pressure receiving plate.
(2) The survey results can be surveyed in a short time and the survey results are highly reliable.
(3) Do not require professional qualifications for the survey.

本願の第1発明は、土構造体の側面を覆う受圧版の背面に控え材を連結した連結部における破断の有無を非破壊により検出する受圧版の調査方法であって、受圧版を強制的に加温、又は冷却する変温手段と、受圧版の表面の温度分布を計測する温度分布の計測手段とを使用し、前記変温手段により単数、又は複数の受圧版を外部から強制的に加温、又は冷却し、その後、前記温度分布の計測手段により測定した受圧版の温度分布に基づいて連結部の破断の有無を調査することを特徴とするものである。
本願の第2発明は、前記第1発明において、変温手段が、受圧版と控え材との連結部に応力を伝達するように、土構造体上を走行可能な振動機による振動であることを特徴とするものである。
本願の第3発明は、前記第1発明において、変温手段が、受圧版と控え材との連結部に応力を伝達するように、土構造体上に載置した重量物による載荷重であることを特徴とするものである。
本願の第4発明は、前記第1発明において、変温手段が、受圧版の表面を直接加温する加温材であり、受圧版の表面から控え材との連結部を加温することを特徴とするものである。
本願の第5発明は、前記第1発明において、変温手段が、受圧版の表面を直接冷却する保冷材であり、受圧版の表面から控え材との連結部を冷却することを特徴とするものである。
本願の第6発明は、前記第1発明乃至第5発明の何れかひとつにおいて、温度分布の計測手段が接触式、又は非接触式で温度変化を計測可能なサーモグラフィ、温度センサ、感熱シートのいずれかひとつであることを特徴とするものである。
1st invention of this application is the investigation method of the pressure receiving plate which detects the presence or absence of the fracture | rupture in the connection part which connected the backing material to the back surface of the pressure receiving plate which covers the side surface of a soil structure by nondestructive, Comprising: And a temperature distribution measuring means for measuring the temperature distribution on the surface of the pressure receiving plate, and forcing one or more pressure receiving plates from the outside by the temperature changing means. After heating or cooling, the presence or absence of breakage of the connecting portion is investigated based on the temperature distribution of the pressure receiving plate measured by the temperature distribution measuring means.
A second invention of the present application is the vibration according to the first invention, wherein the temperature changing means is vibration by a vibrator capable of traveling on the earth structure so as to transmit stress to the connecting portion between the pressure receiving plate and the retaining material. It is characterized by.
A third invention of the present application is a load applied by a heavy object placed on the earth structure so that the temperature changing means transmits stress to the connecting portion between the pressure receiving plate and the holding material in the first invention. It is characterized by this.
According to a fourth invention of the present application, in the first invention, the temperature changing means is a heating material that directly heats the surface of the pressure receiving plate, and heats the connecting portion with the recording material from the surface of the pressure receiving plate. It is a feature.
A fifth invention of the present application is characterized in that, in the first invention, the temperature changing means is a cold insulating material that directly cools the surface of the pressure receiving plate, and cools the connecting portion with the recording material from the surface of the pressure receiving plate. Is.
A sixth invention of the present application is any one of the first to fifth inventions, wherein the temperature distribution measuring means is a contact type or a non-contact type thermography, temperature sensor, or thermal sheet capable of measuring a temperature change. It is characterized by being one.

