JP2010099791A - Screw fastening screwdriver unit - Google Patents

Screw fastening screwdriver unit Download PDF

Info

Publication number
JP2010099791A
JP2010099791A JP2008274599A JP2008274599A JP2010099791A JP 2010099791 A JP2010099791 A JP 2010099791A JP 2008274599 A JP2008274599 A JP 2008274599A JP 2008274599 A JP2008274599 A JP 2008274599A JP 2010099791 A JP2010099791 A JP 2010099791A
Authority
JP
Japan
Prior art keywords
transmission shaft
screw
torque
drive
screw fastening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274599A
Other languages
Japanese (ja)
Other versions
JP5187898B2 (en
Inventor
Yukihiro Umehara
幸浩 梅原
Hironari Nakada
裕也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP2008274599A priority Critical patent/JP5187898B2/en
Publication of JP2010099791A publication Critical patent/JP2010099791A/en
Application granted granted Critical
Publication of JP5187898B2 publication Critical patent/JP5187898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw fastening screwdriver unit preventing force in a loosening direction from acting on a screw by the reaction due to the torsion of a transmission shaft transmitting the drive of a rotational driving source to a driver bit. <P>SOLUTION: The screw fastening screwdriver unit 1 includes: a rotation driving means 12; the transmission shaft 15 integrally rotatably connected to a drive shaft 12a of the rotation driving means 12 and having a screw fastening tool 17 engageable with the head of a screw at its tip; a torque sensor 16 detecting the torsion of the transmission shaft 15 over the whole of screw fastening work; and a control unit 20 accumulating the detected data by the torque sensor 16, determining damped vibration caused by the twisted transmission shaft 15 based on the accumulated data, and giving a gradual decrease command signal calculated on the basis of the determined result to the rotation drive means 12 after reaching the target of screw fastening torque to gradually decrease the rotation of the transmission shaft 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ねじ締め作業中において、回転駆動源の駆動をドライバビットに伝達する伝達軸の捻れによる反動によって、ねじに対して弛め方向の力が作用するのを防止するねじ締めドライバユニットに関する。   The present invention relates to a screw tightening driver unit that prevents a force in a loosening direction from acting on a screw due to a reaction caused by twisting of a transmission shaft that transmits a drive of a rotary drive source to a driver bit during a screw tightening operation. .

従来、ねじ締めドライバユニットによるねじ締め作業においては、ねじ頭部の座面が被締結物に着座して締付けトルクが予め設定された目標締付けトルクに達すると、回転駆動源の駆動を停止させねじ締め作業が完了する。しかしながら、このような回転駆動源を直ちに停止させる駆動制御では、回転駆動源の駆動軸とドライバビットとの間に介在する伝達軸が捻れてこの捻れた伝達軸が瞬時に開放されることにより、その力でモータの駆動軸を減衰的に正逆転させる現象が生じる。このとき、回転駆動源の逆転駆動がねじを弛める方向に作用するため、ねじ締め作業が完了したのにもかかわらず当該ねじを弛めてしまう問題があった。そこで、特許文献1(特開2007−229853公報)に示すねじ締めドライバユニットでは、ねじ頭部の座面が被締結物に着座して締付けトルクが目標締付けトルクに達すると、回転駆動源は出力トルクを漸減させるようにして駆動制御される。この駆動制御により、伝達軸の捻れを徐々に減じることで回転駆動源の駆動軸に減衰的な正逆転が生じるのを防止し、目標締付けトルクまで締付けられたねじに、弛める方向のトルク(伝達軸の捻れによる反力)が作用するのを防止する。   Conventionally, in the screw tightening operation by the screw tightening driver unit, when the seat surface of the screw head is seated on the object to be fastened and the tightening torque reaches a preset target tightening torque, the drive of the rotary drive source is stopped and the screw is tightened. The tightening operation is completed. However, in the drive control that immediately stops such a rotational drive source, the transmission shaft interposed between the drive shaft of the rotational drive source and the driver bit is twisted, and the twisted transmission shaft is instantaneously opened. The force causes a phenomenon that the driving shaft of the motor is attenuated forward and backward in a damping manner. At this time, since the reverse drive of the rotation drive source acts in the direction of loosening the screw, there is a problem that the screw is loosened even though the screw tightening operation is completed. Therefore, in the screw tightening driver unit shown in Patent Document 1 (Japanese Patent Laid-Open No. 2007-229853), when the seating surface of the screw head is seated on the object to be fastened and the tightening torque reaches the target tightening torque, the rotation drive source outputs The drive is controlled so as to gradually reduce the torque. By this drive control, the twist of the transmission shaft is gradually reduced to prevent the forward and reverse rotation of the rotational drive source from occurring, and the torque (transmission in the loosening direction) is transmitted to the screw that has been tightened to the target tightening torque. (Reaction force due to twisting of the shaft) is prevented from acting.

