JP2010100732A - Flowability improving agent for biodiesel fuel oil - Google Patents

Flowability improving agent for biodiesel fuel oil Download PDF

Info

Publication number
JP2010100732A
JP2010100732A JP2008273357A JP2008273357A JP2010100732A JP 2010100732 A JP2010100732 A JP 2010100732A JP 2008273357 A JP2008273357 A JP 2008273357A JP 2008273357 A JP2008273357 A JP 2008273357A JP 2010100732 A JP2010100732 A JP 2010100732A
Authority
JP
Japan
Prior art keywords
olefin
biodiesel fuel
fatty acid
oil
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008273357A
Other languages
Japanese (ja)
Other versions
JP5504609B2 (en
Inventor
Hidetaka Kawamoto
英貴 川本
Fumitaka Yoshikawa
文隆 吉川
Keiji Hirao
佳二 平尾
Susumu Honda
進 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2008273357A priority Critical patent/JP5504609B2/en
Publication of JP2010100732A publication Critical patent/JP2010100732A/en
Application granted granted Critical
Publication of JP5504609B2 publication Critical patent/JP5504609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flowability improving agent for a biodiesel fuel oil, the agent having an effect of improving stability at a low temperature such as an excellent effect of improving a cold filter plugging point and an effect of improving a pour point. <P>SOLUTION: The flowability improving agent for the biodiesel fuel oil comprises an α-olefin polymer having a weight average molecular weight of 50,000 to 500,000, which is obtained by polymerizing an α-olefin mixture (C) comprising an α-olefin (A) having 8 carbon atoms and an α-olefin (B) having 14 to 18 carbon atoms, in a molar ratio (A)/(B) ranging from 10/90 to 50/40. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、優れた目詰まり点改善効果、流動点改善効果を有するバイオディーゼル燃料油用流動性向上剤およびそれを含有するバイオディーゼル燃料油組成物に関する。   The present invention relates to a flow improver for biodiesel fuel oil having an excellent clogging point improving effect and pour point improving effect, and a biodiesel fuel oil composition containing the same.

近年、石油や石炭といった化石燃料の枯渇が懸念される中、太陽光、風力、水力などの自然エネルギーや動植物由来のバイオマス燃料を有効利用する試みが行われている。さらに、地球規模での二酸化炭素削減にも寄与することから、植物系バイオマス燃料については特に注目されている。植物系バイオマス燃料は、植物を加工し炭素源として使用する。このため、排出した二酸化炭素を、再度植物や樹木が光合成により吸収し、これがサイクル化されるため地球レベルでの二酸化炭素濃度に影響しないと考えられている。このような燃料はカーボンニュートラルな燃料として位置づけられている。
ガソリン車に使用される代替燃料としては、サトウキビやトウモロコシなどの穀物を発酵して得られるエタノールや、エタノールとイソブテンとを反応して得られるエチル-ターシャリーブチルエーテルなどの植物系バイオマス燃料が検討されている。
In recent years, there are concerns about the depletion of fossil fuels such as oil and coal, and attempts have been made to effectively use natural energy such as sunlight, wind power, and hydropower, and biomass fuel derived from animals and plants. Furthermore, since it contributes to the reduction of carbon dioxide on a global scale, plant-based biomass fuel has attracted particular attention. Plant-based biomass fuel processes plants and uses them as a carbon source. For this reason, the discharged carbon dioxide is again absorbed by plants and trees by photosynthesis and is cycled, so that it is considered that the carbon dioxide concentration at the global level is not affected. Such fuel is positioned as a carbon neutral fuel.
As alternative fuels for gasoline vehicles, plant biomass fuels such as ethanol obtained by fermenting grains such as sugar cane and corn, and ethyl-tertiary butyl ether obtained by reacting ethanol and isobutene have been studied. ing.

一方、ディーゼル車に使用するバイオマス燃料は、バイオディーゼル燃料と呼ばれており、動植物油脂を原料とするものが一般的である。動植物油脂(トリグリセライド)は、高沸点、高粘度なため、そのままではディーゼル燃料として使用するのは不適切である。このため、ディーゼル燃料には、動植物油脂を加工し、沸点範囲や粘度などの物理的性状が軽油に近い物性のものに変換し利用されている。最も一般的に利用されているのは、動植物油脂から誘導した、脂肪酸メチルエステルや脂肪酸エチルエステルである。しかしながら、脂肪酸メチルエステルや脂肪酸エチルエステルなどのバイオディーゼル燃料は、軽油と比較すると低温での安定性に劣る傾向がある。動植物油脂から得られる脂肪酸エステルは、原料油脂由来の脂肪酸分布を持っているために、目詰まり点や流動点等の低温特性も様々となる。一般的に、飽和脂肪酸含量の多い油脂を原料として製造された飽和脂肪酸メチルエステルや飽和脂肪酸エチルエステルを多く含むバイオディーゼル燃料は、低温での安定性に劣る。このため、使用時期や使用地域が制限されてしまうという問題があった。   On the other hand, a biomass fuel used in a diesel vehicle is called a biodiesel fuel, and is generally made from animal and vegetable oils and fats. Animal and vegetable oils and fats (triglycerides) are unsuitable for use as diesel fuel as they are because of their high boiling point and high viscosity. For this reason, diesel fuel is processed by converting animal and vegetable oils and fats into physical properties such as boiling range and viscosity that are close to those of light oil. The most commonly used are fatty acid methyl esters and fatty acid ethyl esters derived from animal and vegetable fats and oils. However, biodiesel fuels such as fatty acid methyl esters and fatty acid ethyl esters tend to be less stable at low temperatures than light oil. Since fatty acid esters obtained from animal and vegetable fats and oils have a fatty acid distribution derived from raw oils and fats, the low-temperature characteristics such as clogging points and pour points also vary. In general, biodiesel fuels containing a large amount of saturated fatty acid methyl ester and saturated fatty acid ethyl ester produced using fats and oils with a high saturated fatty acid content as raw materials are inferior in stability at low temperatures. For this reason, there existed a problem that a use time and a use area were restrict | limited.