本発明はつぎの顕著な効果を奏する。
(1)受圧版の温度分布から受圧版の背面の控え材との連結部の破断の有無を調査できるので、受圧版を破壊せずに比較的広い面積を低コストに調査をすることができる。
(2)専門的な知識がなくとも、短時間の間に正確に調査することができる。
(3)ひとつの受圧版の背面に複数の控え材が連結している場合は、連結部の破断位置を特定することも可能である。
(4)極僅かな温度変化から受圧版と控え材の連結部の破断の有無を調査できるから、変温コストが安くて済むだけでなく、受圧版を変質させる心配もない。
The present invention has the following remarkable effects.
(1) Since it is possible to investigate the presence or absence of breakage of the connecting portion with the backing material on the back of the pressure receiving plate from the temperature distribution of the pressure receiving plate, it is possible to investigate a relatively large area at a low cost without destroying the pressure receiving plate. .
(2) Even if there is no specialized knowledge, it is possible to investigate accurately in a short time.
(3) When a plurality of retentive materials are connected to the back surface of one pressure receiving plate, it is also possible to specify the breaking position of the connecting portion.
(4) Since the presence or absence of breakage of the connecting portion between the pressure receiving plate and the holding material can be investigated from a very slight temperature change, not only the temperature change cost is low, but there is no fear of altering the pressure receiving plate.

以下、図面を参照しながら本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(1)発明の前提
図1に本発明の調査方法のモデル図を示す。
図中、符号1は土構造物であり、2は土構造物1の側面を覆う複数の受圧版であり、3は土構造物1に埋設され、その一端を受圧版2に連結された控え材である。
本例では土構造物1の側面を一枚ものの受圧版2で覆った形態を図示したが、複数の受圧版2を縦横方向に列設してもよく、その被覆形態については特に制約がない。
(1) Premise of invention FIG. 1 shows a model diagram of the investigation method of the present invention.
In the figure, reference numeral 1 is a soil structure, 2 is a plurality of pressure receiving plates that cover the side surfaces of the earth structure 1, 3 is a pad that is embedded in the earth structure 1, and one end of which is connected to the pressure receiving plate 2 It is a material.
In this example, the side surface of the soil structure 1 is covered with a single pressure receiving plate 2, but a plurality of pressure receiving plates 2 may be arranged in the vertical and horizontal directions, and there is no particular limitation on the covering form. .

本発明が前提とする受圧版2は、コンクリート製、樹脂製等の熱伝導が可能な素材で形成した公知のブロック体で、その断面形状や平面形状、表面形状等に制約はない。
受圧版2の背面には、控え材3を直接、又は間接的に連結する公知の連結要素が設けられている。
本発明が前提とする控え材3は、引張強度に優れた金属製、又は高分子製の素材からなる板体、帯体、紐体、網体、棒体を含む。
控え材3と受圧版2との連結手段は、控え材2の一端を受圧版1の裏面の連結要素に直接連結する形態と、控え材2の一端と、受圧版1の裏面の連結要素との間に連結材を介在させて間接的に連結する形態がある。
The pressure receiving plate 2 premised on the present invention is a known block body made of a material capable of conducting heat, such as concrete or resin, and there is no restriction on its cross-sectional shape, planar shape, surface shape and the like.
On the back surface of the pressure receiving plate 2, a known connecting element for connecting the retainer 3 directly or indirectly is provided.
The retentive material 3 on which the present invention is based includes a plate, a band, a string, a net, and a rod made of a metal or polymer material having excellent tensile strength.
The connecting means of the backing material 3 and the pressure receiving plate 2 includes a form in which one end of the backing material 2 is directly connected to a connecting element on the back surface of the pressure receiving plate 1, one end of the backing material 2, and a connecting element on the back surface of the pressure receiving plate 1. There is a form in which the connecting material is indirectly connected between the two.

前者の形態としては、受圧版2の裏面に設けた孔、又は掛止可能な連結要素に控え材3の一端を挿通結束、又はピン結合等により連結する形態である。
後者の形態としては、受圧版2の裏面に設けた孔、又はフック等の連結要素と、控え材3の一端に形成した開口要素との間を、ベルト材、連結リング等の結合材を介して連結する形態である。
The former form is a form in which one end of the retentive material 3 is connected to a hole provided on the back surface of the pressure receiving plate 2 or a connecting element that can be hooked by insertion binding or pin connection.
As the latter form, a connecting member such as a belt member or a connecting ring is provided between a connecting element such as a hole or a hook provided on the back surface of the pressure receiving plate 2 and an opening element formed at one end of the holding member 3. Are connected.