特開2007−229853号公報JP 2007-229853 A

しかしながら、前記ねじ締めドライバユニットにおいては、前述の構成により、概ね伝達軸の捻れを除去してねじに弛め方向のトルクが発生するのを防止することは可能であるが、伝達軸の捻れによって生じる駆動軸の減衰振動は、図3に示すように、伝達軸の剛性、ワークの材質、ねじの種類等によって異なるため、完全に伝達軸の捻れを除去することは不可能である。   However, in the screw tightening driver unit, it is possible to substantially eliminate the twist of the transmission shaft and prevent the torque from being generated in the loosening direction by the above-described configuration. As shown in FIG. 3, the generated vibration of the drive shaft varies depending on the rigidity of the transmission shaft, the material of the workpiece, the type of screw, etc., and thus it is impossible to completely remove the twist of the transmission shaft.

本発明は上記課題に鑑みて創成されたものであり、回転駆動手段と、この回転駆動手段の駆動軸と一体に回転可能に連結されて先端にねじの頭部と係合可能なねじ締め工具を有する伝達軸と、この伝達軸の捻れをねじ込み作業全般に渡って検出するトルクセンサと、このトルクセンサによる検出データを蓄積してこの蓄積されたデータに基づいて、捻れた伝達軸が引き起こす減衰振動を判定して、この判定結果に基づいて算出される漸減指令信号を、目標締付けトルク到達後に前記回転駆動手段に発して伝達軸の回転を漸減する制御ユニットとを備えることを特徴とする。   The present invention has been made in view of the above problems, and is a screw driving tool that is rotatably connected to a rotation driving means and a drive shaft of the rotation driving means so as to be engageable with a screw head at the tip. A transmission shaft, a torque sensor that detects torsion of the transmission shaft throughout the entire screwing operation, and attenuation caused by the twisted transmission shaft on the basis of the accumulated data detected by the torque sensor. And a control unit that determines vibration and issues a gradual decrease command signal calculated based on the determination result to the rotation driving means after reaching the target tightening torque to gradually decrease the rotation of the transmission shaft.

また、前記制御ユニットは、トルクセンサによる検出データを蓄積してこの蓄積されたデータに基づいて捻れた伝達軸が減衰振動、あるいは過減衰振動するかを判定し、減衰振動すると判定した場合にのみ漸減指令信号を発することを特徴とする。   Further, the control unit accumulates data detected by the torque sensor, determines whether the twisted transmission shaft is damped or overdamped based on the accumulated data, and only when it is determined to be damped. A gradual decrease command signal is generated.

請求項1に記載の発明によれば、伝達軸の剛性、ワークの材質、ねじの種類等によって異なる伝達軸の捻れに応じた漸減指令信号で回転駆動源を制御するように構成されている。この構成により、ねじ締め完了後に、ねじに弛め方向のトルクが作用するのを防止することができる。   According to the first aspect of the present invention, the rotational drive source is controlled by a gradual decrease command signal corresponding to the twist of the transmission shaft that varies depending on the rigidity of the transmission shaft, the material of the workpiece, the type of screw, and the like. With this configuration, it is possible to prevent the torque in the loosening direction from acting on the screw after the screw tightening is completed.

請求項2に記載の発明によれば、ねじを弛める方向に駆動軸の回転角が変位しない過減衰振動には漸減指令信号を発さないので、ねじ締め時間を短縮することができる。   According to the second aspect of the present invention, since the gradual decrease command signal is not issued for the overdamped vibration in which the rotation angle of the drive shaft is not displaced in the direction of loosening the screw, the screw tightening time can be shortened.

以下図面に基づいて本発明を実施するための最良の形態を説明する。図1において、1はねじ締めドライバユニットであり、ツールユニット10と、このツールユニット10を制御する制御ユニット20とを有する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes a screw tightening driver unit, which includes a tool unit 10 and a control unit 20 that controls the tool unit 10.