しかし、昨今のエネルギー事情から、種々の油脂原料を用いた脂肪酸メチルエステルやエチルエステルを利用していく必要性があり、飽和脂肪酸含量の多い油脂を原料とした低温での安定性の悪い脂肪酸エステル類も、経済性、供給安定性の面から利用が広く検討されている。
一方、軽油やA重油などの中間留出油に使用されている、中間留出油用流動性向上剤は、脂肪酸エステルには、このままではほとんど効果を示さないことが知られている。このような事情から、脂肪酸エステルの低温での安定性を改良するために、中間留出油用流動性向上剤をバイオディーゼル燃料油用として改良した、いくつかの低温流動性向上剤が開示されている。例えば、特許文献1には、炭素数1〜22のアルコールと(メタ)アクリル酸とのエステルのポリマーが、流動点が−5℃以下の脂肪酸メチルエステルの低温安定性を改良できることが開示されている。また、特許文献2には、バイオディーゼル燃料油用添加剤として、アルキル基の炭素数が8〜30のアルキルメタクリレート、アルキル基の炭素数が1〜20のポリオキシアルキレンアルキルメタクリレート、アルキル基の炭素数が1〜4のアルキルメタクリレートとの共重合体が開示されている。さらに、特許文献3には、動植物由来のメチルエステルの流動性向上剤として、ビニルエステル単位が17モル%以上、主鎖のメチレン100個に対しアルキル分布を5個以上有する、エチレン-ビニルエステル共重合体が開示されている。
However, due to the recent energy situation, it is necessary to use fatty acid methyl esters and ethyl esters using various oil raw materials, and fatty acid esters with poor stability at low temperatures using fats and oils with a high saturated fatty acid content. Utilization is also widely studied from the viewpoints of economy and supply stability.
On the other hand, it is known that the middle distillate fluidity improver used for middle distillate oils such as light oil and A heavy oil has little effect on fatty acid esters as it is. Under these circumstances, in order to improve the stability of fatty acid esters at low temperatures, several low-temperature fluidity improvers have been disclosed in which middle-distillate fluidity improvers have been improved for biodiesel fuel oils. ing. For example, Patent Document 1 discloses that an ester polymer of an alcohol having 1 to 22 carbon atoms and (meth) acrylic acid can improve the low temperature stability of a fatty acid methyl ester having a pour point of −5 ° C. or lower. Yes. In addition, Patent Document 2 discloses, as additives for biodiesel fuel oil, alkyl methacrylate having 8 to 30 carbon atoms in an alkyl group, polyoxyalkylene alkyl methacrylate having 1 to 20 carbon atoms in an alkyl group, and carbon in an alkyl group. Copolymers with 1 to 4 alkyl methacrylates are disclosed. Further, Patent Document 3 discloses that ethylene-vinyl ester copolymer having a vinyl ester unit of 17 mol% or more and an alkyl distribution of 5 or more per 100 main chain methylenes as a fluidity improver for methyl ester derived from animals and plants. A polymer is disclosed.

しかし、これらの共重合体を用いた低温流動性向上剤では、一部の脂肪酸エステルに対しては、低温での流動性を改善する効果があるものの、種々の脂肪酸組成の脂肪酸エステル、特に、飽和脂肪酸エステル含量の多い脂肪酸エステルについては、十分ではなく、さらに低温での流動性改善効果に優れた、バイオディーゼル燃料油用流動性向上剤が望まれている。
欧州特許第0563070号明細書 特開2001−524578号公報 特開2005−015798号公報
However, in the low temperature fluidity improver using these copolymers, although some fatty acid esters have an effect of improving fluidity at low temperatures, fatty acid esters having various fatty acid compositions, in particular, For fatty acid esters having a high saturated fatty acid ester content, a fluidity improver for biodiesel fuel oil that is not sufficient and has an excellent effect of improving fluidity at low temperatures is desired.
European Patent No. 0563070 JP 2001-524578 A JP 2005-015798 A

