JP2010098520A - Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system - Google Patents

Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system Download PDF

Info

Publication number
JP2010098520A
JP2010098520A JP2008267597A JP2008267597A JP2010098520A JP 2010098520 A JP2010098520 A JP 2010098520A JP 2008267597 A JP2008267597 A JP 2008267597A JP 2008267597 A JP2008267597 A JP 2008267597A JP 2010098520 A JP2010098520 A JP 2010098520A
Authority
JP
Japan
Prior art keywords
continuity
node
optical path
optical
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267597A
Other languages
Japanese (ja)
Other versions
JP4966947B2 (en
Inventor
Rie Hayashi
理恵 林
Kaori Shimizu
香里 清水
Ichiro Inoue
一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008267597A priority Critical patent/JP4966947B2/en
Publication of JP2010098520A publication Critical patent/JP2010098520A/en
Application granted granted Critical
Publication of JP4966947B2 publication Critical patent/JP4966947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide techniques for confirming continuity of an optical path on an optical network at a high speed and for lightening the processing load on a switch device and making the device compact. <P>SOLUTION: A start-point node 2a transmits a signaling message for securing a band resource for the end point of the optical path in the form of an optical signal (S3), and an end-point node 2c determines whether continuity of the band resource for the end point is normal based upon a reception state of the signaling message (S4), and transmits a signaling message to the start-point node 2a in the form of an optical signal (S5) when determining that the continuity is normal. The start-point node 2a determines whether continuity of a band resource for the start point in a continuity test section is normal (S6) based upon a reception state of the signaling message transmitted from the end-point node 2c, and transmits notice of normal continuity confirmation showing that the continuity is normal to the end-point node 2c (S7) when determining that the continuity is normal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ネットワークのノード間の通信に用いる光パスの導通試験技術に関する。   The present invention relates to an optical path continuity test technique used for communication between nodes of an optical network.

近年、ネットワークの著しい高速大容量化が進み、電気処理の限界が近づいている。それに代わり、信号の送信から伝送、受信まで全てを光のまま行う全光網が次世代網として注目されている。光の信号(光信号)を電気信号に変換せずに直接終端まで伝送することで、40Gビット/秒や100Gビット/秒など超高速大容量伝送が実現できると同時に、消費電力を抑えることも可能である。また、変調方式が異なる信号が混在できることや信号速度が異なる信号が混在できることを示すトランスペアレンシーという特長もある。   In recent years, the network has been remarkably increased in speed and capacity, and the limit of electrical processing is approaching. Instead, all-optical networks that perform everything from signal transmission to transmission and reception as light are drawing attention as next-generation networks. By transmitting optical signals (optical signals) directly to the end without converting them to electrical signals, ultra-high-speed and large-capacity transmission such as 40 Gbit / s and 100 Gbit / s can be realized, and power consumption can be reduced. Is possible. In addition, there is a feature of transparency indicating that signals having different modulation schemes can be mixed and signals having different signal speeds can be mixed.

このような光ネットワークでは、光パスの方路を切り替える機能を持つスイッチ装置が存在する。これらスイッチ装置のおかげで、光信号を光のまま転送すべき方向にスイッチングすることができる。光スイッチには、MEMS(Micro Electric Mechanica1 Switch)、TOスイッチ(Thermo-Optics Switch)などの種類が存在する。   In such an optical network, there is a switch device having a function of switching the route of the optical path. Thanks to these switching devices, the optical signal can be switched in the direction to be transferred as it is. There are various types of optical switches such as MEMS (Micro Electric Mechanica 1 Switch) and TO switch (Thermo-Optics Switch).

光スイッチは、入力ポートから入ってきた信号を適切な出力ポートにスイッチングして次の装置に転送するという受動的な装置であるため、自らの故障や信号伝送時の異常を検知することが難しい。そのため、光パスを設定して光信号を伝送する前に、スイッチ装置を経由する光パスが正常に設定されたか否かを確認する導通試験が必要である。   An optical switch is a passive device that switches a signal coming from an input port to an appropriate output port and forwards it to the next device, so it is difficult to detect its own failure or abnormality during signal transmission. . Therefore, before setting an optical path and transmitting an optical signal, it is necessary to conduct a continuity test for confirming whether the optical path passing through the switch device is normally set.

また、光ネットワークが普及するにつれて、GMPLS(Generalized Multi Protoco1 Labe1 Switching)技術による光パス設定方式も浸透してきている。このGMPLS技術を用いることで、自動で高速に光パスを設定できるため、必要なときに必要な時間だけ必要な帯域の光パスを設定するオンデマンドサービスが容易に実現できる。   Further, as an optical network becomes widespread, an optical path setting method based on GMPLS (Generalized Multi Protocol 1 Labe1 Switching) technology has been permeated. By using this GMPLS technology, an optical path can be set automatically and at high speed, so that an on-demand service for setting an optical path of a necessary band for a necessary time only when necessary can be easily realized.

従来、例えば、図15や図16に示すように、光パス確立のための設定手順としてGMPLSのようなシグナリングプロトコルを使用することが可能な導通試験手順が知られている(特許文献1参照)。ここでは、簡単のため、パス起動ノードと、パス終端ノードと、その中間ノードのみを示し、障害無く導通を確認するまでの単純な処理の流れを示した。また、以下では、パス起動ノードからパス終端ノードへ光信号が送信される方向を下流方向、その逆方向を上流方向という。図15に示す処理は、光パスを設定するためのシグナリングが終了した後、続けて導通試験を実施することで、光パスの正常性の確認を行うものである。   Conventionally, for example, as shown in FIG. 15 and FIG. 16, a continuity test procedure that can use a signaling protocol such as GMPLS is known as a setup procedure for establishing an optical path (see Patent Document 1). . Here, for the sake of simplicity, only a path start node, a path end node, and an intermediate node thereof are shown, and a simple process flow until a continuity is confirmed without a failure is shown. In the following, the direction in which an optical signal is transmitted from the path activation node to the path termination node is referred to as the downstream direction, and the opposite direction is referred to as the upstream direction. The processing shown in FIG. 15 is to confirm the normality of the optical path by continuously conducting a continuity test after the signaling for setting the optical path is completed.

具体的には、パス起動ノードが光パス設定通知(Path:S201)を発行すると、光パス設定通知(Path)は、中間ノードを経由してパス終端ノードへ転送される。パス終端ノードは、光パス設定通知(Path)にしたがって光パスが形成されるようにスイッチの方路を設定し(S202)、リソース確保通知(Resv:S203)を、中間ノードを経由してパス起動ノードに対して返信する。パス起動ノードは、光パスの設定を完了(S204)した後、パス終端ノードに対して正常性検査(導通試験)を行うように指示(検査通知)を送信し(S205)、そのための監視光信号をパス終端ノードに送信する(S206)。パス終端ノードは、監視光信号が正常に検出されているか否かを判定し、正常に検出されているなら(S207:OK/NG判定→OK)、パス起動ノードに対して正常通知を送信する(S208)。パス起動ノードは、監視光信号の送信を終了し(S209)、正常性検査の終了通知をパス終端ノードに対して送信する(S210)。これにより、下流方向の導通試験においては、設定されるパスを構成するすべてのノードのうち、パス終端ノードだけが、導通の正常性を確認する判定(導通確認)を行うだけで、下流方向の導通試験を終了することができる。なお、上流方向も同様な処理で導通試験を行う。   Specifically, when the path activation node issues an optical path setting notification (Path: S201), the optical path setting notification (Path) is transferred to the path termination node via the intermediate node. The path termination node sets the switch route so that an optical path is formed according to the optical path setting notification (Path) (S202), and sends a resource reservation notification (Resv: S203) via the intermediate node. Reply to the start node. After completing the setting of the optical path (S204), the path activation node transmits an instruction (inspection notification) to perform a normality inspection (continuity test) to the path termination node (S205), and the monitoring light for that purpose The signal is transmitted to the path termination node (S206). The path termination node determines whether or not the monitoring light signal is normally detected, and if it is normally detected (S207: OK / NG determination → OK), transmits a normal notification to the path activation node. (S208). The path activation node ends transmission of the monitoring light signal (S209), and transmits a normality inspection end notification to the path termination node (S210). As a result, in the downstream continuity test, only the path termination node among all the nodes constituting the set path performs the determination (conductivity confirmation) to confirm the normality of the continuity, and the downstream direction continuity test is performed. The continuity test can be terminated. Note that the continuity test is performed in the same way in the upstream direction.

また、図16に示す処理は、光パスを設定するためのシグナリングと、導通試験とを並行して実施することで、光パスの正常性の確認を行うものである。具体的には、パス起動ノードは、光パス設定通知(Path)を送信し(S221)、スイッチの方路を設定する。中間ノードは、光パス設定通知(Path)を受信するとパス終端ノードに転送し、自ノードのスイッチの方路を設定する(S222)。さらに、パス起動ノードに向けて監視光信号を送信する(S223)と共に、検査通知を送信する(S224)。パス起動ノードは、監視光信号を正常に検出しているなら(S225:OK/NG判定→OK)、中間ノードに向けて正常通知を送信する(S226)。中間ノードは、正常通知を受信すると、監視光信号を停止する(S227)。また、パスを構成するリンク毎に同様な処理を行う。すなわち、S221に続けて、パス終端ノードは、中間ノードを経由して光パス設定通知(Path)を受信すると、中間ノードとパス起動ノードとのやりとり(S222〜S227)と同様に、中間ノードとの間で導通試験を行う(S228〜S233)。パス終端ノードは、導通試験の結果、正常であれば、パス起動ノードに対して正常通知を送信する(S234)。パス起動ノードは、正常性検査の終了通知をパス終端ノードに対して送信する(S235)。これにより、上流方向の導通試験が終了する。なお、下流方向も同様な処理で導通試験を行う。
特許第3938315号公報(図4、図11)
Further, the processing shown in FIG. 16 is performed to confirm the normality of the optical path by performing signaling for setting the optical path and the continuity test in parallel. Specifically, the path activation node transmits an optical path setting notification (Path) (S221), and sets the switch path. When the intermediate node receives the optical path setting notification (Path), the intermediate node transfers it to the path termination node, and sets the switch path of its own node (S222). Furthermore, a monitoring light signal is transmitted toward the path activation node (S223), and an inspection notification is transmitted (S224). If the path activation node has detected the monitoring light signal normally (S225: OK / NG determination → OK), it transmits a normal notification to the intermediate node (S226). When receiving the normal notification, the intermediate node stops the monitoring light signal (S227). The same process is performed for each link constituting the path. That is, following S221, when the path termination node receives the optical path setting notification (Path) via the intermediate node, the intermediate node and the path activation node (S222 to S227) and the intermediate node A continuity test is carried out (S228 to S233). If the path termination node is normal as a result of the continuity test, the path termination node transmits a normality notification to the path activation node (S234). The path activation node transmits a normality check completion notification to the path termination node (S235). This completes the upstream continuity test. In the downstream direction, a continuity test is performed by the same process.
Japanese Patent No. 3938315 (FIGS. 4 and 11)

しかしながら、図15に示すような従来の導通確認方法では、光パスを設定するためのシグナリングがすべて終了してから導通試験を開始するため、導通確認を含めた光パス設定時間が長くなるという問題がある。   However, in the conventional continuity confirmation method as shown in FIG. 15, the continuity test is started after all the signaling for setting the optical path is completed, so that the optical path setting time including the continuity confirmation becomes long. There is.

また、図16に示す従来の導通確認方法では、例えば上流方向の導通試験ならば、設定されるパスのパス終端ノードを除くすべてのノードが導通確認を行う必要があるので、端点のノードだけが判定する場合に比べて判定時間が長くなり、結果として、導通確認を含めた光パス設定時間が長くなる。   In the conventional continuity check method shown in FIG. 16, for example, in the continuity test in the upstream direction, all nodes except for the path termination node of the set path need to check continuity. The determination time is longer than that in the case of determination, and as a result, the optical path setting time including conduction confirmation is increased.

このように光パス設定時間が長くなると、次のような問題が生じる。例えば、GMPLS技術による光パス設定方式を用いたオンデマンドサービスにおいて秒オーダーの光パス設定時間を要求するアプリケーションにとっては、光パスの設定時間が長くなることはアプリケーションによるサービス開始が遅れることにつながるため、致命的である。そのため、光パスを設定する際に、高速に導通確認を行う方法が必要である。   As described above, when the optical path setting time becomes long, the following problem occurs. For example, for an application that requires an optical path setup time on the order of seconds in an on-demand service using an optical path setup method based on the GMPLS technology, an increase in the optical path setup time leads to a delay in service start by the application. , Fatal. Therefore, there is a need for a method for confirming conduction at high speed when setting an optical path.

また、パスを設定する際に、シグナリングに加えて導通試験を実施しようとすると、以下の2つの問題がある。第1に、スイッチ機能を備えた通信装置の処理負荷が大きくなるという問題がある。第2に、同時に、このような通信装置には、シグナリング処理用の装置構成だけではなく、導通試験用の装置構成をも備えるために部品点数が増えることで通信装置が巨大化してしまうという問題もある。   Further, when setting a path, there is the following two problems when trying to conduct a continuity test in addition to signaling. First, there is a problem that the processing load of a communication device having a switch function increases. Secondly, at the same time, such a communication device has not only a device configuration for signaling processing but also a device configuration for continuity test, so that the number of parts increases and the communication device becomes enormous. There is also.

第1の問題、すなわち、スイッチ機能を備えた通信装置の処理負荷が大きくなると、この通信装置に故障が発生する確率がその分高くなる可能性がある。また、第2の問題、すなわち、スイッチ機能を備えた通信装置が巨大化すると、この巨大化した通信装置を設置するために、スイッチ装置用に確保していた限られたスペースが占有され、他の装置を置く場所が少なくなってしまう。   The first problem, that is, when the processing load of a communication device having a switch function increases, the probability that a failure occurs in this communication device may increase accordingly. In addition, the second problem, that is, when a communication device having a switch function is enlarged, a limited space reserved for the switch device is occupied to install the enlarged communication device. There will be less space for the device.

そこで、本発明では、前記した問題を解決し、光ネットワークにおいて光パスの導通確認を高速に行うことが可能であり、かつ、スイッチ装置の処理負荷の削減や小型化を可能とする技術を提供することを目的とする。   Therefore, the present invention provides a technique that solves the above-described problems, enables high-speed confirmation of optical path continuity in an optical network, and enables reduction in processing load and miniaturization of the switch device. The purpose is to do.

前記課題を解決するため、請求項1に記載の導通確認方法は、スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDM(time division multiplexing)のデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、導通試験対象区間である前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、前記始点ノードが、前記導通試験対象区間の終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、前記終点ノードが、前記シグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行するステップと、前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記始点ノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、前記始点ノードが、前記終点ノードから送信されるシグナリングメッセージの受信状況に基づいて前記導通試験対象区間の始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するステップと、前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記終点ノードに対して送信するステップとを実行することを特徴とする。   In order to solve the above-described problem, the continuity confirmation method according to claim 1 is a communication device that transfers data of wavelength and TDM (time division multiplexing) by switching a path of an optical path by an optical switch of a switching unit; A signal transmission / reception device having a function of transferring a packet by passing the data to the communication device; and a data link connected between a plurality of nodes each indicating the communication device and the signal transmission / reception device to transmit an optical signal; And a control link that is connected between the nodes and transmits a control signal, and is generated by light sources in both nodes between two communication devices that indicate a start point node and an end point node of the optical path that is a continuity test target section. A conduction confirmation method in a conduction confirmation system for conducting conduction confirmation of the optical path by transmitting an optical signal, wherein the start node is A step of transmitting a signaling message for securing a bandwidth resource for the end point of the continuity test target section as an optical signal, and the end point node sets the bandwidth resource for the end point based on the reception status of the signaling message. A step of performing continuity confirmation for the end point by determining whether or not continuity is normal, and signaling to the start point node when it is determined that continuity of the band resource for the end point is normal Transmitting the message as an optical signal, and the start node is normal in the continuity of the band resource toward the start point of the continuity test target section based on the reception status of the signaling message transmitted from the end node. Determining whether or not the continuity is confirmed toward the start point, and When it is determined that the continuity is normal in the continuity check in the point direction, a step of transmitting a normality confirmation notification indicating the fact to the end node is executed.

かかる手順によれば、導通確認システムの導通確認方法では、光パスの確立と確立した光パスの導通試験とを並行して行う。この際に、まず、始点ノードが終点向きの帯域を確保するためのシグナリングメッセージを光信号として送信する。このとき、終点向きの帯域を確保するための制御信号であるシグナリングメッセージが光信号用のデータリンクで伝送される。つまり、終点向きの帯域を確保することと、終点向きに試験用光信号を送信することを同時に行うことができる。これにより、終点向きの帯域を確保するためのシグナリングメッセージを受信した終点ノードが、終点向きの導通確認を迅速に実行することができる。そして、逆方向については、終点ノードが始点向きの帯域を確保するためのシグナリングメッセージを光信号として送信する。これにより、同様にして、始点ノードが、始点向きの導通確認を迅速に実行することができる。したがって、帯域を確保するための制御信号と、導通試験用の光信号とを別々に伝送する場合と比較して、高速に光パスの導通正常性を確認することが可能である。さらに、始点ノードおよび終点ノードの処理負荷を削減することが可能である。   According to this procedure, in the conduction confirmation method of the conduction confirmation system, the establishment of the optical path and the conduction test of the established optical path are performed in parallel. In this case, first, a signaling message for ensuring that the start point node has a band toward the end point is transmitted as an optical signal. At this time, a signaling message, which is a control signal for securing a band for the end point, is transmitted through the data link for optical signals. That is, it is possible to simultaneously secure a band for the end point and transmit the test optical signal in the end point direction. As a result, the end point node that has received the signaling message for securing the band for the end point can quickly execute the continuity confirmation for the end point. Then, in the reverse direction, the end point node transmits a signaling message for ensuring a band toward the start point as an optical signal. Thereby, similarly, the starting point node can quickly execute the conduction confirmation toward the starting point. Therefore, it is possible to confirm the normality of the optical path at high speed as compared with the case where the control signal for securing the band and the optical signal for continuity test are transmitted separately. Furthermore, it is possible to reduce the processing load on the start node and the end node.