前記ツールユニット10はハウジング11で覆われており、このハウジング11には回転駆動手段の一例としてACサーボモータ12(以下、単にモータという)が組み付けられている。このモータ12には、第一回転角検出手段の一例であるエンコーダ13が組み付けられており、モータ12の駆動軸12aの回転角を常時検出可能に構成されている。また、この駆動軸12aには、減速機14を介して伝達軸15が連結されており、この伝達軸15には当該伝達軸15の捻れを検出するトルクセンサ16が取付けられている。さらに、この伝達軸15の先端には、ねじ(図示せず)の十字状駆動穴に連結可能な先端形状を成すねじ締め工具17が当該伝達軸15と一体に回転するように連結されている。   The tool unit 10 is covered with a housing 11, and an AC servo motor 12 (hereinafter simply referred to as a motor) is assembled in the housing 11 as an example of a rotation driving means. The motor 12 is assembled with an encoder 13 which is an example of a first rotation angle detection means, and is configured to always detect the rotation angle of the drive shaft 12a of the motor 12. In addition, a transmission shaft 15 is connected to the drive shaft 12 a via a speed reducer 14, and a torque sensor 16 that detects torsion of the transmission shaft 15 is attached to the transmission shaft 15. Further, a screw tightening tool 17 having a tip shape connectable to a cross-shaped drive hole of a screw (not shown) is connected to the tip of the transmission shaft 15 so as to rotate integrally with the transmission shaft 15. Yes.

前記トルクセンサ16は、前記伝達軸15の周囲を覆うようにして前記ハウジング11に固定配置される筒状の起歪管18と、この起歪管18に取付けられて当該起歪管18の捻れに応じた歪みを電気信号として検出する歪みゲージ19とから構成されている。この構成により、起歪管18はねじ締め工具17の先端に係合しているねじがワーク(図示せず)にねじ込まれる過程で発生する回転抵抗によって捻れ、この捻れを歪みゲージ19が検出する。また、このトルクセンサ16は前記起歪管18の捻れを継続して検出するように構成されており、この検出データは制御ユニット20で蓄積されるように構成されている。   The torque sensor 16 has a cylindrical strain tube 18 fixedly disposed on the housing 11 so as to cover the periphery of the transmission shaft 15, and is attached to the strain tube 18 to twist the strain tube 18. And a strain gauge 19 for detecting a strain corresponding to the above as an electric signal. With this configuration, the strain generating tube 18 is twisted by the rotational resistance generated in the process in which the screw engaged with the tip of the screw tightening tool 17 is screwed into the workpiece (not shown), and the strain gauge 19 detects this twist. . The torque sensor 16 is configured to continuously detect the torsion of the strain-inducing tube 18, and the detection data is configured to be accumulated in the control unit 20.

前記制御ユニット20は、前記トルクセンサ16による捻れ検出データを蓄積するとともに、当該トルクセンサ16により検出される伝達軸15の捻れに応じた締付けトルク、目標締付けトルクなどの各種データを記憶した記憶部21と、この記憶部21に記憶された当該捻れ検出データを解析して詳細を後述する漸減指令信号を算出する制御部22と、この漸減指令信号に基づいて前記モータ12を駆動制御するモータ駆動部23とを備えている。また、制御部22は、この伝達軸15の捻れと前記駆動軸12aの回転角度とから、ねじ締め工具先端17の回転角を算出するようにも構成されている。   The control unit 20 accumulates twist detection data by the torque sensor 16 and stores various data such as a tightening torque corresponding to the twist of the transmission shaft 15 detected by the torque sensor 16 and a target tightening torque. 21, a control unit 22 that analyzes the twist detection data stored in the storage unit 21 and calculates a gradual decrease command signal that will be described in detail later, and a motor drive that drives and controls the motor 12 based on the gradual decrease command signal Part 23. The control unit 22 is also configured to calculate the rotation angle of the screw tightening tool tip 17 from the twist of the transmission shaft 15 and the rotation angle of the drive shaft 12a.

次に、本発明のねじ締めドライバユニット1のねじ締め処理を図に示すフローチャートに沿って説明する。図2に示すように、外部機器コントローラ(図示せず)からスタート指令信号が入力されると、モータ12に駆動指令信号を発しモータ12が駆動される(ステップS01)。そして、ねじ締め工具17先端に係合しているねじがワークにねじ込まれると、ねじ締め工具17および伝達軸15にはねじをねじ込んで締付ける時の締付けトルク(回転負荷)が回転抵抗として作用する。このため、締付けトルクに応じてねじ締め工具17と駆動軸12aとの回転角度に差が生じ、伝達軸15が捻れ、これをトルクセンサ16が検出する(ステップS02)。制御ユニット20では、この捻れに応じた締付けトルクが割り出される(ステップS03)とともに、この締付けトルクが目標締付けトルクに達した否かが判定される(ステップS04)。これが目標締付けトルクに達していない場合は、新たな回転角度差に対応する締付けトルクが求められ、これと目標締付けトルクとの比較が繰り返される。   Next, the screw tightening process of the screw tightening driver unit 1 of the present invention will be described along the flowchart shown in the drawing. As shown in FIG. 2, when a start command signal is input from an external device controller (not shown), a drive command signal is issued to the motor 12 to drive the motor 12 (step S01). When a screw engaged with the tip of the screw tightening tool 17 is screwed into the workpiece, a tightening torque (rotational load) when the screw is screwed into the screw tightening tool 17 and the transmission shaft 15 acts as a rotational resistance. . Therefore, a difference occurs in the rotation angle between the screw tightening tool 17 and the drive shaft 12a according to the tightening torque, the transmission shaft 15 is twisted, and this is detected by the torque sensor 16 (step S02). The control unit 20 calculates a tightening torque corresponding to the twist (step S03) and determines whether or not the tightening torque has reached the target tightening torque (step S04). If this does not reach the target tightening torque, a tightening torque corresponding to a new rotation angle difference is obtained, and comparison between this and the target tightening torque is repeated.