(2)測定原理
本発明は受圧版2を破壊しないで(非破壊)、受圧版2と控え材3の連結部4における破断の有無を調査する方法であり、受圧版2を強制的に加温、又は冷却する変温手段と、受圧版2の表面の温度分布を計測する温度分布の計測手段5とを具備する。
(2) Measurement principle The present invention is a method for investigating the presence or absence of breakage in the connecting portion 4 between the pressure receiving plate 2 and the backing material 3 without destroying the pressure receiving plate 2 (non-destructive). A temperature changing means for temperature or cooling and a temperature distribution measuring means 5 for measuring the temperature distribution on the surface of the pressure receiving plate 2 are provided.

前記変温手段により単数、又は複数の受圧版2を外部から強制的に加温、又は冷却した後、温度分布の計測手段5により受圧版2の表面の温度分布変化を計測し、その温度分布変化に基づいて連結部4の破断の有無を調査するものである。
特に本発明は受圧版2の背面に控え材3を連結した連結部4の正常箇所(連結状態の箇所)と異常箇所(破断状態、又は破断に近い状態)において熱伝導性が異なることに着目して成されたものである。
After forcibly heating or cooling one or a plurality of pressure receiving plates 2 from the outside by the temperature changing means, the temperature distribution measuring means 5 measures the temperature distribution change of the surface of the pressure receiving plate 2, and the temperature distribution Based on the change, the presence or absence of breakage of the connecting portion 4 is investigated.
In particular, the present invention pays attention to the difference in thermal conductivity between a normal part (a connected state) and an abnormal part (a broken state or a state close to a broken state) of the connecting portion 4 in which the backing material 3 is connected to the back surface of the pressure receiving plate 2. It was made as a result.

(3)変温手段
受圧版1を強制的に変温(加温又は冷却)する手段としては以下の方法を採用することが可能である。
(3) Temperature changing means As means for forcibly changing the temperature (heating or cooling) of the pressure-receiving plate 1, the following method can be adopted.

(3−1)加温 (3-1) Heating

〔A〕土構造物1の上部から強制的に振動させて、または土構造物1の上部に重量物Wを載荷する等して、控え材2に外力を加える方法。
前者の方法は例えば、舗装工に用いる振動ローラを、土構造物1の上面を走行させることで、控え材2に外力を加えることが可能である。
後者の方法は例えば、土構造物1の上部に盛土等の静荷重を載荷させることで、控え材2に外力を加えることが可能である。
前記した二つの例示形態にあっては、振動や載荷に起因して構造物1の土圧が増加すると、控え材2の引張応力が増加し、控え材2の引張応力が増加することに伴い連結部4が発熱して温度が上昇する。
上記した発熱作用は各種の論文や文献等により公知である。
[A] A method of applying an external force to the holding material 2 by forcibly vibrating from the upper part of the earth structure 1 or by loading a heavy object W on the upper part of the earth structure 1.
In the former method, for example, an external force can be applied to the retentive material 2 by causing a vibration roller used for pavement to run on the upper surface of the earth structure 1.
In the latter method, for example, by applying a static load such as embankment on the top of the earth structure 1, it is possible to apply an external force to the material 2.
In the two exemplary embodiments described above, when the earth pressure of the structure 1 increases due to vibration or loading, the tensile stress of the retainer 2 increases, and the tensile stress of the retainer 2 increases. The connecting part 4 generates heat and the temperature rises.
The above-described exothermic action is known from various papers and literatures.

〔B〕発熱手段により受圧版1の表面を一定時間に亘って均一に加温して、連結した控え材3を加温する方法。
発熱手段としては、公知の発熱材や蓄熱材を使用することが可能である。
[B] A method in which the surface of the pressure receiving plate 1 is uniformly heated over a certain period of time by a heating means, and the connected recording material 3 is heated.
As the heat generating means, it is possible to use a known heat generating material or heat storage material.