本発明は、上記の課題を解決するものであり、その目的は、優れた目詰まり点改善効果、流動点改善効果等の低温での安定性改善効果を有するバイオディーゼル燃料油用流動性向上剤を提供することにある。   The present invention solves the above-mentioned problems, and its purpose is to improve the fluidity improver for biodiesel fuel oil, which has an excellent effect of improving the stability at low temperatures such as an excellent clogging point improving effect and a pour point improving effect. Is to provide.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定のαオレフィン重合体がバイオディーゼル燃料油の目詰まり点改善効果や流動点改善効果等の低温での安定性を向上させることを見出した。
すなわち、本発明は、
(1)炭素数8のαオレフィン(A)と、炭素数14〜18のαオレフィン(B)とのモル比(A)/(B)が10/90〜60/40であるαオレフィン混合物(C)を重合して得られる重量平均分子量が5万〜50万のαオレフィン重合体からなるバイオディーゼル燃料油用流動性向上剤、
である。
(2)前記αオレフィン混合物(C)のモル平均炭素数が12.0〜14.0である、(1)に記載のバイオディーゼル燃料油用流動性向上剤、
である。
本発明は、また、上記(1)または(2)記載のバイオディーゼル燃料油用流動性向上剤を10〜10000ppm含有するバイオディーゼル燃料油組成物、
である。
As a result of intensive studies to solve the above problems, the present inventors have found that a specific α-olefin polymer exhibits low-temperature stability such as a clogging point improvement effect and a pour point improvement effect of biodiesel fuel oil. Found to improve.
That is, the present invention
(1) α-olefin mixture (A) / (B) having an α-olefin (A) having 8 to 18 carbon atoms and an α-olefin (B) having 14 to 18 carbon atoms having a molar ratio (A) / (B) of 10/90 to 60/40 ( A fluidity improver for biodiesel fuel oil comprising an α-olefin polymer having a weight average molecular weight of 50,000 to 500,000 obtained by polymerizing C),
It is.
(2) The fluidity improver for biodiesel fuel according to (1), wherein the α-olefin mixture (C) has a molar average carbon number of 12.0 to 14.0,
It is.
The present invention also provides a biodiesel fuel composition comprising 10 to 10,000 ppm of the fluidity improver for biodiesel fuel according to (1) or (2) above,
It is.

本発明の、バイオディーゼル燃料油用流動性向上剤は、種々の脂肪酸組成のバイオディーゼル燃料油に対し、目詰まり点改善効果、流動点改善効果等の優れた低温での安定性改善効果を付与することができる。特に、飽和脂肪酸エステル含量が高いバイオディーゼル燃料油に対しても、優れた目詰まり点改善効果、流動点改善効果等の低温での安定性改善効果を付与することができる。   The fluidity improver for biodiesel fuel oil of the present invention gives excellent low temperature stability improvement effects such as clogging point improvement effect and pour point improvement effect to biodiesel fuel oils of various fatty acid compositions. can do. In particular, even a biodiesel fuel oil having a high saturated fatty acid ester content can be imparted with a low temperature stability improvement effect such as an excellent clogging point improvement effect and a pour point improvement effect.

以下、本発明をさらに詳細に説明する。
本発明におけるαオレフィン重合体は、炭素数8のαオレフィン(A)と、炭素数14〜18のαオレフィン(B)とのαオレフィン混合物(C)を重合することにより得られる。
本発明に用いる(A)成分の炭素数8のαオレフィンとしては、具体的には、1−オクテンが挙げられる。
本発明に用いる(B)成分の炭素数14〜18のαオレフィンとしては、具体的には、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセンが挙げられる。これらは、単独でも混合して用いてもよい。
Hereinafter, the present invention will be described in more detail.
The α-olefin polymer in the present invention is obtained by polymerizing an α-olefin mixture (C) of an α-olefin (A) having 8 carbon atoms and an α-olefin (B) having 14 to 18 carbon atoms.
Specific examples of the α-olefin having 8 carbon atoms of the component (A) used in the present invention include 1-octene.
Specific examples of the α-olefin having 14 to 18 carbon atoms of the component (B) used in the present invention include 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, and 1-octadecene. These may be used alone or in combination.

