JP2010098171A - Optical system and aligner - Google Patents

Optical system and aligner Download PDF

Info

Publication number
JP2010098171A
JP2010098171A JP2008268563A JP2008268563A JP2010098171A JP 2010098171 A JP2010098171 A JP 2010098171A JP 2008268563 A JP2008268563 A JP 2008268563A JP 2008268563 A JP2008268563 A JP 2008268563A JP 2010098171 A JP2010098171 A JP 2010098171A
Authority
JP
Japan
Prior art keywords
optical system
pupil
light
mirror
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008268563A
Other languages
Japanese (ja)
Inventor
Masayuki Shiraishi
雅之 白石
Takuro Ono
拓郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008268563A priority Critical patent/JP2010098171A/en
Publication of JP2010098171A publication Critical patent/JP2010098171A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system, arranging pupillary surface near the reflecting surface of reflecting optical element, which is capable of reducing the heterogeneity of numerical aperture. <P>SOLUTION: The projection optical system includes a mirror M2 arranged so that the direction of light of incidence 37I is different from the direction of reflection light 37R. The pupillary surface 35A of the projection optical system in a part 37Ia, which is not superposed with the reflection light 37R among the light of incidence 37I, is formed above the reflection surface of the mirror M2. The pupillary surface 35B in the part 37Ra, which is not superposed with the light of incidence 37I among the reflection light 37R, is formed above the reflection surface thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射光学素子を備える光学系、この光学系を備える露光装置、及びこの露光装置を用いるデバイス製造方法に関する。   The present invention relates to an optical system including a reflective optical element, an exposure apparatus including the optical system, and a device manufacturing method using the exposure apparatus.

半導体デバイス等のデバイス(電子デバイス)を製造するためのフォトリソグラフィ工程において、レチクル等のパターンを感光基板上に転写露光するために使用される一括露光型(例えばステッパ)又は走査露光型(例えばスキャニングステッパ)等の露光装置においては、解像度を高めるために露光波長の短波長化が進み、最近では露光光としてKrFエキシマレーザ(波長248nm)又はArFエキシマレーザ(波長193nm)等が使用されている。さらに、露光光として波長が100nm程度以下の極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置(EUV露光装置)も開発されている。   A batch exposure type (for example, a stepper) or a scanning exposure type (for example, scanning) used to transfer and expose a pattern such as a reticle onto a photosensitive substrate in a photolithography process for manufacturing a device (electronic device) such as a semiconductor device. In an exposure apparatus such as a stepper), the exposure wavelength has been shortened to increase the resolution, and recently, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), or the like is used as exposure light. Furthermore, an exposure apparatus (EUV exposure apparatus) that uses extreme ultraviolet light (Extreme Ultraviolet Light: hereinafter referred to as EUV light) having a wavelength of about 100 nm or less as exposure light has been developed.

EUV光については現状ではそれを透過する光学材料がないため、EUV露光装置の照明光学系及び投影光学系は、それぞれ反射面が平面、球面、又は非球面の複数のミラー等を含む反射光学系である。このような反射光学系では、開口絞りを配置すべき瞳面を或る一つのミラーの反射面上にほぼ重ねて置くことによって(例えば、特許文献1参照)、その瞳面を例えばミラー同士の中間に置く場合に比べて、瞳面での入射光と反射光との分離が容易となり、光学設計上の自由度が増加する。
特開2007−109958号公報
Since there is no optical material that transmits EUV light at present, the illumination optical system and projection optical system of the EUV exposure apparatus each include a plurality of mirrors whose reflecting surfaces are flat, spherical, or aspherical. It is. In such a reflective optical system, the pupil plane on which the aperture stop is to be placed is substantially superimposed on the reflective surface of a certain mirror (see, for example, Patent Document 1), so that the pupil plane is, for example, between mirrors. Compared with the case where the lens is placed in the middle, it becomes easier to separate incident light and reflected light on the pupil plane, and the degree of freedom in optical design increases.
JP 2007-109958 A

従来のミラーの反射面に瞳面をほぼ重ねて置いた反射光学系においては、その反射面上に機械的な開口絞りを配置するのは困難である。また、開口絞りとして通常は可動部を有する可変開口絞りが使用されており、この可変開口絞りをその反射面に近接して配置することは極めて困難である。そのため、開口絞りはミラーの反射面から或る程度離れた位置に配置される。このように開口絞りが瞳面(瞳位置)から離れることで、像高によっては光束が正確に絞られない部分(瞳の輪郭部分)が増大するため、像点間の開口数(NA)の不均一性が生じ、結像特性が不均一になる。   In a reflection optical system in which a pupil plane is placed almost on a reflection surface of a conventional mirror, it is difficult to dispose a mechanical aperture stop on the reflection surface. Further, a variable aperture stop having a movable part is usually used as the aperture stop, and it is extremely difficult to dispose the variable aperture stop close to the reflecting surface. For this reason, the aperture stop is disposed at a position away from the reflecting surface of the mirror to some extent. Since the aperture stop moves away from the pupil plane (pupil position) in this way, the portion where the light beam cannot be accurately focused (the contour portion of the pupil) increases depending on the image height, so the numerical aperture (NA) between the image points is increased. Non-uniformity occurs and imaging characteristics become non-uniform.

また、反射光学系中のミラーへの入射光は垂直入射ではなく、入射光の方向と反射光の方向とが異なるため、開口絞りがミラーの反射面(瞳面)から離れた位置に配置される場合には、開口絞りの開口形状を入射光及び反射光の両方を包含する形状にする必要がある。しかしながら、その形状は照明領域の形状に依存した複雑な形状になるため、開口絞りの構造が複雑化する。   Also, the incident light to the mirror in the reflective optical system is not perpendicularly incident, and the direction of the incident light and the direction of the reflected light are different, so the aperture stop is placed at a position away from the mirror's reflective surface (pupil surface). In this case, the aperture shape of the aperture stop needs to be a shape that includes both incident light and reflected light. However, since the shape is complicated depending on the shape of the illumination area, the structure of the aperture stop is complicated.

さらに、仮に瞳面の位置をミラーの反射面の上方にシフトさせて設計したとしても、その反射面の近傍では入射光と反射光とが部分的に重なっているため、瞳面を入射光側又は反射光側のいずれに配置しても、絞るべき瞳の輪郭の一部を開口絞りによって正確に絞ることができなくなる。従って、開口数の不均一性が生じる。
本発明は、このような事情に鑑み、反射光学素子の反射面の近傍に瞳面を配置し、かつ開口数の不均一性を低減できる光学系、この光学系を備える露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。
Furthermore, even if the design is made by shifting the position of the pupil surface above the reflection surface of the mirror, the incident light and the reflected light partially overlap in the vicinity of the reflection surface, so the pupil surface is placed on the incident light side. Even if it is arranged on either side of the reflected light, it becomes impossible to accurately squeeze a part of the outline of the pupil to be squeezed by the aperture stop. Therefore, the numerical aperture is non-uniform.
In view of such circumstances, the present invention provides an optical system in which a pupil plane is disposed in the vicinity of the reflective surface of the reflective optical element and can reduce the non-uniformity of the numerical aperture, an exposure apparatus including the optical system, and the exposure An object of the present invention is to provide a device manufacturing method using an apparatus.

本発明による光学系は、入射光の方向と反射光の方向とが異なるように配置された反射光学素子を備えた光学系である。そして、本発明の第1の光学系は、その入射光のうちその反射光と重ならない部分におけるその光学系の瞳がその反射光学素子の反射面の上方に形成され、その反射光のうちその入射光と重ならない部分におけるその瞳がその反射面の上方に形成されるものである。   The optical system according to the present invention is an optical system including a reflective optical element arranged so that the direction of incident light and the direction of reflected light are different. In the first optical system of the present invention, the pupil of the optical system in the portion of the incident light that does not overlap with the reflected light is formed above the reflective surface of the reflective optical element, The pupil in a portion not overlapping with the incident light is formed above the reflecting surface.

また、本発明による第2の光学系は、その光学系の瞳面がその反射光学素子の反射面と交差するとともに、その入射光のその反射光と反対側の端部におけるその瞳面がその反射面の上方に位置し、その反射光のその入射光と反対側の端部におけるその瞳面がその反射面の上方に位置するものである。
また、本発明による第3の光学系は、その光学系の瞳の第1部分がその入射光側に形成され、その光学系の瞳の第2部分がその反射光側に形成されるものである。
In the second optical system according to the present invention, the pupil plane of the optical system intersects the reflective surface of the reflective optical element, and the pupil plane at the end of the incident light opposite to the reflected light is It is located above the reflecting surface, and the pupil surface at the end of the reflected light opposite to the incident light is located above the reflecting surface.
In the third optical system according to the present invention, the first portion of the pupil of the optical system is formed on the incident light side, and the second portion of the pupil of the optical system is formed on the reflected light side. is there.

次に、本発明による露光装置は、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光装置において、その投影光学系として本発明の光学系を備えるものである。
また、本発明による別の露光装置は、第1面の像を第2面上に投影露光する露光装置であって、本発明の光学系を備えるものである。
Next, an exposure apparatus according to the present invention illuminates a pattern with exposure light and exposes the substrate with the exposure light through the pattern and the projection optical system. It is to be prepared.
Another exposure apparatus according to the present invention is an exposure apparatus that projects and exposes an image of a first surface onto a second surface, and includes the optical system of the present invention.

また、本発明によるデバイス製造方法は、本発明の露光装置を用いて基板を露光する工程と、その露光された基板を処理する工程と、を含むものである。   The device manufacturing method according to the present invention includes a step of exposing a substrate using the exposure apparatus of the present invention and a step of processing the exposed substrate.

本発明の光学系によれば、反射光学素子の反射面の近傍に瞳面を配置する場合に、入射光のうちで反射光と重ならない部分(反射光と反対側の端部)における瞳面(瞳の第1部分)及び反射光のうちで入射光と重ならない部分(入射光と反対側の端部)における瞳面(瞳の第2部分)の両方をその反射面の上方に配置できる。従って、入射光及び反射光の両方で瞳面上に開口絞りを容易に設置できるようになるため、開口数の不均一性を低減できる。   According to the optical system of the present invention, when the pupil plane is arranged in the vicinity of the reflective surface of the reflective optical element, the pupil plane in the portion of the incident light that does not overlap with the reflected light (end on the side opposite to the reflected light) Both the (first part of the pupil) and the pupil surface (second part of the pupil) in the part of the reflected light that does not overlap with the incident light (the end opposite to the incident light) can be arranged above the reflective surface. . Accordingly, since the aperture stop can be easily installed on the pupil plane with both incident light and reflected light, the non-uniformity of the numerical aperture can be reduced.

本発明の実施形態の一例につき図1〜図6を参照して説明する。
図1は、本実施形態の露光装置100の全体構成を概略的に示す断面図である。露光装置100は、露光用の照明光EL(露光光)として波長が100nm程度以下で3〜50nm程度の範囲内で例えば11nm又は13nm等のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置である。図1において、露光装置100は、照明光ELをパルス発生するレーザプラズマ光源10と、照明光ELでレチクルR(マスク)のパターン面(ここでは下面)上の照明領域27Rを照明する照明光学系ILSと、レチクルRを移動するレチクルステージRSTと、レチクルRの照明領域27R内のパターンの像をレジスト(感光材料)が塗布されたウエハW(感光基板)上に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハWを移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系31等とを備えている。
An example of an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view schematically showing the overall configuration of the exposure apparatus 100 of the present embodiment. The exposure apparatus 100 is an EUV exposure apparatus that uses EUV light (Extreme Ultraviolet Light) of, for example, 11 nm or 13 nm within a wavelength range of about 3 nm to about 50 nm as illumination light EL (exposure light) for exposure. . In FIG. 1, an exposure apparatus 100 includes a laser plasma light source 10 that generates a pulse of illumination light EL, and an illumination optical system that illuminates an illumination region 27R on a pattern surface (lower surface in this case) of a reticle R (mask) with the illumination light EL. ILS, reticle stage RST that moves reticle R, and projection optical system PO that projects an image of a pattern in illumination area 27R of reticle R onto wafer W (photosensitive substrate) coated with a resist (photosensitive material). I have. Further, the exposure apparatus 100 includes a wafer stage WST that moves the wafer W, a main control system 31 that includes a computer that controls the overall operation of the apparatus, and the like.