(3−2)強制冷却 (3-2) Forced cooling

〔A〕冷却手段により受圧版1の表面を一定時間に亘って均等に冷却して、連結した控え材3を冷却する方法。
冷却手段としては例えば公知の保冷材が使用可能である。
[A] A method in which the surface of the pressure-receiving plate 1 is uniformly cooled over a certain period of time by a cooling means to cool the connected holding members 3.
As the cooling means, for example, a known cold insulating material can be used.

(4)温度分布の計測手段
温度分布の計測手段5としては、サーモグラフィ(赤外線サーモグラフィ)、温度センサ、感熱シート等の非接触式で温度変化を計測可能な機器が使用可能である。
赤外線サーモグラフィは安価な市販品を使用できる。
温度センサは受圧版2の表面に付設する接触式と、受圧版2の表面から離隔して設ける非接触式とがある。
感熱シートも市販品を使用可能である。
(4) Temperature Distribution Measuring Unit As the temperature distribution measuring unit 5, a device capable of measuring a temperature change in a non-contact manner such as a thermography (infrared thermography), a temperature sensor, a heat sensitive sheet, or the like can be used.
Infrared thermography can use a cheap commercial item.
The temperature sensor includes a contact type provided on the surface of the pressure receiving plate 2 and a non-contact type provided separately from the surface of the pressure receiving plate 2.
Commercial products can also be used as the heat sensitive sheet.

[調査方法]
つぎに調査方法について説明する。
[Investigation method]
Next, the investigation method will be described.

(1)控え材への強制加温(又は強制冷却)
既述した変温手段により、控え材3を強制的に加温(又は強制冷却)して放置する。
強制加温(又は強制冷却)された控え材3と受圧版2の連結部4が、破断のない正常状態であれば、連結部4の温度が均一に上昇(又は冷却)し、破断した異常状態であれば連結部4の温度が他の箇所の温度変化に対して変化量が異なる。
(1) Forced heating (or forced cooling)
The recording material 3 is forcibly heated (or forcibly cooled) by the temperature changing means described above and left.
If the connecting part 4 between the forcibly heated (or forcedly cooled) material 3 and the pressure receiving plate 2 is in a normal state without breakage, the temperature of the connection part 4 rises uniformly (or is cooled), and the breakage is abnormal. If it is in a state, the amount of change of the temperature of the connecting portion 4 differs with respect to the temperature change of other locations.

(2)受圧版の表面温度の測定
強制加温(又は強制冷却)して放置すると、連結部4が正常な場合と異常な場合での発生温度に差異が生じ、この温度の差異(温度分布)は熱伝導性を有する受圧版2の表面にそのまま伝わる。
つぎに受圧版2の表面側から温度分布の計測手段5により温度変化を測定する。
既述したように、受圧版2の表面温度は連結部4の温度変化に基づくものであるから、温度分布の計測手段5は控え材3と受圧版2の連結部4の温度変化を間接的に測定したことになる。
このようにして測定した温度変化(温度の降下変化または温度の上昇変化)の分布を基に、連結部4の破断箇所の有無を判別するとともに、破断箇所として特定する。
破断箇所の特定方法としては、測定した温度変化の分布を基に他の部位と比べて温度変化のみられなかった箇所を破断箇所として特定したり、或いは他の連結部との温度変化の相違から破断箇所として特定することができる。
また、温度分布の計測手段5による測定範囲は、複数の控え材3の連結部4を一度に測定できる範囲を意味し、受圧版1が一枚のみに限定されるものではなく、複数の受圧版1を対象として一度に測定することも可能である。
(2) Measurement of pressure plate surface temperature If forced heating (or forced cooling) is allowed to stand, there will be a difference in the generated temperature between when the connecting part 4 is normal and when it is abnormal, and this temperature difference (temperature distribution) ) Is directly transmitted to the surface of the pressure receiving plate 2 having thermal conductivity.
Next, the temperature change is measured by the temperature distribution measuring means 5 from the surface side of the pressure receiving plate 2.
As described above, since the surface temperature of the pressure receiving plate 2 is based on the temperature change of the connecting portion 4, the temperature distribution measuring means 5 indirectly measures the temperature change of the connecting portion 4 of the backing material 3 and the pressure receiving plate 2. Will be measured.
Based on the distribution of the temperature change (temperature drop change or temperature rise change) measured in this manner, the presence or absence of a broken portion of the connecting portion 4 is determined and specified as a broken portion.
As a method for identifying the fracture location, the location where the temperature change was not observed compared to other sites based on the distribution of the measured temperature change was identified as the fracture location, or from the difference in temperature change with other connecting parts. It can be specified as a fracture location.
Further, the measurement range by the temperature distribution measuring means 5 means a range in which the connecting portions 4 of the plurality of holding members 3 can be measured at a time, and the pressure receiving plate 1 is not limited to a single sheet, but a plurality of pressure receiving pressures. It is also possible to measure the plate 1 at a time.