また、前記課題を解決するため、請求項2に記載の導通確認方法は、スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスをリンク毎に区分した導通試験対象区間の始点側の一方のノードおよび終点側の他方のノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することでリンク毎に当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、前記光パスの始点ノードから終点ノードへ向けて、連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に導通確認処理を順次行い、前記導通確認処理において、前記導通試験対象区間の始点側の一方のノードが、前記導通試験対象区間の他方のノード向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、前記他方のノードが、前記シグナリングメッセージの受信状況に基づいて自ノード向きの帯域リソースの導通が正常であるか否かを判別することで前記一方のノードから他方のノード向きの導通確認を実行するステップと、自ノード向きの帯域リソースの導通が正常であると判別した場合に、次の導通試験対象区間において、当該導通試験対象区間の対向するノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、前記終点ノードが自ノード向きの導通確認において導通が正常であると判別した場合、当該終点ノードから前記始点ノードへ向けて連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に前記導通確認処理を順次行い、前記始点ノードが、自ノード向きの導通確認において導通が正常であると判別した場合、当該光パスの双方向の帯域リソースの導通が正常であると判別することを特徴とする。   Further, in order to solve the above-described problem, the continuity confirmation method according to claim 2 includes a communication device that transfers wavelength and TDM data by switching a path of an optical path by an optical switch of a switching unit, and the communication device. A signal transmission / reception device having a function of transferring a packet by passing the data to a data link; a data link connected between a plurality of nodes each indicating the communication device and the signal transmission / reception device; A communication link that is connected in between and transmits a control signal between the two communication devices indicating one node on the start point side and the other node on the end point side of the continuity test target section in which the optical path is divided for each link Continuity confirmation method in a continuity confirmation system for confirming continuity of the optical path for each link by transmitting an optical signal generated by a light source in both nodes Then, from the start node to the end node of the optical path, a set of two continuous communication devices is sequentially subjected to continuity check processing for each continuity test target section formed by shifting the combination one by one. And in the continuity check process, one node on the start point side of the continuity test target section transmits a signaling message as an optical signal for securing a band resource for the other node of the continuity test target section. And the other node determines whether or not the continuity of the band resource for the own node is normal based on the reception status of the signaling message, thereby confirming the continuity from the one node to the other node. And the next continuity test target section when it is determined that the continuity of the band resource for the local node is normal. And performing a step of transmitting a signaling message as an optical signal toward the opposite node of the continuity test target section, and when determining that the continuity is normal in the continuity confirmation for the end node, A set of two communication devices continuous from the end node to the start point node sequentially performs the continuity check process for each of the continuity test target sections formed by shifting the combination one by one, and the start point node However, when it is determined that the continuity is normal in the continuity confirmation for the own node, it is determined that the continuity of the bidirectional band resource of the optical path is normal.

かかる手順によれば、導通確認システムの導通確認方法では、光パスの確立と確立した光パスの導通試験とを並行して行う際に、帯域を確保するための制御信号を、導通試験用の光信号として伝送するので、高速に光パスの導通正常性を確認することが可能である。また、光パスをリンク毎に区分した導通試験対象区間毎に導通確認処理を順次行うので、導通失敗の原因箇所を特定することや、その導通失敗を短時間で把握することが可能である。さらに、各通信装置の処理負荷を削減することが可能である。   According to this procedure, in the continuity confirmation method of the continuity confirmation system, when performing the establishment of the optical path and the continuity test of the established optical path in parallel, the control signal for securing the bandwidth is used for the continuity test. Since it is transmitted as an optical signal, it is possible to check the normality of the optical path at high speed. In addition, since the continuity check process is sequentially performed for each continuity test target section in which the optical path is divided for each link, it is possible to identify the cause of the continuity failure and to grasp the continuity failure in a short time. Furthermore, the processing load on each communication device can be reduced.

また、前記課題を解決するため、請求項3に記載の導通確認方法は、スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスをリンク毎に区分した導通試験対象区間の始点側の一方のノードおよび終点側の他方のノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することでリンク毎に当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、前記光パスの始点ノードから終点ノードへ向けて、連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に導通確認処理を順次行い、前記導通確認処理において、前記導通試験対象区間の始点側の一方のノードが、前記導通試験対象区間の終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、前記導通試験対象区間の終点側の他方のノードが、前記シグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行するステップと、前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記一方のノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、前記一方のノードが、前記他方のノードから送信されるシグナリングメッセージの受信状況に基づいて前記導通試験対象区間の始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するステップと、前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記他方のノードに対して送信するステップとを実行し、前記終点ノードが、前記正常性確認通知を受信した場合に当該光パスの双方向の帯域リソースの導通が正常であると判別することを特徴とする。   Further, in order to solve the above-described problem, the continuity confirmation method according to claim 3 includes a communication device that transfers wavelength and TDM data by switching a path of an optical path by an optical switch of a switching unit, and the communication device. A signal transmission / reception device having a function of transferring a packet by passing the data to a data link; a data link connected between a plurality of nodes each indicating the communication device and the signal transmission / reception device; A communication link that is connected in between and transmits a control signal between the two communication devices indicating one node on the start point side and the other node on the end point side of the continuity test target section in which the optical path is divided for each link Continuity confirmation method in a continuity confirmation system for confirming continuity of the optical path for each link by transmitting an optical signal generated by a light source in both nodes Then, from the start node to the end node of the optical path, a set of two continuous communication devices is sequentially subjected to continuity check processing for each continuity test target section formed by shifting the combination one by one. In the continuity check process, one of the nodes on the start point side of the continuity test target section performs a step of transmitting a signaling message as an optical signal for securing a band resource toward the end point of the continuity test target section. The other node on the end point side of the continuity test target section confirms whether or not the continuity of the band resource for the end point is normal based on the reception status of the signaling message, thereby confirming the continuity for the end point direction. And when it is determined that the continuity of the band resource toward the end point is normal, the Transmitting a nulling message as an optical signal, and the one node performs continuity of a band resource toward the start point of the continuity test target section based on a reception status of a signaling message transmitted from the other node. By determining whether the continuity is normal by determining whether the continuity is normal for the starting point, and when determining that the continuity is normal in the continuity confirmation for the starting point, a normality confirmation notification indicating that is provided. Transmitting to the other node, and when the end node receives the normality confirmation notification, determining that the continuity of the bidirectional band resource of the optical path is normal Features.

かかる手順によれば、導通確認システムの導通確認方法では、光パスの確立と確立した光パスの導通試験とを並行して行う際に、帯域を確保するための制御信号を、導通試験用の光信号として伝送するので、高速に光パスの導通正常性を確認することが可能である。また、光パスをリンク毎に区分した導通試験対象区間毎に導通確認処理を順次行うので、導通失敗の原因箇所を特定することや、その導通失敗を短時間で把握することが可能である。さらに、各通信装置の処理負荷を削減することが可能である。   According to this procedure, in the continuity confirmation method of the continuity confirmation system, when performing the establishment of the optical path and the continuity test of the established optical path in parallel, the control signal for securing the bandwidth is used for the continuity test. Since it is transmitted as an optical signal, it is possible to check the normality of the optical path at high speed. In addition, since the continuity check process is sequentially performed for each continuity test target section in which the optical path is divided for each link, it is possible to identify the cause of the continuity failure and to grasp the continuity failure in a short time. Furthermore, the processing load on each communication device can be reduced.

また、請求項4に記載の導通確認方法は、請求項1または請求項3に記載の導通確認方法において、前記始点ノードが、前記導通確認において導通が正常であると判別した場合、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行し、前記終点ノードが、前記導通試験対象区間の対向するノードから送信される前記正常性確認通知が到着したことをトリガとして、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行することを特徴とする。   The continuity check method according to claim 4 is the continuity check method according to claim 1 or claim 3, wherein when the start node determines that continuity is normal in the continuity check, the switching unit Further executing the step of setting the setting of the optical switch for data input / output for transferring the data, and the normality confirmation notification transmitted from the node opposite to the continuity test target section by the end point node The step of setting the optical switch of the switching unit for data input / output for transferring the data is further executed, triggered by the arrival of.

かかる手順によれば、通信装置のスイッチング部の光スイッチの設定を変更するための専用の通知メッセージが不要であるため、通信装置は、メッセージを受け取るための負荷が減る。また、通信装置は、導通試験の成功の確認処理より、信号送受信装置から受け渡されるデータを転送するための処理へと素早く移行することが可能である。   According to such a procedure, since a dedicated notification message for changing the setting of the optical switch of the switching unit of the communication device is not necessary, the load on the communication device for receiving the message is reduced. Further, the communication apparatus can quickly shift from the process for confirming the success of the continuity test to the process for transferring data delivered from the signal transmitting / receiving apparatus.

また、請求項5に記載の導通確認方法は、請求項2に記載の導通確認方法において、前記始点ノードおよび終点ノードが、自ノード向きの導通確認において導通が正常であると判別した場合、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行することを特徴とする。   Further, the continuity check method according to claim 5 is the continuity check method according to claim 2, wherein when the start point node and the end point node determine that continuity is normal in the continuity check for the own node, The step of setting the optical switch of the switching unit for data input / output for transferring the data is further performed.

かかる手順によれば、通信装置のスイッチング部の光スイッチの設定を変更するための専用の通知メッセージが不要であるため、通信装置は、メッセージを受け取るための負荷が減る。また、通信装置は、導通試験の成功の確認処理より、信号送受信装置から受け渡されるデータを転送するための処理へと素早く移行することが可能である。   According to such a procedure, since a dedicated notification message for changing the setting of the optical switch of the switching unit of the communication device is not necessary, the load on the communication device for receiving the message is reduced. Further, the communication apparatus can quickly shift from the process for confirming the success of the continuity test to the process for transferring data delivered from the signal transmitting / receiving apparatus.

また、請求項6に記載の導通確認方法は、請求項1ないし請求項5のいずれか一項に記載の導通確認方法において、前記導通確認を実行するノードが、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別した場合に、その旨を示す正常性未確認通知を前記導通試験対象区間の対向するノードに送信することを特徴とする。   The continuity check method according to claim 6 is the continuity check method according to any one of claims 1 to 5, wherein a node that performs the continuity check is a band resource of the continuity test target section. When it is determined that the continuity is not normal, an unconfirmed normality notification indicating that is transmitted to a node facing the continuity test target section.

かかる手順によれば、導通試験対象区間において、導通が正常ではないと判別した端点ノードに対向するノードは、導通が正常ではなかったことを素早く認識し、正常な光パスを設定するための次の処理に短時間で移ることが可能である。   According to such a procedure, in the continuity test target section, the node opposite to the end point node that is determined to be not normal is quickly recognized that the continuity is not normal, and the next step is to set a normal optical path. It is possible to move to the process in a short time.

また、請求項7に記載の導通確認方法は、請求項1ないし請求項6のいずれか一項に記載の導通確認方法において、前記導通確認を実行するノードが、前記導通試験対象区間の対向するノードから受信した前記シグナリングメッセージの強度が事前に定められた閾値以下である場合に、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別することを特徴とする。   The continuity check method according to claim 7 is the continuity check method according to any one of claims 1 to 6, wherein a node that executes the continuity check faces the continuity test target section. When the strength of the signaling message received from the node is equal to or lower than a predetermined threshold, it is determined that the continuity of the band resource in the continuity test target section is not normal.

かかる手順によれば、導通試験対象区間において、正常性未確認通知を受信するノードは、伝送された光信号の品質が良くないことを認識し、正常な光パスを設定するための次の処理に短時間で移ることが可能である。   According to this procedure, in the continuity test target section, the node receiving the normality unconfirmed notification recognizes that the quality of the transmitted optical signal is not good, and performs the next process for setting a normal optical path. It is possible to move in a short time.

また、請求項8に記載の導通確認方法は、請求項1ないし請求項7のいずれか一項に記載の導通確認方法において、前記導通確認を実行するノードが、前記導通試験対象区間の対向するノードから送信される前記シグナリングメッセージが事前に定められた時間が経過しても到着しなかった場合に、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別することを特徴とする。   The continuity check method according to claim 8 is the continuity check method according to any one of claims 1 to 7, wherein a node that executes the continuity check faces the continuity test target section. When the signaling message transmitted from the node does not arrive even after a predetermined time has elapsed, it is determined that the continuity of the band resource in the continuity test target section is not normal.

かかる手順によれば、導通試験対象区間において、導通確認を実行するノードは、受信すべきシグナリングメッセージが予定時間を経過しても到着しなかった場合に、導通が失敗したことを確実に把握することが可能である。これにより、正常な光パスを設定するための次の処理に短時間で移ることが可能である。   According to such a procedure, in a continuity test target section, a node that performs continuity confirmation reliably grasps that continuity has failed when a signaling message to be received does not arrive even after a predetermined time has elapsed. It is possible. Thereby, it is possible to move to the next process for setting a normal optical path in a short time.

また、請求項9に記載の導通確認方法は、請求項1ないし請求項8のいずれか一項に記載の導通確認方法であって、前記光パスの始点ノードおよび前記光パスの終点ノードが、双方が導通試験対象区間である前記光パスの帯域リソースの導通が正常であると判別した後に、一方のノードが、BER(bit error rate)を測定するためのBER測定用信号を他方のノードに送信するステップを実行し、他方のノードが、前記BER測定用信号を受信し、受信したBER測定用信号からBERを測定するステップを実行する一連の処理を前記光パスの双方向において実行するBER測定処理を行うことを特徴とする。   The continuity confirmation method according to claim 9 is the continuity confirmation method according to any one of claims 1 to 8, wherein a start node of the optical path and an end node of the optical path are: After determining that the continuity of the band resource of the optical path that is both the continuity test target section is normal, one node sends a BER measurement signal for measuring the BER (bit error rate) to the other node. A BER that executes a series of processes in which the other node receives the BER measurement signal and performs a step of measuring a BER from the received BER measurement signal in both directions of the optical path. A measurement process is performed.

かかる構成によれば、導通確認システムでは、光パスの確立とその導通試験とを実施するだけではなくBER測定処理を行うので、確立した光パスで伝送される信号の品質を測定することができる。したがって、事前に定められる信号品質の要求条件を満たさない光パスは使用せず、信号品質の要求条件を満たす光パスをユーザに提供することが可能である。   According to such a configuration, the continuity confirmation system performs not only the establishment of the optical path and its continuity test but also the BER measurement process, so that the quality of the signal transmitted through the established optical path can be measured. . Therefore, an optical path that does not satisfy a predetermined signal quality requirement is not used, and an optical path that satisfies the signal quality requirement can be provided to the user.

また、請求項10に記載の導通確認方法は、請求項9に記載の導通確認方法であって、前記導通試験対象区間の始点側の一方のノードが、前記BER測定処理の前に、前記正常性確認通知として、導通試験対象区間の導通試験に続けて前記光パスの両端点間で前記BER測定処理を行うことを示すメッセージを前記導通試験対象区間の終点側の他方のノードに送信し、前記光パスの始点ノードおよび前記光パスの終点ノードが、前記BER測定処理前に、前記スイッチング部の光スイッチの設定を、導通試験用の設定からBER測定用の設定に切り替え、前記BER測定処理後に、前記スイッチング部の光スイッチの設定を、前記BER測定用の設定から前記データを転送するためのデータ入出力用の設定に切り替えることを特徴とする。   Further, the continuity check method according to claim 10 is the continuity check method according to claim 9, wherein one of the nodes on the start point side of the continuity test target section performs the normal operation before the BER measurement process. As a sex confirmation notification, a message indicating that the BER measurement process is performed between both end points of the optical path following the continuity test of the continuity test target section is transmitted to the other node on the end point side of the continuity test target section, The start node of the optical path and the end node of the optical path switch the setting of the optical switch of the switching unit from the setting for continuity test to the setting for BER measurement before the BER measurement process, and the BER measurement process Thereafter, the setting of the optical switch of the switching unit is switched from the setting for BER measurement to the setting for data input / output for transferring the data.

かかる手順によれば、光パスの終点ノードは、導通が正常であることを示すメッセージとしてBER測定処理を行うことを示すメッセージを受け取るので、BER測定処理を行うことに伴う余分な処理をすることなく、導通試験の処理からBER測定処理に以降できる。そのため、導通試験の終了から短時間でBER測定を開始することが可能となる。また、BERの測定終了から短時間でデータを転送するための処理へと移行することが可能である。   According to such a procedure, the end-point node of the optical path receives a message indicating that the BER measurement process is performed as a message indicating that the continuity is normal, and therefore performs extra processing associated with performing the BER measurement process. In addition, the continuity test process can be followed by the BER measurement process. Therefore, it becomes possible to start BER measurement in a short time from the end of the continuity test. Further, it is possible to shift from the end of the BER measurement to a process for transferring data in a short time.

また、請求項11に記載の導通確認プログラムは、請求項1ないし請求項10のいずれか一項に記載の導通確認方法を、前記導通試験対象区間の始点側の一方のノードとして機能する通信装置のコンピュータに実行させるためのプログラムである。このように構成されることにより、このプログラムをインストールされたコンピュータは、このプログラムに基づいた各機能を実現することができる。   A continuity check program according to claim 11 is a communication device that functions as the continuity check method according to any one of claims 1 to 10 as one node on a start point side of the continuity test target section. This is a program for causing a computer to execute. By being configured in this way, a computer in which this program is installed can realize each function based on this program.

また、請求項12に記載の導通確認プログラムは、請求項1ないし請求項10のいずれか一項に記載の導通確認方法を、前記導通試験対象区間の終点側の他方のノードとして機能する通信装置のコンピュータに実行させるためのプログラムである。このように構成されることにより、このプログラムをインストールされたコンピュータは、このプログラムに基づいた各機能を実現することができる。   A continuity check program according to claim 12 is a communication device that functions as the other node on the end point side of the continuity test target section according to any one of claims 1 to 10. This is a program for causing a computer to execute. By being configured in this way, a computer in which this program is installed can realize each function based on this program.