その後、ねじ頭部座面がワークに着座して締付けトルクが目標締付けトルクに達すると、制御ユニット20により、捻れた伝達軸15は減衰振動するものか否かが判定され(ステップS05)、減衰振動する場合には制御部22はモータ駆動部23に、当該伝達軸15の捻れに応じた漸減指令信号を発し(ステップS06)、モータ12はこの漸減指令信号に基づいた出力トルクで駆動して最終的に停止する。すなわち、モータ駆動部23は、制御部22からトルク漸減指令信号を受けると、その時点からモータ12の負荷電流値を、各種漸減指令信号に基づいて漸減させて0(零)にする(ステップS07)。一方、前記制御ユニット20により、捻れた伝達軸15は過減衰振動するものと判定された場合には、制御ユニット20は漸減指令信をモータ12に発さず、目標締付けトルクに到達した時点で、モータ12の負荷電流値を0(零)にしてねじ締めを完了する。   Thereafter, when the screw head seating surface is seated on the workpiece and the tightening torque reaches the target tightening torque, the control unit 20 determines whether or not the twisted transmission shaft 15 oscillates (step S05). When vibrating, the control unit 22 issues a gradual decrease command signal corresponding to the twist of the transmission shaft 15 to the motor drive unit 23 (step S06), and the motor 12 is driven with an output torque based on the gradual decrease command signal. Finally stop. That is, upon receiving the torque gradual decrease command signal from the control unit 22, the motor drive unit 23 gradually decreases the load current value of the motor 12 based on the various gradual decrease command signals from that point to 0 (zero) (step S07). ). On the other hand, when the control unit 20 determines that the twisted transmission shaft 15 is overdamped, the control unit 20 does not issue a gradual decrease command signal to the motor 12 and reaches the target tightening torque. Then, the load current value of the motor 12 is set to 0 (zero) to complete the screw tightening.

以下、図3に示す伝達軸15の減衰振動ついて説明する。次の数式1は、質量mの伝達軸が捻れることによって引き起こされる減衰振動の運動方程式である。

Figure 2010099791
Hereinafter, the damped vibration of the transmission shaft 15 shown in FIG. 3 will be described. The following Equation 1 is an equation of motion of damped vibration caused by twisting the transmission shaft of mass m.
Figure 2010099791

ここで、xは、伝達軸15の後端の回転角を示すものであり、当該伝達軸15の後端に連結された駆動軸12aの回転角に相当する。また、kは伝達軸15の弾性定数であり、kxは捻れた伝達軸15の復元力である。さらに、2γは伝達軸15の回転速度と質量に比例する定数であって、2γm・dx/dtは、減衰振動中に、伝達軸15に作用する抵抗力である。なお、この抵抗力が0(零)である場合は単振動である。これら復元力と抵抗力の合力Fが、減衰振動中に、伝達軸15に作用する力である。この上式の両辺をmで除すると次式を得る。

Figure 2010099791
Here, x represents the rotation angle of the rear end of the transmission shaft 15, and corresponds to the rotation angle of the drive shaft 12a connected to the rear end of the transmission shaft 15. In addition, k is an elastic constant of the transmission shaft 15 and kx is a restoring force of the twisted transmission shaft 15. Further, 2γ is a constant proportional to the rotational speed and mass of the transmission shaft 15, and 2γm · dx / dt is a resistance force acting on the transmission shaft 15 during the damped vibration. In addition, when this resistance force is 0 (zero), it is a single vibration. The resultant force F of the restoring force and the resistance force is a force acting on the transmission shaft 15 during the damped vibration. Dividing both sides of the above equation by m gives the following equation.
Figure 2010099791

ここで、ω =k/mである。なお、弾性体(本発明においては伝達軸15がこれに相当する)が減衰振動をする条件はν <ω であり、一方、ν >ωの場合は過減衰振動をする。 Here, ω 0 2 = k / m. It should be noted that the condition under which the elastic body (the transmission shaft 15 corresponds to this in the present invention) undergoes damped vibration is ν 20 2 , while if ν 2 > ω 0 , it oscillates excessively.