[他の実施の形態]
前記実施の形態において、受圧版2を強制加温、又は強制冷却する場合にあっては、温度変化ではなく、熱伝導率が異なることに着目して、所定の設定温度に達するまでの速度を計測することが望ましい。
強制加温の場合は冷却速度を計測し、強制冷却の場合は常温までの戻り速度を計測する。
[Other embodiments]
In the above embodiment, when the pressure receiving plate 2 is forcibly heated or cooled, paying attention to the fact that the thermal conductivity is different, not the temperature change, the speed until the predetermined set temperature is reached. It is desirable to measure.
In the case of forced heating, the cooling rate is measured, and in the case of forced cooling, the return rate to room temperature is measured.

土構造体1が盛土である場合、変温手段として、締固め機械6(自走式の振動ローラ)を使用し、温度分布の計測手段5として赤外線サーモグラフィーカメラを使用する。   When the soil structure 1 is embankment, a compacting machine 6 (self-propelled vibrating roller) is used as the temperature changing means, and an infrared thermography camera is used as the temperature distribution measuring means 5.

土構造体1の天端で締固め機械6を往復走行させて、盛土内部に増加応力、又は振動、又はその両方を与え、これらの応力を控え材3に伝える。
控え材3の一端が受圧版2に連結されている場合には、盛土を介して控え材3に伝わった応力は連結部4に集中的に作用する(図2)。
The compacting machine 6 is reciprocated at the top end of the earth structure 1 to give increased stress and / or vibration to the embankment, and these stresses are transmitted to the backing material 3.
When one end of the retainer 3 is connected to the pressure receiving plate 2, the stress transmitted to the retainer 3 through the embankment acts on the connecting portion 4 in a concentrated manner (FIG. 2).

その結果、控え材3と受圧版2の連結部4が発熱させられ、この発熱が受圧版2に伝達される。   As a result, the connecting portion 4 between the retainer 3 and the pressure receiving plate 2 is caused to generate heat, and the generated heat is transmitted to the pressure receiving plate 2.

控え材3の一端が受圧版2に連結されていない場合は、盛土を介して控え材3に伝わった応力は連結部4に作用しないから、連結部4は勿論のこと受圧版2は発熱しない(図3)。   When one end of the backing material 3 is not connected to the pressure receiving plate 2, the stress transmitted to the backing material 3 through the embankment does not act on the connecting portion 4. (Figure 3).

受圧版2に接続された控え材3の連結部4に発生する温度変化を赤外線サーモグラフィーカメラで受圧版2の表面温度を撮影することで画像的に捕捉する。
受圧版2の表面温度の画像データから、反応の有無、ならびに温度の差異を目視することで、受圧版2と控え材3が接続されているか、否かを検知することができる。
殊に、赤外線サーモグラフィーカメラは微小な温度変化を彩色の違いとして表示できるので、専門知識がなくとも連結部4の状態を正確に把握することができる。
The temperature change generated in the connecting portion 4 of the backing material 3 connected to the pressure receiving plate 2 is captured imagewise by photographing the surface temperature of the pressure receiving plate 2 with an infrared thermography camera.
From the image data of the surface temperature of the pressure receiving plate 2, it is possible to detect whether or not the pressure receiving plate 2 and the retentive material 3 are connected by visually observing the presence or absence of reaction and the difference in temperature.
In particular, since the infrared thermography camera can display a minute temperature change as a difference in coloring, the state of the connecting portion 4 can be accurately grasped without specialized knowledge.