本実施形態では、照明光ELとしてEUV光が使用されているため、照明光学系ILS及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー等の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面にモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。なお、その多層膜は、ルテニウム(Ru)、ロジウム(Rh)等の物質と、Si、ベリリウム(Be)、4ホウ化炭素(B4C)等の物質とを組み合わせた他の多層膜でもよい。また、レチクルRは例えば石英の基板の表面に多層膜を形成して反射面とした後、その反射面に、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。 In the present embodiment, since EUV light is used as the illumination light EL, the illumination optical system ILS and the projection optical system PO are configured by reflective optical members such as a plurality of mirrors except for a specific filter or the like (not shown). The reticle R is also a reflection type. For example, the reflective optical member is obtained by processing a surface of a member made of quartz (or a metal having high heat resistance) into a predetermined curved surface or a plane with high accuracy, and then molybdenum (Mo) and silicon (Si) on the surface. A multilayer film (an EUV light reflecting film) is formed as a reflecting surface. The multilayer film may be another multilayer film in which a substance such as ruthenium (Ru) or rhodium (Rh) and a substance such as Si, beryllium (Be), or carbon tetraboride (B 4 C) are combined. . The reticle R, for example, forms a multilayer film on the surface of a quartz substrate to form a reflective surface, and then absorbs EUV light such as tantalum (Ta), nickel (Ni), or chromium (Cr) on the reflective surface. A transfer pattern is formed by an absorption layer made of a material to be transferred.

また、EUV光の気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ1内に収容され、真空チャンバ1内の空間を排気管32Aa,32Ba等を介して真空排気するための大型の真空ポンプ32A,32B等が備えられている。さらに、真空チャンバ1内で照明光ELの光路上の真空度をより高めるために複数のサブチャンバ(不図示)も設けられている。一例として、真空チャンバ1内の気圧は10-5Pa程度、真空チャンバ1内で投影光学系POを収納するサブチャンバ(不図示)内の気圧は10-5〜10-6Pa程度である。 Further, in order to prevent the EUV light from being absorbed by the gas, the exposure apparatus 100 is accommodated in the box-like vacuum chamber 1 as a whole, and the space in the vacuum chamber 1 is evacuated through the exhaust pipes 32Aa, 32Ba and the like. Large vacuum pumps 32A, 32B and the like are provided. Further, a plurality of sub-chambers (not shown) are also provided in order to further increase the degree of vacuum on the optical path of the illumination light EL in the vacuum chamber 1. As an example, the pressure in the vacuum chamber 1 is about 10 −5 Pa, and the pressure in the subchamber (not shown) that houses the projection optical system PO in the vacuum chamber 1 is about 10 −5 to 10 −6 Pa.

以下、図1において、ウエハステージWSTが載置される面(真空チャンバ1の底面)の法線方向にZ軸を取り、Z軸に垂直な平面(本実施形態ではほぼ水平面に平行な面)内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取って説明する。本実施形態では、レチクルR上での照明光ELの照明領域27Rは、X方向(非走査方向)に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。   Hereinafter, in FIG. 1, the Z axis is taken in the normal direction of the surface (bottom surface of the vacuum chamber 1) on which the wafer stage WST is placed, and a plane perpendicular to the Z axis (in this embodiment, a plane substantially parallel to the horizontal plane). In the following description, the X axis is perpendicular to the paper surface of FIG. 1 and the Y axis is parallel to the paper surface of FIG. In the present embodiment, the illumination area 27R of the illumination light EL on the reticle R has an arc shape elongated in the X direction (non-scanning direction), and the reticle R and the wafer W are in the Y direction with respect to the projection optical system PO during exposure. Scanning is performed in synchronization with (scanning direction).

先ず、レーザプラズマ光源10は、高出力のレーザ光源(不図示)と、このレーザ光源から真空チャンバ1の窓部材15を介して供給されるレーザ光を集光する集光レンズ12と、キセノン等のターゲットガスを噴出するノズル14と、回転楕円面状の反射面を持つ集光ミラー13とを備えた、ガスジェットクラスタ方式の光源である。レーザプラズマ光源10から例えば数kHzの周波数でパルス発光された照明光ELは、集光ミラー13の第2焦点に集光する。その第2焦点に集光した照明光ELは、凹面ミラー(コリメータ光学系)21を介してほぼ平行光束となり、第1フライアイ光学系22に入射し、第1フライアイ光学系22で反射された照明光ELは第2フライアイ光学系23に入射する。この一対のフライアイ光学系22及び23からオプティカルインテグレータが構成されている。また、レーザプラズマ光源10からの照明光は、第1フライアイ光学系22をケーラー照明している。   First, the laser plasma light source 10 includes a high-power laser light source (not shown), a condensing lens 12 that condenses laser light supplied from the laser light source through the window member 15 of the vacuum chamber 1, xenon, and the like. This is a gas jet cluster type light source including a nozzle 14 for ejecting a target gas and a condensing mirror 13 having a spheroidal reflection surface. For example, the illumination light EL pulse-emitted from the laser plasma light source 10 at a frequency of several kHz is condensed on the second focal point of the condenser mirror 13. The illumination light EL condensed at the second focal point becomes a substantially parallel light beam via the concave mirror (collimator optical system) 21, enters the first fly-eye optical system 22, and is reflected by the first fly-eye optical system 22. The illumination light EL enters the second fly's eye optical system 23. The pair of fly-eye optical systems 22 and 23 constitutes an optical integrator. Further, the illumination light from the laser plasma light source 10 performs Koehler illumination on the first fly's eye optical system 22.

一例として、第1フライアイ光学系22は、図2(A)に示すように、二次元的に配列された照明領域と相似な円弧状の外形を有する多数のミラー素子22aより構成されている。第2フライアイ光学系23は、第1フライアイ光学系22の多数のミラー素子22aに対応して、図2(B)に示すように、二次元的に配列された矩形状(又はほぼ正方形状)の外形を有する多数のミラー素子23aより構成されている。フライアイ光学系22,23の各ミラー素子の形状及び配置等については、例えば米国特許第6,452,661号明細書にも開示されている。   As an example, as shown in FIG. 2A, the first fly's eye optical system 22 is composed of a large number of mirror elements 22a having an arcuate outer shape similar to two-dimensionally arranged illumination areas. . The second fly's eye optical system 23 corresponds to the many mirror elements 22a of the first fly's eye optical system 22, as shown in FIG. A plurality of mirror elements 23a having an outer shape. The shape and arrangement of each mirror element of the fly-eye optical systems 22 and 23 are also disclosed in, for example, US Pat. No. 6,452,661.

図1において、第1フライアイ光学系22の各ミラー素子の反射面はレチクルRのパターン面とほぼ共役であり、第2フライアイ光学系23の反射面の近傍(オプティカルインテグレータの射出面の近傍)には、所定形状を有する実質的な面光源(多数の微小な二次光源の集合)が形成される。即ち、その実質的な面光源が形成される面は、照明光学系ILSの瞳面であり、この瞳面又はこの近傍の位置に開口絞り28が配置されている。開口絞り28は、種々の形状の開口を有する複数の開口絞りを代表的に表しており、主制御系31の制御のもとで、開口絞り28を交換することによって、照明条件を通常照明、輪帯照明、2極照明、又は4極照明等に切り換えることができる。   In FIG. 1, the reflecting surface of each mirror element of the first fly-eye optical system 22 is substantially conjugate with the pattern surface of the reticle R, and is in the vicinity of the reflecting surface of the second fly-eye optical system 23 (near the exit surface of the optical integrator). ), A substantial surface light source (a set of a large number of minute secondary light sources) having a predetermined shape is formed. That is, the surface on which the substantial surface light source is formed is the pupil plane of the illumination optical system ILS, and the aperture stop 28 is disposed at this pupil plane or a position near this pupil plane. The aperture stop 28 representatively represents a plurality of aperture stops having openings of various shapes, and the illumination condition is changed to normal illumination by exchanging the aperture stop 28 under the control of the main control system 31. It can be switched to annular illumination, dipole illumination, quadrupole illumination, or the like.

開口絞り28を通過した照明光ELは、曲面ミラー24に入射し、曲面ミラー24で反射された照明光ELは、凹面ミラー25で反射された後、レチクルRのパターン面の円弧状の照明領域27Rを下方から斜めに均一な照度分布で照明する。曲面ミラー24と凹面ミラー25とからコンデンサ光学系が構成されている。コンデンサ光学系によって、第1フライアイ光学系22の多数のミラー素子の反射光又は開口絞り28内の面光源からの光が照明領域27Rを重畳的に照明する。凹面ミラー21、フライアイ光学系22,23、開口絞り28、曲面ミラー24、及び凹面ミラー25を含んで照明光学系ILSが構成されている。この場合、レーザプラズマ光源10からの照明光ELは、第1フライアイ光学系22、ひいてはレチクルRのパターン面をケーラー照明している。なお、図1の例では、曲面ミラー24は凸面ミラーであるが、曲面ミラー24を凹面ミラーより構成し、その分だけ凹面ミラー25の曲率を小さくするようにしてもよい。   The illumination light EL that has passed through the aperture stop 28 enters the curved mirror 24, and the illumination light EL reflected by the curved mirror 24 is reflected by the concave mirror 25, and then is an arcuate illumination area on the pattern surface of the reticle R. 27R is illuminated obliquely from below with a uniform illuminance distribution. The curved mirror 24 and the concave mirror 25 constitute a condenser optical system. By the condenser optical system, the reflected light of the multiple mirror elements of the first fly-eye optical system 22 or the light from the surface light source in the aperture stop 28 illuminates the illumination area 27R in a superimposed manner. The illumination optical system ILS is configured including the concave mirror 21, the fly-eye optical systems 22 and 23, the aperture stop 28, the curved mirror 24, and the concave mirror 25. In this case, the illumination light EL from the laser plasma light source 10 Koehler-illuminates the first fly's eye optical system 22, and consequently the pattern surface of the reticle R. In the example of FIG. 1, the curved mirror 24 is a convex mirror, but the curved mirror 24 may be formed of a concave mirror, and the curvature of the concave mirror 25 may be reduced by that amount.

また、照明領域27Rの形状を実質的に規定するために、照明領域27Rに入射する照明光ELの外側(−Y方向)のエッジ部を遮光する第1ブラインド26Aと、照明領域27Rで反射された照明光ELの外側(+Y方向)のエッジ部を遮光する第2ブラインド26Bとを含むレチクルブラインド(可変視野絞り)が設けられている。
次に、レチクルRは、レチクルステージRSTの底面に静電チャックRHを介して吸着保持されている。レチクルステージRSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、真空チャンバ1の外面のXY平面に平行なガイド面に沿って、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってY方向に所定ストロークで駆動されるとともに、X方向及びZ軸回りの回転方向(θZ方向)等にも微小量駆動される。レチクルRは、真空チャンバ1の上面の開口を通して真空チャンバ1で囲まれた空間内に設置されている。レチクルステージRSTを真空チャンバ1側に覆うようにパーティション8が設けられ、パーティション8内は不図示の真空ポンプによって大気圧と真空チャンバ1内の気圧との間の気圧に維持されている。
Further, in order to substantially define the shape of the illumination area 27R, the first blind 26A that shields the outer edge portion (−Y direction) of the illumination light EL incident on the illumination area 27R and the illumination area 27R are reflected. In addition, a reticle blind (variable field stop) including a second blind 26B that shields an outer edge (+ Y direction) of the illumination light EL is provided.
Next, the reticle R is attracted and held on the bottom surface of the reticle stage RST via the electrostatic chuck RH. The reticle stage RST is, for example, a two-dimensional magnetic levitation type along a guide surface parallel to the XY plane of the outer surface of the vacuum chamber 1 based on a measurement value of a laser interferometer (not shown) and control information of the main control system 31. It is driven with a predetermined stroke in the Y direction by a drive system (not shown) composed of a linear actuator, and is also driven in a minute amount in the X direction and the rotation direction around the Z axis (θZ direction). The reticle R is installed in a space surrounded by the vacuum chamber 1 through an opening on the upper surface of the vacuum chamber 1. A partition 8 is provided so as to cover the reticle stage RST on the vacuum chamber 1 side, and the inside of the partition 8 is maintained at an atmospheric pressure between the atmospheric pressure and the atmospheric pressure in the vacuum chamber 1 by a vacuum pump (not shown).

レチクルRの照明領域27Rで反射された照明光ELが、物体面(第1面)のパターンの縮小像を像面(第2面)に形成する投影光学系POに向かう。投影光学系POは、一例として、6枚のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体面(レチクルRのパターン面)側に非テレセントリックで、像面(ウエハWの表面)側にほぼテレセントリックの反射光学系であり、投影倍率は1/4倍等の縮小倍率である。レチクルRの照明領域27Rで反射された照明光ELが、投影光学系POを介してウエハW上の露光領域27W(照明領域27Rと共役な領域)に、レチクルRのパターンの一部の縮小像を形成する。   The illumination light EL reflected by the illumination region 27R of the reticle R travels to the projection optical system PO that forms a reduced image of the pattern on the object plane (first surface) on the image plane (second surface). As an example, the projection optical system PO is configured by holding six mirrors M1 to M6 with a lens barrel (not shown), and is non-telecentric on the object plane (pattern surface of the reticle R) side and has an image plane (wafer W Is a telecentric reflecting optical system on the surface side, and the projection magnification is a reduction magnification such as 1/4. The illumination light EL reflected by the illumination area 27R of the reticle R is reduced in a part of the pattern of the reticle R on the exposure area 27W (area conjugate to the illumination area 27R) on the wafer W via the projection optical system PO. Form.

投影光学系POにおいて、レチクルRからの照明光ELは、第1のミラーM1で上方(+Z方向)に反射され、続いて第2のミラーM2で下方に反射された後、第3のミラーM3で上方に反射され、第4のミラーM4で下方に反射される。次に第5のミラーM5で上方に反射された照明光ELは、第6のミラーM6で下方に反射されて、ウエハW上にレチクルRのパターンの一部の像を形成する。一例として、ミラーM1,M2,M4,M6は反射面が非球面の凹面鏡であり、他のミラーM3,M5は反射面が非球面の凸面鏡である。また、本実施形態の投影光学系POは、ミラーM1〜M6の光軸が共通に光軸AXと重なる共軸光学系である。以下では、その光軸AXを投影光学系POの光軸とも呼ぶ。   In the projection optical system PO, the illumination light EL from the reticle R is reflected upward (+ Z direction) by the first mirror M1, subsequently reflected downward by the second mirror M2, and then the third mirror M3. And reflected downward by the fourth mirror M4. Next, the illumination light EL reflected upward by the fifth mirror M5 is reflected downward by the sixth mirror M6, and forms an image of a part of the pattern of the reticle R on the wafer W. As an example, the mirrors M1, M2, M4, and M6 are concave mirrors having aspherical reflecting surfaces, and the other mirrors M3 and M5 are convex mirrors having aspherical reflecting surfaces. Further, the projection optical system PO of the present embodiment is a coaxial optical system in which the optical axes of the mirrors M1 to M6 are overlapped with the optical axis AX in common. Hereinafter, the optical axis AX is also referred to as the optical axis of the projection optical system PO.

さらに、本実施形態では、投影光学系POの第2のミラーM2の反射面の近傍に交差する2つの平面で近似可能な瞳面35A,35Bが形成され、これらの瞳面35A,35Bに沿って開口絞りASが配置されている。瞳面35A,35B及び開口絞りASについては後述する。
また、ウエハWは、静電チャックWHを介してウエハステージWST上に吸着保持されている。ウエハステージWSTは、XY平面に沿って配置されたガイド面上に配置されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御系31の制御情報に基づいて、例えば磁気浮上型2次元リニアアクチュエータよりなる駆動系(不図示)によってX方向及びY方向に所定ストロ−クで駆動され、必要に応じてθZ方向等にも駆動される。
Further, in the present embodiment, pupil surfaces 35A and 35B that can be approximated by two planes intersecting the vicinity of the reflection surface of the second mirror M2 of the projection optical system PO are formed, and along these pupil surfaces 35A and 35B. An aperture stop AS is arranged. The pupil surfaces 35A and 35B and the aperture stop AS will be described later.
Wafer W is attracted and held on wafer stage WST via electrostatic chuck WH. Wafer stage WST is arranged on a guide surface arranged along the XY plane. Wafer stage WST is driven in the X direction and the Y direction by a drive system (not shown) composed of, for example, a magnetic levitation type two-dimensional linear actuator based on the measured value of a laser interferometer (not shown) and the control information of main control system 31. It is driven by a predetermined stroke, and is also driven in the θZ direction or the like as required.

ウエハステージWST上のウエハWの近傍には、例えばX方向に配列された複数の光電センサを含む照射量モニタ29が設置され、照射モニタ29の検出信号が主制御系31に供給されている。一例として、照射モニタ29の計測結果に基づいて、主制御系31はウエハW上の各点で走査露光後の積算露光量が許容範囲内に収まるように、レーザプラズマ光源10の発振周波数及びパルスエネルギー、並びに/又はレチクルステージRST(及びウエハステージWST)の走査速度等を制御する。   In the vicinity of the wafer W on the wafer stage WST, for example, an irradiation amount monitor 29 including a plurality of photoelectric sensors arranged in the X direction is installed, and a detection signal of the irradiation monitor 29 is supplied to the main control system 31. As an example, based on the measurement result of the irradiation monitor 29, the main control system 31 causes the oscillation frequency and pulse of the laser plasma light source 10 so that the integrated exposure amount after scanning exposure is within an allowable range at each point on the wafer W. The energy and / or the scanning speed of reticle stage RST (and wafer stage WST) are controlled.

露光の際には、ウエハW上のレジストから生じるガスが投影光学系PLのミラーM1〜M6に悪影響を与えないように、ウエハWはパーティション7の内部に配置される。パーティション7には照明光ELを通過させる開口が形成され、パーティション7内の空間は、主制御系31の制御のもとで真空ポンプ(不図示)により真空排気されている。
ウエハW上の1つのダイ(ショット領域)を露光するときには、照明光ELが照明光学系ILSによりレチクルRの照明領域27Rに照射され、レチクルRとウエハWとは投影光学系POに対して投影光学系POの縮小倍率に従った所定の速度比でY方向に同期して移動する(同期走査される)。このようにして、レチクルパターンはウエハW上の一つのダイに露光される。その後、ウエハステージWSTを駆動してウエハWをX方向、Y方向にステップ移動した後、ウエハW上の次のダイに対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハW上の複数のダイに対して順次レチクルRのパターンが露光される。
At the time of exposure, the wafer W is disposed inside the partition 7 so that the gas generated from the resist on the wafer W does not adversely affect the mirrors M1 to M6 of the projection optical system PL. The partition 7 is formed with an opening through which the illumination light EL passes, and the space in the partition 7 is evacuated by a vacuum pump (not shown) under the control of the main control system 31.
When one die (shot area) on the wafer W is exposed, the illumination light EL is irradiated onto the illumination area 27R of the reticle R by the illumination optical system ILS, and the reticle R and the wafer W are projected onto the projection optical system PO. It moves synchronously in the Y direction at a predetermined speed ratio according to the reduction magnification of the optical system PO (scanned synchronously). In this way, the reticle pattern is exposed to one die on the wafer W. Thereafter, wafer stage WST is driven to move wafer W stepwise in the X and Y directions, and then the pattern of reticle R is scanned and exposed on the next die on wafer W. Thus, the pattern of the reticle R is sequentially exposed to a plurality of dies on the wafer W by the step-and-scan method.

次に、本実施形態の投影光学系POの瞳面及び開口絞りASにつき詳細に説明する。
図3は、図1のレチクルR及び投影光学系POの一部を示す。図3において、投影光学系POの第2のミラーM2の−Z方向(像面側)を向いた反射面M2aは、一例として曲率半径の大きい緩やかな凹面であり、反射面M2aの中心に回転対称軸である光軸AXがある。なお、光軸AXは反射面M2aの中心になくともよく、さらに光軸AXは反射面M2aから外れていても差し支えない。また、レチクルRの照明領域27Rからの照明光は、第1のミラーM1で反射されて入射光37Iとして、ミラーM2の反射面M2aに対して−Y方向側から斜めに入射する。そして、入射光37Iは反射面M2aで+Y方向側に斜めに反射されて、反射光37Rとして第3のミラーM3に向かう。即ち、入射光37Iは反射面M2aに対して垂直入射ではなく、入射光37Iの方向と反射光37Rの方向とは異なっており、反射面M2aの近傍に投影光学系POの瞳面が形成される。
Next, the pupil plane and aperture stop AS of the projection optical system PO of this embodiment will be described in detail.
FIG. 3 shows a part of the reticle R and the projection optical system PO of FIG. In FIG. 3, the reflecting surface M2a facing the −Z direction (image plane side) of the second mirror M2 of the projection optical system PO is a gentle concave surface having a large curvature radius as an example, and rotates about the center of the reflecting surface M2a. There is an optical axis AX that is an axis of symmetry. The optical axis AX may not be at the center of the reflecting surface M2a, and the optical axis AX may be off the reflecting surface M2a. The illumination light from the illumination region 27R of the reticle R is reflected by the first mirror M1 and incident obliquely as incident light 37I from the −Y direction side on the reflection surface M2a of the mirror M2. The incident light 37I is reflected obliquely to the + Y direction side by the reflecting surface M2a and travels toward the third mirror M3 as reflected light 37R. That is, the incident light 37I is not perpendicularly incident on the reflecting surface M2a, and the direction of the incident light 37I and the direction of the reflected light 37R are different, and the pupil plane of the projection optical system PO is formed in the vicinity of the reflecting surface M2a. The

また、本実施形態では、投影光学系POの瞳面を、照明領域27R(物体面)から種々の方向に沿って投影光学系POに入射する複数の平行光束がそれぞれ集光される最も小さい断面積の領域である最小集光領域(最小錯乱円)に実質的に接する面と定義する。なお、各平行光束が集光される複数の最小集光領域が不連続である場合には、例えば最小自乗法によってそれら複数の最小集光領域に接する一つ若しくは連結される複数の平面、又は一つ若しくは連結される複数の曲面(円筒状、円錐面状、若しくは球面状等の面)を決定し、それらの一つ若しくは複数の平面又は曲面を瞳面としてもよい。   Further, in the present embodiment, the pupil plane of the projection optical system PO is the smallest section on which a plurality of parallel light beams incident on the projection optical system PO along various directions from the illumination area 27R (object plane) are condensed. It is defined as a surface that is substantially in contact with the minimum condensing region (minimum circle of confusion) that is the area of the area. In addition, when the plurality of minimum condensing areas where the parallel light beams are collected are discontinuous, for example, one or a plurality of planes connected to the plurality of minimum condensing areas by the least square method, or One or a plurality of curved surfaces (surfaces such as a cylindrical shape, a conical surface, or a spherical shape) may be determined, and one or more planes or curved surfaces thereof may be used as the pupil plane.

さらに、投影光学系POの瞳とは、照明領域27R(物体面)から種々の方向に沿って投影光学系POに入射する複数の平行光束の最小集光領域(最小錯乱円)の輪郭部、又はこの輪郭部で囲まれた領域であると定義する。
そして、図1の照明光学系ILSによる照明条件が通常照明である場合に、図3の照明領域27Rから種々の方向に射出される複数の平行光束のうちで、中心の正反射光(0次光)に対応するX軸に平行な軸を中心として反時計周りに所定反射角を持つ実線で示す光束ELCと、光束ELCよりも反射角の小さい(−Y方向に傾斜した)一点鎖線で示す光束ELAと、光束ELCよりも反射角の大きい(+Y方向に傾斜した)点線で示す光束ELBとを想定する。光束ELA〜ELCは照明領域27Rから射出される段階では平行光束であるが、ミラーM2に入射する際に集光されている。この場合、中央の光束ELCは、ミラーM1で反射され、ミラーM2の反射面M2aの中心(ここでは光軸AX上)の最小集光領域36Cに集光した後、反射面M2aで反射されてミラーM3に向かう。
Further, the pupil of the projection optical system PO is an outline portion of a minimum condensing region (minimum circle of confusion) of a plurality of parallel light beams incident on the projection optical system PO along various directions from the illumination region 27R (object plane). Alternatively, it is defined as an area surrounded by the contour portion.
Then, when the illumination condition by the illumination optical system ILS in FIG. 1 is normal illumination, the center regular reflection light (0th order) among the plurality of parallel light beams emitted in various directions from the illumination region 27R in FIG. Light beam ELC indicated by a solid line having a predetermined reflection angle counterclockwise around an axis parallel to the X axis corresponding to (light), and a one-dot chain line having a reflection angle smaller than that of light beam ELC (inclined in the −Y direction). Assume a light beam ELA and a light beam ELB indicated by a dotted line having a larger reflection angle than the light beam ELC (tilted in the + Y direction). The luminous fluxes ELA to ELC are parallel luminous fluxes when they are emitted from the illumination area 27R, but are condensed when entering the mirror M2. In this case, the central light beam ELC is reflected by the mirror M1, condensed on the minimum condensing region 36C at the center (here, on the optical axis AX) of the reflecting surface M2a of the mirror M2, and then reflected by the reflecting surface M2a. Head to mirror M3.

また、図4(A)は、図3のミラーM2に対する入射光及び反射光を示す斜視図、図4(B)は図4(A)のミラーM2の反射面を示す平面図である。図3の照明領域27Rから射出される光束ELCに対してX方向に傾斜した他の平行光束(不図示)は、図4(A)において、反射面M2a上で最小集光領域36Cに対して+X方向又は−X方向にずれて配列される最小集光領域に集光される。従って、上記の定義から、ミラーM2において光軸AXを通りXZ面に平行な断面M2f(図3参照)上では、投影光学系POの瞳面が反射面M2a上の光軸AXを通りX軸に沿った表面領域35Cに形成される。   4A is a perspective view showing incident light and reflected light with respect to the mirror M2 in FIG. 3, and FIG. 4B is a plan view showing a reflecting surface of the mirror M2 in FIG. 4A. Other parallel light beams (not shown) inclined in the X direction with respect to the light beam ELC emitted from the illumination region 27R in FIG. 3 are compared with the minimum light collection region 36C on the reflection surface M2a in FIG. The light is condensed in the minimum light condensing region that is shifted in the + X direction or the −X direction. Therefore, from the above definition, on the cross section M2f (see FIG. 3) passing through the optical axis AX and parallel to the XZ plane in the mirror M2, the pupil plane of the projection optical system PO passes through the optical axis AX on the reflective surface M2a and becomes the X axis. Is formed in the surface region 35C along.

また、図3において、光束ELCに対して−Y方向に傾斜した光束ELAは、ミラーM1で反射され、ミラーM2の反射面M2aの中心から−Y方向側の領域において反射面M2aの手前(上方かつ−Z方向)の最小集光領域36Aに集光した後、反射面M2aで反射されてミラーM3に向かう。同様に、光束ELCに対して−Y方向に傾斜した他の平行光束(不図示)も、図4(A)において、反射面M2aの表面領域35Cから−Y方向側の領域において反射面M2aの手前の最小集光領域(不図示)に集光し、これらの最小集光領域36A等は、反射面M2aに対して表面領域35Cで交差して、表面領域35Cから−Y方向で次第に反射面M2aから離れていく曲面に実質的に接している。従って、上記の定義から、ミラーM2の反射面M2aの表面領域35Cから−Y方向側の領域では、その次第に反射面M2aから離れていく曲面が投影光学系POの瞳面35Aである。また、瞳面35Aでは入射光37Iが最小集光領域を形成する。   In FIG. 3, the light beam ELA inclined in the −Y direction with respect to the light beam ELC is reflected by the mirror M1, and in the region on the −Y direction side from the center of the reflection surface M2a of the mirror M2 (above the upper surface) In addition, after condensing in the minimum condensing region 36A (in the −Z direction), the light is reflected by the reflecting surface M2a toward the mirror M3. Similarly, other parallel light beams (not shown) that are inclined in the −Y direction with respect to the light beam ELC are also formed on the reflective surface M2a in the region on the −Y direction side from the surface region 35C of the reflective surface M2a in FIG. The light is focused on the front minimum condensing region (not shown), and these minimum condensing regions 36A and the like intersect the reflecting surface M2a at the surface region 35C and gradually reflect from the surface region 35C in the −Y direction. It is substantially in contact with the curved surface moving away from M2a. Accordingly, from the above definition, in the region on the −Y direction side from the surface region 35C of the reflecting surface M2a of the mirror M2, the curved surface gradually moving away from the reflecting surface M2a is the pupil surface 35A of the projection optical system PO. Further, the incident light 37I forms a minimum condensing region on the pupil surface 35A.

一方、図3において、光束ELCに対して+Y方向に傾斜した光束ELBは、ミラーM1で反射され、ミラーM2の反射面M2aで反射された後、反射面M2aの中心から+Y方向側の領域において反射面M2aの手前(上方かつ−Z方向)の最小集光領域36Bに集光してからミラーM3に向かう。同様に、光束ELCに対して+Y方向に傾斜した他の平行光束(不図示)も、図4(A)において、反射面M2aで反射された後、反射面M2aの表面領域35Cから+Y方向側の領域において反射面M2aの手前の最小集光領域(不図示)に集光し、これらの最小集光領域36B等は、反射面M2aに対して表面領域35Cで交差して、表面領域35Cから+Y方向側で次第に反射面M2aから離れていく曲面に実質的に接している。従って、上記の定義から、ミラーM2の反射面M2aの表面領域35Cから+Y方向側の領域では、その次第に反射面M2aから離れていく曲面が投影光学系POの瞳面35Bである。また、瞳面35Bでは反射光37Rが最小集光領域を形成する。   On the other hand, in FIG. 3, the light beam ELB inclined in the + Y direction with respect to the light beam ELC is reflected by the mirror M1, reflected by the reflection surface M2a of the mirror M2, and then in the region on the + Y direction side from the center of the reflection surface M2a. After condensing on the minimum condensing region 36B in front of the reflecting surface M2a (above and in the −Z direction), it is directed to the mirror M3. Similarly, another parallel light beam (not shown) tilted in the + Y direction with respect to the light beam ELC is also reflected by the reflective surface M2a in FIG. 4A, and is then + Y direction side from the surface region 35C of the reflective surface M2a. In the region, the light is condensed on a minimum condensing region (not shown) in front of the reflecting surface M2a, and these minimum condensing regions 36B and the like intersect the reflecting surface M2a at the surface region 35C and from the surface region 35C. It is substantially in contact with the curved surface gradually moving away from the reflecting surface M2a on the + Y direction side. Therefore, from the above definition, in the region on the + Y direction side from the surface region 35C of the reflecting surface M2a of the mirror M2, the curved surface gradually moving away from the reflecting surface M2a is the pupil surface 35B of the projection optical system PO. In addition, the reflected light 37R forms a minimum condensing region on the pupil surface 35B.

従って、図4(B)に示すように、ミラーM2の反射面M2aの上方において、入射光37Iのうちで反射光37Rと重ならない斜線を施した部分37Iaが−Y方向の瞳面35Aを通過し、反射光37Rのうちで入射光37Iと重ならない斜線を施した部分37Raが+Y方向の瞳面35Bを通過する。
さらに、図3において、反射面M2aの上方の最小集光領域36A及び36Bには、それぞれ照明領域27Rの+Y方向及び−Y方向の端部から同じ方向に射出される照明光が集光される。従って、照明領域27R上の異なる点から同じ開き角で射出される2つの光束は、ミラーM2上の瞳面35A,35Bにおいて同じ領域を通過する。この場合、図4(A)において、入射光37Iが、図3の照明領域27R上の異なる点から射出された実線の入射光37I1及び点線の入射光37I2を含み、これらの入射光が反射面M2aで反射されてそれぞれ反射光37R1及び37R2となるものとする。また、入射光37I1,37I2の開き角は同じとすると、入射光37I1,37I2の瞳面35A上の−Y方向の輪郭部35Aaは同じになり、それに対応する射出光37R1,37R2の瞳面35B上の+Y方向の輪郭部35Baは同じになる。
Accordingly, as shown in FIG. 4B, a portion 37Ia of the incident light 37I that is shaded and does not overlap with the reflected light 37R passes through the pupil plane 35A in the −Y direction above the reflecting surface M2a of the mirror M2. In the reflected light 37R, a hatched portion 37Ra that does not overlap with the incident light 37I passes through the pupil plane 35B in the + Y direction.
Further, in FIG. 3, the illumination light emitted in the same direction from the + Y direction and −Y direction ends of the illumination region 27R is condensed on the minimum condensing regions 36A and 36B above the reflecting surface M2a, respectively. . Accordingly, two light beams emitted from the different points on the illumination area 27R at the same opening angle pass through the same area on the pupil planes 35A and 35B on the mirror M2. In this case, in FIG. 4A, the incident light 37I includes solid line incident light 37I1 and dotted line incident light 37I2 emitted from different points on the illumination region 27R in FIG. It is assumed that the light is reflected by M2a and becomes reflected light 37R1 and 37R2, respectively. If the opening angles of the incident light 37I1 and 37I2 are the same, the contour portions 35Aa in the −Y direction on the pupil surface 35A of the incident light 37I1 and 37I2 are the same, and the corresponding pupil surfaces 35B of the emitted light 37R1 and 37R2 are the same. The upper + Y-direction contour portion 35Ba is the same.

従って、上記の定義から、図4(B)に示す瞳面35A上の−Y方向の最小集光領域の輪郭である半分の円周状の輪郭部35Aaと、瞳面35B上の+Y方向のY方向の最小集光領域の輪郭である半分の円周状の輪郭部35Baとが投影光学系POの瞳となる。なお、輪郭部35Aa及び35Baで囲まれた領域を投影光学系POの瞳とみなすことも可能である。そして、本実施形態において、レチクルRの照明領域27Rの異なる位置(物点)から同じ開き角で射出される照明光は、ミラーM2の反射面M2aの近傍において、投影光学系POの瞳面35A,35B上の同じ領域、即ち投影光学系POの瞳内で同じ領域を通過する。従って、後述のように瞳面35A,35Bに沿って開口絞りASを配置して、瞳面35A,35Bを通過する光束の領域を規定することによって、照明領域27R上の異なる物点に対応する図1のウエハW上の露光領域27W上の異なる像点に入射する光束の開き角、ひいては開口数(NA)は互いに等しくなる。従って、投影光学系POの像面上の各点の開口数は均一である。   Therefore, from the above definition, a half-circumferential contour portion 35Aa, which is the contour of the minimum condensing region in the −Y direction on the pupil surface 35A shown in FIG. 4B, and the + Y direction on the pupil surface 35B. The half-circumferential contour portion 35Ba, which is the contour of the minimum condensing region in the Y direction, becomes the pupil of the projection optical system PO. Note that the region surrounded by the contour portions 35Aa and 35Ba can be regarded as the pupil of the projection optical system PO. In this embodiment, the illumination light emitted from different positions (object points) of the illumination area 27R of the reticle R at the same opening angle is near the reflecting surface M2a of the mirror M2, and the pupil plane 35A of the projection optical system PO. , 35B, that is, the same region within the pupil of the projection optical system PO. Therefore, by arranging the aperture stop AS along the pupil surfaces 35A and 35B as described later and defining the region of the light beam passing through the pupil surfaces 35A and 35B, it corresponds to different object points on the illumination region 27R. The opening angles of the light beams incident on different image points on the exposure area 27W on the wafer W in FIG. 1 and hence the numerical aperture (NA) are equal to each other. Therefore, the numerical aperture of each point on the image plane of the projection optical system PO is uniform.

なお、図4(C)は、本実施形態の図4(A)の反射光学系と等価な透過光学系を示す。図4(C)において、入射光47Iが所定のレンズ(屈折光学素子)の屈折面44を介して透過光47Tとなる。なお、屈折面44を薄いレンズとみなすことも可能である。この透過光学系において、図4(A)の瞳面35A,35Bに対応する瞳面は、屈折面44と交差するように傾斜している点線で示す瞳面45である。この場合、入射光47Iの右半分の光束中に瞳面45の一部が形成され、透過光47Tの左半分の光束中に瞳面45の残りの部分が形成される。   FIG. 4C shows a transmission optical system equivalent to the reflection optical system of FIG. 4A of the present embodiment. In FIG. 4C, incident light 47I becomes transmitted light 47T through a refracting surface 44 of a predetermined lens (refractive optical element). The refracting surface 44 can be regarded as a thin lens. In this transmission optical system, the pupil plane corresponding to the pupil planes 35A and 35B in FIG. 4A is a pupil plane 45 indicated by a dotted line that is inclined so as to intersect the refracting plane 44. In this case, a part of the pupil plane 45 is formed in the right half of the incident light 47I, and the remaining portion of the pupil plane 45 is formed in the left half of the transmitted light 47T.

次に、図5(A)は図4(A)のミラーM2の反射面M2a上に配置される本実施形態の開口絞りASを示す斜視図、図5(B)は図5(A)のVB方向から見た側面図である。図5(A)において、開口絞りASは、−Y方向側の瞳面35Aにほぼ沿って配置される第1遮光板38Aと、+Y方向側の瞳面35Bにほぼ沿って配置される第2遮光板38Bとを含み、遮光板38A及び38Bは、瞳面35A,35Bの境界線である反射面M2aの中心(光軸AX)を通る表面領域35Cに近接した位置でV字状に連結されている。図5(B)に示すように、瞳面35A,35Bは必ずしも平面ではなく曲面であってもよく、瞳面35A,35Bが曲面である場合には、一例としてそれに沿って開口絞りASの遮光板38A,38Bは曲面となる。   Next, FIG. 5A is a perspective view showing the aperture stop AS of this embodiment arranged on the reflection surface M2a of the mirror M2 of FIG. 4A, and FIG. 5B is the view of FIG. It is the side view seen from the VB direction. In FIG. 5A, the aperture stop AS is a first light shielding plate 38A disposed substantially along the pupil plane 35A on the −Y direction side, and a second disposed substantially along the pupil plane 35B on the + Y direction side. The light shielding plates 38A and 38B are connected in a V shape at a position close to the surface region 35C passing through the center (optical axis AX) of the reflecting surface M2a, which is the boundary line between the pupil surfaces 35A and 35B. ing. As shown in FIG. 5B, the pupil planes 35A and 35B may not necessarily be flat surfaces but may be curved surfaces. When the pupil planes 35A and 35B are curved surfaces, as an example, the light shielding of the aperture stop AS is performed. The plates 38A and 38B are curved.

図5(A)において、照明光ELを遮光する耐熱性の高い金属等から形成される平板状の遮光板38A及び38B中にそれぞれ略半円状の開口38Aa及び38Baが形成され、開口38Aa,38Baは全体として略円形又は略楕円状の開口を形成している。この開口38Aa,38Baの大きさによって投影光学系POの開口数が規定される。開口38Aa,38Baの形状は、投影光学系POの像面上の各点に集光する光束が所定開口数の円錐状になるように設定される。また、開口数を切り換える場合には、交換機構(不図示)によって開口絞りASを開口の大きさが異なる別の開口絞りと交換してもよい。このように投影光学系POの開口数を切り替えた場合でも、瞳面35A,35B上の各点には照明領域27Rの異なる点から同じ方向に射出される照明光が入射し、これらの照明光は露光領域27Wの対応する(共役な)点に入射するため、像面上の各点に入射する照明光の開き角、ひいては開口数は均一である。   In FIG. 5A, substantially semicircular openings 38Aa and 38Ba are respectively formed in flat light shielding plates 38A and 38B made of a metal having high heat resistance that shields the illumination light EL, and the openings 38Aa, 38A, 38Ba forms a substantially circular or substantially elliptical opening as a whole. The numerical aperture of the projection optical system PO is defined by the size of the openings 38Aa and 38Ba. The shapes of the apertures 38Aa and 38Ba are set so that the light beam condensed at each point on the image plane of the projection optical system PO has a conical shape with a predetermined numerical aperture. When the numerical aperture is switched, the aperture stop AS may be replaced with another aperture stop having a different aperture size by an exchange mechanism (not shown). Even when the numerical aperture of the projection optical system PO is switched in this way, illumination light emitted in the same direction from different points in the illumination area 27R is incident on each point on the pupil planes 35A and 35B. Is incident on the corresponding (conjugate) point of the exposure area 27W, so that the opening angle of the illumination light incident on each point on the image plane, and hence the numerical aperture, is uniform.

本実施形態の作用効果等は以下の通りである。
(1)本実施形態の露光装置100の投影光学系POは、入射光37Iの方向と反射光37Rの方向とが異なるように配置されたミラーM2(反射光学素子)を備えた光学系である。そして、投影光学系POにおいて、図4(B)の入射光37Iのうち反射光37Rと重ならない部分37Iaにおける投影光学系POの瞳がミラーM2の反射面M2aの上方に形成され、反射光37Rのうち入射光37Iと重ならない部分37Raにおけるその瞳が反射面M2aの上方に形成される。
Effects and the like of this embodiment are as follows.
(1) The projection optical system PO of the exposure apparatus 100 of the present embodiment is an optical system that includes a mirror M2 (reflection optical element) arranged so that the direction of the incident light 37I and the direction of the reflected light 37R are different. . In the projection optical system PO, the pupil of the projection optical system PO in the portion 37Ia of the incident light 37I in FIG. 4B that does not overlap with the reflected light 37R is formed above the reflection surface M2a of the mirror M2, and the reflected light 37R. The pupil of the portion 37Ra that does not overlap the incident light 37I is formed above the reflecting surface M2a.

また、投影光学系POにおいては、投影光学系POの瞳面35A,35Bが図4(A)のミラーM2の反射面M2aと交差するとともに、入射光37Iの反射光37Rと反対側の端部における瞳面35Aが反射面M2aの上方に位置し、反射光37Rの入射光37Iと反対側の端部における瞳面35Bが反射面M2aの上方に位置している。この場合、瞳面35Aは入射光37I側に形成され、瞳面35Bは反射光37R側に形成される。   In the projection optical system PO, the pupil surfaces 35A and 35B of the projection optical system PO intersect with the reflection surface M2a of the mirror M2 in FIG. 4A, and the end of the incident light 37I opposite to the reflected light 37R. Is located above the reflecting surface M2a, and the pupil surface 35B at the end opposite to the incident light 37I of the reflected light 37R is located above the reflecting surface M2a. In this case, the pupil plane 35A is formed on the incident light 37I side, and the pupil plane 35B is formed on the reflected light 37R side.

さらに、投影光学系POにおいては、投影光学系POの瞳の−Y方向(入射光側)の輪郭部35Aa(第1部分)が入射光37I側に形成され、その瞳の+Y方向(反射光側)の輪郭部35Ba(第2部分)が反射光37R側に形成される。
本実施形態の投影光学系POによれば、投影光学系PO中の第2のミラーM2の反射面M2aの近傍に瞳面35A,35Bが配置される。さらに、入射光37Iのうちで反射光37Rと重ならない部分37Ia(反射光と反対側の端部)における瞳面35A(又は輪郭部35Aa)及び反射光37Rのうちで入射光37Iと重ならない部分37Ra(入射光と反対側の端部)における瞳面35B(又は輪郭部35Ba)の両方を反射面M2aの上方に配置できる。従って、入射光及び反射光の両方で瞳面35A,35B上(最適な瞳位置)に開口絞りAS(の開口)を容易に設置できるようになるため、投影光学系POの像面上の各点での照明光ELの開口数を均一にできる。言い換えると、いずれの像点においても瞳内不均一性は発生せず、また、像点ごとの瞳内不均一性のばらつきも発生しない。従って、結像特性の均一性が向上し、レチクルRのパターンの像を全体として高精度にウエハW上に転写できる。
Further, in the projection optical system PO, a contour portion 35Aa (first portion) in the −Y direction (incident light side) of the pupil of the projection optical system PO is formed on the incident light 37I side, and the + Y direction (reflected light) of the pupil is formed. Side) contour portion 35Ba (second portion) is formed on the reflected light 37R side.
According to the projection optical system PO of the present embodiment, the pupil surfaces 35A and 35B are arranged in the vicinity of the reflection surface M2a of the second mirror M2 in the projection optical system PO. Further, the portion of the incident light 37I that does not overlap with the reflected light 37R and the portion of the pupil surface 35A (or contour portion 35Aa) and the reflected light 37R that does not overlap with the reflected light 37R does not overlap with the incident light 37I. Both of the pupil plane 35B (or contour portion 35Ba) at 37Ra (the end opposite to the incident light) can be arranged above the reflecting surface M2a. Accordingly, the aperture stop AS can be easily installed on the pupil planes 35A and 35B (optimal pupil position) for both incident light and reflected light. The numerical aperture of the illumination light EL at a point can be made uniform. In other words, in-pupil nonuniformity does not occur at any image point, and in-pupil nonuniformity does not vary from image point to image point. Therefore, the uniformity of the imaging characteristics is improved, and the pattern image of the reticle R can be transferred onto the wafer W with high accuracy as a whole.

(2)この場合、投影光学系POの瞳は、照明領域27R(物体面)から種々の方向に投影光学系POに入射する複数の平行光束の最小集光領域(最小錯乱円)36A〜36Cの輪郭部35Aa,35Ba又はこの内側である。また、投影光学系POの瞳面35A,35Bは、それらの最小集光領域(最小錯乱円)に実質的に接する面である。従って、投影光学系POの光学設計時に、例えば物体面から像面までの光線追跡によって容易に瞳又は瞳面の位置を設定できる。   (2) In this case, the pupil of the projection optical system PO is the minimum condensing area (minimum circle of confusion) 36A to 36C of a plurality of parallel light beams incident on the projection optical system PO in various directions from the illumination area 27R (object plane). The contour portions 35Aa and 35Ba or the inside thereof. Further, the pupil surfaces 35A and 35B of the projection optical system PO are surfaces that substantially contact the minimum condensing region (minimum circle of confusion). Therefore, at the time of optical design of the projection optical system PO, the position of the pupil or the pupil plane can be easily set by, for example, tracing light rays from the object plane to the image plane.

なお、図1の投影光学系POは中間結像を行うタイプであるため、瞳又は瞳面は形式的には投影光学系PO中の2箇所に存在するが、そのうちで開口絞りASが設置される部分によって投影光学系POの開口数が規定される。
なお、投影光学系POの瞳面を、物体面に対する光学的なフーリエ変換面として定義してもよい。この場合には、投影光学系POの瞳とは、その瞳面において有効な結像光束が通過する領域の輪郭又はこれで囲まれた領域となる。
Since the projection optical system PO in FIG. 1 is a type that performs intermediate imaging, the pupil or the pupil plane is formally present in two places in the projection optical system PO, of which the aperture stop AS is installed. The numerical aperture of the projection optical system PO is defined by this part.
Note that the pupil plane of the projection optical system PO may be defined as an optical Fourier transform plane with respect to the object plane. In this case, the pupil of the projection optical system PO is an outline of an area through which an effective imaging light beam passes on the pupil plane or an area surrounded by the outline.

(3)また、図4(A)の瞳面35A,35B上の最小集光領域の輪郭部35Aa,35Baに対応する瞳は、全体としてほぼ円周(楕円状を含む)を対称に折り曲げた形状である。従って、その瞳に沿った開口を有する断面がV字状の開口絞りASを、ミラーM2の反射面M2aと機械的に干渉することなく容易に設置可能である。
(4)また、投影光学系POはさらに図5(A)の開口絞りASを備え、開口絞りASはほぼ瞳面35A,35B上に配置され、その瞳を制限するための例えば略円形又は楕円状の開口38Aa,38Baが形成されている。従って、開口絞りASの開口の形状によって投影光学系POの開口数を所望の値に設定できる。
(3) In addition, the pupils corresponding to the contours 35Aa and 35Ba of the minimum condensing region on the pupil planes 35A and 35B in FIG. 4A are bent substantially symmetrically (including an ellipse) as a whole. Shape. Therefore, the aperture stop AS having a V-shaped cross section having an opening along the pupil can be easily installed without mechanically interfering with the reflecting surface M2a of the mirror M2.
(4) The projection optical system PO further includes the aperture stop AS shown in FIG. 5A, and the aperture stop AS is disposed substantially on the pupil planes 35A and 35B, and is, for example, substantially circular or elliptical for limiting the pupil. Shaped openings 38Aa and 38Ba are formed. Therefore, the numerical aperture of the projection optical system PO can be set to a desired value depending on the shape of the aperture of the aperture stop AS.

なお、開口絞りASの遮光板38A,38Bは瞳面35A,35Bの近傍に配置してもよい。瞳面35A,35Bの近傍とは、投影光学系POの像面上の各点での開口数がほぼ均一とみなせる程度の間隔は許容されることを意味する。従って、仮に瞳面35A,35Bが複雑な曲面であっても、開口絞りASの遮光板38A,38Bはそれらの曲面の平均的な平面に沿って配置される平面であってもよい。   The light shielding plates 38A and 38B of the aperture stop AS may be disposed in the vicinity of the pupil planes 35A and 35B. The vicinity of the pupil planes 35A and 35B means that an interval that allows the numerical aperture at each point on the image plane of the projection optical system PO to be considered to be substantially uniform is allowed. Therefore, even if the pupil surfaces 35A and 35B are complicated curved surfaces, the light shielding plates 38A and 38B of the aperture stop AS may be flat surfaces arranged along the average planes of these curved surfaces.

また、開口絞りASは1枚の平板から形成するのではなく、分離された遮光板38A及び38Bを保持部材(不図示)で保持してもよい。
(5)なお、開口絞りASとして、図6に示す可変開口絞りを用いてもよい。図6において、開口絞りASは、第1フレーム51A及び第2フレーム51Bと、第1フレーム51Aに沿って例えば送りねじ方式で互いに独立に平行に移動する多数の遮光部材52Aと、第2フレーム51Bに沿って例えば送りねじ方式で互いに独立に移動する多数の遮光部材52Bとを備えている。この場合、多数の遮光部材52Aは図4(A)の瞳面35Aに沿って配置され、遮光部材52Bは瞳面35Bに沿って配置される。このような構成の開口絞りASを用いて、制御系(不図示)によって多数の遮光部材52A,52Bの位置を個別に制御することによって、開口絞りASの開口の形状を実質的に任意の形状に設定し、その結果、投影光学系POの開口数を任意の値に設定できる。
Further, the aperture stop AS is not formed from a single flat plate, but the separated light shielding plates 38A and 38B may be held by a holding member (not shown).
(5) Note that the variable aperture stop shown in FIG. 6 may be used as the aperture stop AS. In FIG. 6, the aperture stop AS includes a first frame 51A and a second frame 51B, a large number of light shielding members 52A that move in parallel independently of each other by, for example, a feed screw method along the first frame 51A, and a second frame 51B. A number of light shielding members 52B that move independently of each other by, for example, a feed screw method. In this case, a large number of light shielding members 52A are arranged along the pupil plane 35A in FIG. 4A, and the light shielding members 52B are arranged along the pupil plane 35B. By using the aperture stop AS having such a configuration, the position of the plurality of light shielding members 52A and 52B is individually controlled by a control system (not shown), so that the aperture shape of the aperture stop AS is substantially arbitrary. As a result, the numerical aperture of the projection optical system PO can be set to an arbitrary value.

(6)また、図4(A)の輪郭部35Aa,35Baよりなる投影光学系POの瞳は、連結される2つの曲面である瞳面35A,35B(近似的にそれぞれ平面とみなすことも可能である)上に形成されている。しかしながら、投影光学系POの瞳面を連結される3つのほぼ平面とみなすことができる面から形成し、これらの3つの面(例えばほぼ平面)上に投影光学系POの瞳を形成してもよい。   (6) Further, the pupil of the projection optical system PO formed by the contour portions 35Aa and 35Ba in FIG. 4A can be regarded as pupil surfaces 35A and 35B which are two curved surfaces to be connected (approximately respectively planes). Is formed on). However, even if the pupil plane of the projection optical system PO is formed from three planes that can be regarded as connected substantially planes, the pupil of the projection optical system PO is formed on these three planes (for example, substantially planes). Good.

(7)また、投影光学系POは、複数の共軸の非球面のミラーM1〜M6を備えた反射系であり、それらのミラーM1〜M6のうちの一つのミラーM2の反射面の近傍に瞳面が形成されている。ミラーM1〜M6の場合には、反射面上に近接して開口絞りASを配置することは困難であるが、本実施形態のように反射面と交差し、かつY方向の端部では反射面の上方に位置する瞳面35A,35Bを形成することで、容易に開口絞りASを配置できる。   (7) The projection optical system PO is a reflection system including a plurality of coaxial aspherical mirrors M1 to M6, and is in the vicinity of the reflection surface of one of the mirrors M1 to M6. A pupil plane is formed. In the case of the mirrors M1 to M6, it is difficult to dispose the aperture stop AS close to the reflecting surface, but the reflecting surface intersects with the reflecting surface as in the present embodiment, and at the end in the Y direction. By forming the pupil surfaces 35A and 35B located above the aperture stop AS, the aperture stop AS can be easily arranged.

(8)また、投影光学系POはレチクルRのパターン面(第1面)の像をウエハWの表面(第2面)上に形成する投影光学系である。従って、第2面上の各点での開口数を均一化できる。
なお、本発明は、図1の露光装置100の照明光学系ILSに適用することも可能である。この場合、照明光学系ILS中の第2フライアイ光学系23(微小な反射光学素子の集合体)の反射面の近傍に照明光学系ILSの瞳面が形成されるため、その瞳面を第2フライアイ光学系23の反射面と交差し、かつY方向(入射光と反射光との方向が変わる方向)の両端部でその反射面の上方に設定すればよい。そして、その瞳面に沿って例えばV字型に折れ曲がった開口絞りを配置することによって、照明領域27R(被照射面)上の各点での照明光ELの開き角、ひいては開口数を均一にできる。
(8) The projection optical system PO is a projection optical system that forms an image of the pattern surface (first surface) of the reticle R on the surface (second surface) of the wafer W. Therefore, the numerical aperture at each point on the second surface can be made uniform.
The present invention can also be applied to the illumination optical system ILS of the exposure apparatus 100 in FIG. In this case, the pupil plane of the illumination optical system ILS is formed in the vicinity of the reflection surface of the second fly's eye optical system 23 (aggregate of minute reflection optical elements) in the illumination optical system ILS. It may be set above the reflecting surface at both ends in the Y direction (direction in which the direction of incident light and reflected light changes) intersecting the reflecting surface of the two fly's eye optical system 23. Then, by arranging, for example, an aperture stop bent in a V shape along the pupil plane, the opening angle of the illumination light EL at each point on the illumination area 27R (irradiated surface), and hence the numerical aperture, are made uniform. it can.

(9)また、露光装置100は、照明光ELでレチクルRのパターンを照明し、照明光ELでそのパターン及び投影光学系POを介してウエハWを露光する露光装置であって、その投影光学系POの瞳面(瞳)は上記のようにミラーM2の近傍に形成されている。従って、レチクルRのパターンを高精度にウエハW上に露光できる。
また、露光装置100において、投影光学系POの瞳面をミラーM2の反射面の近傍にその反射面にほぼ平行に配置するか、又は例えばミラーM2とミラーM3との間の光路中等に配置して、照明光学系ILSにおいて、その瞳面を第2フライアイ光学系23の反射面と交差し、かつY方向の両端部でその反射面の上方に設定してもよい。この場合には、照明条件をより高精度に設定できる。
(9) The exposure apparatus 100 is an exposure apparatus that illuminates the pattern of the reticle R with the illumination light EL, and exposes the wafer W with the illumination light EL via the pattern and the projection optical system PO. The pupil plane (pupil) of the system PO is formed in the vicinity of the mirror M2 as described above. Therefore, the pattern of the reticle R can be exposed on the wafer W with high accuracy.
Further, in the exposure apparatus 100, the pupil plane of the projection optical system PO is disposed in the vicinity of the reflection surface of the mirror M2 and substantially parallel to the reflection surface, or is disposed in the optical path between the mirror M2 and the mirror M3, for example. Thus, in the illumination optical system ILS, the pupil plane may intersect with the reflection surface of the second fly's eye optical system 23 and be set above the reflection surface at both ends in the Y direction. In this case, the illumination condition can be set with higher accuracy.

次に、上記の実施形態に対する比較例につき図8(A)〜(D)及び図9(A)〜(D)を参照して説明する。図8(A)、(B)、(D)及び図9(A)、(B)、(D)において、図4(A)、(B)、(C)に対応する部分にはそれぞれ同一又は類似の符号を付してその詳細な説明を省略する。
図8(A)は第1比較例の投影光学系のミラーM2を示す斜視図、図8(B)は図8(A)の開口絞りASAの配置面を示す平面図、図8(C)は対応する照明領域27Rを示す図、図8(D)は図8(A)と等価な透過光学系を示す図である。図8(A)において、投影光学系の瞳面35DはミラーM2の反射面と同じ面上に配置され、入射光37I及び反射光37Rを制限する開口39が形成された開口絞りASAは、ミラーM2の反射面から所定間隔の位置に配置されている。開口絞りASAは例えば交換機構又は開口を可変とする機構が付加され、ミラーM2の反射面に近接して配置することが困難であるため、このように反射面から離して配置される。
Next, a comparative example for the above embodiment will be described with reference to FIGS. 8 (A) to (D) and FIGS. 9 (A) to (D). 8 (A), (B), (D) and FIGS. 9 (A), (B), (D), the portions corresponding to FIGS. 4 (A), (B), (C) are the same. Or a similar code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
8A is a perspective view showing the mirror M2 of the projection optical system of the first comparative example, FIG. 8B is a plan view showing the arrangement surface of the aperture stop ASA in FIG. 8A, and FIG. 8C. Is a diagram showing a corresponding illumination region 27R, and FIG. 8D is a diagram showing a transmission optical system equivalent to FIG. 8A. In FIG. 8A, the pupil plane 35D of the projection optical system is disposed on the same plane as the reflection surface of the mirror M2, and the aperture stop ASA in which the aperture 39 for limiting the incident light 37I and the reflected light 37R is formed is the mirror. It arrange | positions in the position of predetermined spacing from the reflective surface of M2. The aperture stop ASA is provided with, for example, an exchange mechanism or a mechanism that makes the aperture variable, and it is difficult to arrange the aperture stop ASA close to the reflection surface of the mirror M2, and thus the aperture stop ASA is arranged away from the reflection surface.

この場合、図8(C)の照明領域27Rの4隅の点a〜dから射出されてミラーM2に入射する入射光37Iは、それぞれ開口絞りASAの配置面において、図8(B)に点線で示す僅かにずれた円形の領域41a〜41dを通過する。これに対応して、反射光37Rは、それぞれ領域41a〜41dをほぼY方向にシフトした領域42a〜42dを通過する。従って、開口絞りASの開口39は、これらの領域41a〜41d及び42a〜42dを囲むように広く設定される。この結果、照明領域27Rの点a,cから射出される照明光は、主に−X方向に広がった部分が投影光学系POを通過し、点b,dから射出される照明光は、主に+X方向に広がった部分が投影光学系POを通過するため、投影光学系POの像面の対応する点において、照明光の広がり角、ひいては開口数が僅かに不均一になる。   In this case, incident light 37I emitted from the four corner points a to d of the illumination area 27R in FIG. 8C and incident on the mirror M2 is indicated by a dotted line in FIG. 8B on the arrangement surface of the aperture stop ASA. It passes through circular regions 41a to 41d that are slightly deviated by. Correspondingly, the reflected light 37R passes through the regions 42a to 42d obtained by shifting the regions 41a to 41d in the Y direction. Accordingly, the opening 39 of the aperture stop AS is set wide so as to surround these regions 41a to 41d and 42a to 42d. As a result, the illumination light emitted from the points a and c in the illumination area 27R mainly passes through the projection optical system PO in the portion extending in the −X direction, and the illumination light emitted from the points b and d In addition, since the portion spread in the + X direction passes through the projection optical system PO, the spread angle of the illumination light, and hence the numerical aperture, becomes slightly nonuniform at the corresponding points on the image plane of the projection optical system PO.

図8(D)の等価な透過光学系においては、屈折面44上に瞳面45Dが設定されるが、開口絞りの開口49A,49Bはそれぞれ入射光47Iの半面側及び透過光47Tの半面側に配置される。従って、像面上の位置によって開口数が不均一になる。
また、図9(A)は第2比較例の投影光学系のミラーM2を示す斜視図、図9(B)は図9(A)の開口絞りASBの配置面を示す平面図、図9(C)は対応する照明領域27Rを示す図、図9(D)は図9(A)と等価な透過光学系を示す図である。図9(A)において、投影光学系の瞳面35EはミラーM2の反射面から所定間隔の位置に配置され、入射光37I及び反射光37Rを制限する開口40が形成された開口絞りASBは、瞳面35Eと同じ面上に配置されている。瞳面35Eは入射光37I側に形成されている。
In the equivalent transmission optical system of FIG. 8D, the pupil plane 45D is set on the refracting surface 44, and the apertures 49A and 49B of the aperture stop are respectively the half surface side of the incident light 47I and the half surface side of the transmitted light 47T. Placed in. Accordingly, the numerical aperture becomes non-uniform depending on the position on the image plane.
9A is a perspective view showing the mirror M2 of the projection optical system of the second comparative example, FIG. 9B is a plan view showing the arrangement surface of the aperture stop ASB in FIG. 9A, and FIG. FIG. 9C is a diagram showing a corresponding illumination area 27R, and FIG. 9D is a diagram showing a transmission optical system equivalent to FIG. 9A. In FIG. 9A, the pupil plane 35E of the projection optical system is disposed at a predetermined distance from the reflection surface of the mirror M2, and the aperture stop ASB in which the aperture 40 that restricts the incident light 37I and the reflected light 37R is formed. It is arranged on the same plane as the pupil plane 35E. The pupil surface 35E is formed on the incident light 37I side.

この場合、図9(C)の照明領域27Rの4隅の点a〜dから射出されてミラーM2に入射する入射光37Iは、それぞれ開口絞りASBの配置面(瞳面35E)において、共通に図9(B)の円形の領域35Eaを通過する。しかしながら、反射光37Rは、照明領域27R上の位置a〜dに対応して領域42a〜42dを通過する。従って、開口絞りASBの開口40は、これらの領域35Ea及び42a〜42dを囲むように広く設定される。この結果、照明領域27Rの点a,bから射出される照明光は、主に+Y方向に広がった部分が投影光学系POを通過するため、投影光学系POの像面の対応する点において、照明光の広がり角、ひいては開口数が僅かに不均一になる。なお、瞳面35Eを反射光37R側に形成しても同様に開口数が僅かに不均一になる。   In this case, the incident light 37I emitted from the four corner points a to d of the illumination area 27R in FIG. 9C and entering the mirror M2 is common to the arrangement surface (pupil surface 35E) of the aperture stop ASB. It passes through the circular area 35Ea in FIG. However, the reflected light 37R passes through the regions 42a to 42d corresponding to the positions a to d on the illumination region 27R. Therefore, the aperture 40 of the aperture stop ASB is set wide so as to surround these regions 35Ea and 42a to 42d. As a result, the illumination light emitted from the points a and b of the illumination area 27R mainly passes through the projection optical system PO at a portion that spreads in the + Y direction. Therefore, at the corresponding points on the image plane of the projection optical system PO, The spread angle of the illumination light and thus the numerical aperture becomes slightly non-uniform. Similarly, even if the pupil surface 35E is formed on the reflected light 37R side, the numerical aperture becomes slightly non-uniform.

図9(D)の等価な透過光学系においては、屈折面44から離れた入射光47Iの光路上に瞳面45Eが設定され、開口絞りの開口50A,50Bはそれぞれ入射光47Iの半面側及び透過光47Tの半面側に配置される。従って、像面上の位置によって開口数が不均一になる。
これらの第1及び第2の比較例に対して上記の実施形態の投影光学系POによれば、投影光学系POの像面の各点において開口数が均一になる。
In the equivalent transmission optical system of FIG. 9D, the pupil plane 45E is set on the optical path of the incident light 47I away from the refractive surface 44, and the apertures 50A and 50B of the aperture stop are respectively the half surface side of the incident light 47I and It arrange | positions at the half surface side of the transmitted light 47T. Accordingly, the numerical aperture becomes non-uniform depending on the position on the image plane.
According to the projection optical system PO of the above embodiment with respect to the first and second comparative examples, the numerical aperture is uniform at each point on the image plane of the projection optical system PO.

図1の投影光学系POの実施例につき図7を参照して説明する。図7は投影光学系POの光路図を示す。図7において、物体面OPに図1のレチクルRのパターン面が配置され、像面IPにウエハWの表面が配置される。また、投影光学系POは像面IP側にほぼテレセントリックであり、ミラーM2の反射面と交差するように投影光学系POの瞳面35A,35Bが形成され、瞳面35A,35Bに沿って開口絞りASが配置される。図7の投影光学系POの光学諸元は以下の通りである。   An embodiment of the projection optical system PO in FIG. 1 will be described with reference to FIG. FIG. 7 shows an optical path diagram of the projection optical system PO. In FIG. 7, the pattern surface of the reticle R of FIG. 1 is arranged on the object plane OP, and the surface of the wafer W is arranged on the image plane IP. The projection optical system PO is substantially telecentric on the image plane IP side, and pupil surfaces 35A and 35B of the projection optical system PO are formed so as to intersect with the reflection surface of the mirror M2, and apertures are formed along the pupil surfaces 35A and 35B. An aperture AS is disposed. The optical specifications of the projection optical system PO in FIG. 7 are as follows.

[表1]光学諸元
照明光(露光光)の波長λ:13.5nm
投影倍率β :1/4
開口数NA(像側) :0.25
物体高 :134〜142mm
像高 :33.5〜35.5mm
また、投影光学系POのミラーM1〜M6の反射面の面データを表2に示す。表2において、rは各反射面の頂点曲率半径を、dは各反射面の軸上間隔(面間隔)をそれぞれ示している。r及びdの単位はmmである。なお、面間隔dは、反射される度にその符号を変えるものとする。そして、光線の入射方向に関わらず、反射面に対して曲率中心が像面IP(ウエハ)側にある場合の曲率半径を正とし、反射面に対して曲率中心が物体面OP(レチクル)側にある場合の曲率半径を負としている。
[Table 1] Optical specifications Illumination light (exposure light) wavelength λ: 13.5 nm
Projection magnification β: 1/4
Numerical aperture NA (image side): 0.25
Object height: 134-142mm
Image height: 33.5 to 35.5 mm
Table 2 shows surface data of the reflecting surfaces of the mirrors M1 to M6 of the projection optical system PO. In Table 2, r represents the apex radius of curvature of each reflecting surface, and d represents the axial distance (surface spacing) of each reflecting surface. The unit of r and d is mm. Note that the surface distance d changes its sign each time it is reflected. Regardless of the incident direction of the light beam, the radius of curvature is positive when the center of curvature is on the image plane IP (wafer) side with respect to the reflecting surface, and the center of curvature is on the object plane OP (reticle) side with respect to the reflecting surface. The radius of curvature is negative.

[表2]面データ

Figure 2010098171
また、図7の投影光学系POのミラーM1〜M6の反射面は全て表3の非球面データで表される非球面である。表3において、Kは円錐係数(コーニック定数)、係数A(n=4,6,8,10,12,14)はn次の非球面係数である。また、係数A のデータ中でE−j(jは整数)は、×10−jを意味する。 [Table 2] Surface data
Figure 2010098171
In addition, the reflecting surfaces of the mirrors M1 to M6 of the projection optical system PO in FIG. In Table 3, K is a conic coefficient (conic constant), and a coefficient An (n = 4, 6, 8, 10, 12, 14) is an n-order aspheric coefficient. Moreover, (the j integer) E-j in the data of the coefficient A n means × 10 -j.

[表3]非球面データ

Figure 2010098171
共軸のミラーM1〜M6の非球面の光軸AXに垂直な方向の高さをyとし、非球面の頂点における接平面から高さyの非球面上の位置までの光軸AXに沿った距離をz(y)とすると、上記の表2の頂点曲率半径r、表3の円錐係数K、及び非球面係数A を用いて、距離z(y)は以下の式で表される。 [Table 3] Aspheric data
Figure 2010098171
The height of the coaxial mirrors M1 to M6 in the direction perpendicular to the optical surface AX of the aspheric surface is y, and along the optical axis AX from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface of height y. When the distance is referred to as z (y), using the above table 2 the radius of curvature at the top r, a conical coefficient of Table 3 K, and the aspheric coefficients a n, the distance z (y) is expressed by the following equation.

Figure 2010098171
本実施例の設計を適用した場合、図7の瞳面35A,35Bは、ミラーM2の反射面に対して入射光及び射出光の両端部でそれぞれ約1mm上方に位置している。また、投影光学系POの収差は約0.17λと良好である。
Figure 2010098171
When the design of the present embodiment is applied, the pupil planes 35A and 35B in FIG. 7 are located approximately 1 mm above both reflection light surfaces of the mirror M2 at both ends of the incident light and the emitted light. The aberration of the projection optical system PO is as good as about 0.17λ.

なお、上述の実施形態に対しては次のような変形が可能である。
先ず、上述の実施形態では、図1の露光光源としてガスジェットクラスタ方式のレーザプラズマ光源が使用されていたが、これに限定されず、例えば、錫などをターゲットとして用いるドロプレット方式のレーザプラズマ光源でもよい。また、上述の実施形態では、EUV光源としてレーザプラズマ光源を用いるものとしたが、これに限らず、SOR(Synchrotron Orbital Radiation)リング、ベータトロン光源、ディスチャージド光源(放電励起プラズマ光源、回転型放電励起プラズマ光源など)、X線レーザなどのいずれを用いても良い。
The following modifications can be made to the above-described embodiment.
First, in the above-described embodiment, the gas jet cluster type laser plasma light source is used as the exposure light source in FIG. 1, but the present invention is not limited to this. For example, a droplet type laser plasma light source using tin or the like as a target is also used. Good. In the above-described embodiment, the laser plasma light source is used as the EUV light source. However, the present invention is not limited to this, but a SOR (Synchrotron Orbital Radiation) ring, a betatron light source, a discharged light source (discharge excitation plasma light source, rotary discharge) Any of an excitation plasma light source or the like) or an X-ray laser may be used.

また、図1の実施形態では、露光ビームとしてEUV光を用い、6枚のミラーのみから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば、特開平11−345761号公報に開示されるような4枚等のミラーのみから成る投影光学系を備えた露光装置は勿論、光源に波長100〜160nmのVUV光源、例えばAr2 レーザ(波長126nm)を用い、4〜8枚等のミラーを有する投影光学系を備えた露光装置などにも本発明を適用することができる。 In the embodiment of FIG. 1, the case where the EUV light is used as the exposure beam and the all-reflection projection optical system including only six mirrors is used is described as an example. For example, an exposure apparatus having a projection optical system composed of only four mirrors as disclosed in Japanese Patent Application Laid-Open No. 11-345761, as well as a VUV light source having a wavelength of 100 to 160 nm, such as an Ar 2 laser (wavelength) 126 nm), the present invention can be applied to an exposure apparatus including a projection optical system having 4 to 8 mirrors.

さらに、露光光としてArFエキシマレーザ光(波長193nm)等を用いて反射屈折系からなる投影光学系を用いる場合にも本発明を適用可能である。このようにレンズ及びミラーを組み合わせた反射屈折系に本発明を適用する場合、そのミラーの反射面の近傍に投影光学系の瞳面を形成し、この瞳面を例えば中央部でその反射面と交差し、かつ両端部でその反射面の上方になるようにすればよい。これによって、像面の各点での開口数の不均一性が低減される。   Furthermore, the present invention can also be applied to a case where a projection optical system composed of a catadioptric system using ArF excimer laser light (wavelength 193 nm) or the like as exposure light is used. Thus, when the present invention is applied to a catadioptric system in which a lens and a mirror are combined, a pupil plane of the projection optical system is formed in the vicinity of the reflection surface of the mirror, and this pupil plane is, for example, the central portion and the reflection surface. What is necessary is just to make it cross | intersect and to be above the reflective surface in both ends. This reduces the numerical aperture non-uniformity at each point on the image plane.

また、上記の実施形態の露光装置を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図10に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(EUV露光装置等)によりマスクのパターンを基板(感応基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。   Further, when an electronic device (or microdevice) such as a semiconductor device is manufactured using the exposure apparatus of the above embodiment, the electronic device performs function / performance design of the electronic device as shown in FIG. Step 222 for manufacturing a mask (reticle) based on this design step, Step 223 for manufacturing a substrate (wafer) as a base material of the device and applying a resist, Exposure apparatus (EUV exposure apparatus, etc.) of the above-described embodiment ) Exposing the mask pattern to the substrate (sensitive substrate), developing the exposed substrate, heating (curing) the developed substrate, etching step, etc., device assembly step (dicing step, 225), including processing steps such as bonding and packaging It is produced through the 査 step 226 or the like.

言い換えると、このデバイスの製造方法は、上記の実施形態の露光装置を用いて基板(ウエハ)を露光することと、露光された基板を処理すること(ステップ224)とを含んでいる。この際に、上記の実施形態の露光装置によれば、基板上で良好な結像特性が得られるため、高機能のデバイスを高精度に製造できる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
In other words, the device manufacturing method includes exposing the substrate (wafer) using the exposure apparatus of the above-described embodiment, and processing the exposed substrate (step 224). At this time, according to the exposure apparatus of the above-described embodiment, since good imaging characteristics can be obtained on the substrate, a highly functional device can be manufactured with high accuracy.
In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.

実施形態の一例の露光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the exposure apparatus of an example of embodiment. (A)は図1中の第1フライアイ光学系22を示す図、(B)は図1中の第2フライアイ光学系23を示す図である。(A) is a figure which shows the 1st fly eye optical system 22 in FIG. 1, (B) is a figure which shows the 2nd fly eye optical system 23 in FIG. 図1中のレチクルR及び投影光学系POの一部を示す図である。It is a figure which shows a part of reticle R and projection optical system PO in FIG. (A)は、図3のミラーM2に対する入射光及び反射光を示す斜視図、(B)は図4(A)の反射面上の光束を示す平面図、(C)は図4(A)と等価な透過光学系を示す図である。3A is a perspective view showing incident light and reflected light with respect to the mirror M2 in FIG. 3, FIG. 4B is a plan view showing a light beam on the reflecting surface in FIG. 4A, and FIG. 4C is FIG. It is a figure which shows the transmission optical system equivalent to. (A)は図4(A)のミラーM2上に開口絞りASを設置した状態を示す斜視図、(B)は図5(A)のVB方向から見た側面図である。(A) is a perspective view showing a state in which an aperture stop AS is installed on the mirror M2 of FIG. 4 (A), and (B) is a side view seen from the VB direction of FIG. 5 (A). 開口絞りASの別の構成例を示す斜視図である。It is a perspective view which shows another structural example of aperture stop AS. 実施例の投影光学系POを示す光路図である。It is an optical path diagram which shows the projection optical system PO of an Example. (A)は、第1比較例のミラーM2を示す斜視図、(B)は図8(A)の反射面上の光束を示す平面図、(C)は照明領域27Rを示す図、(D)は図8(A)と等価な透過光学系を示す図である。(A) is a perspective view showing the mirror M2 of the first comparative example, (B) is a plan view showing a light beam on the reflecting surface of FIG. 8 (A), (C) is a view showing an illumination area 27R, (D ) Is a diagram showing a transmission optical system equivalent to that shown in FIG. (A)は、第2比較例のミラーM2を示す斜視図、(B)は図9(A)の反射面上の光束を示す平面図、(C)は照明領域27Rを示す図、(D)は図9(A)と等価な透過光学系を示す図である。(A) is a perspective view showing a mirror M2 of the second comparative example, (B) is a plan view showing a light beam on the reflecting surface of FIG. 9 (A), (C) is a view showing an illumination region 27R, (D ) Is a diagram showing a transmission optical system equivalent to that shown in FIG. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.

符号の説明Explanation of symbols

ILS…照明光学系、R…レチクル、PO…投影光学系、W…ウエハ、M1〜M6…ミラー、AS…開口絞り、35A,35B…瞳面、37I…入射光、37R…反射光、38A,38B…遮光板、38Aa,38Ba…開口   ILS ... illumination optical system, R ... reticle, PO ... projection optical system, W ... wafer, M1-M6 ... mirror, AS ... aperture stop, 35A, 35B ... pupil plane, 37I ... incident light, 37R ... reflected light, 38A, 38B ... light shielding plate, 38Aa, 38Ba ... opening

Claims (17)

入射光の方向と反射光の方向とが異なるように配置された反射光学素子を備えた光学系であって、
前記入射光のうち前記反射光と重ならない部分における前記光学系の瞳が前記反射光学素子の反射面の上方に形成され、
前記反射光のうち前記入射光と重ならない部分における前記瞳が前記反射面の上方に形成されることを特徴とする光学系。
An optical system comprising a reflective optical element arranged so that the direction of incident light and the direction of reflected light are different,
The pupil of the optical system in a portion of the incident light that does not overlap the reflected light is formed above the reflective surface of the reflective optical element,
The optical system, wherein the pupil in a portion of the reflected light that does not overlap the incident light is formed above the reflective surface.
前記瞳は、ほぼ円周を対称に折り曲げた形状であることを特徴とする請求項1に記載の光学系。   The optical system according to claim 1, wherein the pupil has a shape obtained by bending the circumference substantially symmetrically. 前記瞳は、前記光学系を通過する各光線の最小錯乱円が形成される領域の輪郭部であることを特徴とする請求項1又は2に記載の光学系。   The optical system according to claim 1, wherein the pupil is a contour portion of a region where a minimum circle of confusion of each light beam passing through the optical system is formed. 前記瞳が形成される面又はこの近傍の面上に配置され、前記瞳を制限するための開口が形成された開口絞りを備えることを特徴とする請求項1から3のいずれか一項に記載の光学系。   4. The apparatus according to claim 1, further comprising an aperture stop disposed on a surface on which the pupil is formed or a surface in the vicinity thereof, and having an aperture for limiting the pupil. 5. Optical system. 入射光の方向と反射光の方向とが異なるように配置された反射光学素子を備えた光学系であって、
前記光学系の瞳面が前記反射光学素子の反射面と交差するとともに、
前記入射光の前記反射光と反対側の端部における前記瞳面が前記反射面の上方に位置し、
前記反射光の前記入射光と反対側の端部における前記瞳面が前記反射面の上方に位置することを特徴とする光学系。
An optical system comprising a reflective optical element arranged so that the direction of incident light and the direction of reflected light are different,
The pupil plane of the optical system intersects the reflective surface of the reflective optical element;
The pupil plane at the end of the incident light opposite to the reflected light is located above the reflecting surface;
An optical system, wherein the pupil plane at the end of the reflected light opposite to the incident light is positioned above the reflective surface.
前記瞳面は、前記光学系を通過する各光線の最小錯乱円が形成される領域に接する面であることを特徴とする請求項5に記載の光学系。   The optical system according to claim 5, wherein the pupil plane is a plane in contact with a region where a minimum circle of confusion of each light beam passing through the optical system is formed. 前記瞳面又はこの近傍の面上に配置され、前記入射光及び前記反射光の少なくとも一方の光束を制限するための開口が形成された開口絞りを備えることを特徴とする請求項5又は6に記載の光学系。   7. The apparatus according to claim 5, further comprising an aperture stop disposed on the pupil plane or a plane in the vicinity thereof, and having an aperture for limiting at least one light beam of the incident light and the reflected light. The optical system described. 入射光の方向と反射光の方向とが異なるように配置された反射光学素子を備えた光学系であって、
前記光学系の瞳の第1部分が前記入射光側に形成され、
前記光学系の瞳の第2部分が前記反射光側に形成されることを特徴とする光学系。
An optical system comprising a reflective optical element arranged so that the direction of incident light and the direction of reflected light are different,
A first portion of the pupil of the optical system is formed on the incident light side;
An optical system, wherein a second portion of the pupil of the optical system is formed on the reflected light side.
前記瞳は、少なくとも2つの平面上に形成されることを特徴とする請求項8に記載の光学系。   The optical system according to claim 8, wherein the pupil is formed on at least two planes. 前記瞳は、前記光学系を通過する各光線の最小錯乱円が形成される領域の輪郭部であることを特徴とする請求項8又は9に記載の光学系。   The optical system according to claim 8, wherein the pupil is a contour portion of a region where a minimum circle of confusion of each light beam passing through the optical system is formed. 前記瞳が形成される面又はこの近傍の面上に配置され、前記瞳を制限するための開口が形成された開口絞りを備えることを特徴とする請求項8から10のいずれか一項に記載の光学系。   11. The apparatus according to claim 8, further comprising an aperture stop that is disposed on a surface on which the pupil is formed or a surface in the vicinity of the pupil, and in which an aperture for limiting the pupil is formed. Optical system. 前記光学系は、複数の共軸の非球面ミラーを備えた反射系であり、
前記複数の非球面ミラーのうちの一つが前記反射光学素子であることを特徴とする請求項1から11のいずれか一項に記載の光学系。
The optical system is a reflection system including a plurality of coaxial aspherical mirrors,
The optical system according to claim 1, wherein one of the plurality of aspherical mirrors is the reflective optical element.
前記光学系は、前記反射光学素子及び屈折光学素子を備えた反射屈折系であることを特徴とする請求項1から11のいずれか一項に記載の光学系。   The optical system according to any one of claims 1 to 11, wherein the optical system is a catadioptric system including the reflective optical element and a refractive optical element. 前記光学系は、第1面のパターンの像を第2面上に形成する投影光学系であることを特徴とする請求項1から13のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the optical system is a projection optical system that forms an image of a pattern of a first surface on a second surface. 露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
前記投影光学系として請求項14に記載の光学系を備えることを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern with exposure light and exposes the substrate through the pattern and the projection optical system with the exposure light,
An exposure apparatus comprising the optical system according to claim 14 as the projection optical system.
第1面の像を第2面上に投影露光する露光装置であって、
請求項1から14のいずれか一項に記載の光学系を備えることを特徴とする露光装置。
An exposure apparatus that projects and exposes an image of a first surface onto a second surface,
An exposure apparatus comprising the optical system according to claim 1.
請求項15又は16に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を処理する工程と、を含むデバイス製造方法。
A step of exposing the substrate using the exposure apparatus according to claim 15 or 16,
And a step of processing the exposed substrate.
JP2008268563A 2008-10-17 2008-10-17 Optical system and aligner Withdrawn JP2010098171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268563A JP2010098171A (en) 2008-10-17 2008-10-17 Optical system and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268563A JP2010098171A (en) 2008-10-17 2008-10-17 Optical system and aligner

Publications (1)

Publication Number Publication Date
JP2010098171A true JP2010098171A (en) 2010-04-30

Family

ID=42259642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268563A Withdrawn JP2010098171A (en) 2008-10-17 2008-10-17 Optical system and aligner

Country Status (1)

Country Link
JP (1) JP2010098171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220504A (en) * 2019-07-09 2019-09-10 青岛镭创光电技术有限公司 Reflecting element and straight line laser mould group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220504A (en) * 2019-07-09 2019-09-10 青岛镭创光电技术有限公司 Reflecting element and straight line laser mould group

Similar Documents

Publication Publication Date Title
US6919951B2 (en) Illumination system, projection exposure apparatus and device manufacturing method
EP1355194B1 (en) Projection exposure apparatus and device manufacturing method
US9030645B2 (en) Illumination optical system, exposure apparatus, and exposure method
US8945802B2 (en) Flare-measuring mask, flare-measuring method, and exposure method
JP2002043221A (en) Lithography projection device
US9134629B2 (en) Illumination system, lithographic apparatus and method of forming an illumination mode
EP2506061A1 (en) Image-forming optical system, exposure apparatus, and device producing method
JP3605055B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
JP3605053B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
JP2005317611A (en) Exposure method and aligner
JP2009044146A (en) Lighting optical device, exposure equipment, and process for fabricating device
JP2005093693A (en) Aligner
US20040218164A1 (en) Exposure apparatus
US7292316B2 (en) Illumination optical system and exposure apparatus having the same
JP2004140390A (en) Illumination optical system, exposure device and device manufacturing method
JP2011077480A (en) Reflection type mask, exposure apparatus, exposure method, and device manufacturing method
JP2010098171A (en) Optical system and aligner
EP1471389B1 (en) Projection optical system
JP2011108697A (en) Method of controlling amount of exposure, exposure method, and method of manufacturing device
JP5397596B2 (en) Flare measurement method and exposure method
JP2011150227A (en) Exposure device and device manufacturing method
JPH06302494A (en) Projecting aligner and manufacture of semiconductor element using same
JP2011134887A (en) Position adjustment device, position adjusting method, exposure apparatus, exposure method, and device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110