本発明に用いるαオレフィン混合物(C)は、炭素数8のαオレフィン(A)と炭素数14〜18のαオレフィン(B)とのモル比(A)/(B)が、(A)/(B)=10/90〜60/40の範囲で混合したものであり、好ましくは、(A)/(B)=15/85〜50/50のαオレフィンの混合物である。モル比(A)/(B)が10/90未満のαオレフィン混合物を重合したαオレフィン重合体では、バイオディーゼル燃料油に対して低温での安定性改善効果が得られない。モル比(A)/(B)が60/40より大きいαオレフィン混合物を重合したαオレフィン重合体では、バイオディーゼル燃料油に対して低温での安定性改善効果が得られない。   The α olefin mixture (C) used in the present invention has a molar ratio (A) / (B) of the α olefin (A) having 8 carbon atoms and the α olefin (B) having 14 to 18 carbon atoms (A) / (B) = A mixture in the range of 10/90 to 60/40, preferably (A) / (B) = 15/85 to 50/50 α-olefin mixture. In an α-olefin polymer obtained by polymerizing an α-olefin mixture having a molar ratio (A) / (B) of less than 10/90, an effect of improving stability at a low temperature cannot be obtained with respect to biodiesel fuel oil. In an α-olefin polymer obtained by polymerizing an α-olefin mixture having a molar ratio (A) / (B) of greater than 60/40, a stability improvement effect at low temperatures cannot be obtained with respect to biodiesel fuel oil.

本発明における(A)と(B)からなるαオレフィン混合物(C)は、混合物のモル平均炭素数が12.0〜14.0であるものが、広範囲なバイオディーゼル燃料油に対して、より低温での安定性改善効果が高くなり好ましい。さらに好ましくは、12.5〜13.5である。   In the present invention, the α-olefin mixture (C) composed of (A) and (B) has a molar average carbon number of 12.0 to 14.0. This is preferable because the effect of improving the stability at low temperatures is increased. More preferably, it is 12.5-13.5.

本発明のαオレフィン重合体は、上記αオレフィン混合物(C)を重合することにより得ることができる。αオレフィン重合体の分子量は、重量平均分子量が5万〜50万であり、好ましくは、5万〜30万である。αオレフィン重合体の重量平均分子量が5万未満であると、バイオディーゼル燃料油に添加した際、低温での安定性改善効果が得られない場合がある。また、αオレフィン重合体の重量平均分子量が50万を超えると、αオレフィン重合体の粘度が高くなるために、運用時にポンプで吸い上げることが困難となり、溶剤で希釈する等、操作が煩雑となるために好ましくない。   The α-olefin polymer of the present invention can be obtained by polymerizing the α-olefin mixture (C). As for the molecular weight of the α-olefin polymer, the weight average molecular weight is 50,000 to 500,000, preferably 50,000 to 300,000. When the α-olefin polymer has a weight average molecular weight of less than 50,000, when it is added to biodiesel fuel oil, the effect of improving stability at low temperatures may not be obtained. Further, when the weight average molecular weight of the α-olefin polymer exceeds 500,000, the viscosity of the α-olefin polymer becomes high, so that it is difficult to suck it up with a pump during operation, and the operation becomes complicated such as dilution with a solvent. Therefore, it is not preferable.

本発明におけるバイオディーゼル燃料油は、特に限定は無いが、好適には動植物油脂から誘導される脂肪酸エステルである、さらに好適には脂肪酸メチルエステルまたは脂肪酸エチルエステルである。
上記脂肪酸エステルは、常法により得られる。例えば、動植物油脂とアルコール(好適にはメタノールまたはエタノール)とをエステル交換反応して得られる脂肪酸エステル(好適には脂肪酸メチルエステルまたは脂肪酸エチルエステル)、または、動植物油脂を、脂肪酸とグリセリンとに加水分解した後、さらにグリセリンを除去し、得られる脂肪酸とアルコール(好適にはメタノールまたはエタノール)とを直接、脱水反応して得られる脂肪酸エステル(好適には脂肪酸メチルエステルまたは脂肪酸エチルエステル)が挙げられる。脂肪酸エステルを得る際に使用する動植物油脂は特に限定されないが、例えば、ヤシ油、パーム油、パーム核油、菜種油、キャノーラ油、とうもろこし油、オリーブ油、大豆油、ゴマ油、ひまわり油、ひまし油、あまに油、トール油、ジャトロファ油、回収食料油(廃食油)、牛脂、硬化牛脂、魚油、硬化魚油等が挙げられる。これらの動植物油脂は、2種以上を混合して用いても良い。
The biodiesel fuel oil in the present invention is not particularly limited, but is preferably a fatty acid ester derived from animal or vegetable oils and fats, more preferably a fatty acid methyl ester or a fatty acid ethyl ester.
The fatty acid ester can be obtained by a conventional method. For example, fatty acid esters (preferably fatty acid methyl esters or fatty acid ethyl esters) obtained by transesterification of animal and vegetable fats and alcohols (preferably methanol or ethanol), or animal and vegetable fats and oils are added to fatty acids and glycerin. After decomposition, glycerin is further removed, and fatty acid esters (preferably fatty acid methyl esters or fatty acid ethyl esters) obtained by directly dehydrating a fatty acid and alcohol (preferably methanol or ethanol) obtained are mentioned. . Animal and vegetable oils and fats used in obtaining the fatty acid ester are not particularly limited. Oil, tall oil, jatropha oil, recovered food oil (waste cooking oil), beef tallow, hydrogenated beef tallow, fish oil, hydrogenated fish oil and the like. These animal and vegetable oils and fats may be used as a mixture of two or more.