また、請求項13に記載の通信装置は、光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける前記始点ノードとして機能する通信装置であって、前記光パスの方路を切替える光スイッチを有するスイッチング部と、前記光パスの終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信し、前記終点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて前記光パスの始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するシグナリングメッセージ送受信手段と、前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記終点ノードに対して送信するシグナリングメッセージ制御手段と、前記導通確認において導通が正常であると判別した場合、前記信号送受信装置から受け渡される前記データを入出力できるように前記スイッチング部の光スイッチを制御するスイッチング制御手段とを備えることを特徴とする。   The communication device according to claim 13 has a communication device that transfers wavelength and TDM data by switching a route of an optical path, and a function of transferring a packet by passing the data to the communication device. A signal transmission / reception device, a data link connected between a plurality of nodes respectively indicating the communication device and the signal transmission / reception device and transmitting an optical signal, and a control link connected between the nodes and transmitting a control signal. As the start point node in a continuity confirmation system for confirming the continuity of the optical path by transmitting an optical signal generated by a light source in both nodes between two communication devices indicating the start point node and the end point node of the optical path A functioning communication device comprising: a switching unit having an optical switch for switching a path of the optical path; and a band redirection toward an end point of the optical path. A signaling message for securing the source is transmitted as an optical signal, and whether or not conduction of band resources toward the start point of the optical path is normal based on a reception status of the signaling message transmitted as an optical signal from the end node If it is determined that the continuity is normal in the continuity confirmation for the starting point and the signaling message transmission / reception means for performing the continuity confirmation for the start point by determining whether or not the normality confirmation notification indicating that is the above Signaling message control means for transmitting to the end point node, and when it is determined that the continuity is normal in the continuity confirmation, an optical switch of the switching unit is provided so that the data passed from the signal transmitting / receiving device can be input / output Switching control means for controlling.

かかる構成によれば、通信装置は、光パスの終点向きの帯域を確保するためのシグナリングメッセージを光信号として送信するので、終点ノードで導通正常性を確認するまでの時間を、帯域を確保するための制御信号と導通試験用の光信号とを別々に伝送する場合と比較して短縮することが可能である。また、通信装置は、光パスの始点向きの帯域を確保するためのシグナリングメッセージの受信状況により光パスの始点向きの導通正常性を確認するので、導通正常性を確認するまでの時間を従来よりも短縮することが可能である。さらに、通信装置の処理負荷を削減でき、小型化が可能となる。   According to such a configuration, the communication device transmits a signaling message for ensuring a bandwidth toward the end point of the optical path as an optical signal, so the time until the normality of conduction at the end node is confirmed is ensured. Therefore, the control signal and the optical signal for continuity test can be shortened as compared with the case where the signal is transmitted separately. In addition, since the communication device confirms the normality of conduction toward the start point of the optical path according to the reception status of the signaling message for ensuring the bandwidth toward the start point of the optical path, the time until confirmation of the normality of conduction is longer than before. Can also be shortened. Furthermore, the processing load of the communication device can be reduced, and the size can be reduced.

また、請求項14に記載の通信装置は、光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける前記終点ノードとして機能する通信装置であって、前記光パスの方路を切替える光スイッチを有するスイッチング部と、前記始点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行し、前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記始点ノードに向けてシグナリングメッセージを光信号として送信するシグナリングメッセージ送受信手段と、前記始点ノードから送信される、前記始点向きの導通確認において導通が正常であると判別した旨を示す正常性確認通知を受信するシグナリングメッセージ制御手段と、前記正常性確認通知を受信した場合、前記信号送受信装置から受け渡される前記データを入出力できるように前記スイッチング部の光スイッチを制御するスイッチング制御手段とを備えることを特徴とする。   The communication device according to claim 14 has a communication device that transfers wavelength and TDM data by switching a route of an optical path, and a function of transferring a packet by passing the data to the communication device. A signal transmission / reception device, a data link connected between a plurality of nodes respectively indicating the communication device and the signal transmission / reception device and transmitting an optical signal, and a control link connected between the nodes and transmitting a control signal. As an end point node in a continuity confirmation system for confirming continuity of the optical path by transmitting an optical signal generated by a light source in both nodes between two communication devices indicating a start point node and an end point node of the optical path A functioning communication device comprising: a switching unit having an optical switch for switching a path of the optical path; and an optical signal from the start node. The continuity confirmation for the end point is performed by determining whether the continuity of the band resource for the end point is normal based on the reception status of the signaling message to be transmitted. When it is determined that the signal is normal, the signaling message transmitting / receiving means for transmitting a signaling message as an optical signal toward the start point node, and the continuity in the continuity check for the start point transmitted from the start point node is normal. Signaling message control means for receiving a normality confirmation notification indicating that it has been determined, and an optical switch of the switching unit so that the data delivered from the signal transmitting / receiving device can be input and output when the normality confirmation notification is received And switching control means for controlling the operation.

かかる構成によれば、通信装置は、光パスの終点向きの帯域を確保するためのシグナリングメッセージを光信号として受信するので、帯域を確保するための制御信号と導通試験用の光信号とを別々に受信する場合と比較して、導通正常性を確認するまでの時間を短縮できる。また、通信装置は、光パスの始点向きの帯域を確保するためのシグナリングメッセージを光信号として送信するので、始点ノードにおいて、導通正常性を確認するまでの時間を従来よりも短縮することが可能である。さらに、通信装置の処理負荷を削減でき、小型化が可能となる。   According to such a configuration, the communication apparatus receives a signaling message for ensuring a band toward the end point of the optical path as an optical signal. Therefore, the control signal for securing the band and the optical signal for continuity test are separately provided. Compared with the case of receiving the signal, the time required to confirm the normality of conduction can be shortened. In addition, since the communication device transmits a signaling message for ensuring the bandwidth toward the start point of the optical path as an optical signal, it is possible to shorten the time until confirmation of normality of conduction at the start point node compared to the conventional case. It is. Furthermore, the processing load of the communication device can be reduced, and the size can be reduced.

また、請求項15に記載の導通確認システムは、光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムであって、請求項13に記載の通信装置を前記始点ノードとして備えると共に、請求項14に記載の通信装置を前記終点ノードとして備えることを特徴とする。   The continuity confirmation system according to claim 15 is a communication device that transfers wavelength and TDM data by switching a path of an optical path, and a function that transfers packets by passing the data to the communication device. A signal transmission / reception device, a data link connected between a plurality of nodes each indicating the communication device and the signal transmission / reception device, and transmitting a control signal connected between the nodes, A continuity confirmation system for confirming the continuity of the optical path by transmitting an optical signal generated by a light source in both nodes between two communication devices indicating a start node and an end node of the optical path, A communication device according to claim 13 is provided as the start point node, and a communication device according to claim 14 is provided as the end point node. To.

かかる構成によれば、光パスの始点ノードおよび終点ノードが、光パスの帯域を確保するためのシグナリングメッセージを光信号としてそれぞれ送信するので、帯域を確保するための制御信号と導通試験用の光信号とを別々に伝送する場合と比較して高速に光パスの導通正常性を確認することが可能となる。さらに、システム全体で、装置の処理負荷を削減でき、装置の小型化が可能となる。   According to such a configuration, the start point node and the end point node of the optical path respectively transmit a signaling message for securing the bandwidth of the optical path as an optical signal, so that the control signal for securing the bandwidth and the light for continuity test are transmitted. Compared with the case where the signals are transmitted separately, it is possible to check the normality of the optical path at high speed. Furthermore, the processing load of the apparatus can be reduced in the entire system, and the apparatus can be downsized.

本発明によれば、光ネットワークにおいて光パスの導通確認を高速に行うことができ、かつ、スイッチ装置の処理負荷を削減できると共に、装置を小型化することができる。   According to the present invention, optical path continuity can be confirmed at high speed in an optical network, the processing load of the switch device can be reduced, and the device can be downsized.

以下、図面を参照して本発明の導通確認システムおよび通信装置を実施するための最良の形態(以下「実施形態」という)について詳細に説明する。   The best mode for carrying out the continuity confirmation system and communication device of the present invention (hereinafter referred to as “embodiment”) will be described in detail below with reference to the drawings.

(第1実施形態)
[導通確認システムの概要]
図1は、本発明の実施形態に係る導通確認システムの概要を示す説明図であって、(a)は全体構成の一例、(b)は設定されるパスの一例をそれぞれ示している。図1(a)に示すように、導通確認システム1は、リンクで接続された複数のノードとして、通信装置2(2a,2b,2c,2d)と、信号送受信装置3(3a,3b,3c)とを有するネットワークNWを備えている。このネットワークNWは、例えば通信事業者(キャリア)によって、運用される。なお、図1において、ノードの個数は特に限定されるものではない。
(First embodiment)
[Overview of continuity check system]
FIG. 1 is an explanatory diagram showing an outline of a continuity confirmation system according to an embodiment of the present invention, where (a) shows an example of the overall configuration and (b) shows an example of a set path. As shown in FIG. 1A, the continuity confirmation system 1 includes a communication device 2 (2a, 2b, 2c, 2d) and a signal transmission / reception device 3 (3a, 3b, 3c) as a plurality of nodes connected by links. ). This network NW is operated by, for example, a communication carrier (carrier). In FIG. 1, the number of nodes is not particularly limited.

通信装置2は、光パス(以下、単にパスともいう)の方路を切替えることで、波長やTDM(time division multiplexing)のデータを転送するものであり、例えば、光パスの確立が可能なレイヤ1装置やスイッチング機能を有する光クロスコネクト(OXC:Optical Cross Connect)装置で構成される。
信号送受信装置3は、通信装置2にデータを受け渡すことでパケットを転送する機能を持つものであり、例えば、ルータ装置である。
The communication apparatus 2 transfers data of wavelength and TDM (time division multiplexing) by switching a path of an optical path (hereinafter also simply referred to as a path). For example, a layer capable of establishing an optical path 1 device and an optical cross connect (OXC) device having a switching function.
The signal transmitting / receiving device 3 has a function of transferring a packet by passing data to the communication device 2, and is, for example, a router device.

ネットワークNWの各ノード間には、図1(b)に示すように、光信号を伝送するデータリンク5と、制御信号を伝送する制御リンク6とが接続されている。以下では、図1(b)に示す通信装置2aを始点ノード、通信装置2bを中継ノード、通信装置2cを終点ノードとする1つの光パスを一例として説明する。   As shown in FIG. 1B, a data link 5 that transmits an optical signal and a control link 6 that transmits a control signal are connected between the nodes of the network NW. In the following description, one optical path having the communication device 2a shown in FIG. 1B as a start node, the communication device 2b as a relay node, and the communication device 2c as an end node will be described as an example.

導通確認システム1は、光パスの始点ノードおよび終点ノードを示す2つの通信装置(2a,2c)間において、やりとりされるシグナリングメッセージを両ノード内の光源で発生させる光信号(テスト光)として伝送することで当該光パスの導通確認を行う。そして、正常に光パスが確立されると、光信号(データ)を送受信できる信号送受信装置3の間でデータ(光信号)が伝送される。なお、データリンク5の本数は、任意の本数に設定することができる。   The continuity confirmation system 1 transmits a signaling message exchanged between the two communication devices (2a, 2c) indicating the start and end nodes of the optical path as an optical signal (test light) generated by the light sources in both nodes. By doing so, the conduction of the optical path is confirmed. When the optical path is normally established, data (optical signal) is transmitted between the signal transmitting / receiving apparatuses 3 that can transmit and receive the optical signal (data). The number of data links 5 can be set to an arbitrary number.

本実施形態では、導通確認システム1は、図1(a)に示すように、制御サーバ(制御装置)4をさらに備えることとした。
制御サーバ4は、ネットワークNWの各ノードを制御するものである。制御サーバ4と、ネットワークNWの各ノードとは、制御リンク6を介して双方向に制御信号をやりとりすることができる。制御サーバ4は、導通確認システム1の外部から、光パス設定のリクエストを受け付ける機能を有し、光パス設定のリクエストが来ると、そのリクエストに対して適切なパスを張るために経路計算を行い、通信装置2等に対してパス確立要求(パス設定要求)を行う。
In this embodiment, the continuity confirmation system 1 is further provided with a control server (control device) 4 as shown in FIG.
The control server 4 controls each node of the network NW. The control server 4 and each node of the network NW can exchange control signals bidirectionally via the control link 6. The control server 4 has a function of accepting an optical path setting request from the outside of the continuity confirmation system 1, and when an optical path setting request is received, performs a route calculation to establish an appropriate path for the request. Then, a path establishment request (path setting request) is made to the communication device 2 or the like.

本実施形態においては、パス設定要求を受けた通信装置2が、パス確立シグナリングを通信装置2間で流すことで、パスの確立を行うことと並行して導通確認のための試験を行うこととした。また、ノード間でやり取りされるシグナリングプロトコルはRSVP(ReSerVation Protoco1)を想定し、RSVPは、実際に光信号が流れる回線(データリンク5)でやりとりされるものとする。また、RSVP Path Messageを受け取った通信装置2は、最低でもdownstream向け(下流方向)のクロスコネクト設定を実行する。本実施形態では、Upstream向け(上流方向)のクロスコネクト設定は、RSVP Path Messageに対する応答であるRSVP Resv Messageの受信時で行うこととした。なお、RSVP Path Messageの受信時に、downstream向け(下流方向)およびUpstream向け(上流方向)のクロスコネクト設定を同時に行うように構成してもよい。   In the present embodiment, the communication device 2 that has received the path setting request performs a test for continuity confirmation in parallel with establishing a path by flowing path establishment signaling between the communication devices 2. did. Further, RSVP (ReSerVation Protocol 1) is assumed as a signaling protocol exchanged between nodes, and RSVP is exchanged through a line (data link 5) through which an optical signal actually flows. Further, the communication device 2 that has received the RSVP Path Message executes a cross-connect setting for downstream (downstream direction) at the minimum. In the present embodiment, the cross-connect setting for upstream (upstream direction) is performed when an RSVP Resv Message that is a response to the RSVP Path Message is received. Note that when receiving the RSVP Path Message, the cross-connect setting for downstream (downstream direction) and upstream (upstream direction) may be performed simultaneously.

[通信装置の構成]
図2は、本発明の実施形態に係る通信装置の構成の一例を示す機能ブロック図である。
通信装置2は、例えば、CPU(Central Processing Unit)等の演算装置と、メモリ、ハードディスク等の記憶装置と、リンクを介して通信を行うためのNIC(Network Interface Card)と、リンクを介して光信号や制御信号の送受信を行うインターフェースと、プログラムと、光信号(テスト光)を照射するための光源と、テスト光を受信するための受信器(受光手段)とから構成されている。この通信装置2は、ハードウェア装置とソフトウェアとが協働して前記したハードウェア資源がプログラムによって制御されることにより実現され、図2に示すように、入出力部10と、スイッチング部20と、記憶部30と、制御部40と、シグナリングメッセージ送受信部50とを備えている。
[Configuration of communication device]
FIG. 2 is a functional block diagram showing an example of the configuration of the communication apparatus according to the embodiment of the present invention.
The communication device 2 includes, for example, an arithmetic device such as a CPU (Central Processing Unit), a storage device such as a memory and a hard disk, a NIC (Network Interface Card) for communicating via a link, and an optical via a link. It comprises an interface for transmitting and receiving signals and control signals, a program, a light source for irradiating an optical signal (test light), and a receiver (light receiving means) for receiving the test light. This communication device 2 is realized by the hardware device and software cooperating to control the hardware resources described above by a program. As shown in FIG. 2, the input / output unit 10, the switching unit 20, , A storage unit 30, a control unit 40, and a signaling message transmission / reception unit 50.

以下の説明では、始点ノードおよび終点ノードとして機能する通信装置2が、図2に示す構成をすべて備え、中継ノードとして機能する通信装置2は、シグナリングメッセージ送受信部50を備えていないものとする。また、始点ノードおよび終点ノードとして固有の機能を説明するが、双方の機能を備えるようにしてもよいことはもちろんである。つまり、始点ノードとして説明する通信装置2が、場合によっては、終点ノードとして機能できるように構成されていてもよい。   In the following description, it is assumed that the communication device 2 that functions as a start point node and an end point node has all the configurations shown in FIG. 2, and the communication device 2 that functions as a relay node does not include the signaling message transmission / reception unit 50. In addition, functions unique to the start point node and the end point node will be described, but it is needless to say that both functions may be provided. That is, the communication device 2 described as the start point node may be configured to function as the end point node depending on the case.

入出力部10は、通信装置2を通過する光信号が入力される際のインターフェース(入力インターフェース)と、出力される際のインターフェース(出力インターフェース)を備えている。この入出力部10は、外部から、入力インターフェースに入力された光信号(データ、試験用光信号)をスイッチング部20に入れて、スイッチング部20で適切にスイッチングされた後、出力インターフェースから光信号(データ、試験用光信号)を外部へ出力する。   The input / output unit 10 includes an interface (input interface) when an optical signal passing through the communication device 2 is input and an interface (output interface) when it is output. The input / output unit 10 inputs an optical signal (data, test optical signal) input from the outside to the input interface to the switching unit 20 and is appropriately switched by the switching unit 20, and then the optical signal from the output interface. (Data, test optical signal) is output to the outside.

入出力部10は、制御サーバ4と通信可能なインターフェースとして、サーバ用ポート11を備えている。また、入出力部10は、入力インターフェースとして、パス確立用ポート12aと、データ入出力用ポート13aとを備え、出力インターフェースとして、パス確立用ポート12bと、データ入出力用ポート13bとを備えている。
パス確立用ポート12a,12bは、パス確立時に光信号として伝送されるシグナリングメッセージ(テスト光)をやりとりするためのインターフェースである。
データ入出力用ポート13a,13bは、導通試験後に、データ(光信号)をパケットとして転送するために使用されるインターフェースである。なお、これらの各ポートの個数は任意に設定することができる。
The input / output unit 10 includes a server port 11 as an interface capable of communicating with the control server 4. The input / output unit 10 includes a path establishment port 12a and a data input / output port 13a as input interfaces, and a path establishment port 12b and a data input / output port 13b as output interfaces. Yes.
The path establishment ports 12a and 12b are interfaces for exchanging a signaling message (test light) transmitted as an optical signal when the path is established.
The data input / output ports 13a and 13b are interfaces used for transferring data (optical signals) as packets after the continuity test. The number of these ports can be set arbitrarily.

サーバ用ポート11には、マネジメントプレーン(Management-plane)を構成する制御リンク6としてのケーブル(通信線)が接続される。
制御信号をやりとりするためのインターフェースには、制御プレーン(C-plane)のための制御リンク6としてのケーブル(通信線)が接続される。
光信号(テスト光、データ)をやりとりするためのインターフェースには、データプレーン(D−plane)のためのデータリンク5としての光ファイバケーブルが接続される。
The server port 11 is connected with a cable (communication line) as a control link 6 constituting a management plane.
A cable (communication line) as a control link 6 for a control plane (C-plane) is connected to an interface for exchanging control signals.
An optical fiber cable as a data link 5 for a data plane (D-plane) is connected to an interface for exchanging optical signals (test light, data).

スイッチング部20は、光パスの方路を切替える光スイッチ(以下、スイッチSWという)を有し、入出力部10の入力インターフェースに到着した光信号を、適切な出力インターフェースにスイッチングするものである。スイッチング部20が、制御部40の制御によりスイッチSWを切り替えることで、例えばパス確立用ポート12a側から、データ入出力用ポート13a側へと通信装置2内の接続が切り替わり、入力インターフェースに接続された外部のリンク接続先が切り替わることになる。このスイッチング部20は、例えば、MEMSやTOスイッチなどで構成される。   The switching unit 20 includes an optical switch (hereinafter referred to as a switch SW) that switches the path of the optical path, and switches an optical signal that has arrived at the input interface of the input / output unit 10 to an appropriate output interface. When the switching unit 20 switches the switch SW under the control of the control unit 40, for example, the connection in the communication device 2 is switched from the path establishment port 12a side to the data input / output port 13a side and connected to the input interface. The external link connection destination is switched. The switching unit 20 is configured by, for example, a MEMS or a TO switch.

記憶部30は、この通信装置2の各機能を実現するプログラムと、制御部40が参照する各種データ(例えば、インターフェース情報31、光パス情報32などの情報)とを記憶する。この記憶部30は、RAM(Random Access Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの記憶装置により実現される。   The storage unit 30 stores a program that realizes each function of the communication device 2 and various types of data (for example, information such as interface information 31 and optical path information 32) that the control unit 40 refers to. The storage unit 30 is realized by a storage device such as a random access memory (RAM), a flash memory, and a hard disk drive (HDD).

図3は、図2に示す通信装置が記憶するインターフェース情報の一例を示す図である。
インターフェース情報31には、入力インターフェースおよび出力インターフェースについて、ID(インターフェースID)と、アドレスと、対向ノード(隣り合ったノード)のID(対向ノードID)、対向ノードのインターフェースのアドレス(対向ノードIFアドレス)、波長などの情報が含まれる。アドレスは、例えば、IPアドレスなどを表す。波長は、各々のインターフェースがサポートする波長を表す。これらの情報は、手動で設定されるか、プロトコルで収集されるものとする。このインターフェース情報31は、制御部40がスイッチング部20を制御する際に参照される。なお、通信装置2は、周期的に、または、導通確認の処理を開始する前に、インターフェース情報31を最新の情報に書き換えておくものとする。
FIG. 3 is a diagram illustrating an example of interface information stored in the communication apparatus illustrated in FIG.
The interface information 31 includes an ID (interface ID), an address, an ID of the opposite node (adjacent node) (opposite node ID), and an address of the interface of the opposite node (opposite node IF address) for the input interface and the output interface. ), Information such as wavelength. The address represents, for example, an IP address. The wavelength represents the wavelength supported by each interface. These information shall be set manually or collected by protocol. The interface information 31 is referred to when the control unit 40 controls the switching unit 20. Note that the communication device 2 rewrites the interface information 31 to the latest information periodically or before starting the continuity confirmation process.

図4は、図2に示す通信装置が記憶する光パス情報の一例を示す図である。光パス情報32には、光パスのID(パスID)と、入力インターフェースIDと、出力インターフェースIDと、パスの状態などが含まれる。この光パス情報32は、制御部40が光パスの管理を行う際に参照される。   FIG. 4 is a diagram illustrating an example of optical path information stored in the communication apparatus illustrated in FIG. The optical path information 32 includes an optical path ID (path ID), an input interface ID, an output interface ID, a path state, and the like. The optical path information 32 is referred to when the control unit 40 manages the optical path.

制御部40は、スイッチング部20を介して入出力部10の入出力インターフェースに接続可能であり、他のノードや制御サーバ4との間で通信を行う機能を有すると共に、CPUなどが記憶部30に記憶された所定のプログラムを実行することで実現される機能として、図2に示すように、スイッチング制御手段41と、シグナリングメッセージ制御手段42とを備えている。   The control unit 40 can be connected to the input / output interface of the input / output unit 10 via the switching unit 20, and has a function of communicating with other nodes and the control server 4. As shown in FIG. 2, the switching control unit 41 and the signaling message control unit 42 are provided as functions realized by executing a predetermined program stored in.

スイッチング制御手段41は、スイッチング部20で光信号を入力インターフェースから適切な出力インターフェースにスイッチングするためのスイッチの方略の制御を行うものである。スイッチング制御手段41は、パケットとして転送される光信号(データ)をスイッチングする機能と、試験用光信号をスイッチングする機能とを兼務している。このスイッチング制御手段41が、どの出力インターフェースにスイッチングすべきであるのかということは、記憶部30の情報を参照することで決定する。なお、通信装置2の外部から設定を行うなどして決定することも可能である。   The switching control unit 41 controls the switch for causing the switching unit 20 to switch the optical signal from the input interface to an appropriate output interface. The switching control means 41 has a function of switching an optical signal (data) transferred as a packet and a function of switching a test optical signal. Which output interface the switching control unit 41 should switch to is determined by referring to the information in the storage unit 30. It is also possible to make a determination by setting from the outside of the communication device 2.

スイッチング制御手段41は、始点ノードとして機能するときに、シグナリングメッセージ送受信部50における導通確認において導通が正常であると判別した場合、信号送受信装置3から受け渡されるデータを入出力できるようにスイッチング部20のスイッチSWを制御する。
スイッチング制御手段41は、終点ノードとして機能するときに、始点ノードから、正常性確認通知を受信した場合、信号送受信装置3から受け渡されるデータを入出力できるようにスイッチング部20のスイッチSWを制御する。
When the switching control means 41 functions as a starting point node, the switching control unit 41 can input / output data transferred from the signal transmitting / receiving device 3 when it is determined that the continuity is normal in the continuity confirmation in the signaling message transmitting / receiving unit 50. 20 switches SW are controlled.
When the switching control unit 41 functions as an end node, when the normality confirmation notification is received from the start node, the switching control unit 41 controls the switch SW of the switching unit 20 so that the data transferred from the signal transmitting / receiving device 3 can be input / output. To do.

シグナリングメッセージ制御手段42は、パス確立や導通確認のためのシグナリングメッセージの処理を実施するものである。シグナリングメッセージ制御手段42は、シグナリングメッセージ送受信部50、スイッチング部20および入出力部10を介して外部から入力されるメッセージを処理したり、処理したメッセージをシグナリングメッセージ送受信部50等を介して外部へ出力したりする。   The signaling message control means 42 carries out processing of signaling messages for path establishment and continuity confirmation. The signaling message control means 42 processes a message input from the outside via the signaling message transmission / reception unit 50, the switching unit 20 and the input / output unit 10, and sends the processed message to the outside via the signaling message transmission / reception unit 50 or the like. Or output.

シグナリングメッセージ制御手段42は、始点ノードとして機能するときに、始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を終点ノードに対して送信する。
シグナリングメッセージ制御手段42は、終点ノードとして機能するときに、始点ノードから送信される、始点向きの導通確認において導通が正常であると判別した旨を示す正常性確認通知を受信する。
When the signaling message control unit 42 functions as a start point node and determines that the continuity is normal in the continuity check toward the start point, the signaling message control unit 42 transmits a normality confirmation notification indicating that to the end point node.
When the signaling message control unit 42 functions as an end point node, the signaling message control unit 42 receives a normality confirmation notification transmitted from the start point node and indicating that continuity is determined to be normal in the continuity confirmation toward the start point.

シグナリングメッセージ送受信部(シグナリングメッセージ送受信手段)50は、スイッチング部20を介して入出力部10の入出力インターフェースに接続可能であり、他のノードや制御サーバ4との間で通信を行う機能を有すると共に、図示は省略するが、光信号(テスト光)を照射するための光源と、テスト光を受信するための受信器(受光手段)と、この受信器から出力される信号によりテスト光の強度を測定して導通確認を行う処理を実行するための処理部とを備えている。   The signaling message transmission / reception unit (signaling message transmission / reception means) 50 can be connected to the input / output interface of the input / output unit 10 via the switching unit 20 and has a function of communicating with other nodes and the control server 4. Although not shown, the light source for irradiating the optical signal (test light), the receiver (light receiving means) for receiving the test light, and the intensity of the test light by the signal output from this receiver And a processing unit for executing a process of performing continuity confirmation.

このシグナリングメッセージ送受信部50の図示しない処理部は、CPUなどが記憶部30に記憶された所定のプログラムを実行することで実現され、シグナリングメッセージ制御手段42が光パスを設定する際に、光パスの正常性を確認するために光信号(テスト光)を対向ノードに送信する制御や、対向ノードからのテスト光を受信して導通の正常性を確認する制御を行う。   The processing unit (not shown) of the signaling message transmission / reception unit 50 is realized by a CPU or the like executing a predetermined program stored in the storage unit 30. When the signaling message control unit 42 sets the optical path, the optical path is set. In order to confirm the normality of the light, control for transmitting an optical signal (test light) to the opposite node and control for confirming the normality of conduction by receiving the test light from the opposite node are performed.

シグナリングメッセージ送受信部50は、始点ノードとして機能する場合、光パスの終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信し、終点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて光パスの始点向きの帯域リソースの導通が正常であるか否かを判別することで、始点向きの導通確認を実行する。   When the signaling message transmission / reception unit 50 functions as a start point node, the signaling message transmission unit 50 transmits a signaling message for securing a band resource for the end point of the optical path as an optical signal, and the reception status of the signaling message transmitted as an optical signal from the end point node On the basis of the above, it is determined whether or not the conduction of the band resource toward the start point of the optical path is normal, thereby confirming the conduction toward the start point.

シグナリングメッセージ送受信部50は、終点ノードとして機能する場合、始点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて終点向きの帯域リソースの導通が正常であるか否かを判別することで終点向きの導通確認を実行し、終点向きの帯域リソースの導通が正常であると判別した場合に、始点ノードに向けてシグナリングメッセージを光信号として送信する。   When the signaling message transmission / reception unit 50 functions as an end point node, the signaling message transmission / reception unit 50 determines whether or not the continuity of the band resource toward the end point is normal based on the reception state of the signaling message transmitted as an optical signal from the start point node. When the continuity confirmation for the end point is executed and it is determined that the continuity of the band resource for the end point is normal, a signaling message is transmitted as an optical signal toward the start point node.

本実施形態では、シグナリングメッセージ送受信部50は、受信したテスト光の強度(パワー)が事前に定められた閾値以上である場合に、導通が正常に行われた(導通OK)と判定する。また、シグナリングメッセージ送受信部50は、光パスの対向するノードから送信されるテスト光が、事前に定められた時間が経過しても到着しなかった場合に、導通が正常ではない(導通NG)と判定する。また、シグナリングメッセージ送受信部50は、テスト光を受信したにも関わらず、テスト光のパワーが事前に定められていた閾値よりも小さい場合にも、導通が正常ではないと判定する。   In the present embodiment, the signaling message transmitting / receiving unit 50 determines that conduction is normally performed (conduction OK) when the intensity (power) of the received test light is equal to or greater than a predetermined threshold. Further, the signaling message transmission / reception unit 50 is not normally connected when the test light transmitted from the node facing the optical path does not arrive even after a predetermined time has elapsed (conduction NG). Is determined. The signaling message transmitting / receiving unit 50 determines that the continuity is not normal even when the test light is received and the power of the test light is smaller than a predetermined threshold value.

[制御サーバの構成]
図5は、図1に示す制御サーバの構成の一例を示すブロック図である。制御サーバ4は、図5に示すように、入出力部60と、送受信部70と、記憶部80と、制御部90とを備えている。入出力部60は、ネットワークNW(図1参照)の各ノードと通信可能な入出力インターフェースである。送受信部70は、ネットワークNW(図1参照)の各ノードとの間で各種メッセージ等の制御信号をやりとりする通信装置である。また、送受信部70は、入出力部60を介して、導通確認システム1の外部の装置等から、パス(例えばパスA)の確立要求(光パス設定リクエスト)を受信する。このパス確立要求には、パスAの端点やパスAが必要とする帯域などのパス確立に必要な情報が含まれている。
[Control server configuration]
FIG. 5 is a block diagram showing an example of the configuration of the control server shown in FIG. As illustrated in FIG. 5, the control server 4 includes an input / output unit 60, a transmission / reception unit 70, a storage unit 80, and a control unit 90. The input / output unit 60 is an input / output interface that can communicate with each node of the network NW (see FIG. 1). The transmission / reception unit 70 is a communication device that exchanges control signals such as various messages with each node of the network NW (see FIG. 1). Further, the transmission / reception unit 70 receives a request for establishing a path (for example, path A) (an optical path setting request) from an external device or the like of the continuity confirmation system 1 via the input / output unit 60. This path establishment request includes information necessary for path establishment, such as the end point of path A and the bandwidth required for path A.

記憶部80は、RAMやHDDなどの記憶装置により実現され、この制御サーバ4の各機能を実現するプログラムと、制御部90が参照する各種データ(例えば、インターフェース情報81と、光パス情報82などの情報)とを記憶する。記憶部80に記憶されたインターフェース情報81および光パス情報82は、例えば、図3および図4に例示したノード個別の情報をノード別に集積した情報である。   The storage unit 80 is realized by a storage device such as a RAM or an HDD, and a program for realizing each function of the control server 4 and various data (for example, interface information 81, optical path information 82, etc.) referred to by the control unit 90. Information). The interface information 81 and the optical path information 82 stored in the storage unit 80 are, for example, information obtained by accumulating individual node information exemplified in FIGS. 3 and 4 for each node.

制御部90は、CPUなどが記憶部30に記憶された所定のプログラムを実行することで実現される機能として、図5に示すように、経路計算手段91と、ノード制御手段92とを備えている。経路計算手段91は、送受信部70で受信する光パス設定リクエストをトリガとして、そのリクエストに対して適切なパスを張るために経路計算を行い、算出した経路をノード制御手段92に出力する。   As shown in FIG. 5, the control unit 90 includes a route calculation unit 91 and a node control unit 92 as functions realized by a CPU or the like executing a predetermined program stored in the storage unit 30. Yes. The route calculation unit 91 uses the optical path setting request received by the transmission / reception unit 70 as a trigger, performs route calculation to establish an appropriate path for the request, and outputs the calculated route to the node control unit 92.

ノード制御手段92は、経路計算手段91で算出された経路にパスを確立するように、通信装置2などのノードに対してパス確立指示を行うものである。このパス確立指示には、パスの確立要求(光パス設定リクエスト)でリクエストされたパス(例えばパスA)が経由するノードのノードアドレスや、そのパスAの帯域などが含まれる。
また、ノード制御手段92は、各ノードから導通試験の成否を受け付け、導通NGを受け付けた場合、経路計算手段91に対して経路の再計算を指示する。
The node control unit 92 gives a path establishment instruction to a node such as the communication apparatus 2 so as to establish a path along the route calculated by the route calculation unit 91. This path establishment instruction includes the node address of the node through which the path (for example, path A) requested by the path establishment request (optical path setting request) passes, the bandwidth of the path A, and the like.
In addition, the node control unit 92 accepts success / failure of the continuity test from each node, and when the NG is accepted, instructs the route calculation unit 91 to recalculate the route.

本実施形態では、ノード制御手段92は、制御サーバ4の操作者の操作にしたがって、始点ノードおよび終点ノード間でシグナリングプロトコルをやりとりすることで光パスの帯域リソースを確保する指示としてパス確立指示を送信する。   In this embodiment, the node control unit 92 transmits a path establishment instruction as an instruction to secure bandwidth resources of the optical path by exchanging a signaling protocol between the start point node and the end point node according to the operation of the operator of the control server 4. Send.

[導通確認システムの動作]
次に、図6ないし図8を参照(適宜図1、図2および図5参照)して、導通確認システム1の導通確認の処理手順を説明する。図6は、双方向ともに導通の正常性が確認できた場合の処理の流れを示すシーケンス図であり、図7および図8は、いずれか一方の導通の正常性が確認できない場合の処理の流れを示すシーケンス図である。
[Operation of continuity check system]
Next, with reference to FIG. 6 to FIG. 8 (refer to FIG. 1, FIG. 2 and FIG. 5 as appropriate), the continuity confirmation processing procedure of the continuity confirmation system 1 will be described. FIG. 6 is a sequence diagram showing the flow of processing when the normality of conduction is confirmed in both directions, and FIGS. 7 and 8 are the flow of processing when the normality of conduction of either one cannot be confirmed. FIG.

[双方向とも導通の正常性が確認できた場合の処理の流れ]
まず、図6を参照して、双方向とも導通の正常性が確認できた場合の処理の流れを詳細に説明する。予め、始点ノード2aおよび終点ノード2cは、スイッチング部20のスイッチSWの設定を導通試験用に設定しておく。まず、制御サーバ4は、入出力部60を経由して、導通確認システム1の外部の装置等から、例えば図1(b)で示すパス(パスAとする)の確立要求を受信すると、それをトリガにして、パスAの経路を算出し(ステップS1)、パスAの始点ノード(通信装置)2aに対して、制御リンク6を介してパス確立指示を出す(ステップS2)。
[Flow of processing when normality of conduction is confirmed in both directions]
First, with reference to FIG. 6, the flow of processing when normality of conduction in both directions has been confirmed will be described in detail. In advance, the start point node 2a and the end point node 2c set the switch SW of the switching unit 20 for the continuity test. First, when the control server 4 receives a request for establishing a path (referred to as path A) shown in FIG. 1B, for example, from an external device of the continuity confirmation system 1 via the input / output unit 60, the control server 4 Is used as a trigger to calculate the path A (step S1), and a path establishment instruction is issued via the control link 6 to the start node (communication device) 2a of the path A (step S2).

制御サーバ4からパス確立指示を受け取った始点ノード2aは、制御部40のシグナリングメッセージ制御手段42によって、シグナリングプロトコルメッセージを送信することでパス確立処理を行う。始点ノード2aは、データリンク5から、例えば、シグナリングプロトコルのRSVP Path Message(テスト光)を、中継ノード(通信装置)2bを介して終点ノード(通信装置)2cに送信する。RSVP Path Message(テスト光)を用いることで、パスA用に、終点ノード2cから始点ノード2a向き(上流方向)の帯域リソースが確保される(ステップS3)。また、始点ノード2aは、RSVP Path Message(テスト光)を送信する処理と並行して、制御サーバ4からパス確立指示として受け取ったパスAの情報を記憶部30のインターフェース情報31や光パス情報32に格納する。   The source node 2a that has received the path establishment instruction from the control server 4 performs a path establishment process by transmitting a signaling protocol message by the signaling message control means 42 of the control unit 40. The start node 2a transmits, for example, an RSVP Path Message (test light) of a signaling protocol from the data link 5 to the end node (communication device) 2c via the relay node (communication device) 2b. By using the RSVP Path Message (test light), a band resource for the path A is secured from the end node 2c toward the start node 2a (upstream direction) (step S3). Further, in parallel with the process of transmitting the RSVP Path Message (test light), the start node 2a receives the path A information received as a path establishment instruction from the control server 4 in the interface information 31 and the optical path information 32 of the storage unit 30. To store.

一方、始点ノード2aから送信されたRSVP Path Message(テスト光)が終点ノード2cに届くと、終点ノード2cは、シグナリングメッセージ送受信部50によって、下流方向の導通が正常に行われたか否かを判定する(ステップS4)。終点ノード2cは、導通が正常であると判定した場合(ステップS4:OK)、データリンク5から、始点ノード2aに向かって(上流方向に)導通確認のためRSVP Resv Message(テスト光)を中継ノード(通信装置)2bを介して送信する(ステップS5)。このRSVP Resv Messageは、下流方向の正常性確認通知として送信される。   On the other hand, when the RSVP Path Message (test light) transmitted from the start point node 2a reaches the end point node 2c, the end point node 2c determines whether the downstream continuity is normally performed by the signaling message transmitting / receiving unit 50. (Step S4). If the end node 2c determines that the continuity is normal (step S4: OK), the RSVP Resv Message (test light) is relayed from the data link 5 toward the start point node 2a (in the upstream direction) to confirm the continuity. It transmits via the node (communication device) 2b (step S5). This RSVP Resv Message is transmitted as a normality confirmation notification in the downstream direction.

終点ノード2cからのRSVP Resvメッセージを受け取った始点ノード2aは、下流方向の正常性が確認されたことを認識しつつ、シグナリングメッセージ送受信部50によって、上流方向の導通が正常に行われたか否かを判定する(ステップS6)。始点ノード2aは、導通が正常に行われたと判定した場合(ステップS6:OK)、シグナリングメッセージ送受信部50によって、導通正常を通知するシグナリングメッセージ(正常性確認通知)を終点ノード2cに対して送信する(ステップS7)。このメッセージの例としては、RSVP Resvconfメッセージがある。なお、始点ノード2aは、RSVP Resvconfメッセージを、制御リンク6を介して送信する。そして、導通正常を通知するシグナリングメッセージを送信した始点ノード2aは、スイッチのポートをデータ入出力用ポートに設定して、実際の光信号の受付に備える(ステップS8)。一方、始点ノード2aから、上流方向の導通正常を通知するシグナリングメッセージ(RSVP Resvconfメッセージ)を受け取った終点ノード2cは、上流方向の正常性が確認されたことを認識し、スイッチング制御手段41によって、スイッチング部20のスイッチSWをデータ入出力用の設定に切り替え(ステップS9)、実際の光信号(データ)の受け付けに備える。   The source node 2a that has received the RSVP Resv message from the end node 2c recognizes that the downstream normality has been confirmed, and whether or not the upstream continuity has been normally performed by the signaling message transmission / reception unit 50. Is determined (step S6). When the start point node 2a determines that the continuity is normally performed (step S6: OK), the signaling message transmitting / receiving unit 50 transmits a signaling message (normality confirmation notification) for notifying the normality to the end point node 2c. (Step S7). An example of this message is an RSVP Resvconf message. The start node 2a transmits an RSVP Resvconf message via the control link 6. Then, the source node 2a that has transmitted the signaling message notifying normality of conduction sets the switch port as a data input / output port, and prepares for reception of an actual optical signal (step S8). On the other hand, the end node 2c that has received the signaling message (RSVP Resvconf message) for notifying the normality in the upstream direction from the start point node 2a recognizes that the normality in the upstream direction has been confirmed, and the switching control means 41 The switch SW of the switching unit 20 is switched to the data input / output setting (step S9) to prepare for receiving an actual optical signal (data).

また、ステップS8に続いて、始点ノード2aは、制御部40のシグナリングメッセージ制御手段42によって、導通確認(疎通確認)が正常であったこと(導通正常性)とスイッチの設定完了とを示すメッセージ(導通OK通知)を制御サーバ4に制御リンク6を介して送信する(ステップS10)。同様に、終点ノード2cは、スイッチの設定完了を制御サーバ4に対して通知する(ステップS11)。これにより、始点ノード2aから終点ノード2cに対してデータ(光信号)が送信されることになる(ステップS12)。   In addition, following step S8, the start node 2a uses the signaling message control means 42 of the control unit 40 to indicate that the continuity confirmation (communication confirmation) is normal (conduction normality) and the switch setting completion. (Conduction OK notification) is transmitted to the control server 4 via the control link 6 (step S10). Similarly, the end node 2c notifies the control server 4 of the completion of the switch setting (step S11). As a result, data (optical signal) is transmitted from the start node 2a to the end node 2c (step S12).

[始点ノードが導通の正常性を確認できない場合の処理の流れ]
次に、図7を参照して、始点ノードが導通の正常性を確認できない場合の処理の流れを説明する。なお、図6と同様な処理には同じ符号を付して重複する説明を省略すると共に、適宜簡略化して説明する。図7に示すステップS1〜ステップS5の各処理は同様である。ただし、ステップS5において、終点ノード2cが送信したRSVP Resvメッセージが、何らかの理由で始点ノード2aに届かなかったものとする(ステップS21:途絶)。この場合、始点ノード2aは、シグナリングメッセージ送受信部50によって、導通が正常には行われなかったと判定する(ステップS22:OK/NG判定→NG)。なお、仮に、テスト光を受信したにも関わらず、事前に決めていた閾値よりテスト光のパワーが小さい場合にも、始点ノード2aは、導通が正常ではないと判定する。
[Flow of processing when the start node cannot confirm the normality of continuity]
Next, with reference to FIG. 7, the flow of processing when the starting point node cannot confirm the normality of conduction will be described. The same processes as those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted, and will be simplified as appropriate. Each process of step S1-step S5 shown in FIG. 7 is the same. However, in step S5, it is assumed that the RSVP Resv message transmitted by the end point node 2c has not arrived at the start point node 2a for some reason (step S21: disruption). In this case, the start point node 2a determines that the continuity is not normally performed by the signaling message transmission / reception unit 50 (step S22: OK / NG determination → NG). Even if the test light is received and the power of the test light is smaller than a predetermined threshold value, the start point node 2a determines that the conduction is not normal.

そして、始点ノード2aは、シグナリングメッセージ送受信部50によって、導通の正常性が確認できなかったことを通知するメッセージ(導通NG通知)を制御サーバ4に対して送信する(ステップS23)。これにより、制御サーバ4は、パスA用の別の経路を探すために再計算を行い(ステップS24)、ステップS2に戻る。   Then, the source node 2a transmits, to the control server 4, a message (notification of continuity NG) notifying that the normality of continuity has not been confirmed by the signaling message transmission / reception unit 50 (step S23). Thereby, the control server 4 performs recalculation to search for another route for the path A (step S24), and returns to step S2.

そして、始点ノード2aは、制御リンク6から、RSVPパス解除メッセージ(正常性未確認通知)を中継ノード2bを介して終点ノード2cに対して送信する(ステップS25)。このRSVPパス解除メッセージは、光パスの帯域リソースの導通が正常ではない旨を示すメッセージである。このメッセージにより、シグナリングプロトコルで既に確保してあるパスA用の帯域リソースを解放することができる。そして、パス解除メッセージを受信した終点ノード2cは、導通の正常性が確認できなかったこと(導通NG)を認識し(ステップS26)、制御部40によって、パスA用の帯域リソースを解放するためにRSVPパス解除メッセージを送信する(ステップS27)。   Then, the start point node 2a transmits an RSVP path release message (notice of normality confirmation) from the control link 6 to the end point node 2c via the relay node 2b (step S25). This RSVP path release message is a message indicating that the continuity of the band resources of the optical path is not normal. With this message, it is possible to release the bandwidth resource for path A that has already been secured by the signaling protocol. Then, the end node 2c that has received the path release message recognizes that the normality of conduction has not been confirmed (conduction NG) (step S26), and the control unit 40 releases the bandwidth resource for path A. RSVP path release message is transmitted to (step S27).

[終点ノードが導通の正常性を確認できない場合の処理の流れ]
次に、図8を参照して、終点ノードが導通の正常性を確認できない場合の処理の流れを説明する。なお、図6と同様な処理には同じ符号を付して重複する説明を省略すると共に、適宜簡略化して説明する。図8に示すステップS1〜ステップS3の各処理は同様である。ただし、ステップS3において、始点ノード2aが送信したテスト光が、何らかの理由で終点ノード2cに届かなかったものとする(ステップS31:途絶)。この場合、RSVP Path Message(テスト光)を送信した始点ノード2aは、送信の開始から予め定められた時間を経過したとしても、終点ノード2cから、RSVP Resv Message(パス確立応答)が戻ってこないことをトリガとして、シグナリングメッセージ送受信部50によって、導通が正常には行われなかったと判定する(ステップS32:OK/NG判定→NG)。そして、始点ノード2aは、導通確認部50によって、終点ノード2c向きの(下流方向)のテスト光の送信を終了し、シグナリングメッセージ制御手段42によって、導通の正常性が確認できなかったことを通知するメッセージ(導通NG通知)を制御サーバ4に対して送信する(ステップS33)。
[Processing flow when the destination node cannot confirm the normality of continuity]
Next, with reference to FIG. 8, the flow of processing when the end point node cannot confirm the normality of conduction will be described. The same processes as those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted, and will be simplified as appropriate. Each process of step S1-step S3 shown in FIG. 8 is the same. However, in step S3, it is assumed that the test light transmitted from the start point node 2a has not reached the end point node 2c for some reason (step S31: disruption). In this case, the RSVP Path Message (test light) transmitted from the start point node 2a does not return an RSVP Resv Message (path establishment response) from the end point node 2c even if a predetermined time has elapsed since the start of transmission. With this as a trigger, the signaling message transmission / reception unit 50 determines that the continuity has not been normally performed (step S32: OK / NG determination → NG). Then, the start node 2a terminates the transmission of the test light directed toward the end node 2c (downstream) by the continuity confirmation unit 50, and notifies that the normality of continuity cannot be confirmed by the signaling message control means 42. Message (conduction NG notification) to be transmitted to the control server 4 (step S33).

以降のステップS34〜ステップS37の各処理は、図7のステップS24〜ステップS27の各処理について、始点と終点とを読み替えた処理なので、説明を省略する。なお、仮に、ステップS3において始点ノード2aが送信したテスト光を、終点ノード2cが受信したとしても、事前に決めていた閾値よりテスト光のパワーが小さい場合には、ステップS32(NG判定)およびステップS33の処理を、終点ノード2cが行う。   Since the subsequent processes in steps S34 to S37 are processes in which the start point and the end point are replaced with respect to the processes in step S24 to step S27 in FIG. Even if the end node 2c receives the test light transmitted by the start point node 2a in step S3, if the test light power is smaller than a predetermined threshold, step S32 (NG determination) and The end node 2c performs the process of step S33.

第1実施形態によれば、光パスの始点ノード2aおよび終点ノード2cが、光パスの帯域を確保するためのシグナリングメッセージを光信号としてそれぞれ送信するので、帯域を確保するためのシグナリングメッセージと導通試験用の光信号とを別々に伝送する場合と比較して高速に光パスの導通正常性を確認することが可能となる。さらに、導通確認システム1全体で、通信装置2の処理負荷を削減でき、通信装置2の小型化が可能となる。   According to the first embodiment, since the start point node 2a and the end point node 2c of the optical path each transmit a signaling message for securing the bandwidth of the optical path as an optical signal, the signaling message for securing the bandwidth is connected to the signaling message. Compared with the case where the test optical signal is transmitted separately, it is possible to confirm the normality of the optical path at high speed. Furthermore, the entire continuity confirmation system 1 can reduce the processing load of the communication device 2, and the communication device 2 can be downsized.

また、通信装置2は、導通が正常でなかった場合に、迅速に制御サーバ4に通知することで再計算されたパスを確立し、双方向の導通が正常である場合には、スイッチSWをデータ入出力用に設定するので、導通試験処理からデータを転送するための処理へと素早く移行することができる。   Further, when the continuity is not normal, the communication device 2 quickly establishes a recalculated path by notifying the control server 4 and when the two-way continuity is normal, the communication device 2 sets the switch SW. Since it is set for data input / output, it is possible to quickly shift from the continuity test process to the process for transferring data.

(第2実施形態)
図9は、本発明の他の実施形態に係る通信装置の構成の一例を示すブロック図である。
第2実施形態の導通システムは、図9に示す通信装置2AがBER測定機能部100を備えると共に、入出力部10にBER測定用ポート14a,14bをさらに備える構成である点を除いて、第1実施形態と同様である。以下では、第1実施形態と異なる機能および動作を説明し、第1実施形態と同じ構成の説明および図面を省略し、同じ構成には同一の符号を付与する。
(Second Embodiment)
FIG. 9 is a block diagram showing an example of the configuration of a communication apparatus according to another embodiment of the present invention.
The continuity system of the second embodiment is the same as that of the communication system 2A shown in FIG. 9 except that the BER measurement function unit 100 is provided and the input / output unit 10 is further provided with BER measurement ports 14a and 14b. This is the same as in the first embodiment. In the following, functions and operations different from those of the first embodiment will be described, description of the same configuration as that of the first embodiment and drawings will be omitted, and the same reference numerals will be given to the same configuration.

第2実施形態では、始点ノードおよび終点ノードとして機能する通信装置2Aが、BER測定機能部100を備えているものとする。また、BER測定機能部100は、測定側としての機能と、被測定側としての機能とを有しており、それらを個別に説明するが、双方の機能を備えているものとする。   In the second embodiment, it is assumed that the communication device 2 </ b> A that functions as the start point node and the end point node includes the BER measurement function unit 100. Further, the BER measurement function unit 100 has a function as a measurement side and a function as a measured side, which will be described individually, but are assumed to have both functions.

BER測定機能部100は、スイッチング部20を介して入出力部10の入出力インターフェースに接続可能であり、図示は省略するが、BER測定用信号を照射するための光源と、BER測定用信号を受信するための受信器(受光手段)と、BER測定器とを備えている。なお、BER測定用信号をシグナリングメッセージ送受信部50の図示しない光源から発生されるテスト光(試験用光信号)で兼ねると共に、BER測定用信号を受信する受信器(受光手段)として、シグナリングメッセージ送受信部50の図示しない受信器(受光手段)を用いる構成としてもよい。   The BER measurement function unit 100 can be connected to the input / output interface of the input / output unit 10 via the switching unit 20, and although not shown, a light source for emitting a BER measurement signal, and a BER measurement signal A receiver (light receiving means) for receiving and a BER measuring device are provided. The BER measurement signal is also used as a test light (test optical signal) generated from a light source (not shown) of the signaling message transmission / reception unit 50, and a signaling message transmission / reception is performed as a receiver (light receiving means) for receiving the BER measurement signal. The receiver 50 (light receiving means) (not shown) of the unit 50 may be used.

BER測定機能部100は、測定側の機能として、BER(bit error rate)を測定するためのBER測定用信号を、データリンク5から他方の端点ノードに送信する。BERの測定側のノードは、BER測定用信号の送信を実際に行う前に、スイッチング制御手段41によって、スイッチング部20をBER用に設定する。例えば、終点ノード2cがスイッチング部20をBER用に設定するとは、終点ノード2cのBER測定機能部100から出されるBER測定用信号が始点ノード2aに向かって送信されるように設定することを意味する。これにより、出力インターフェースのBER測定用ポート14bを介してBER測定用信号が送信される。なお、第2実施形態では、終点ノード2cのBER測定機能部100は、始点ノード2aから、光パスの両端点間でBER測定処理を行うことを示すメッセージを受信した場合に、スイッチング部20をBER用に設定する。   As a measurement-side function, the BER measurement function unit 100 transmits a BER measurement signal for measuring a BER (bit error rate) from the data link 5 to the other end node. The node on the BER measurement side sets the switching unit 20 for BER by the switching control means 41 before actually transmitting the BER measurement signal. For example, the end point node 2c setting the switching unit 20 for BER means setting the BER measurement signal output from the BER measurement function unit 100 of the end point node 2c to be transmitted toward the start point node 2a. To do. As a result, a BER measurement signal is transmitted via the BER measurement port 14b of the output interface. In the second embodiment, when the BER measurement function unit 100 of the end point node 2c receives a message indicating that the BER measurement process is performed between the both end points of the optical path from the start point node 2a, the switching unit 20 is changed. Set for BER.

BER測定機能部100は、被測定側の機能として、他方の端点ノードから、BER測定用ポート14aを介してBER測定用信号を受信し、受信したBER測定用信号からBERを測定する。BERの被測定側のノードは、BER測定用信号の受信を実際に行う前に、入力インターフェースのBER測定用ポート14aを介してBER測定用信号が受信できるように準備する。BER測定機能部100は、BERの測定結果を、シグナリングメッセージ送受信部50の図示しない処理部に出力する。この図示しない処理部は、測定されたBERが満たすべき値の範囲(要求条件)に収まっているか否か(OK/NG判定)を判別し、条件を満たしているか否か(OK通知またはNG通知)を制御サーバ4に通知する。   The BER measurement function unit 100 receives a BER measurement signal from the other end point node via the BER measurement port 14a as a function on the measured side, and measures the BER from the received BER measurement signal. Before actually receiving the BER measurement signal, the node on the BER measurement side prepares to receive the BER measurement signal via the BER measurement port 14a of the input interface. The BER measurement function unit 100 outputs the BER measurement result to a processing unit (not shown) of the signaling message transmission / reception unit 50. This processing unit (not shown) determines whether or not the measured BER is within the range of values to be satisfied (required conditions) (OK / NG determination), and whether or not the conditions are satisfied (OK notification or NG notification). ) To the control server 4.

第2実施形態では、満たすべきBERの値として、ユーザがパス確立のリクエスト時に指示した値を用いることとした。したがって、ユーザが指定した値を、BER測定準備の指示として、制御サーバ4から端点ノードに対してパス確立指示と共にその都度通知する。この場合、BER測定準備の指示には、満たすべきBERの値や測定時間、BER測定用信号種別などが含まれる。なお、これに限らず、満たすべきBERの値は、導通確認システム側で事前に決めておくことも可能である。この場合、満たすべきBERの値は、端点のノードに事前に設定しておくことができる。   In the second embodiment, the value instructed by the user at the time of request for establishing a path is used as the BER value to be satisfied. Therefore, the value designated by the user is notified from the control server 4 to the endpoint node as a BER measurement preparation instruction along with the path establishment instruction each time. In this case, the BER measurement preparation instruction includes a BER value to be satisfied, a measurement time, a BER measurement signal type, and the like. Note that the BER value to be satisfied is not limited to this, and can be determined in advance on the continuity confirmation system side. In this case, the BER value to be satisfied can be set in advance at the node at the end point.

[導通確認システムの動作]
次に、図10ないし図12を参照(適宜図1、5,6および9参照)して、第2実施形態に係る導通確認システムにおいて、パス確立時に導通確認と共にBER測定も行う動作手順について説明する。図10は、双方向ともにBERの条件が満足できた場合の処理の流れを示すシーケンス図であり、図11は、BER処理の詳細を示すシーケンス図であり、図12は、いずれか一方のBERの条件が満足できない場合の処理の流れを示すシーケンス図である。
[Operation of continuity check system]
Next, with reference to FIGS. 10 to 12 (refer to FIGS. 1, 5, 6 and 9 as appropriate), an operation procedure in the continuity confirmation system according to the second embodiment for performing BER measurement as well as continuity confirmation when a path is established will be described. To do. FIG. 10 is a sequence diagram showing the flow of processing when the BER conditions are satisfied in both directions, FIG. 11 is a sequence diagram showing details of the BER processing, and FIG. 12 shows either BER. It is a sequence diagram which shows the flow of a process when these conditions cannot be satisfied.

[双方向ともにBERの条件が満足できた場合の処理の流れ]
まず、図10を参照して、双方向ともにBERの条件が満足できた場合の処理の流れを説明する。なお、図6と同様な処理には同じ符号を付して重複する説明を省略すると共に、適宜簡略化して説明する。ステップS1の前提として、制御サーバ4は、パスAの確立要求と同時に、品質の良い状態で信号を伝送するためにBERを測定するような要求を受信したものとする。これにより、制御サーバ4は、経路計算(ステップS1)後に、始点ノード2aに対してパス確立指示と共にBER測定準備の指示を出す(ステップS2a)。以降、図10に示すステップS3〜ステップS6の各処理は図6と同様である。ステップS6に続いて、始点ノード2aは、BER測定を行うことを通知するためのメッセージ(BER測定通知メッセージ)を送信する(ステップS41)。このメッセージは、導通が正常であることを通知するメッセージ(図6:ステップS7)の意味も有している。なお、BER測定通知メッセージは、シグナリングプロトコルのメッセージに限らずに、他のプロトコルのメッセージであってもよい。
[Flow of processing when BER conditions are satisfied in both directions]
First, with reference to FIG. 10, the flow of processing when the BER condition is satisfied in both directions will be described. The same processes as those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted, and will be simplified as appropriate. As a premise of step S1, it is assumed that the control server 4 receives a request for measuring a BER in order to transmit a signal in a good quality state at the same time as a request for establishing a path A. Thereby, the control server 4 issues a BER measurement preparation instruction together with the path establishment instruction to the start point node 2a after the route calculation (step S1) (step S2a). Henceforth, each process of step S3-step S6 shown in FIG. 10 is the same as that of FIG. Subsequent to step S6, the start point node 2a transmits a message (BER measurement notification message) for notifying that BER measurement is performed (step S41). This message also has a meaning of a message (FIG. 6: step S7) for notifying that conduction is normal. The BER measurement notification message is not limited to a signaling protocol message, but may be a message of another protocol.

そして、ステップS41に続くステップS42〜ステップS44の各処理は、図6に示すステップS8〜ステップS10の各処理と同様である。ただし、ステップS42,S44において、スイッチSWをデータ入出力用に設定するのではなく、スイッチSWをBER用に設定する。次に、終点ノード2cは、BER測定通知を受信したことを表すメッセージ(BER測定通知受信メッセージ)を始点ノード2aに送信する(ステップS45)。   And each process of step S42-step S44 following step S41 is the same as each process of step S8-step S10 shown in FIG. However, in steps S42 and S44, the switch SW is not set for data input / output, but is set for BER. Next, the end node 2c transmits a message (BER measurement notification reception message) indicating that the BER measurement notification has been received to the start node 2a (step S45).

そして、ステップS45までの処理により、確立するパスの双方向の導通確認が成功した後、始点ノード2aは、ステップS46のBER測定処理(ステップS46a)を行うための準備を行う。また、終点ノード2cは、ステップS46のBER測定処理(ステップS46b)を行うための準備を行う。   And after the bidirectional | two-way conduction | electrical_connection confirmation of the path | pass to establish is successful by the process to step S45, the starting point node 2a prepares for performing the BER measurement process (step S46a) of step S46. In addition, the end node 2c prepares for performing the BER measurement process (step S46b) in step S46.

ここで、図11を参照する。BER測定処理において、まず、始点ノード2aから終点ノード2cの向き(下流方向)のBER測定では、ステップS46aにおいて、終点ノード2cはBER測定通知メッセージ(ステップS41)を受けて、実際にBERを測定するための準備ができているものとする。そして、始点ノード2aは、BER測定用の信号を出力するための準備を行い、準備ができたらBER測定用の信号を出力する(ステップS51)。   Reference is now made to FIG. In the BER measurement process, first, in the BER measurement from the start node 2a to the end node 2c (downstream direction), in step S46a, the end node 2c receives the BER measurement notification message (step S41) and actually measures the BER. Suppose you are ready to do. Then, the start point node 2a prepares to output a signal for BER measurement, and outputs a signal for BER measurement when ready (step S51).

始点ノード2aからBER測定用の信号を受信した終点ノード2cは、そのBERを測定し、測定されたBERが要求条件を満たしているか否かを判定し(ステップS52:OK/NG判定)、判定結果をBERの判定通知(OK通知またはNG通知)として制御サーバ4に通知し(ステップS53)、下流方向の測定を終了する(ステップS54)。   The end node 2c that has received the signal for BER measurement from the start point node 2a measures the BER, determines whether or not the measured BER satisfies the required conditions (step S52: OK / NG determination), and determines The result is notified to the control server 4 as a BER determination notification (OK notification or NG notification) (step S53), and the measurement in the downstream direction is terminated (step S54).

そして、終点ノード2cからBERの判定通知(OK通知またはNG通知)を受け取った制御サーバ4は、始点ノード2aに対してBER測定用の信号出力を終了させる指示を出する(ステップS55)。その指示を受け取った始点ノード2aは、BER測定用の信号出力を終了する(ステップS56)。   The control server 4 that has received the BER determination notification (OK notification or NG notification) from the end node 2c issues an instruction to end the signal output for BER measurement to the start point node 2a (step S55). The start point node 2a that has received the instruction ends the signal output for BER measurement (step S56).

始点ノード2aおよび終点ノード2cは、始点ノード2aから終点ノード2cの向きのBER測定(ステップS46a)を終了したら、逆方向(上流方向)のBER測定を実施する(ステップS46b)。ステップS46bを示す一連の処理(ステップS61〜ステップS66)は、ステップS46aにおいて始点ノード2aの役割と終点ノード2cの役割とを入れ替えた処理に相当するので説明を省略する。   When the start point node 2a and the end point node 2c complete the BER measurement in the direction from the start point node 2a to the end point node 2c (step S46a), the start point node 2a and the end point node 2c perform reverse (upstream) BER measurement (step S46b). A series of processing (step S61 to step S66) indicating step S46b corresponds to processing in which the role of the start node 2a and the role of the end node 2c are interchanged in step S46a, and thus description thereof is omitted.

そして、図10に示すように、制御サーバ4が終点ノード2cからOK通知を受信する(ステップS71)と共に、始点ノード2aからもOK通知を受信した場合(ステップS72)、双方向ともBERが条件を満たしていることになる。この場合、制御サーバ4は、始点ノード2aと終点ノード2cとに対して、スイッチング部20のスイッチSWをデータ入出力用に設定するよう指示(経路スイッチング指示)を出す(ステップS73)。そして、指示(経路スイッチング指示)を受けた始点ノード2aと終点ノード2cは、それぞれ、制御部40によって、スイッチング部20のスイッチSWをデータ入出力用に設定する(ステップS74、S75)。これにより、始点ノード2aから終点ノード2cに対してデータ(光信号)が送信されることになる(ステップS76)。   Then, as shown in FIG. 10, when the control server 4 receives an OK notification from the end node 2c (step S71) and also receives an OK notification from the start point node 2a (step S72), the BER is set in both directions. Will be satisfied. In this case, the control server 4 issues an instruction (path switching instruction) to set the switch SW of the switching unit 20 for data input / output to the start node 2a and the end node 2c (step S73). Then, the start point node 2a and the end point node 2c that have received the instruction (path switching instruction) respectively set the switch SW of the switching unit 20 for data input / output by the control unit 40 (steps S74 and S75). As a result, data (optical signal) is transmitted from the start point node 2a to the end point node 2c (step S76).

一方、片方向でもBERが要求条件を満たしていなかった場合、例えば、図12に示すように終点ノード2cがNG通知を制御サーバ4に送信した場合(ステップS81)、制御サーバ4は、別経路を見つけるために再計算を行う(ステップS82)。また、このときBERを満たしていないと判定したノード(終点ノード2c)は、もう一方の端点のノード(始点ノード2a)に向けて、RSVPパス解除メッセージを送信する(ステップS83)。   On the other hand, when the BER does not satisfy the required condition even in one direction, for example, when the end node 2c transmits an NG notification to the control server 4 as shown in FIG. 12 (step S81), the control server 4 Is recalculated in order to find (step S82). At this time, the node (end point node 2c) determined not to satisfy the BER transmits an RSVP path release message toward the other end point node (start point node 2a) (step S83).

第2実施形態においては、光パスの確立とその導通試験とを実施するだけではなくBER測定処理を行うので、確立した光パスで伝送される信号の品質を測定することができる。また、事前に定められる信号品質の要求条件を満たさない場合に、迅速に制御サーバ4に通知することで再計算されたパスを確立し、双方向の導通が正常であり、かつ、信号品質の要求条件を満足する場合に、スイッチSWをデータ入出力用に設定するので、信号品質の要求条件を満たす光パスをユーザに提供することが可能である。   In the second embodiment, not only the establishment of the optical path and its continuity test but also the BER measurement process is performed, so that the quality of the signal transmitted through the established optical path can be measured. In addition, when a predetermined signal quality requirement is not satisfied, a recalculated path is established by promptly notifying the control server 4, bidirectional conduction is normal, and signal quality Since the switch SW is set for data input / output when the required conditions are satisfied, it is possible to provide the user with an optical path that satisfies the signal quality requirements.

(第3実施形態)
第3実施形態では、中継ノードとして機能する通信装置2も、シグナリングメッセージ送受信部50を備えている点が第1および第2実施形態と異なる。したがって、同じ構成および同じ動作には同じ符号を付して、図面および説明を適宜省略する。図13は、本発明の他の実施形態に係る導通確認システムで導通試験の成否に対応した処理の流れを示すフローチャートである。なお、図6と同様な処理には同じ符号を付して重複する説明を省略すると共に、適宜簡略化して説明する。
(Third embodiment)
The third embodiment differs from the first and second embodiments in that the communication device 2 that functions as a relay node also includes a signaling message transmission / reception unit 50. Therefore, the same configuration and the same operation are denoted by the same reference numerals, and the drawings and description are omitted as appropriate. FIG. 13 is a flowchart showing a flow of processing corresponding to success or failure of the continuity test in the continuity confirmation system according to another embodiment of the present invention. The same processes as those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted, and will be simplified as appropriate.

まず、制御サーバ4は、パス(例えば、パスA)の確立要求を受信すると、パスAの経路を算出し(ステップS91)、パスAの始点ノード2aに対してパス確立指示を出す(ステップS92)。始点ノード2aは、データリンク5から、例えば、シグナリングプロトコルのRSVP Path Message(テスト光)を、中継ノード2bに送信する(ステップS93a)。中継ノード2bは、下流方向の導通が正常に行われたか否かを判定する(ステップS94a)。   First, when receiving a request for establishing a path (for example, path A), the control server 4 calculates a path of the path A (step S91), and issues a path establishment instruction to the start node 2a of the path A (step S92). ). The start node 2a transmits, for example, an RSVP Path Message (test light) of a signaling protocol from the data link 5 to the relay node 2b (step S93a). The relay node 2b determines whether or not conduction in the downstream direction is normally performed (step S94a).

ステップS94において正常ではないと判定した場合、中継ノード2bは、この導通試験を行ったリンク(導通試験対象区間)の対向ノードである始点ノード2aに対して、制御リンク6から、RSVPパス解除メッセージ(正常性未確認通知)を送信する(ステップS94:NG)。   If it is determined in step S94 that the relay node 2b is not normal, the relay node 2b sends an RSVP path release message from the control link 6 to the start node 2a that is the opposite node of the link (continuity test target section) on which the continuity test is performed. (Normal unconfirmed notification) is transmitted (step S94: NG).

一方、ステップS94において正常であると判定した場合、中継ノード2bは、次の導通試験対象区間において対向するノードである終点ノード2cに対して、データリンク5から、受信したRSVP Path Message(テスト光)を転送する(ステップS94:OK)。この場合、次の導通試験対象区間において、同様の処理を行う。ただし、この例では、中継ノード2bが1つであって、次の導通試験対象区間が、下流方向において最後の導通試験対象区間なので、特別な処理を行う。まず、終点ノード2cは、通常のように、下流方向の導通が正常に行われたか否かを判定する(ステップS95a)。   On the other hand, if it is determined in step S94 that the relay node 2b is normal, the relay node 2b sends the received RSVP Path Message (test light) from the data link 5 to the end point node 2c that is the opposite node in the next continuity test target section. ) Is transferred (step S94: OK). In this case, the same processing is performed in the next continuity test target section. However, in this example, since there is one relay node 2b and the next continuity test target section is the last continuity test target section in the downstream direction, special processing is performed. First, the end point node 2c determines whether or not conduction in the downstream direction is normally performed as usual (step S95a).

ステップS95において正常ではないと判定した場合、終点ノード2cは、この導通試験を行ったリンク(導通試験対象区間)の対向ノードである中継ノード2bに対して、制御リンク6から、RSVPパス解除メッセージ(正常性未確認通知)を送信する(ステップS95:NG)。このRSVPパス解除メッセージは、始点ノード2aへ転送される。そして、この場合、始点ノード2aは、導通NG通知を制御サーバ4に対して送信する(ステップS96a)。これにより、制御サーバ4は、経路の再計算を行う。   If it is determined in step S95 that the node is not normal, the end point node 2c sends an RSVP path release message from the control link 6 to the relay node 2b that is the opposite node of the link (continuity test target section) on which the continuity test was performed. (Normality unconfirmed notification) is transmitted (step S95: NG). This RSVP path release message is transferred to the start node 2a. In this case, the start point node 2a transmits a conduction NG notification to the control server 4 (step S96a). Thereby, the control server 4 recalculates the route.

一方、ステップS95において正常であると判定した場合、終点ノード2cは、スイッチング部20のスイッチSWのポートをデータ入出力用の設定に切り替え(ステップS97a)、実際の光信号(データ)の受け付けに備える。そして、終点ノード2cは、導通が正常であることを示す導通OK通知と、スイッチの設定完了を示すSW設定完了通知とを制御サーバ4に送信する(ステップS98a)。   On the other hand, if it is determined in step S95 that the node is normal, the end node 2c switches the port of the switch SW of the switching unit 20 to the data input / output setting (step S97a), and accepts the actual optical signal (data). Prepare. Then, the end point node 2c transmits to the control server 4 a continuity OK notification indicating that the continuity is normal and a SW setting completion notification indicating completion of the switch setting (step S98a).

前記したステップS93a〜ステップS98aは、光パス(パスA)の下流方向の導通試験なので、引き続き、上流方向にも同様な処理を行う(ステップS93b〜ステップS98b)。これは、終点ノード2cが、受信したRSVP Path Message(テスト光)に応じて、データリンク5から、始点ノード2aに向かって(上流方向に)RSVP Resv Message(テスト光)を中継ノード(通信装置)2bを介して送信する処理を開始することで、下流方向と同様に行うことができる。したがって、上流方向の導通試験の説明を省略する。そして、最終的に、始点ノード2aは、自ノード向き(上流方向)の導通確認において導通が正常であると判別した場合、当該光パスの双方向の帯域リソースの導通が正常であると判別し、双方向の導通試験が終了する。これにより、始点ノード2aから終点ノード2cに対してデータ(光信号)が送信されることになる(ステップS99)。なお、上流方向の導通試験を開始するにあたって、別の方法として、終点ノード2cは、制御サーバ4からの指示を待って、RSVP Resv Message(テスト光)を送信することも可能である。   Since the above-described steps S93a to S98a are continuity tests in the downstream direction of the optical path (path A), the same processing is subsequently performed in the upstream direction (steps S93b to S98b). This is because the end point node 2c transmits an RSVP Resv Message (test light) from the data link 5 toward the start point node 2a (upstream) in accordance with the received RSVP Path Message (test light). ) By starting the process of transmitting via 2b, it can be performed in the same way as in the downstream direction. Therefore, the description of the upstream continuity test is omitted. Finally, if the start-point node 2a determines that the continuity is normal in the continuity confirmation toward the own node (upstream direction), the start-point node 2a determines that the continuity of the bidirectional band resource of the optical path is normal. The bi-directional continuity test ends. As a result, data (optical signal) is transmitted from the start node 2a to the end node 2c (step S99). As another method for starting the upstream continuity test, the end point node 2c can wait for an instruction from the control server 4 and transmit an RSVP Resv Message (test light).

この第3実施形態では、光パスをリンク毎に区分した導通試験対象区間の始点側の一方のノードおよび終点側の他方のノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することでリンク毎に当該光パスの導通確認を行うものである。そして、図13に例示したように、光パスの始点ノード2aから終点ノード2cへ向けて、連続する2つの通信装置から成る組を1つずつずらして形成される導通試験対象区間毎に導通確認処理を順次行う。ここで、中継ノード2bは複数であってもよい。なお、第1および第2実施形態は、導通試験対象区間を光パス全体としている。   In the third embodiment, light generated by light sources in both nodes between two communication devices indicating one node on the start point side and the other node on the end point side of the continuity test target section in which the optical path is divided for each link. By transmitting a signal, the continuity of the optical path is confirmed for each link. Then, as illustrated in FIG. 13, continuity confirmation is performed for each continuity test target section formed by shifting a pair of two continuous communication devices one by one from the start node 2a to the end node 2c of the optical path. Processing is performed sequentially. Here, there may be a plurality of relay nodes 2b. In the first and second embodiments, the continuity test target section is the entire optical path.

第3実施形態によれば、高速に光パスの導通正常性を確認でき、かつ、各通信装置の処理負荷を削減することが可能であると共に、光パスをリンク毎に区分した導通試験対象区間毎に導通確認処理を順次行うので、導通失敗の原因箇所を特定することや、その導通失敗を短時間で把握することもできる。   According to the third embodiment, the conduction normality of the optical path can be confirmed at high speed, the processing load of each communication device can be reduced, and the conduction test target section in which the optical path is divided for each link. Since the conduction confirmation process is sequentially performed every time, it is possible to identify the cause of the conduction failure and to grasp the conduction failure in a short time.

(第4実施形態)
第4実施形態は、中継ノードもシグナリングメッセージ送受信部50を備えており、リンク毎に導通試験を行うものであり、第3実施形態の変形例である。したがって、同じ構成および同じ動作には同じ符号を付して、図面および説明を適宜省略する。図14は、本発明のさらに他の実施形態に係る導通確認システムで導通を確認するまでの処理の流れを示すフローチャートである。なお、図6と同様な処理には同じ符号を付して重複する説明を省略すると共に、適宜簡略化して説明する。
(Fourth embodiment)
In the fourth embodiment, the relay node also includes the signaling message transmission / reception unit 50 and performs a continuity test for each link, which is a modification of the third embodiment. Therefore, the same configuration and the same operation are denoted by the same reference numerals, and the drawings and description are omitted as appropriate. FIG. 14 is a flowchart showing a flow of processing until continuity is confirmed by a continuity confirmation system according to still another embodiment of the present invention. The same processes as those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted, and will be simplified as appropriate.

図14に示すステップS1〜ステップS8、S10の各処理は同様である。ただし、終点ノード2cがPath Messageにより導通が正常に行われたか否かを判定する前に、中継ノード2bが同様な処理を行う。すなわち、ステップS3において、初めのリンクの処理では、中継ノード2bがRSVP Path Messageを受信すると、受信したPath Message を終点ノード2cに転送する(ステップS101)と共に、導通が正常に行われたか否かを判定し(ステップS4)、導通が正常である場合(ステップS4:OK)、始点ノード2aに向かってRSVP Resv Message(テスト光)を送信する(ステップS5)。そして、中継ノード2bからのRSVP Resvメッセージを受け取った始点ノード2aは、導通が正常に行われたか否かを判定し(ステップS6)、導通が正常に行われた場合、導通正常を通知するシグナリングメッセージを中継ノード2bに送信し(ステップS7)、スイッチSWの設定を切り替える(ステップS8)。   Each process of step S1-step S8, S10 shown in FIG. 14 is the same. However, the relay node 2b performs the same process before the end node 2c determines whether or not conduction is normally performed by the Path Message. That is, in step S3, when the relay node 2b receives the RSVP Path Message in the first link processing, the received Path Message is transferred to the end point node 2c (Step S101), and whether or not conduction has been normally performed. If the continuity is normal (step S4: OK), an RSVP Resv Message (test light) is transmitted toward the start node 2a (step S5). Then, the start node 2a that has received the RSVP Resv message from the relay node 2b determines whether or not the continuity is normally performed (step S6). A message is transmitted to the relay node 2b (step S7), and the setting of the switch SW is switched (step S8).

次のリンクの処理では、ステップS101で転送されたPath Messageを終点ノード2cが受信し、中継ノード2bと終点ノード2cとの間で導通確認処理を行う(ステップS101〜ステップS105)。これらの一連の処理は、始点ノード2aと中継ノード2bとの間で行った導通確認処理(ステップS3〜ステップS7)と同様である。終点ノード2cは、正常性確認通知(RSVP Resvconfメッセージ)を受信した場合に(ステップS105)、当該光パスの双方向の帯域リソースの導通が正常であると判別する。そして、このように導通が正常に行われた場合、終点ノード2cは、スイッチSWの設定を切り替え(ステップS106)、その旨を示すメッセージ(導通OK通知、SW設定完了通知)を制御サーバ4に送信する(ステップS107)。これにより、始点ノード2aから終点ノード2cに対してデータ(光信号)が送信されることになる(ステップS108)。   In the processing of the next link, the end node 2c receives the Path Message transferred in step S101, and performs continuity confirmation processing between the relay node 2b and the end node 2c (steps S101 to S105). These series of processes are the same as the continuity confirmation process (steps S3 to S7) performed between the start node 2a and the relay node 2b. When receiving the normality confirmation notification (RSVP Resvconf message) (step S105), the end node 2c determines that the continuity of the bidirectional band resource of the optical path is normal. When the conduction is normally performed as described above, the end point node 2c switches the setting of the switch SW (step S106), and a message indicating that (conduction OK notification, SW setting completion notification) is sent to the control server 4. Transmit (step S107). As a result, data (optical signal) is transmitted from the start node 2a to the end node 2c (step S108).

第4実施形態によれば、高速に光パスの導通正常性を確認でき、かつ、各通信装置の処理負荷を削減することが可能であると共に、光パスをリンク毎に区分した導通試験対象区間毎に導通確認処理を順次行うので、導通失敗の原因箇所を特定することや、その導通失敗を短時間で把握することもできる。   According to the fourth embodiment, the conduction normality of the optical path can be confirmed at high speed, the processing load of each communication device can be reduced, and the continuity test target section in which the optical path is divided for each link. Since the conduction confirmation process is sequentially performed every time, it is possible to identify the cause of the conduction failure and to grasp the conduction failure in a short time.

以上、本発明の各実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を変えない範囲で実施することができる。例えば、第2実施形態では、導通試験の後に続けてBER測定を行うものとして説明したが、BER測定を兼ねて導通試験を実施することも可能である。   As mentioned above, although each embodiment of this invention was described, this invention is not limited to these, It can implement in the range which does not change the meaning. For example, in the second embodiment, it has been described that the BER measurement is performed after the continuity test. However, the continuity test can also be performed in combination with the BER measurement.

この場合、図示は省略するが、図10に示す処理と同様に、始点ノード2aが、RSVP Path Message(テスト光)を送信するステップ(S3)にて、BER測定用信号としてRSVP Path Message(テスト光)を送信する。そして、終点ノード2cが、導通確認を実行するステップ(S4)にて、始点ノード2aから送信されるRSVP Path Message(テスト光)を受信して光パスの終点向きの帯域リソースの導通が正常であるか否かを判別すると共に、受信したRSVP Path Message(テスト光)からBERを測定し、さらに、RSVP Path Message(テスト光)を送信するステップ(S5)にて、BER測定用信号としてRSVP Resv Message(テスト光)を送信する。続いて、始点ノード2aが、導通確認を実行するステップ(S6)にて、終点ノード2cから送信されるRSVP Resv Message(テスト光)を受信して光パスの始点向きの帯域リソースの導通が正常であるか否かを判別すると共に、受信したRSVP Resv Message(テスト光)からBERを測定すればよい。ここで、スイッチSWの設定は、導通試験用の設定がBER用の設定を兼ねることとなる。これにより、導通試験とBER測定とを個別に実施する場合よりも短時間で終了することが可能である。したがって、信号品質の要求条件を満たす光パスをユーザに素早く提供することが可能である。   In this case, although not shown in the figure, as in the process shown in FIG. 10, the RSVP Path Message (test) is used as the BER measurement signal in the step (S3) in which the start node 2a transmits the RSVP Path Message (test light). Light). Then, in the step (S4) in which the end point node 2c executes continuity confirmation, the RSVP Path Message (test light) transmitted from the start point node 2a is received, and the continuity of the band resource toward the end point of the optical path is normal. At the step (S5) of determining whether or not there is, measuring the BER from the received RSVP Path Message (test light), and further transmitting the RSVP Path Message (test light), RSVP Resv Send a message (test light). Subsequently, in the step (S6) in which the start point node 2a performs continuity confirmation, the RSVP Resv Message (test light) transmitted from the end point node 2c is received, and the continuity of the band resource toward the start point of the optical path is normal. And BER may be measured from the received RSVP Resv Message (test light). Here, for the setting of the switch SW, the setting for the continuity test also serves as the setting for the BER. Thereby, it is possible to complete | finish in a short time rather than the case where a continuity test and a BER measurement are implemented separately. Therefore, it is possible to quickly provide the user with an optical path that satisfies the signal quality requirements.

また、導通試験対象区間の始点側の一方のノードは、光パスの始点側のレイヤ1装置や光クロスコネクト装置のコンピュータを、前記したスイッチング制御手段41、シグナリングメッセージ制御手段42およびシグナリングメッセージ送受信部50の図示しない処理部として機能させるプログラムにより動作させることで実現することができる。このプログラムは、CD−ROM等の記録媒体に書き込んで配布することも可能である。   In addition, one node on the start point side of the continuity test target section is the above-described switching control unit 41, signaling message control unit 42, and signaling message transmission / reception unit. It can be realized by operating with a program that functions as 50 processing units (not shown). This program can also be written and distributed on a recording medium such as a CD-ROM.

同様に、導通試験対象区間の終点側の他方のノードは、光パスの終点側のレイヤ1装置や光クロスコネクト装置のコンピュータを、前記したスイッチング制御手段41、シグナリングメッセージ制御手段42およびシグナリングメッセージ送受信部50の図示しない処理部として機能させるプログラムにより動作させることで実現することができる。このプログラムは、CD−ROM等の記録媒体に書き込んで配布することも可能である。   Similarly, the other node on the end point side of the continuity test target section transmits the layer 1 device or the optical cross-connect device computer on the end side of the optical path to the switching control means 41, signaling message control means 42, and signaling message transmission / reception described above. It can be realized by operating with a program that functions as a processing unit (not shown) of the unit 50. This program can also be written and distributed on a recording medium such as a CD-ROM.

また、これらプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワークや電話回線等の通信回線のように情報を伝送する機能を有する媒体のことをいう。また、これらプログラムは、前記した処理の一部を実現するためのものであってもよい。さらに、前記した処理を、別の装置に既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。   These programs may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information such as a network such as the Internet or a communication line such as a telephone line. These programs may be for realizing a part of the above-described processing. Furthermore, what can implement | achieve the above-mentioned process in combination with the program already recorded on another apparatus, what is called a difference file (difference program) may be sufficient.

本発明の実施形態に係る導通確認システムの概要を示す説明図であって、(a)は全体構成の一例、(b)は設定されるパスの一例をそれぞれ示している。It is explanatory drawing which shows the outline | summary of the conduction | electrical_connection confirmation system which concerns on embodiment of this invention, Comprising: (a) has shown an example of the whole structure, (b) has shown an example of the path | pass set, respectively. 本発明の実施形態に係る通信装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of a structure of the communication apparatus which concerns on embodiment of this invention. 図2に示す通信装置が記憶するインターフェース情報の一例を示す図である。It is a figure which shows an example of the interface information which the communication apparatus shown in FIG. 2 memorize | stores. 図2に示す通信装置が記憶する光パス情報の一例を示す図である。It is a figure which shows an example of the optical path information which the communication apparatus shown in FIG. 2 memorize | stores. 図1に示す制御サーバの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control server shown in FIG. 本発明の実施形態に係る導通確認システムで導通を確認するまでの処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process until confirming continuity with the continuity confirmation system which concerns on embodiment of this invention. 本発明の実施形態に係る導通確認システムで上流方向の導通が確認されない場合の処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process when upstream conduction | electrical_connection is not confirmed with the conduction | electrical_connection confirmation system which concerns on embodiment of this invention. 本発明の実施形態に係る導通確認システムで下流方向の導通が確認されない場合の処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process when downstream conduction | electrical_connection is not confirmed by the conduction confirmation system which concerns on embodiment of this invention. 本発明の他の実施形態に係る通信装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the communication apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る導通確認システムで高品質な光信号の導通を確認するまでの処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process until confirming conduction | electrical_connection of a high quality optical signal with the conduction confirmation system which concerns on other embodiment of this invention. 図10に示すBER測定処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of the BER measurement process shown in FIG. 本発明の他の実施形態に係る導通確認システムで高品質な光信号の導通が確認されない場合の処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process when the conduction | electrical_connection of a high quality optical signal is not confirmed with the conduction | electrical_connection confirmation system which concerns on other embodiment of this invention. 本発明の他の実施形態に係る導通確認システムで導通試験の成否に対応した処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process corresponding to the success or failure of a continuity test in the continuity confirmation system which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る導通確認システムで導通を確認するまでの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process until confirming continuity with the continuity confirmation system which concerns on further another embodiment of this invention. 従来の導通確認方法で導通を確認するまでの処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process until it confirms continuity with the conventional continuity confirmation method. 従来の他の導通確認方法で導通を確認するまでの処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a process until it confirms continuity with the other conventional continuity confirmation method.

符号の説明Explanation of symbols

1 導通確認システム
2(2a,2b,2c)、2A 通信装置
3(3a,3b,3c) 信号送受信装置
4 制御サーバ(制御装置)
5 データリンク
6 制御リンク
10 入出力部
11 サーバ用ポート
12a,12b パス確立用ポート
13a,13b データ入出力用ポート
14a,14b BER測定用ポート
20 スイッチング部
30 記憶部
31 インターフェース情報
32 光パス情報
40 制御部
41 スイッチング制御手段
42 シグナリングメッセージ制御手段
50 シグナリングメッセージ送受信部(シグナリングメッセージ送受信手段)
60 入出力部
70 送受信部
80 記憶部
81 インターフェース情報
82 光パス情報
90 制御部
91 経路計算手段
92 ノード制御手段
100 BER測定機能部
NW ネットワーク
DESCRIPTION OF SYMBOLS 1 Continuity confirmation system 2 (2a, 2b, 2c), 2A Communication apparatus 3 (3a, 3b, 3c) Signal transmission / reception apparatus 4 Control server (control apparatus)
5 Data link 6 Control link 10 Input / output unit 11 Server port 12a, 12b Path establishment port 13a, 13b Data input / output port 14a, 14b BER measurement port 20 Switching unit 30 Storage unit 31 Interface information 32 Optical path information 40 Control unit 41 Switching control unit 42 Signaling message control unit 50 Signaling message transmission / reception unit (signaling message transmission / reception unit)
60 I / O unit 70 Transmission / reception unit 80 Storage unit 81 Interface information 82 Optical path information 90 Control unit 91 Route calculation unit 92 Node control unit 100 BER measurement function unit NW network

Claims (15)

スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDM(time division multiplexing)のデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、導通試験対象区間である前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、
前記始点ノードは、
前記導通試験対象区間の終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、
前記終点ノードは、
前記シグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行するステップと、
前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記始点ノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、
前記始点ノードは、
前記終点ノードから送信されるシグナリングメッセージの受信状況に基づいて前記導通試験対象区間の始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するステップと、
前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記終点ノードに対して送信するステップとを実行することを特徴とする導通確認方法。
A communication device that transfers data of wavelength and TDM (time division multiplexing) by switching the optical path route by the optical switch of the switching unit, and a function of transferring packets by passing the data to the communication device A signal transmission / reception device; a data link connected between a plurality of nodes each representing the communication device and the signal transmission / reception device; and a control link connected between the nodes and transmitting a control signal. A continuity confirmation system for confirming the continuity of the optical path by transmitting an optical signal generated by the light source in both nodes between the two communication devices indicating the start point node and the end point node of the optical path, which is a continuity test target section. A conduction confirmation method in
The starting node is
Performing a step of transmitting a signaling message as an optical signal for securing a band resource for an end point of the continuity test target section;
The end node is
Performing continuity confirmation for the end point by determining whether continuity of the band resource for the end point is normal based on the reception status of the signaling message;
When it is determined that the continuity of the band resource for the end point is normal, a step of transmitting a signaling message as an optical signal toward the start point node is performed.
The starting node is
The continuity check for the start point is performed by determining whether or not the continuity of the band resource for the start point of the continuity test target section is normal based on the reception status of the signaling message transmitted from the end node. Steps,
And a step of transmitting a normality confirmation notification to that effect to the end node when it is determined that conduction is normal in the conduction confirmation toward the start point.
スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスをリンク毎に区分した導通試験対象区間の始点側の一方のノードおよび終点側の他方のノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することでリンク毎に当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、
前記光パスの始点ノードから終点ノードへ向けて、連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に導通確認処理を順次行い、
前記導通確認処理において、
前記導通試験対象区間の始点側の一方のノードは、
前記導通試験対象区間の他方のノード向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、
前記他方のノードは、
前記シグナリングメッセージの受信状況に基づいて自ノード向きの帯域リソースの導通が正常であるか否かを判別することで前記一方のノードから他方のノード向きの導通確認を実行するステップと、
自ノード向きの帯域リソースの導通が正常であると判別した場合に、次の導通試験対象区間において、当該導通試験対象区間の対向するノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、
前記終点ノードが自ノード向きの導通確認において導通が正常であると判別した場合、当該終点ノードから前記始点ノードへ向けて連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に前記導通確認処理を順次行い、
前記始点ノードは、自ノード向きの導通確認において導通が正常であると判別した場合、当該光パスの双方向の帯域リソースの導通が正常であると判別することを特徴とする導通確認方法。
A communication device that transfers the wavelength and TDM data by switching the path of the optical path by the optical switch of the switching unit; and a signal transmission and reception device that has a function of transferring the packet by passing the data to the communication device; A data link connected between a plurality of nodes respectively indicating the communication device and the signal transmitting / receiving device and transmitting an optical signal; and a control link connected between the nodes and transmitting a control signal; By transmitting an optical signal generated by the light source in both nodes between the two communication devices indicating one node on the start point side and the other node on the end point side of the continuity test target section divided for each link, A continuity confirmation method in a continuity confirmation system for confirming continuity of an optical path,
From the start node to the end node of the optical path, a set of two continuous communication devices sequentially performs a continuity check process for each continuity test target section formed by shifting the combination one by one,
In the conduction confirmation process,
One node on the start point side of the continuity test target section is
Performing a step of transmitting a signaling message as an optical signal for securing a band resource for the other node of the continuity test target section;
The other node is
Performing continuity confirmation for the other node from the one node by determining whether the continuity of the band resource for the own node is normal based on the reception status of the signaling message;
When it is determined that the continuity of the band resource for the own node is normal, the step of transmitting a signaling message as an optical signal to the node opposite to the continuity test target section is executed in the next continuity test target section And
When it is determined that the end node is normal in the continuity check for its own node, the set of two communication devices that continue from the end node to the start node is shifted by one by one. The continuity check process is sequentially performed for each continuity test target section to be formed,
The continuity check method characterized in that, when it is determined that continuity is normal in the continuity check directed to its own node, the start node determines that continuity of the bidirectional band resource of the optical path is normal.
スイッチング部の光スイッチにより光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスをリンク毎に区分した導通試験対象区間の始点側の一方のノードおよび終点側の他方のノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することでリンク毎に当該光パスの導通確認を行う導通確認システムにおける導通確認方法であって、
前記光パスの始点ノードから終点ノードへ向けて、連続する2つの通信装置から成る組は、その組み合わせを1つずつずらして形成される前記導通試験対象区間毎に導通確認処理を順次行い、
前記導通確認処理において、
前記導通試験対象区間の始点側の一方のノードは、
前記導通試験対象区間の終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信するステップを実行し、
前記導通試験対象区間の終点側の他方のノードは、
前記シグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行するステップと、
前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記一方のノードに向けてシグナリングメッセージを光信号として送信するステップとを実行し、
前記一方のノードは、
前記他方のノードから送信されるシグナリングメッセージの受信状況に基づいて前記導通試験対象区間の始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するステップと、
前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記他方のノードに対して送信するステップとを実行し、
前記終点ノードは、
前記正常性確認通知を受信した場合に当該光パスの双方向の帯域リソースの導通が正常であると判別することを特徴とする導通確認方法。
A communication device that transfers the wavelength and TDM data by switching the path of the optical path by the optical switch of the switching unit; and a signal transmission and reception device that has a function of transferring the packet by passing the data to the communication device; A data link connected between a plurality of nodes respectively indicating the communication device and the signal transmitting / receiving device and transmitting an optical signal; and a control link connected between the nodes and transmitting a control signal; By transmitting an optical signal generated by the light source in both nodes between the two communication devices indicating one node on the start point side and the other node on the end point side of the continuity test target section divided for each link, A continuity confirmation method in a continuity confirmation system for confirming continuity of an optical path,
From the start node to the end node of the optical path, a set of two continuous communication devices sequentially performs a continuity check process for each continuity test target section formed by shifting the combination one by one,
In the conduction confirmation process,
One node on the start point side of the continuity test target section is
Performing a step of transmitting a signaling message as an optical signal for securing a band resource for an end point of the continuity test target section;
The other node on the end point side of the continuity test target section is
Performing continuity confirmation for the end point by determining whether continuity of the band resource for the end point is normal based on the reception status of the signaling message;
When it is determined that the continuity of the band resource for the end point is normal, a signaling message is transmitted to the one node as an optical signal, and
The one node is
Based on the reception status of the signaling message transmitted from the other node, the continuity check for the start point is performed by determining whether or not the continuity of the band resource for the start point of the continuity test target section is normal. And steps to
When it is determined that conduction is normal in the conduction check toward the start point, a normality confirmation notification indicating that is transmitted to the other node, and
The end node is
When the normality confirmation notification is received, it is determined that the continuity of the bidirectional band resource of the optical path is normal.
前記始点ノードは、前記導通確認において導通が正常であると判別した場合、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行し、
前記終点ノードは、
前記導通試験対象区間の対向するノードから送信される前記正常性確認通知が到着したことをトリガとして、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行することを特徴とする請求項1または請求項3に記載の導通確認方法。
If the start node determines that continuity is normal in the continuity check, further executes a step of setting the setting of the optical switch of the switching unit for data input / output for transferring the data,
The end node is
The optical switch setting of the switching unit is set for data input / output for transferring the data, triggered by the arrival of the normality confirmation notification transmitted from the opposite node of the continuity test target section. The continuity confirmation method according to claim 1, wherein the step is further executed.
前記始点ノードおよび終点ノードは、自ノード向きの導通確認において導通が正常であると判別した場合、前記スイッチング部の光スイッチの設定を、前記データを転送するためのデータ入出力用に設定するステップをさらに実行することを特徴とする請求項2に記載の導通確認方法。   A step of setting the setting of the optical switch of the switching unit for data input / output for transferring the data when the start point node and the end point node determine that the continuity is normal in the continuity check directed to the own node; The continuity confirmation method according to claim 2, further comprising: 前記導通確認を実行するノードが、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別した場合に、その旨を示す正常性未確認通知を前記導通試験対象区間の対向するノードに送信することを特徴とする請求項1ないし請求項5のいずれか一項に記載の導通確認方法。   When the node that performs the continuity check determines that the continuity of the band resource in the continuity test target section is not normal, a normality unconfirmed notification indicating that is transmitted to the opposite node in the continuity test target section. The conduction confirmation method according to any one of claims 1 to 5, wherein: 前記導通確認を実行するノードが、前記導通試験対象区間の対向するノードから受信した前記シグナリングメッセージの強度が事前に定められた閾値以下である場合に、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別することを特徴とする請求項1ないし請求項6のいずれか一項に記載の導通確認方法。   When the node that performs the continuity check has a signaling message strength received from a node opposite to the continuity test target section that is equal to or lower than a predetermined threshold, the continuity test of the band resource in the continuity test target section is performed. The continuity confirmation method according to any one of claims 1 to 6, wherein it is determined that the state is not normal. 前記導通確認を実行するノードが、前記導通試験対象区間の対向するノードから送信される前記シグナリングメッセージが事前に定められた時間が経過しても到着しなかった場合に、前記導通試験対象区間の帯域リソースの導通が正常ではないと判別することを特徴とする請求項1ないし請求項7のいずれか一項に記載の導通確認方法。   When the node that performs the continuity check does not arrive after the signaling message transmitted from the opposite node of the continuity test target section has elapsed in advance, the continuity test target section The continuity check method according to any one of claims 1 to 7, wherein it is determined that the continuity of the band resource is not normal. 前記光パスの始点ノードおよび前記光パスの終点ノードは、
双方が導通試験対象区間である前記光パスの帯域リソースの導通が正常であると判別した後に、一方のノードが、BER(bit error rate)を測定するためのBER測定用信号を他方のノードに送信するステップを実行し、他方のノードが、前記BER測定用信号を受信し、受信したBER測定用信号からBERを測定するステップを実行する一連の処理を前記光パスの双方向において実行するBER測定処理を行うことを特徴とする請求項1ないし請求項8のいずれか一項に記載の導通確認方法。
The optical path start point node and the optical path end point node are:
After determining that the continuity of the band resource of the optical path that is both the continuity test target section is normal, one node sends a BER measurement signal for measuring the BER (bit error rate) to the other node. A BER that executes a series of processes in which the other node receives the BER measurement signal and performs a step of measuring a BER from the received BER measurement signal in both directions of the optical path. The continuity confirmation method according to any one of claims 1 to 8, wherein a measurement process is performed.
前記導通試験対象区間の始点側の一方のノードは、
前記BER測定処理の前に、前記正常性確認通知として、導通試験対象区間の導通試験に続けて前記光パスの両端点間で前記BER測定処理を行うことを示すメッセージを前記導通試験対象区間の終点側の他方のノードに送信し、
前記光パスの始点ノードおよび前記光パスの終点ノードは、
前記BER測定処理前に、前記スイッチング部の光スイッチの設定を、導通試験用の設定からBER測定用の設定に切り替え、
前記BER測定処理後に、前記スイッチング部の光スイッチの設定を、前記BER測定用の設定から前記データを転送するためのデータ入出力用の設定に切り替えることを特徴とする請求項9に記載の導通確認方法。
One node on the start point side of the continuity test target section is
Before the BER measurement process, a message indicating that the BER measurement process is performed between both end points of the optical path following the continuity test of the continuity test target section is sent as the normality confirmation notification of the continuity test target section. Send to the other node on the end point side,
The optical path start point node and the optical path end point node are:
Before the BER measurement process, the setting of the optical switch of the switching unit is switched from the setting for continuity test to the setting for BER measurement.
10. The continuity according to claim 9, wherein after the BER measurement process, the setting of the optical switch of the switching unit is switched from the setting for BER measurement to the setting for data input / output for transferring the data. Confirmation method.
請求項1ないし請求項10のいずれか一項に記載の導通確認方法を、前記導通試験対象区間の始点側の一方のノードとして機能する通信装置のコンピュータに実行させるための導通確認プログラム。   A continuity confirmation program for causing a computer of a communication apparatus functioning as one node on the start point side of the continuity test target section to execute the continuity confirmation method according to any one of claims 1 to 10. 請求項1ないし請求項10のいずれか一項に記載の導通確認方法を、前記導通試験対象区間の終点側の他方のノードとして機能する通信装置のコンピュータに実行させるための導通確認プログラム。   A continuity check program for causing a computer of a communication device functioning as the other node on the end point side of the continuity test target section to execute the continuity check method according to any one of claims 1 to 10. 光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける前記始点ノードとして機能する通信装置であって、
前記光パスの方路を切替える光スイッチを有するスイッチング部と、
前記光パスの終点向きの帯域リソースを確保するためのシグナリングメッセージを光信号として送信し、前記終点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて前記光パスの始点向きの帯域リソースの導通が正常であるか否かを判別することで、前記始点向きの導通確認を実行するシグナリングメッセージ送受信手段と、
前記始点向きの導通確認において導通が正常であると判別した場合、その旨を示す正常性確認通知を前記終点ノードに対して送信するシグナリングメッセージ制御手段と、
前記導通確認において導通が正常であると判別した場合、前記信号送受信装置から受け渡される前記データを入出力できるように前記スイッチング部の光スイッチを制御するスイッチング制御手段と、
を備えることを特徴とする通信装置。
A communication device that transfers wavelength and TDM data by switching the route of the optical path, a signal transmission / reception device that has a function of transferring packets by passing the data to the communication device, the communication device, and the signal A data link connected between a plurality of nodes each indicating a transmission / reception device and transmitting an optical signal; and a control link connected between the nodes and transmitting a control signal; and a start node and an end node of the optical path, A communication device that functions as the start node in a continuity confirmation system that performs continuity confirmation of the optical path by transmitting an optical signal generated by a light source in both nodes between the two communication devices shown in FIG.
A switching unit having an optical switch for switching the path of the optical path;
A signaling message for securing a band resource for the end point of the optical path is transmitted as an optical signal, and a band resource for the start point of the optical path based on the reception status of the signaling message transmitted as an optical signal from the end point node A signaling message transmission / reception means for performing the conduction check for the starting point by determining whether or not the conduction of
When it is determined that continuity is normal in the continuity confirmation toward the start point, signaling message control means for transmitting a normality confirmation notification indicating the fact to the end point node;
When it is determined that conduction is normal in the conduction check, switching control means for controlling the optical switch of the switching unit so as to be able to input and output the data passed from the signal transmitting and receiving device;
A communication apparatus comprising:
光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムにおける前記終点ノードとして機能する通信装置であって、
前記光パスの方路を切替える光スイッチを有するスイッチング部と、
前記始点ノードから光信号として送信されるシグナリングメッセージの受信状況に基づいて前記終点向きの帯域リソースの導通が正常であるか否かを判別することで前記終点向きの導通確認を実行し、前記終点向きの帯域リソースの導通が正常であると判別した場合に、前記始点ノードに向けてシグナリングメッセージを光信号として送信するシグナリングメッセージ送受信手段と、
前記始点ノードから送信される、前記始点向きの導通確認において導通が正常であると判別した旨を示す正常性確認通知を受信するシグナリングメッセージ制御手段と、
前記正常性確認通知を受信した場合、前記信号送受信装置から受け渡される前記データを入出力できるように前記スイッチング部の光スイッチを制御するスイッチング制御手段と、
を備えることを特徴とする通信装置。
A communication device that transfers wavelength and TDM data by switching the route of the optical path, a signal transmission / reception device that has a function of transferring packets by passing the data to the communication device, the communication device, and the signal A data link connected between a plurality of nodes each indicating a transmission / reception device and transmitting an optical signal; and a control link connected between the nodes and transmitting a control signal; and a start node and an end node of the optical path, A communication device functioning as the end point node in a continuity confirmation system for confirming the continuity of the optical path by transmitting an optical signal generated by a light source in both nodes between the two communication devices shown in FIG.
A switching unit having an optical switch for switching the path of the optical path;
The continuity check for the end point is performed by determining whether or not the continuity of the band resource for the end point is normal based on the reception status of the signaling message transmitted as an optical signal from the start point node, and the end point A signaling message transmission / reception means for transmitting a signaling message as an optical signal toward the start node when it is determined that the continuity of the band resource in the direction is normal;
A signaling message control means for receiving a normality confirmation notification transmitted from the start point node and indicating that continuity is determined to be normal in the continuity confirmation toward the start point;
When receiving the normality confirmation notification, switching control means for controlling the optical switch of the switching unit so as to be able to input and output the data passed from the signal transmitting and receiving device,
A communication apparatus comprising:
光パスの方路を切替えることで波長やTDMのデータを転送する通信装置と、前記通信装置に前記データを受け渡すことでパケットを転送する機能を持つ信号送受信装置と、前記通信装置および前記信号送受信装置をそれぞれ示す複数のノード間に接続されて光信号を伝送するデータリンクと、前記ノード間に接続されて制御信号を伝送する制御リンクとを備え、前記光パスの始点ノードおよび終点ノードを示す2つの通信装置間において両ノード内の光源で発生させる光信号を伝送することで当該光パスの導通確認を行う導通確認システムであって、
請求項13に記載の通信装置を前記始点ノードとして備えると共に、
請求項14に記載の通信装置を前記終点ノードとして備えることを特徴とする導通確認システム。
A communication device that transfers wavelength and TDM data by switching the route of the optical path, a signal transmission / reception device that has a function of transferring packets by passing the data to the communication device, the communication device, and the signal A data link connected between a plurality of nodes each indicating a transmission / reception device and transmitting an optical signal; and a control link connected between the nodes and transmitting a control signal; and a start node and an end node of the optical path, A continuity confirmation system for confirming the continuity of the optical path by transmitting an optical signal generated by a light source in both nodes between the two communication devices shown in FIG.
A communication device according to claim 13 is provided as the start node,
A continuity confirmation system comprising the communication device according to claim 14 as the end point node.
JP2008267597A 2008-10-16 2008-10-16 Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system Active JP4966947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267597A JP4966947B2 (en) 2008-10-16 2008-10-16 Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267597A JP4966947B2 (en) 2008-10-16 2008-10-16 Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system

Publications (2)

Publication Number Publication Date
JP2010098520A true JP2010098520A (en) 2010-04-30
JP4966947B2 JP4966947B2 (en) 2012-07-04

Family

ID=42259896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267597A Active JP4966947B2 (en) 2008-10-16 2008-10-16 Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system

Country Status (1)

Country Link
JP (1) JP4966947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098521A (en) * 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> Conduction confirmation method, conduction confirmation program, communication apparatus, and conduction confirmation system
JP2014068167A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Communication system, management device and communication device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117052A (en) * 1990-08-31 1992-04-17 Nec Corp Exchange system line test system
JP2001237854A (en) * 2000-02-25 2001-08-31 Fujitsu Ltd Atm unit and its community test method
JP2003258746A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Optical path normality confirming method for optical network
WO2004075494A1 (en) * 2003-02-21 2004-09-02 Nippon Telegraph And Telephone Corporation Device and method for correcting a path trouble in a communication network
JP2005354135A (en) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp Method for confirming normality of path
JP2008199311A (en) * 2007-02-13 2008-08-28 Fujitsu Ltd Switch device and path monitoring setting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117052A (en) * 1990-08-31 1992-04-17 Nec Corp Exchange system line test system
JP2001237854A (en) * 2000-02-25 2001-08-31 Fujitsu Ltd Atm unit and its community test method
JP2003258746A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Optical path normality confirming method for optical network
JP3938315B2 (en) * 2002-03-04 2007-06-27 三菱電機株式会社 Optical path normality confirmation method in optical network
WO2004075494A1 (en) * 2003-02-21 2004-09-02 Nippon Telegraph And Telephone Corporation Device and method for correcting a path trouble in a communication network
JP2005354135A (en) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp Method for confirming normality of path
JP2008199311A (en) * 2007-02-13 2008-08-28 Fujitsu Ltd Switch device and path monitoring setting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098521A (en) * 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> Conduction confirmation method, conduction confirmation program, communication apparatus, and conduction confirmation system
JP2014068167A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Communication system, management device and communication device

Also Published As

Publication number Publication date
JP4966947B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US6647208B1 (en) Hybrid electronic/optical switch system
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
US20040196783A1 (en) Method of and apparatus for determining alternative communication path
JP2008199311A (en) Switch device and path monitoring setting method
JP2011527155A (en) Link diversity and load balancing across digital and optical express-thru nodes
US8165016B2 (en) Method and apparatus for setting communication paths in a network
CN103414636A (en) Route backup device and method based on TD-LTE network and optical network
US8902909B2 (en) Method, system, and device for implementing service forwarding
US8705971B2 (en) Three-way handshake (3WHS) optical network signaling protocol
CN101860769B (en) Method, device and system for fusing IP and light
JP4966947B2 (en) Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system
US7715709B2 (en) Optical switch and network system including the same
CN108781183B (en) Method, node equipment and system for establishing service path
JP5001926B2 (en) Continuity confirmation method, continuity confirmation program, communication device, and continuity confirmation system
KR101434332B1 (en) Method for controlling the establishment of a connection within a transport network
WO2017143518A1 (en) Method and apparatus for establishing interlayer link binding relationship
KR20110038586A (en) System for managing path control and method for setting path using the same
Zhong et al. An SDN-enabled optical transport network simulation platform for cross-domain TSN service
Xu et al. Emergent optical network integration and control of multi-vendor optical networks for quick disaster recovery
JP4765978B2 (en) Method and apparatus for relaying between optical burst switching networks by wavelength path
JP2005354135A (en) Method for confirming normality of path
Kim et al. Restoration of all-optical mesh networks with path-based flooding
CN113169939B (en) Method, network equipment and system for establishing service path
JP2008103893A (en) Communication system and fault restoring method
JP2007251256A (en) Method of changing transmission line in optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350