以上の調査作業は複数箇所で行なえるので、調査範囲が広範であっても簡単に調査することが可能である。   Since the above survey work can be performed at a plurality of locations, it is possible to easily survey even if the survey range is wide.

本発明に係る調査方法のモデル図Model diagram of survey method according to the present invention 受圧版と控え材の連結部が正常の場合のモデル図Model diagram when the connection between pressure plate and backing material is normal 受圧版と控え材の連結部が異常の場合のモデル図Model diagram when the connection between pressure plate and backing material is abnormal

符号の説明Explanation of symbols

1・・・土構造体
2・・・受圧版
3・・・控え材
4・・・連結部
DESCRIPTION OF SYMBOLS 1 ... Soil structure 2 ... Pressure receiving plate 3 ... Retaining material 4 ... Connection part

Claims (6)

土構造体の側面を覆う受圧版の背面に控え材を連結した連結部における破断の有無を非破壊により検出する受圧版の調査方法であって、
受圧版を強制的に加温、又は冷却する変温手段と、
受圧版の表面の温度分布を計測する温度分布の計測手段とを使用し、
前記変温手段により単数、又は複数の受圧版を外部から強制的に加温、又は冷却し、
その後、前記温度分布の計測手段により測定した受圧版の温度分布に基づいて連結部の破断の有無を調査することを特徴とする、
受圧版の調査方法。
A method for investigating a pressure-receiving plate that detects non-destructively the presence or absence of breakage in a connecting portion in which a backing material is connected to the back surface of the pressure-receiving plate that covers the side of the soil structure,
A temperature changing means for forcibly heating or cooling the pressure receiving plate;
Use the temperature distribution measuring means to measure the temperature distribution on the surface of the pressure plate,
One or more pressure receiving plates are forcibly heated or cooled from the outside by the temperature changing means,
Then, based on the temperature distribution of the pressure plate measured by the temperature distribution measuring means, to investigate the presence or absence of breakage of the connecting portion,
Survey method for pressure-sensitive plates.
請求項1において、変温手段が、受圧版と控え材との連結部に応力を伝達するように、土構造体上を走行可能な振動機による振動であることを特徴とする、受圧版の調査方法。   2. The pressure receiving plate according to claim 1, wherein the temperature changing means is vibration by a vibrator capable of traveling on the earth structure so as to transmit stress to a connection portion between the pressure receiving plate and the retaining material. Survey method. 請求項1において、変温手段が、受圧版と控え材との連結部に応力を伝達するように、土構造体上に載置した重量物による載荷重であることを特徴とする、受圧版の調査方法。   2. The pressure receiving plate according to claim 1, wherein the temperature changing means is a load applied by a heavy object placed on the earth structure so as to transmit stress to a connecting portion between the pressure receiving plate and the holding member. Survey method. 請求項1において、変温手段が、受圧版の表面を直接加温する加温材であり、受圧版の表面から控え材との連結部を加温することを特徴とする、受圧版の調査方法。   The investigation of the pressure receiving plate according to claim 1, wherein the temperature changing means is a heating material that directly heats the surface of the pressure receiving plate, and heats the connecting portion with the backing material from the surface of the pressure receiving plate. Method. 請求項1において、変温手段が、受圧版の表面を直接冷却する保冷材であり、受圧版の表面から控え材との連結部を冷却することを特徴とする、受圧版の調査方法。   2. The method for examining a pressure receiving plate according to claim 1, wherein the temperature changing means is a cold insulating material that directly cools the surface of the pressure receiving plate, and cools the connecting portion with the backing material from the surface of the pressure receiving plate. 請求項1乃至請求項5の何れか1項において、温度分布の計測手段が接触式、又は非接触式で温度変化を計測可能なサーモグラフィ、温度センサ、感熱シートのいずれかひとつであることを特徴とする、受圧版の調査方法。   6. The temperature distribution measuring means according to claim 1, wherein the temperature distribution measuring means is any one of a thermography, a temperature sensor, and a thermal sheet capable of measuring a temperature change by a contact type or a non-contact type. And the pressure-sensitive version survey method.
JP2008270837A 2008-10-21 2008-10-21 Method for checking pressure receiving slab Pending JP2010101003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270837A JP2010101003A (en) 2008-10-21 2008-10-21 Method for checking pressure receiving slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270837A JP2010101003A (en) 2008-10-21 2008-10-21 Method for checking pressure receiving slab