本発明のバイオディーゼル燃料油用流動性向上剤は、バイオディーゼル燃料油に対し、10〜10000ppm添加する。10ppm未満である場合は、低温での安定性改善効果が得られにくい。また、10000ppm以上添加しても、添加量に見合った低温での安定性改善効果が得られない。好ましい添加量としては、100〜8000ppmであり、より好ましくは200〜6000ppmである。   The fluidity improver for biodiesel fuel oil of the present invention is added at 10 to 10,000 ppm with respect to biodiesel fuel oil. If it is less than 10 ppm, it is difficult to obtain the effect of improving stability at low temperatures. Moreover, even if it adds 10,000 ppm or more, the stability improvement effect in the low temperature corresponding to the addition amount is not acquired. As a preferable addition amount, it is 100-8000 ppm, More preferably, it is 200-6000 ppm.

また、本発明で使用するバイオディーゼル燃料油組成物には、必要に応じて軽油や灯油などの中間留出油や、ガス・ツー・リキッド、バイオマス・ツー・リキッド、コール・ツー・リキッド、水素化分解油脂等を混合してもよい。   In addition, the biodiesel fuel oil composition used in the present invention may include middle distillate oil such as light oil and kerosene, gas-to-liquid, biomass-to-liquid, coal-to-liquid, hydrogen as necessary. You may mix chemical decomposition fats and oils.

本発明のバイオディーゼル燃料油組成物には、前記流動性向上剤と共に、所望により従来石油系燃料油の添加剤として使用されている各種添加剤、例えば、曇り点降下剤、防錆剤、酸化防止剤、セタン価向上剤、金属不活性化剤、清浄分散剤、燃焼性向上剤、黒煙減少剤、消泡剤、色相安定剤、氷結防止剤、スラッジ分散剤、マーカーなどを含有させることが出来る。
In the biodiesel fuel oil composition of the present invention, various additives conventionally used as additives for petroleum-based fuel oils, for example, cloud point depressants, rust preventives, oxidation, as well as the flowability improver. Including an inhibitor, a cetane number improver, a metal deactivator, a cleaning dispersant, a flammability improver, a black smoke reducing agent, an antifoaming agent, a hue stabilizer, an anti-icing agent, a sludge dispersant, a marker, etc. I can do it.

以下、実施例を挙げて本発明を更に具体的に説明する。
(1)αオレフィン重合体の製造例
(重合体1)
窒素で完全に置換し、酸素濃度が0.01%以下となったグローブボックス内において、以下の操作を行った。
攪拌機、窒素導入管、温度計、滴下ロートを取り付けた200mL四つ口フラスコに、三塩化チタン(ソルベー触媒:東ソーファインケム製)0.15gを投入した。次いで、1mol/Lのジエチルアルミニウムクロリド/n−ヘプタン溶液7.5mlをシリンジで吸い取り投入した。
窒素雰囲気下、四ツ口フラスコをオイルバス中において、90℃まで昇温した。昇温後、予め脱水、窒素置換しておいた、1−オクテン:1.0g(0.0089mol)と、1−テトラデセン:9.0g(0.046mol)の混合物10.0gを滴下ロートから投入した。投入後、90℃において、1.5時間重合反応を行った。1.5時間経過後、2−メチル−1−プロパノール15mLを徐々に滴下し、触媒を失活させ、重合を停止した。
残存する触媒を洗浄する目的で、重合物が溶解したn-ヘプタン溶液に温水を150mL投入し、温水洗浄(温水を入れて攪拌)を行った。下部に沈降した温水を取り除いたのち、再び温水を150mL投入し温水洗浄をさらに3回行った。最後に得られた重合物が溶解したn-ヘプタン溶液のn-ヘプタンを減圧して留去し、重合体1を5.0g得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Production example of α-olefin polymer (Polymer 1)
The following operation was performed in a glove box that was completely replaced with nitrogen and the oxygen concentration was 0.01% or less.
To a 200 mL four-necked flask equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a dropping funnel, 0.15 g of titanium trichloride (Solvay catalyst: manufactured by Tosoh Finechem) was charged. Subsequently, 7.5 ml of a 1 mol / L diethylaluminum chloride / n-heptane solution was sucked in with a syringe.
In a nitrogen atmosphere, the four-necked flask was heated to 90 ° C. in an oil bath. After the temperature rise, 10.0 g of a mixture of 1-octene: 1.0 g (0.0089 mol) and 1-tetradecene: 9.0 g (0.046 mol), which had been dehydrated and replaced with nitrogen in advance, was added from the dropping funnel. did. After the addition, the polymerization reaction was carried out at 90 ° C. for 1.5 hours. After 1.5 hours, 15 mL of 2-methyl-1-propanol was gradually added dropwise to deactivate the catalyst, and the polymerization was stopped.
For the purpose of washing the remaining catalyst, 150 mL of warm water was added to the n-heptane solution in which the polymer was dissolved, followed by washing with warm water (stirring with warm water). After removing the warm water that settled at the bottom, 150 mL of warm water was added again and washing with warm water was performed three more times. Finally, n-heptane in the n-heptane solution in which the polymer obtained was dissolved was distilled off under reduced pressure to obtain 5.0 g of polymer 1.