また、図3には、剛性の異なる伝達軸A,Bに一体回転可能に連結されている駆動軸の回転角の変位が時系列で示されており、当該伝達軸AおよびBは前述の減衰振動の条件下(ν <ω )での波形を示すものである。また、伝達軸Aの弾性係数kaおよび伝達軸Bの弾性係数kbはka>kbであり、伝達軸Aは伝達軸Bに比べて、振幅が大きく、かつ安定するまでに多くの振動を繰り返す。この図3に示すように、駆動軸12aの回転角は伝達軸A,Bの捻れによって時間とともに変化し、目標締付けトルク到達時におけるねじ締め工具17先端の回転角の位置に戻るまでは、ねじ締め工具17先端の回転角の変位は目標締付けトルク到達時のままである。この駆動軸12aの回転角が、図3のA1に示すように、目標締付けトルク到達時におけるねじ締め工具17先端の回転角を超える位置まで戻されると、ねじ締め工具先端17の回転角は、ねじを弛める方向に変位し、その変位量A1だけねじを弛めることになる。続いて、繰り返される減衰振動により、変位量A2、A3の順にねじを弛めることになる。また、図3に示す伝達軸Bにおいても、伝達軸Aよりも弛め方向に作用する力の変位量B1は小さいものの、駆動軸12aの回転角が戻されるのにともなってねじ締め工具17の先端の回転角はねじを弛める方向に変位する。 FIG. 3 also shows in time series the displacement of the rotation angle of the drive shaft connected to the transmission shafts A and B having different rigidity so as to be integrally rotatable. The waveform under the condition of vibration (ν 20 2 ) is shown. Further, the elastic coefficient ka of the transmission shaft A and the elastic coefficient kb of the transmission shaft B are ka> kb, and the transmission shaft A has a larger amplitude than the transmission shaft B and repeats many vibrations until it becomes stable. As shown in FIG. 3, the rotation angle of the drive shaft 12a changes with time due to the twisting of the transmission shafts A and B, and until the target tightening torque is reached, the rotation angle of the drive shaft 12a returns to the position of the rotation angle of the screw tightening tool 17 tip. The displacement of the rotation angle at the tip of the tightening tool 17 remains when the target tightening torque is reached. When the rotation angle of the drive shaft 12a is returned to a position exceeding the rotation angle of the tip of the screw tightening tool 17 when the target tightening torque is reached, as shown in A1 of FIG. The screw is displaced in the loosening direction, and the screw is loosened by the displacement amount A1. Subsequently, the screw is loosened in the order of the displacement amounts A2 and A3 due to repeated damping vibration. Further, in the transmission shaft B shown in FIG. 3, the displacement amount B1 of the force acting in the loosening direction is smaller than that of the transmission shaft A, but the screw tightening tool 17 rotates as the rotational angle of the drive shaft 12a is returned. The rotation angle of the tip is displaced in the direction of loosening the screw.

一方、図3に示す伝達軸Cは過減衰振動の条件下(ν >ω)での波形を示すものである。この過減衰振動は、伝達軸Cに付加される回転負荷が所定の条件下(ν >ω)を満たす場合に引き起こされるものであり、例えばモータ12の駆動伝達経路上に介在している減速機等が当該回転負荷を付加する。この過減衰振動では、図3の伝達軸Cの波形が示すとおり、駆動軸12aはねじ締め工具17先端の回転角を超える位置まで戻されるず、つまり当該駆動軸12aの回転角はねじを弛める方向に変位しないので、ねじは弛まない。 On the other hand, the transmission axis C shown in FIG. 3 shows a waveform under the condition of overdamped vibration (ν 2 > ω 0 ). This overdamped vibration is caused when the rotational load applied to the transmission shaft C satisfies a predetermined condition (ν 2 > ω 0 ), and is interposed, for example, on the drive transmission path of the motor 12. A reduction gear or the like applies the rotational load. In this overdamped vibration, as shown by the waveform of the transmission shaft C in FIG. 3, the drive shaft 12a is not returned to a position exceeding the rotation angle of the tip of the screw tightening tool 17, that is, the rotation angle of the drive shaft 12a loosens the screw. The screw does not loosen because it is not displaced in the direction.