Publications (1)

Publication Number Publication Date
JP2010101003A true JP2010101003A (en) 2010-05-06

Family

ID=42291876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270837A Pending JP2010101003A (en) 2008-10-21 2008-10-21 Method for checking pressure receiving slab

Country Status (1)

Country Link
JP (1) JP2010101003A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336261A (en) * 2002-05-23 2003-11-28 Kyokado Eng Co Ltd Reinforced earth retaining wall face structure and fill reinforcing material
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2006189410A (en) * 2004-12-07 2006-07-20 Raito Kogyo Co Ltd Non-destructive inspection method for structure, and device therefor
JP2007248394A (en) * 2006-03-17 2007-09-27 Osaka Univ Nondestructive inspection method and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336261A (en) * 2002-05-23 2003-11-28 Kyokado Eng Co Ltd Reinforced earth retaining wall face structure and fill reinforcing material
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2006189410A (en) * 2004-12-07 2006-07-20 Raito Kogyo Co Ltd Non-destructive inspection method for structure, and device therefor
JP2007248394A (en) * 2006-03-17 2007-09-27 Osaka Univ Nondestructive inspection method and device therefor

Similar Documents

Publication Publication Date Title
Aliabadian et al. Crack development in transversely isotropic sandstone discs subjected to Brazilian tests observed using digital image correlation
US9903781B2 (en) Material testing apparatus and method
Zhang et al. Experimental investigation of deformation and failure mechanisms in rock under indentation by digital image correlation
Benaarbia et al. Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens
Gao et al. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials
CN106501314B (en) Method for simply, conveniently and quickly detecting internal quality of concrete filled steel tube
Entacher et al. Cutter force measurement on tunnel boring machines–System design
Blanche et al. Dissipation assessments during dynamic very high cycle fatigue tests
NO323931B1 (en) Painting of the state in stable structures by the pressure of a pulse-shaped electric current and analysis of the voltage drop
Rittel Transient temperature measurement using embedded thermocouples
Wang et al. An improved ultrasonic method for plane stress measurement using critically refracted longitudinal waves
Chen et al. Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids
Patki et al. Thermoelastic stress analysis of fatigue cracks subject to overloads
Kendall et al. Novel temperature measurement method & thermodynamic investigations of amorphous polymers during high rate deformation
Rigon et al. An analysis of the specific heat loss at the tip of severely notched stainless steel specimens to correlate the fatigue strength
Carrascal et al. Determination of the Paris' law constants by means of infrared thermographic techniques
Ming et al. A novel method for estimating the elastic modulus of frozen soil
KR101447507B1 (en) Horizontality and verticality shear test apparatus and method for gouge
Vaddi et al. Absorptive viscoelastic coatings for full field vibration coverage measurement in vibrothermography
KR101297371B1 (en) Apparatus for Defect Detection Using Infrared Thermography Technique with Thermal Diffusivity Measurements
JP2010101003A (en) Method for checking pressure receiving slab
KR20110075582A (en) Apparatus and the method of defect detection using infrared thermography technique
JP2006250683A (en) Fatigue destruction specifying system and fatigue destruction specifying method
Joyce et al. Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels
Kuang et al. Crack sensing and healing in concrete beams based on wire-crack sensors and healing tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Effective date: 20130129

Free format text: JAPANESE INTERMEDIATE CODE: A02