(重合体2〜10)
表1に記載したαオレフィンを表1に記載の重量で仕込み、重合体1の製造方法と同様の手順で重合を行い、αオレフィン重合体である重合体2〜10を得た。表1にαオレフィン混合物のモル平均炭素数、重合体1〜10の重量平均分子量を示す。
(Polymers 2 to 10)
The α-olefin described in Table 1 was charged with the weight described in Table 1, and polymerization was performed in the same procedure as in the production method of the polymer 1 to obtain polymers 2 to 10 which were α-olefin polymers. Table 1 shows the molar average carbon number of the α-olefin mixture and the weight average molecular weight of the polymers 1 to 10.

Figure 2010100732
Figure 2010100732

(2)脂肪酸エステルの合成例
(廃食油メチルエステルの合成)
窒素導入管、温度計、ジムロートを取り付けた5Lの四ツ口フラスコに、廃食油を3000g、メタノールを1370g、水酸化カリウムを7g加え、60℃にて3時間、エステル交換反応を行った。反応後、温水で3回洗浄し、下層のグリセリン水溶液を分離した。上層の粗廃食油メチルエステルを再度、四ツ口フラスコに投入し、メタノールを1370g、水酸化カリウムを5g加え、再度エステル交換反応を行った。反応終了後、温水で3回洗浄した後、水酸化カリウム溶液を加え、遊離脂肪酸を中和水洗した。さらに温水で3回洗浄し、洗液が中性であることを確認した後、水洗を終了した。洗浄後のエステルを70℃、10torrまで減圧し、1時間脱水し、廃食油メチルエステルを得た。
(2) Synthesis example of fatty acid ester (synthesis of waste cooking oil methyl ester)
3000 g of waste cooking oil, 1370 g of methanol, and 7 g of potassium hydroxide were added to a 5 L four-necked flask equipped with a nitrogen inlet tube, a thermometer, and a Dimroth, and a transesterification reaction was performed at 60 ° C. for 3 hours. After the reaction, it was washed 3 times with warm water to separate the lower glycerin aqueous solution. The upper-layer crude waste cooking oil methyl ester was again put into a four-necked flask, 1370 g of methanol and 5 g of potassium hydroxide were added, and the ester exchange reaction was performed again. After completion of the reaction, the mixture was washed with warm water three times, a potassium hydroxide solution was added, and the free fatty acid was washed with neutralized water. Furthermore, after washing | cleaning 3 times with warm water and confirming that the washing | cleaning liquid is neutral, washing with water was complete | finished. The washed ester was depressurized to 70 ° C. and 10 torr and dehydrated for 1 hour to obtain waste cooking oil methyl ester.

(廃食油エチルエステルの合成)
アルコールを、メタノールからエタノールに変更した以外は全て、上記廃食油メチルエステルと同様の手順で合成を行い、廃食油エチルエステルを得た。
(Synthesis of waste cooking oil ethyl ester)
Except that the alcohol was changed from methanol to ethanol, synthesis was performed in the same manner as the above-mentioned waste cooking oil methyl ester to obtain waste cooking oil ethyl ester.

(パーム油メチルエステルの合成)
廃食油を、パーム油に変更した以外は全て、上記廃食油メチルエステルと同様の手順で合成を行い、パーム油メチルエステルを得た。
上記で得られた廃食油メチルエステル、廃食油エチルエステル、パーム油メチルエステルの脂肪酸組成をそれぞれガスクロマトグラフィーにおいて分析した。分析結果を以下の表2に示す。
(Synthesis of palm oil methyl ester)
Except having changed waste cooking oil into palm oil, it synthesize | combined in the procedure similar to the said waste cooking oil methyl ester, and obtained palm oil methyl ester.
The fatty acid compositions of the waste cooking oil methyl ester, waste cooking oil ethyl ester, and palm oil methyl ester obtained above were each analyzed by gas chromatography. The analysis results are shown in Table 2 below.

Figure 2010100732
Figure 2010100732

(廃食油メチルエステルの流動点測定)
以下の表3に、廃食油メチルエステルにαオレフィン重合体を添加した際の流動点測定結果を示す。流動点はJIS K−2269に準じ、1℃刻みで行った。尚、流動性向上剤としては、表1に記載の重合体1〜10、エチレン−酢酸ビニル共重合体、および、アルキルメタクリレート共重合体を用いた。
(Measurement of pour point of waste cooking oil methyl ester)
Table 3 below shows the pour point measurement results when the α-olefin polymer was added to the waste cooking oil methyl ester. The pour point was determined in increments of 1 ° C. according to JIS K-2269. In addition, as a fluid improvement agent, the polymers 1-10 of Table 1, the ethylene-vinyl acetate copolymer, and the alkylmethacrylate copolymer were used.