前記制御ユニット20においては、記憶部21は捻れ開始から目標締付けトルク到達までの駆動軸12aの回転角の変位を検出しこれを蓄積するように構成されており、一方制御部22はこの蓄積されたデータに基づいて伝達軸15が減衰振動するか、あるいは過減衰振動するかを数式1および数式2に基づいて解析して判定する。   In the control unit 20, the storage unit 21 is configured to detect and accumulate the rotational angle displacement of the drive shaft 12a from the start of twisting until the target tightening torque is reached, while the control unit 22 accumulates this. Whether the transmission shaft 15 vibrates damped or excessively damped based on the obtained data is determined by analysis based on Formula 1 and Formula 2.

前記制御ユニット20により減衰振動すると判定された場合には、伝達軸15の剛性、ワークの材質、ねじの種類等によって異なる伝達軸15の捻れに応じた漸減指令信号が発せられる。以下、このような伝達軸15の捻れに応じた漸減指令信号の算出について説明する。図3に示すように、剛性の異なる伝達軸A,Bでは、捻れ開始から目標締付けトルク到達までの駆動軸12aの回転角の変位が異なり、つまり捻れる量が異なる。本発明の記憶部21は、捻れ開始から目標締付けトルク到達までの駆動軸12aの回転角の変位を検出しこれを蓄積するように構成されており、一方制御部22はこの蓄積されたデータに基づいて伝達軸の弾性特性を数式1および数式2に基づいて解析し、目標締付けトルク到達時、伝達軸15に蓄えられた弾性エネルギにより引き引き起こされる減衰振動の波形を算出するように構成されている。この算出された波形から、目標締付けトルク到達後、弛め方向に回転する駆動軸12aのトルクが算出される。つまり、制御部22は、捻れ開始から目標締付けトルク到達までの駆動軸12aの回転角の変位を時系列に検出し、これを前記数式1および2に基づいて解析することにより目標締付けトルク到達時から、駆動軸12aの回転角とねじ締め工具17の先端角が一致するまでの間において、各地点で異なり、かつ弛め方向に作用する駆動軸12aのトルクを予め取得することができる。この弛め方向に作用する力は、前述の数式1の合力Fのことであり、この合力Fつり合うトルクを出力する信号が漸減指令信号である。   When the control unit 20 determines that the vibration is damped, a gradual reduction command signal corresponding to the twist of the transmission shaft 15 is generated depending on the rigidity of the transmission shaft 15, the material of the workpiece, the type of screw, and the like. Hereinafter, calculation of the gradual decrease command signal corresponding to the twist of the transmission shaft 15 will be described. As shown in FIG. 3, in the transmission shafts A and B having different rigidity, the displacement of the rotation angle of the drive shaft 12a from the start of twisting to reaching the target tightening torque is different, that is, the twisting amount is different. The storage unit 21 of the present invention is configured to detect and store the displacement of the rotational angle of the drive shaft 12a from the start of twisting until the target tightening torque is reached, while the control unit 22 stores the accumulated data in the stored data. The elastic characteristics of the transmission shaft are analyzed based on Formulas 1 and 2, and the waveform of the damped vibration caused by the elastic energy stored in the transmission shaft 15 is calculated when the target tightening torque is reached. Yes. From the calculated waveform, the torque of the drive shaft 12a rotating in the loosening direction after reaching the target tightening torque is calculated. In other words, the control unit 22 detects the displacement of the rotation angle of the drive shaft 12a from the start of twisting until the target tightening torque is reached in time series, and analyzes this based on the equations 1 and 2 to achieve the target tightening torque reaching time. From the time until the rotation angle of the drive shaft 12a coincides with the tip angle of the screw tightening tool 17, the torque of the drive shaft 12a that is different at each point and acts in the loosening direction can be acquired in advance. The force acting in the loosening direction is the resultant force F of Equation 1 described above, and a signal that outputs a torque that balances this resultant force F is a gradually decreasing command signal.

モータ駆動部23は、この漸減指令信号をモータ12に発して、弛め方向に作用する駆動軸12aのトルクにつり合うトルクを駆動軸12aに出力するとともに、このつり合いを維持した状態で駆動軸12aを弛め方向に等速回転するように制御する。この制御により描かれる駆動軸12aの回転角の変位は図3の破線に示されるとおりであり、駆動軸12aの回転角はねじを弛め方向にまで変位しないことが確認できる。   The motor drive unit 23 issues this gradual decrease command signal to the motor 12 and outputs a torque balanced with the torque of the drive shaft 12a acting in the loosening direction to the drive shaft 12a, while maintaining this balance. Is controlled to rotate at a constant speed in the loosening direction. The displacement of the rotation angle of the drive shaft 12a drawn by this control is as shown by the broken line in FIG. 3, and it can be confirmed that the rotation angle of the drive shaft 12a does not displace the screw in the loosening direction.