Figure 2010100732
Figure 2010100732

(廃食油メチルエステルの目詰まり点測定)
以下の表4に、廃食油メチルエステルにαオレフィン重合体を添加した際の目詰まり点測定結果を示す。目詰まり点はJIS K−2288に準じて行った。尚、流動性向上剤としては、表1に記載の重合体1および重合体5、エチレン−酢酸ビニル共重合体、および、アルキルメタクリレート共重合体を用いた。
(Measurement of clogging point of waste cooking oil methyl ester)
Table 4 below shows the result of clogging point measurement when the α-olefin polymer is added to the waste cooking oil methyl ester. The clogging point was determined according to JIS K-2288. In addition, as a fluid improvement agent, the polymer 1 and the polymer 5 of Table 1, the ethylene-vinyl acetate copolymer, and the alkylmethacrylate copolymer were used.

Figure 2010100732
Figure 2010100732

(廃食油エチルエステルの流動点測定)
以下の表5に、廃食油エチルエステルにαオレフィン重合体を添加した際の流動点測定結果を示す。流動点はJIS K−2269に準じ、1℃刻みで行った。尚、流動性向上剤としては、表1に記載の重合体2および重合体5、エチレン−酢酸ビニル共重合体、および、アルキルメタクリレート共重合体を用いた。
(Measurement of pour point of waste cooking oil ethyl ester)
Table 5 below shows the pour point measurement results when the α-olefin polymer was added to the waste cooking oil ethyl ester. The pour point was determined in increments of 1 ° C. according to JIS K-2269. In addition, as a fluid improvement agent, the polymer 2 and the polymer 5 of Table 1, the ethylene-vinyl acetate copolymer, and the alkylmethacrylate copolymer were used.

Figure 2010100732
Figure 2010100732

(パーム油メチルエステルの流動点測定)
以下の表6に、パーム油メチルエステルにαオレフィン重合体を添加した際の流動点測定結果を示す。流動点はJIS K−2269に準じ、1℃刻みで行った。尚、流動性向上剤としては、表1に記載の重合体4および重合体5、エチレン−酢酸ビニル共重合体、および、アルキルメタクリレート共重合体を用いた。
(Measurement of pour point of palm oil methyl ester)
Table 6 below shows the pour point measurement results when the α-olefin polymer was added to palm oil methyl ester. The pour point was determined in increments of 1 ° C. according to JIS K-2269. In addition, as a fluid improvement agent, the polymer 4 and the polymer 5 of Table 1, the ethylene-vinyl acetate copolymer, and the alkylmethacrylate copolymer were used.

Figure 2010100732
Figure 2010100732

(パーム油メチルエステル/中間留出油-混合燃料の流動点測定)
パーム油メチルエステルと、表7に示す性状の中間流出油を重量比で20:80に混合した混合燃料の流動点測定結果を表8に示す。流動点はJIS K−2269に準じ、1℃刻みで行った。尚、流動性向上剤としては、表1に記載の重合体5を用いた。
(Measurement of pour point of palm oil methyl ester / middle distillate-mixed fuel)
Table 8 shows the pour point measurement results of the mixed fuel obtained by mixing palm oil methyl ester and the intermediate spilled oil having the properties shown in Table 7 at a weight ratio of 20:80. The pour point was determined in increments of 1 ° C. according to JIS K-2269. In addition, the polymer 5 of Table 1 was used as a fluid improvement agent.

Figure 2010100732
Figure 2010100732

Figure 2010100732
Figure 2010100732

Claims (3)

炭素数8のαオレフィン(A)と、炭素数14〜18のαオレフィン(B)とのモル比(A)/(B)が10/90〜60/40であるαオレフィン混合物(C)を重合して得られる重量平均分子量が5万〜50万のαオレフィン重合体からなるバイオディーゼル燃料油用流動性向上剤。
An α-olefin mixture (C) in which the molar ratio (A) / (B) of the α-olefin (A) having 8 to 18 carbon atoms and the α-olefin (B) having 14 to 18 carbon atoms is 10/90 to 60/40. A fluidity improver for biodiesel fuel oil comprising an α-olefin polymer having a weight average molecular weight of 50,000 to 500,000 obtained by polymerization.
αオレフィン混合物(C)のモル平均炭素数が12.0〜14.0である、請求項1記載のバイオディーゼル燃料油用流動性向上剤。
The fluidity improver for biodiesel fuel oil according to claim 1, wherein the α-olefin mixture (C) has a molar average carbon number of 12.0 to 14.0.
請求項1または請求項2記載のバイオディーゼル燃料油用流動性向上剤を10〜10000ppm含有するバイオディーゼル燃料油組成物。 A biodiesel fuel composition comprising 10 to 10,000 ppm of the fluidity improver for biodiesel fuel according to claim 1 or 2.
JP2008273357A 2008-10-23 2008-10-23 Fluidity improver for biodiesel fuel oil Active JP5504609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273357A JP5504609B2 (en) 2008-10-23 2008-10-23 Fluidity improver for biodiesel fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273357A JP5504609B2 (en) 2008-10-23 2008-10-23 Fluidity improver for biodiesel fuel oil

Publications (2)

Publication Number Publication Date
JP2010100732A true JP2010100732A (en) 2010-05-06
JP5504609B2 JP5504609B2 (en) 2014-05-28

Family

ID=42291655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273357A Active JP5504609B2 (en) 2008-10-23 2008-10-23 Fluidity improver for biodiesel fuel oil

Country Status (1)

Country Link
JP (1) JP5504609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110258909A1 (en) * 2010-04-22 2011-10-27 Nof Corporation Flow improver for biodiesel fuels
CN104371773A (en) * 2013-08-13 2015-02-25 西安艾姆高分子材料有限公司 Method for improving biodiesel low-temperature fluidity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567352B (en) * 2016-02-26 2017-06-27 王金明 A kind of preparation of polyalphaolefin (POE) pour-point depressant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504226A (en) * 1992-03-03 1995-05-11 エクソン ケミカル パテンツ インコーポレイテッド oil additives
JP2000513397A (en) * 1996-06-17 2000-10-10 エクソン ケミカル パテンツ インコーポレイテッド Olefin-derived polymers useful as lubricating oil and fuel oil additives, processes for making such polymers and additives, and uses thereof
JP2001192681A (en) * 1999-11-23 2001-07-17 Assoc Octel Co Ltd:The Composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504226A (en) * 1992-03-03 1995-05-11 エクソン ケミカル パテンツ インコーポレイテッド oil additives
JP2000513397A (en) * 1996-06-17 2000-10-10 エクソン ケミカル パテンツ インコーポレイテッド Olefin-derived polymers useful as lubricating oil and fuel oil additives, processes for making such polymers and additives, and uses thereof
JP2001192681A (en) * 1999-11-23 2001-07-17 Assoc Octel Co Ltd:The Composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110258909A1 (en) * 2010-04-22 2011-10-27 Nof Corporation Flow improver for biodiesel fuels
JP2011241382A (en) * 2010-04-22 2011-12-01 Nof Corp Flow improver for biodiesel fuel oil
US8491674B2 (en) * 2010-04-22 2013-07-23 Nof Corporation Flow improver for biodiesel fuels
CN104371773A (en) * 2013-08-13 2015-02-25 西安艾姆高分子材料有限公司 Method for improving biodiesel low-temperature fluidity
CN104371773B (en) * 2013-08-13 2016-09-28 西安艾姆高分子材料有限公司 A kind of method improving biodiesel lower-temperature fluidity

Also Published As

Publication number Publication date
JP5504609B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
Atabani et al. A comprehensive review on biodiesel as an alternative energy resource and its characteristics
Moser Biodiesel production, properties, and feedstocks
Fan et al. Recent development of biodiesel feedstocks and the applications of glycerol: a review
Shalaby Biofuel: sources, extraction and determination
Mamilla et al. Preparation of biodiesel from Karanja oil
Ejikeme et al. Fatty acid methyl esters of melon seed oil: characterisation for potential diesel fuel application
Younis et al. Production and characterization of biodiesel from locally sourced sesame seed oil, used cooking oil and other commercial vegetable oils in Erbil-Iraqi Kurdistan
JP5504609B2 (en) Fluidity improver for biodiesel fuel oil
Ahmad et al. Base catalyzed transesterification of sunflower oil biodiesel
JP5810576B2 (en) Fluidity improver for biodiesel fuel oil
El Diwani et al. Modification of thermal and oxidative properties of biodiesel produced from vegetable oils
Hancsók et al. Production of vegetable oil fatty acid methyl esters from used frying oil by combined acidic/alkali transesterification
Salihu et al. Production of biodiesel from waste cooking oil by transesterification process using heterogeneous catalyst
YAŞAR Evaluation of renewable energy source algae as biodiesel feedstock
Waseem et al. The downside of biodiesel fuel–a review
Haile Biofuel Energy: spent coffee grounds biodiesel, bioethanol and solid fuel
Rao et al. Production and characterization of Jatropha oil methyl Ester
Ashri et al. Effective Process Parameters of Mustard Oil Biodiesel-A Review and Analysis
CN104204157A (en) Biofuel composition
Shage et al. Biodiesel from moringa stenopetala seed oil
Şahin et al. Physicochemical Characterization and Butanol Impact on Canola and Waste Cooking Oil Biodiesels: A Comparative Analysis with Binary Biodiesel Blends
Kokorina et al. Biodiesel as an innovation
Khosla et al. Biodiesel Production: Process and Current Scenario
Gibreel Potential of Biodiesel Production from Waste Cooking Oil in Qatar
Isler-Kaya et al. Fatty Acid Ethyl Esters Obtained From Safflower Oil: A Fully Renewable Biofuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250