一方、図3に示す伝達軸Cは、前述のとおり過減衰振動を引き起こすものであり、駆動軸の回転角は、漸減せずともねじを弛め方向に変位しないことを波形から確認できる。従って、制御ユニット20は漸減指令信をモータ12に発さず、目標締付けトルクに到達した時点で、モータ12の負荷電流値を0(零)にしてねじ締めを完了する。   On the other hand, the transmission shaft C shown in FIG. 3 causes overdamped vibration as described above, and it can be confirmed from the waveform that the rotation angle of the drive shaft does not displace in the loosening direction without gradually decreasing. Therefore, the control unit 20 does not issue a gradual decrease command signal to the motor 12, and when the target tightening torque is reached, the load current value of the motor 12 is set to 0 (zero) to complete the screw tightening.

また、本発明のねじ締めドライバユニットにおいては、伝達軸15の捻れを検出する手段としてトルクセンサ16を用いているが、これに代えてモータ12の負荷電流値から伝達軸15の捻れを検出するようにしてもよい。   In the screw tightening driver unit of the present invention, the torque sensor 16 is used as a means for detecting the twist of the transmission shaft 15. Instead, the twist of the transmission shaft 15 is detected from the load current value of the motor 12. You may do it.

本発明によれば、伝達軸15の剛性、ワークの材質、ねじの種類等によって異なる伝達軸の捻れに応じた漸減指令信号でモータ12を制御するように構成されている。この構成により、ねじ締め完了後に、駆動軸がねじを弛める方向に変位しないので、ねじは弛まない。また、ねじを弛める方向に駆動軸12asの回転角が変位しない過減衰振動には漸減指令信号を発さないので、ねじ締めに要する時間を短縮することができる。   According to the present invention, the motor 12 is controlled by a gradual decrease command signal corresponding to the torsion of the transmission shaft that varies depending on the rigidity of the transmission shaft 15, the material of the workpiece, the type of screw, and the like. With this configuration, the screw does not loosen since the drive shaft is not displaced in the direction of loosening the screw after the screw tightening is completed. Further, since the gradual decrease command signal is not issued for the overdamped vibration in which the rotation angle of the drive shaft 12as is not displaced in the direction of loosening the screw, the time required for screw tightening can be shortened.

本発明のねじ締めドライバユニットのブロック説明図である。It is a block explanatory view of the screw tightening driver unit of the present invention. 本発明のねじ締めドライバユニットのねじ締め処理を示すフローチャートである。It is a flowchart which shows the screwing process of the screwing driver unit of this invention. 各種の捻れた伝達軸が引き起こす減衰振動および過減衰振動を示す図である。It is a figure which shows the damped vibration and the overdamped vibration which various transmission shafts cause.

符号の説明Explanation of symbols

1 ねじ締めドライバユニット

10 ツールユニット
11 ハウジング
12 モータ
12a 駆動軸
13 エンコーダ
14 減速機
15 伝達軸
16 トルクセンサ
17 ねじ締め工具
18 起歪管
19 歪みゲージ

20 制御ユニット
21 記憶部
22 制御部
23 モータ駆動部
1 Screw tightening driver unit

DESCRIPTION OF SYMBOLS 10 Tool unit 11 Housing 12 Motor 12a Drive shaft 13 Encoder 14 Reducer 15 Transmission shaft 16 Torque sensor 17 Screw tightening tool 18 Strain tube 19 Strain gauge

20 control unit 21 storage unit 22 control unit 23 motor drive unit

Claims (2)

回転駆動手段と、
この回転駆動手段の駆動軸と一体に回転可能に連結されて先端にねじの頭部と係合可能なねじ締め工具を有する伝達軸と、
この伝達軸の捻れをねじ込み作業全般に渡って検出するトルクセンサと、
このトルクセンサによる検出データを蓄積してこの蓄積されたデータに基づいて、捻れた伝達軸が引き起こす減衰振動を判定して、この判定結果に基づいて算出される漸減指令信号を、目標締付けトルク到達後に前記回転駆動手段に発して伝達軸の回転を漸減する制御ユニットと
を備えることを特徴とするねじ締めドライバユニット。
Rotation drive means;
A transmission shaft having a screw tightening tool that is rotatably coupled integrally with the drive shaft of the rotation driving means and engageable with the head of the screw at the tip;
A torque sensor that detects the torsion of the transmission shaft throughout the entire screwing operation;
Based on the accumulated data detected by the torque sensor, the damping vibration caused by the twisted transmission shaft is determined based on the accumulated data, and the gradual decrease command signal calculated based on the determination result is used to reach the target tightening torque. A screw tightening driver unit comprising: a control unit that later emits to the rotation driving means to gradually reduce the rotation of the transmission shaft.
前記制御ユニットは、トルクセンサによる検出データを蓄積してこの蓄積されたデータに基づいて捻れた伝達軸が減衰振動、あるいは過減衰振動するかを判定し、減衰振動すると判定した場合にのみ漸減指令信号を発することを特徴とする請求項1に記載のねじ締めドライバユニット。   The control unit accumulates detection data from the torque sensor, determines whether the twisted transmission shaft is damped or overdamped based on the accumulated data, and only decreases the command when it is determined that the damped vibration is detected. 2. The screw tightening driver unit according to claim 1, which emits a signal.
JP2008274599A 2008-10-24 2008-10-24 Screw tightening driver unit Expired - Fee Related JP5187898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274599A JP5187898B2 (en) 2008-10-24 2008-10-24 Screw tightening driver unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274599A JP5187898B2 (en) 2008-10-24 2008-10-24 Screw tightening driver unit

Publications (2)

Publication Number Publication Date
JP2010099791A true JP2010099791A (en) 2010-05-06
JP5187898B2 JP5187898B2 (en) 2013-04-24

Family

ID=42290890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274599A Expired - Fee Related JP5187898B2 (en) 2008-10-24 2008-10-24 Screw tightening driver unit

Country Status (1)

Country Link
JP (1) JP5187898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934673A (en) * 2014-03-24 2014-07-23 东莞市聚川装配自动化技术有限公司 Numerical control electric screw driver based on static torque sensor, and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160177A (en) * 2000-11-22 2002-06-04 Victor Co Of Japan Ltd Torque clutch for screw fastening
JP2006181660A (en) * 2004-12-27 2006-07-13 Nitto Seiko Co Ltd Part fastening driver unit
JP2007229853A (en) * 2006-02-28 2007-09-13 Nitto Seiko Co Ltd Screw fastening driver unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160177A (en) * 2000-11-22 2002-06-04 Victor Co Of Japan Ltd Torque clutch for screw fastening
JP2006181660A (en) * 2004-12-27 2006-07-13 Nitto Seiko Co Ltd Part fastening driver unit
JP2007229853A (en) * 2006-02-28 2007-09-13 Nitto Seiko Co Ltd Screw fastening driver unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934673A (en) * 2014-03-24 2014-07-23 东莞市聚川装配自动化技术有限公司 Numerical control electric screw driver based on static torque sensor, and control method

Also Published As

Publication number Publication date
JP5187898B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US9701000B2 (en) Impact rotation tool and impact rotation tool attachment
EP2607020B1 (en) Rotary impact tool
JP5315410B2 (en) Joint tightening method and apparatus
JP6380924B2 (en) Method of measuring moment of inertia of impact rotary tool and impact rotary tool using the measurement method
CN108136571B (en) Pulse tool
JP6135925B2 (en) Impact rotary tool and tip attachment for impact rotary tool
EP1900484A3 (en) Power tool anti-kickback system with rotational rate sensor
JP7265358B2 (en) Electric pulse tool with controlled reaction force
JP6471967B2 (en) Impact tools
JP2006263832A (en) Control device of robot
CN107000183A (en) Control method for Hand-held tool equipment
JP2015101335A (en) Method and apparatus for steering motor vehicle
WO2005095062A1 (en) Impact type fastening tool
JP5187898B2 (en) Screw tightening driver unit
JP6553616B2 (en) Method for controlling a pulse driver, corresponding control device and driver device
EP1868053A2 (en) Method for controlling electromechanical brakes using parameters identification and no additional sensors
JP7357278B2 (en) Power tools, power tool control methods and programs
JP2012152834A (en) Rotary tool
JP6528232B2 (en) Device for detecting screwed state of electric rotary tool, method for adjusting torque thereof, and method for controlling screwed screw using the same
JP2003166887A (en) Torque detection device
KR101834974B1 (en) Control method of electrically-drive tool
WO2023238593A1 (en) Power tool system
EP3781356B1 (en) Hand held electric pulse tool and a method for tightening operations
JPH0727410B2 (en) Direct teaching type industrial robot controller
JP2009192023A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees