JP2010098019A - Electromagnetic wave shielding mesh - Google Patents

Electromagnetic wave shielding mesh Download PDF

Info

Publication number
JP2010098019A
JP2010098019A JP2008265909A JP2008265909A JP2010098019A JP 2010098019 A JP2010098019 A JP 2010098019A JP 2008265909 A JP2008265909 A JP 2008265909A JP 2008265909 A JP2008265909 A JP 2008265909A JP 2010098019 A JP2010098019 A JP 2010098019A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
wire
mesh
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008265909A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Isobe
芳泰 磯部
Kunihiro Naoe
邦浩 直江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008265909A priority Critical patent/JP2010098019A/en
Publication of JP2010098019A publication Critical patent/JP2010098019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave shielding mesh, which is excellent in corrosion resistance and antibacterial activity in addition to an electromagnetic wave shielding property and light transmissivity. <P>SOLUTION: The electromagnetic wave shielding mesh is woven in a mesh shape by using a Ti-coated Cu wire 50-500 μm in diameter as warp and weft. The electromagnetic shielding mesh has an aperture ratio of 70-90%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電性が良く電磁波を効率よく遮蔽すると共に、耐食性や抗菌性に優れた電磁波遮蔽メッシュに関するものである。   The present invention relates to an electromagnetic wave shielding mesh that has good conductivity and efficiently shields electromagnetic waves, and has excellent corrosion resistance and antibacterial properties.

近年、携帯電話やプラズマディスプレイパネル(以下、PDP)等が急速に普及して来たことにより、これ等の電子機器から発生する電磁波による他の電子機器の誤動作や通信障害等が問題になっている。このため、これ等の電子機器から発生する電磁波を遮蔽することが重要なっているが、併せてこれらの表示画質を低下させることがない電磁波遮蔽材が要求されている。
このような電磁波遮蔽材としては、特許文献1に記載されるように、透明な電磁波遮蔽用基板面にメッシュ状の導電性パターンの各導電性ラインピッチ幅を順次異なるように構成する電磁波遮蔽板が開示されている。しかしながら、このような電磁波遮蔽板は、各導電性ラインのピッチ幅を順次異なるように構成するので、パターンとなったときにピッチの広い部分と狭い部分とで開口率に差があるため、画面の明るさに斑が生じる問題がある。
また、このような問題を回避できる電磁波遮蔽材として、特許文献2に記載されるような織物などのシート状の電磁波遮蔽メッシュが提案されている。すなわち、この発明は加工性が良好で、シールド効果にも優れた電磁シールド材料であるとして、軟磁気特性を有し、かつ鉄を主成分とする結晶質の金属繊維と銅(以下、Cu)、アルミニウム(以下、Al)等の導電体の繊条物とを少なくなくとも含有するシート状の電磁シールド材料であるとしている。しかしながら、このような電磁シールドシートは、鉄を主成分とする結晶質の金属繊維を用いるため、耐食性が不十分であり腐食環境では使用できない等の問題がある。
さらに、特許文献3に記載されるような、タテ糸とヨコ糸の糸密度に特定の割合で糸密度差を持たせて作製した電磁波遮蔽メッシュを用いることで、表示体の前面に配置した際に、モアレや明るさの斑を生じることなく、効果的に電磁波の漏洩を遮蔽できるとしている。また前記糸に関しては、合成繊維などの表面に導電性の金属皮膜を形成した糸や導電性の金属繊維を使用することが記載されている。しかしながら、合成繊維に金属めっきを行うには化学薬品を大量に使用する必要があるため廃液の処理を行う必要があり、環境汚染の問題が懸念される。また、合成繊維に銀(以下、Ag)めっきを用いた繊維を使用する場合、電磁波遮蔽メッシュを風があたる部分で使用するとAgが空気中の硫化水素(以下、HS)と反応して硫化銀(以下、AgS)となり、導電性が低下しシールド効果が低下する等の耐食性に問題がある。さらに、金属繊維を使用する場合にも、導電性の良い銅繊維を用いた場合には変色する等の耐食性に問題がある。
特開平11−121978号公報 特開平5−267883号公報 特開2008−10701号公報
In recent years, cellular phones, plasma display panels (hereinafter referred to as PDP), etc. have rapidly spread, and malfunctions and communication failures of other electronic devices due to electromagnetic waves generated from these electronic devices have become problems. Yes. For this reason, it is important to shield electromagnetic waves generated from these electronic devices, but an electromagnetic shielding material that does not deteriorate the display image quality is also required.
As such an electromagnetic wave shielding material, as described in Patent Document 1, an electromagnetic wave shielding plate configured such that each conductive line pitch width of a mesh-like conductive pattern is sequentially different on a transparent electromagnetic wave shielding substrate surface. Is disclosed. However, since such an electromagnetic wave shielding plate is configured such that the pitch width of each conductive line is sequentially different, there is a difference in aperture ratio between a wide pitch portion and a narrow portion when a pattern is formed. There is a problem that spots appear on the brightness.
Further, as an electromagnetic wave shielding material that can avoid such a problem, a sheet-like electromagnetic wave shielding mesh such as a woven fabric as described in Patent Document 2 has been proposed. That is, the present invention is an electromagnetic shielding material having good workability and excellent shielding effect, and has a soft magnetic property and crystalline metal fibers mainly composed of iron and copper (hereinafter referred to as Cu). It is said that it is a sheet-like electromagnetic shielding material containing at least a conductive filament such as aluminum (hereinafter referred to as Al). However, since such an electromagnetic shield sheet uses crystalline metal fibers mainly composed of iron, there is a problem that the corrosion resistance is insufficient and it cannot be used in a corrosive environment.
Furthermore, when the electromagnetic wave shielding mesh produced by giving a yarn density difference at a specific ratio to the warp yarn and weft yarn density as described in Patent Document 3 is arranged on the front surface of the display body In addition, the leakage of electromagnetic waves can be effectively shielded without causing moire or brightness spots. In addition, regarding the yarn, it is described that a yarn having a conductive metal film formed on the surface thereof such as a synthetic fiber or a conductive metal fiber is used. However, in order to perform metal plating on synthetic fibers, it is necessary to use a large amount of chemicals, so it is necessary to treat waste liquid, and there is a concern about the problem of environmental pollution. In addition, when a fiber using silver (hereinafter referred to as Ag) plating is used as a synthetic fiber, Ag reacts with hydrogen sulfide (hereinafter referred to as H 2 S) in the air when the electromagnetic shielding mesh is used in a portion where the wind is applied. There is a problem in corrosion resistance such as silver sulfide (hereinafter referred to as Ag 2 S), and the conductivity is lowered and the shielding effect is lowered. Furthermore, even when using metal fibers, there is a problem in corrosion resistance such as discoloration when copper fibers having good conductivity are used.
Japanese Patent Laid-Open No. 11-121978 JP-A-5-267883 JP 2008-10701 A

よって本発明が解決しようとする課題は、電磁波遮蔽性、光透過性に優れていると共に、特に耐食性や抗菌性にも優れた電磁波遮蔽メッシュを提供することにある。   Therefore, the problem to be solved by the present invention is to provide an electromagnetic wave shielding mesh that is excellent in electromagnetic wave shielding properties and light transmission properties, and particularly excellent in corrosion resistance and antibacterial properties.

前記解決しようとする課題は、請求項1に記載するように、直径が50〜500μmのチタン被覆銅線(以下、Ti被覆Cu線)を縦糸並びに横糸として用い、これをメッシュ状に製織した電磁波遮蔽メッシュとすることによって、解決される。   The problem to be solved is an electromagnetic wave in which a titanium-coated copper wire (hereinafter referred to as a Ti-coated Cu wire) having a diameter of 50 to 500 μm is used as warp and weft as described in claim 1 and is woven into a mesh shape. This is solved by using a shielding mesh.

また、請求項2に記載するように、前記電磁波遮蔽メッシュの開口率を70〜90%とした請求項1に記載の電磁波遮蔽メッシュとすることによって、解決される。   Further, as described in claim 2, the electromagnetic wave shielding mesh according to claim 1 is solved by setting the aperture ratio of the electromagnetic wave shielding mesh to 70 to 90%.

以上のような本発明は、直径が50〜500μmのTi被覆Cu線を、縦糸並びに横糸としてメッシュ状に製織した電磁波遮蔽メッシュであるから加工性に優れると共に、銅線を内部に用いているので導電性が良く電磁波遮蔽性に優れており、外側にチタンの被覆層を有するので耐食性に優れると共に、抗菌性を有するものである。また、特定の径のチタン被覆銅線を縦糸並びに横糸としてメッシュ状に製織したものであるから、開口率(単位面積におけるTi被覆Cu線の存在しない部分の面積比率)を比較的自由に決められるので光透過性に優れた電磁波遮蔽メッシュが得られる。さらに、製織した電磁波遮蔽メッシュは洗濯して清浄化することが可能である。   Since the present invention as described above is an electromagnetic wave shielding mesh in which a Ti-coated Cu wire having a diameter of 50 to 500 μm is woven into a mesh shape as warp and weft, it has excellent workability and uses a copper wire inside. It has good conductivity and excellent electromagnetic shielding properties, and has a titanium coating layer on the outside, so that it has excellent corrosion resistance and antibacterial properties. Moreover, since the titanium-coated copper wire having a specific diameter is woven in a mesh shape as warp and weft, the aperture ratio (area ratio of the portion where no Ti-coated Cu wire is present in the unit area) can be determined relatively freely. Therefore, an electromagnetic shielding mesh excellent in light transmittance can be obtained. Furthermore, the woven electromagnetic shielding mesh can be washed and cleaned.

また、前記電磁波遮蔽メッシュの開口率を70〜90%とすることにより、前述した効果に併せて、十分な光透過性を有するので画面の明るさによる斑が生じることがない電磁波遮蔽メッシュであり、携帯電話やPDP用の電磁波遮蔽材として有用である。   In addition, by setting the aperture ratio of the electromagnetic wave shielding mesh to 70 to 90%, in addition to the above-described effects, the electromagnetic wave shielding mesh has sufficient light transmittance, so that spots due to the brightness of the screen do not occur. It is useful as an electromagnetic shielding material for mobile phones and PDPs.

以下に本発明の実施の形態を説明する。本発明は、直径が50〜500μmのTi被覆Cu線を縦糸並びに横糸として用い、これをメッシュ状に製織した電磁波遮蔽メッシュである。以下に詳細に説明する。   Embodiments of the present invention will be described below. The present invention is an electromagnetic wave shielding mesh in which a Ti-coated Cu wire having a diameter of 50 to 500 μm is used as warp and weft and is woven into a mesh shape. This will be described in detail below.

前述したように、縦糸と横糸をメッシュ状に製織した電磁波遮蔽メッシュは、比較的加工が簡単であると供に電磁波遮蔽メッシュの開口率を自由に選択できるので、光透過性に優れている特徴がある。このため、導電性を有する材料からなる横糸、縦糸を使用した電磁波遮蔽メッシュが提案されているが、使用する材料によって種々の問題点がある。例えば、合成繊維にAgめっきを用いた繊維を使用した場合には、電磁波遮蔽メッシュを風があたる部分で使用するとAgが空気中のHSと反応してAgSとなり、これが導電性を低下させシールド効果が悪くなる問題がある。このため、AgSが生じないようにする耐食性が求められる。さらに、導電性の良いCu繊維を用いた場合には、Cu繊維表面が変色する等の耐食性に問題があった。また、Ti線やステンレス(SUS)線を用いた場合には、耐食性は良いが導電率が低いので、シールド材表面での電磁波の反射が少なくなり、シールド性が悪くなると考えられる。そこで、本発明では図1に示すような電磁波遮蔽メッシュの縦糸並びに横糸として、特定の太さのTi被覆Cu線を使用することによって、これ等の問題点を解決した。 As described above, the electromagnetic shielding mesh obtained by weaving warp and weft into a mesh shape is relatively easy to process, and the aperture ratio of the electromagnetic shielding mesh can be freely selected. There is. For this reason, an electromagnetic shielding mesh using wefts and warps made of a conductive material has been proposed, but there are various problems depending on the material used. For example, when a fiber using Ag plating is used as the synthetic fiber, Ag reacts with H 2 S in the air to form Ag 2 S when the electromagnetic wave shielding mesh is used in a portion where the wind is applied. There is a problem that the shielding effect deteriorates due to lowering. Therefore, corrosion resistance of such Ag 2 S is not generated is determined. Furthermore, when Cu fibers having good conductivity are used, there is a problem in corrosion resistance such as discoloration of the Cu fiber surface. Further, when Ti wire or stainless steel (SUS) wire is used, corrosion resistance is good but conductivity is low, so that reflection of electromagnetic waves on the surface of the shielding material is reduced, and shielding properties are considered to be poor. Therefore, in the present invention, these problems were solved by using Ti-coated Cu wire having a specific thickness as the warp and weft of the electromagnetic wave shielding mesh as shown in FIG.

図1(c)に、本発明のTi被覆Cu線の概略断面を示した。符号1はTi被覆Cu線で、Cu線2の上にTi被覆層3が設けられたものである。なお、図1(a)は電磁波遮蔽メッシュの一部を拡大した概略平面図、(b)はその概略断面図である。
本発明のようなTi被覆Cu線1を用いることにより、中心のCu線2によって十分な導電性が確保され電磁波遮蔽効果を有し、その上に被覆したTi被覆層3によって耐食性が同時に確保される。すなわち、Ti被覆層3によりAgを使用した場合のようにHSと反応してAgSとなり導電性が低下しシールド効果が低下することや、Cu繊維を用いた場合のような変色する等の問題がない。具体的に述べると、海のような腐食環境下で使用しても前記の問題を生じることがなくなる。さらには、Ti被覆層3により抗菌性を有する電磁波遮蔽メッシュが得られる。なお、Ti被覆Cu線1は、電磁波遮蔽効果を十分に確保する必要からTi被覆層3を余り厚くすることは導電性の点から好ましくない。断面被覆率で30%以下とするのが好ましい。このような被覆率で、耐食性は十分に確保できることになる。
そして、上記のTi被覆Cu線1は、例えば、Ti被覆材を押出成型機等によってパイプ状に形成すると同時に、Cu材を押出成型機等によって線状に形成しながら走行させ、前記Tiパイプ中にCu線を挿入し、これを絞り加工によって両者を密着させて、直径が50〜500μmのTi被覆Cu線に加工することによって得ることができる。
FIG. 1 (c) shows a schematic cross section of the Ti-coated Cu wire of the present invention. Reference numeral 1 denotes a Ti-coated Cu wire, and a Ti coating layer 3 is provided on the Cu wire 2. 1A is a schematic plan view in which a part of the electromagnetic wave shielding mesh is enlarged, and FIG. 1B is a schematic cross-sectional view thereof.
By using the Ti-coated Cu wire 1 as in the present invention, sufficient conductivity is ensured by the central Cu wire 2 to have an electromagnetic shielding effect, and corrosion resistance is simultaneously secured by the Ti coating layer 3 coated thereon. The That is, it reacts with H 2 S to become Ag 2 S as in the case where Ag is used by the Ti coating layer 3, and the conductivity is lowered and the shielding effect is lowered, or the color changes when Cu fibers are used. There is no problem. More specifically, the above problem does not occur even when used in a corrosive environment such as the sea. Furthermore, an electromagnetic shielding mesh having antibacterial properties can be obtained by the Ti coating layer 3. In addition, it is not preferable from the point of electroconductivity that the Ti coating | coated Cu wire 1 makes the Ti coating layer 3 too thick from the need of ensuring sufficient electromagnetic wave shielding effect. The cross-sectional coverage is preferably 30% or less. With such a coverage, the corrosion resistance can be sufficiently secured.
And said Ti covering Cu wire 1 is made to run, for example, while forming Ti covering material in the shape of a pipe with an extrusion molding machine etc., and simultaneously forming Cu material in the shape of a line with an extrusion molding machine etc. It can be obtained by inserting a Cu wire into the wire, bringing them into close contact with each other by drawing, and processing them into a Ti-coated Cu wire having a diameter of 50 to 500 μm.

また、Ti被覆Cu線1の直径を50〜500μmとすることにより、電磁波遮蔽メッシュに製織する際の開口率(単位面積におけるTi被覆Cu線の存在しない部分の面積比率)を自由に選択でき、電磁波遮蔽性を十分に確保するために好ましい。すなわち、電磁波遮蔽メッシュの開口率(光の透過性)並びに電磁波遮蔽性はTi被覆Cu線の直径とピッチによって決定され、Ti被覆Cu線の直径が大きければ電磁波遮蔽性は向上するが、光の透過性は低下することになる。逆に、ピッチを大きくすることによって光の透過性を向上させることができるが、電磁波遮蔽性は低下することになる。そのため、電磁波遮蔽メッシュに製織する際の開口率(光の透過性)並びに電磁波遮蔽性の両方が満足する電磁波遮蔽メッシュを製造し易くするために、Ti被覆Cu線1の直径を50〜500μmとするべきである。すなわち、直径が50μm未満であると、電磁波遮蔽メッシュを製織する際に、Ti被覆Cu線がキンクし易くダメージを受けることがある。また、直径が500μmを超えるTi被覆Cu線1を用いると光の透過性が悪くなり、表示体の前面に配置した場合に画面が暗くなることがある。さらに、開口率を大きくした場合には電磁波の遮蔽効果が悪くなる。   Moreover, by setting the diameter of the Ti-coated Cu wire 1 to 50 to 500 μm, it is possible to freely select the aperture ratio (area ratio of the portion where the Ti-coated Cu wire does not exist in the unit area) when weaving the electromagnetic shielding mesh. This is preferable in order to ensure sufficient electromagnetic shielding properties. That is, the aperture ratio (light transmittance) and the electromagnetic wave shielding property of the electromagnetic wave shielding mesh are determined by the diameter and pitch of the Ti-coated Cu wire, and the electromagnetic wave shielding property is improved if the diameter of the Ti-coated Cu wire is large. The permeability will be reduced. On the contrary, by increasing the pitch, the light transmittance can be improved, but the electromagnetic wave shielding property is lowered. Therefore, in order to make it easy to manufacture an electromagnetic shielding mesh that satisfies both the aperture ratio (light transmittance) and the electromagnetic shielding properties when weaving into the electromagnetic shielding mesh, the diameter of the Ti-coated Cu wire 1 is set to 50 to 500 μm. Should do. That is, when the diameter is less than 50 μm, when weaving the electromagnetic wave shielding mesh, the Ti-coated Cu wire is easily kinked and may be damaged. In addition, when the Ti-coated Cu wire 1 having a diameter exceeding 500 μm is used, the light transmittance is deteriorated, and the screen may be darkened when arranged on the front surface of the display body. Further, when the aperture ratio is increased, the electromagnetic wave shielding effect is deteriorated.

そこで、前記Ti被覆Cu線1を用いて開口率が70〜90%の電磁波遮蔽メッシュ(図1a)とすることにより、光の透過性並びに電磁波遮蔽性の両方を満足させることができることを確認した。すなわち、開口率が70%未満であると光の透過性が十分でなく、種々の表示体の前面に配置した場合に画面が暗くなり問題がある。また、90%を超えるものは電磁波の遮蔽効果が十分でなくなり問題がある。さらに、70〜90%の開口率を有する電磁波遮蔽メッシュは、直径が50〜500μmのTi被覆Cu線を縦糸並びに横糸として製織(織物)することによって得ることができる。図1(a)や(b)には平織りの場合を記載したが、その他の織り方や編物でも良い。要は直径が50〜500μmの範囲のTi被覆Cu線1を縦糸並びに横糸として組合わせて、開口率が70〜90%の電磁波遮蔽メッシュに製織することによって、電磁波遮蔽性、光透過性に優れていると共に、特に耐食性や抗菌性に優れた電磁波遮蔽メッシュが得られることになる。   Therefore, it was confirmed that by using the Ti-coated Cu wire 1 as an electromagnetic wave shielding mesh (FIG. 1a) having an aperture ratio of 70 to 90%, both light transmittance and electromagnetic wave shielding properties can be satisfied. . That is, when the aperture ratio is less than 70%, the light transmission is not sufficient, and there is a problem that the screen becomes dark when arranged on the front surface of various display bodies. In addition, if it exceeds 90%, the electromagnetic wave shielding effect is not sufficient and there is a problem. Furthermore, an electromagnetic wave shielding mesh having an aperture ratio of 70 to 90% can be obtained by weaving (woven fabric) Ti-coated Cu wire having a diameter of 50 to 500 μm as warp and weft. Although the case of plain weave is described in FIGS. 1A and 1B, other weaving methods and knitted fabrics may be used. In short, by combining Ti coated Cu wire 1 with a diameter in the range of 50 to 500 μm as warp and weft and weaving into an electromagnetic shielding mesh with an aperture ratio of 70 to 90%, it is excellent in electromagnetic shielding and light transmission. In addition, an electromagnetic wave shielding mesh having particularly excellent corrosion resistance and antibacterial properties can be obtained.

以下に実施例及び比較例を記載して、本発明の効果を述べる。
常法によって、直径が25〜700μmの各種Ti被覆Cu線を製造した。得られた直径が25〜700μmのTi被覆Cu線を縦糸及び横糸として、表1に示した構造のメッシュを平織りによって作製した。ここでは、縦糸と横糸に同じ直径のTi被覆Cu線を使用し、織機の筬の目によって縦糸の密度を調整することによってメッシュの開口率を種々変化させた。もちろん、直径の異なる縦糸と横糸を用いることによっても開口率を変えることができる。このようにして得られた電磁波遮蔽メッシュについて、開口率、耐食性、可視光の透過率、シールド特性を調べた。
開口率(単位面積におけるTi被覆Cu線の存在しない部分の面積比率)は、Ti被覆Cu線の直径とピッチを求めることによって算出した。
耐食性については、温度35℃、24時間の塩水噴霧試験(JIS Z 2371)を行い、携帯電話機メーカーが要求する試験後表面に変色又は溶解が見られないものを合格として〇印で、この要求を満たさないものを×印で記載した。
可視光の透過率は、日立ハイテク社の分光光度計(U−4100)を用いて測定した。透過率が80%以上のものを合格とした。
電磁波のシールド性については、KEC法(社団法人関西電子工業振興センターの標準測定方法であるMIL−STD283)により評価した。すなわち、近距離に発振アンテナと受信アンテナが設置されたシールドボックス内の所定に位置にサンプルのメッシュを保持し、周波数を100KHzから1GHzの範囲で変化させて発振し、そのときの角周波数における減衰状態をスペクトラム・アナライザー(アドバンテスト社製のR3361A)で測定したものである。(各周波数における減衰量が)30db以上であれば良好と判断した。これ等の試験項目の全てに合格する場合を、総合評価〇印とした。一項目でも不合格がある場合には×印で記載した。結果を表1に示した。
The effects of the present invention will be described below by describing examples and comparative examples.
Various Ti-coated Cu wires having a diameter of 25 to 700 μm were produced by a conventional method. A mesh having the structure shown in Table 1 was produced by plain weaving using the obtained Ti-coated Cu wire with a diameter of 25 to 700 μm as warp and weft. Here, Ti-coated Cu wires having the same diameter were used for the warp and the weft, and the opening ratio of the mesh was variously changed by adjusting the density of the warp by the weave of the loom. Of course, the aperture ratio can be changed by using warp and weft having different diameters. The electromagnetic wave shielding mesh thus obtained was examined for aperture ratio, corrosion resistance, visible light transmittance, and shielding characteristics.
The aperture ratio (area ratio of the portion where the Ti-coated Cu wire does not exist in the unit area) was calculated by obtaining the diameter and pitch of the Ti-coated Cu wire.
For corrosion resistance, perform a salt spray test (JIS Z 2371) at a temperature of 35 ° C. for 24 hours, and pass the test that does not show discoloration or dissolution on the surface after the test required by the mobile phone manufacturer. What was not satisfied was described by x mark.
Visible light transmittance was measured using a spectrophotometer (U-4100) manufactured by Hitachi High-Tech. Those having a transmittance of 80% or more were regarded as acceptable.
About the shielding property of electromagnetic waves, it evaluated by KEC method (MIL-STD283 which is a standard measurement method of Kansai Electronics Industrial Promotion Center). That is, a sample mesh is held at a predetermined position in a shield box where an oscillation antenna and a reception antenna are installed at a short distance, and the oscillation is performed by changing the frequency in the range of 100 KHz to 1 GHz, and attenuation at the angular frequency at that time The state was measured with a spectrum analyzer (R3361A manufactured by Advantest). If the attenuation amount at each frequency was 30 db or more, it was judged good. A case where all of these test items pass is designated as a comprehensive evaluation 〇 mark. If any item fails, it is marked with a cross. The results are shown in Table 1.

Figure 2010098019
Figure 2010098019

表1に示した実施例1〜5から明らかなように、直径が50〜500μmのTi被覆Cu線を縦糸並びに横糸とし、開口率が70〜90%となるようにメッシュ状に製織した電磁波遮蔽メッシュとすることによって、耐食性、可視光の透過率、シールド特性の全てを満足する電磁波遮蔽メッシュが得られることが判る。
すなわち、実施例1及び2に記載するように、直径が50μmのTi被覆Cu線を用いて、開口率が70〜90%となるように製織した電磁波遮蔽メッシュは、耐食性、可視光の透過率並びにシールド性に優れたものであることが判る。また、実施例4及び5に記載したように、直径が500μmのTi被覆Cu線を用いて、開口率が70〜90%となるように製織した電磁波遮蔽メッシュも同様に優れていることが判る。さらに、実施例3に記載したように、直径が250μmのTi被覆Cu線を用いて、開口率が80%となるように製織した電磁波遮蔽メッシュも同様に優れたものであった。
As is clear from Examples 1 to 5 shown in Table 1, the electromagnetic wave shielding woven in a mesh shape so that the opening ratio is 70 to 90% using Ti-coated Cu wire having a diameter of 50 to 500 μm as warp and weft. It can be seen that an electromagnetic wave shielding mesh satisfying all of the corrosion resistance, the visible light transmittance, and the shielding characteristics can be obtained by using the mesh.
That is, as described in Examples 1 and 2, an electromagnetic wave shielding mesh woven using a Ti-coated Cu wire having a diameter of 50 μm so that the aperture ratio is 70 to 90% is corrosion resistance and visible light transmittance. It can also be seen that it has excellent shielding properties. Moreover, as described in Examples 4 and 5, it can be seen that an electromagnetic shielding mesh woven using a Ti-coated Cu wire having a diameter of 500 μm so that the aperture ratio is 70 to 90% is also excellent. . Furthermore, as described in Example 3, an electromagnetic shielding mesh woven using a Ti-coated Cu wire having a diameter of 250 μm so that the aperture ratio was 80% was also excellent.

これに対して、比較例1に示すように、線材として直径が500μmのCu線を用いて製織した電磁波遮蔽メッシュは、塩水噴霧試験(JIS Z 2371)により表面の変色が激しく耐食性が不合格となった。また比較例2のように、Ti被覆Cu線を用いた場合でもその直径が25μmであると、目的とするメッシュに製織することができなかった。このため、開口率の測定、耐食性、可視光の透過率、シールド性の評価は行わなかった。さらに、比較例5及び6に示すように、Ti被覆Cu線の外径が700μmと太いものを用いてメッシュを製織した場合は、開口率が70%及び90%と本発明の範囲内であっても、透過率が80%未満と不合格となった。これは、開口率が同じような場合でもTi被覆Cu線の直径が大きいと、電磁波遮蔽メッシュが厚くなるために透過する光が減少するためと思われる。
また、比較例3のように、Ti被覆Cu線の外径が300μmと本発明の範囲のものを用いた場合であっても、開口率が50%と小さいと、シールド性には合格するが透過率が70%と不合格になった。さらにまた、比較例4のように、Ti被覆Cu線の外径は500μmと本発明の範囲のものであっても、開口率を95%のように高くすると、透過率は合格するがシールド性が25dbと不合格となった。
On the other hand, as shown in Comparative Example 1, an electromagnetic wave shielding mesh woven using a Cu wire having a diameter of 500 μm as a wire has a severe surface discoloration due to a salt spray test (JIS Z 2371) and fails corrosion resistance. became. Further, as in Comparative Example 2, even when a Ti-coated Cu wire was used, if the diameter was 25 μm, it could not be woven into the target mesh. For this reason, the measurement of the aperture ratio, corrosion resistance, visible light transmittance, and shielding properties were not evaluated. Further, as shown in Comparative Examples 5 and 6, when the mesh was woven using a thick Ti-coated Cu wire having an outer diameter of 700 μm, the opening ratio was 70% and 90%, which was within the scope of the present invention. However, the transmittance was rejected as less than 80%. This is presumably because even when the aperture ratio is the same, if the diameter of the Ti-coated Cu wire is large, the electromagnetic wave shielding mesh becomes thick and the transmitted light decreases.
Further, as in Comparative Example 3, even when the outer diameter of the Ti-coated Cu wire is 300 μm and the range of the present invention is used, if the aperture ratio is as small as 50%, the shielding property is passed. The transmittance was rejected as 70%. Further, as in Comparative Example 4, even if the outer diameter of the Ti-coated Cu wire is 500 μm and within the range of the present invention, if the aperture ratio is increased to 95%, the transmittance is passed but the shielding property is achieved. Was rejected at 25db.

本発明は、携帯電話やPDP等に使用する電磁波遮蔽用のメッシュとして、シールド性(電磁波遮蔽性)、光透過性に優れていると共に、特に耐食性にも優れた電磁波遮蔽メッシュとして有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as an electromagnetic wave shielding mesh that is excellent in shielding properties (electromagnetic wave shielding properties) and light transmittance as an electromagnetic wave shielding mesh used for mobile phones, PDPs, and the like, and particularly excellent in corrosion resistance.

(a)は本発明の電磁波遮蔽メッシュの一部を示す概略平面図、(b)は(a)の断面を示す概略断面図、(c)は、電磁波遮蔽メッシュに使用するTi被覆Cu線の断面を示す概略図である。(A) is a schematic plan view showing a part of the electromagnetic wave shielding mesh of the present invention, (b) is a schematic cross sectional view showing a cross section of (a), and (c) is a view of a Ti-coated Cu wire used for the electromagnetic wave shielding mesh. It is the schematic which shows a cross section.

符号の説明Explanation of symbols

1 Ti被覆Cu線
2、Cu線
3 Ti被覆層
1 Ti coated Cu wire 2, Cu wire 3 Ti coated layer

Claims (2)

直径が50〜500μmのチタン被覆銅線を縦糸並びに横糸として、メッシュ状に製織したことを特徴とする電磁波遮蔽メッシュ。   An electromagnetic wave shielding mesh characterized in that a titanium-coated copper wire having a diameter of 50 to 500 μm is woven in a mesh shape using warp and weft. 前記電磁波遮蔽メッシュは、開口率が70〜90%であることを特徴とする請求項1に記載の電磁波遮蔽メッシュ。   The electromagnetic wave shielding mesh according to claim 1, wherein the electromagnetic wave shielding mesh has an aperture ratio of 70 to 90%.
JP2008265909A 2008-10-15 2008-10-15 Electromagnetic wave shielding mesh Pending JP2010098019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265909A JP2010098019A (en) 2008-10-15 2008-10-15 Electromagnetic wave shielding mesh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265909A JP2010098019A (en) 2008-10-15 2008-10-15 Electromagnetic wave shielding mesh

Publications (1)

Publication Number Publication Date
JP2010098019A true JP2010098019A (en) 2010-04-30

Family

ID=42259517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265909A Pending JP2010098019A (en) 2008-10-15 2008-10-15 Electromagnetic wave shielding mesh

Country Status (1)

Country Link
JP (1) JP2010098019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140262478A1 (en) * 2013-03-13 2014-09-18 Federal-Mogul Powertrain, Inc. EMI Shielding Textile Fabric, Wrappable Sleeve Constructed Therefrom and Method of Construction Thereof
KR101773928B1 (en) 2015-06-09 2017-09-01 주식회사 씨에프에이글로벌 Broadband electromagnetic wave shielding Cu-Fe alloy sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140262478A1 (en) * 2013-03-13 2014-09-18 Federal-Mogul Powertrain, Inc. EMI Shielding Textile Fabric, Wrappable Sleeve Constructed Therefrom and Method of Construction Thereof
CN105209673A (en) * 2013-03-13 2015-12-30 费德罗-莫格尔动力系公司 EMI shielding textile fabric, wrappable sleeve constructed therefrm and method of construction thereof
JP2016512580A (en) * 2013-03-13 2016-04-28 フェデラル−モーグル パワートレイン インコーポレイテッドFederal−Mogul Powertrain, Inc. EMI shielding textile fabric, wrappable sleeve constructed therefrom and method of construction thereof
US9913415B2 (en) * 2013-03-13 2018-03-06 Federal-Mogul Powertrain Llc EMI shielding textile fabric, wrappable sleeve constructed therefrom and method of construction thereof
KR101773928B1 (en) 2015-06-09 2017-09-01 주식회사 씨에프에이글로벌 Broadband electromagnetic wave shielding Cu-Fe alloy sheet

Similar Documents

Publication Publication Date Title
KR100542007B1 (en) Electrically conductive fabric
KR100852863B1 (en) Copper foil having blackened surface or layer
US7569282B2 (en) Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield
SE439411B (en) APPLICATION OF METALLIZED TEXTILE PAPERS FOR MICROVAGOR SHIELDING
CN101688336B (en) Electromagnetic wave suppression flat yarn, electromagnetic wave suppression product using same, and methods for fabricating them
JP5868890B2 (en) Composite double-sided black copper foil and method for producing the same
JP2010098019A (en) Electromagnetic wave shielding mesh
Hu et al. The novel approach of EMI shielding simulation for metal coated nonwoven textiles with optimized textile module
US6924244B2 (en) Metal coated fiber materials
WO2007069803A1 (en) Camouflage textile with non-electrolytic plated fiber
KR101664857B1 (en) Conductive yarn and method for preparing the same
JP4634063B2 (en) Black conductive mesh fabric and manufacturing method thereof
JP2010129847A (en) Flexible printed wiring board and flexible flat cable
CN205934535U (en) Metallization coating screen cloth
RU2338021C1 (en) Metallised material &#39;&#39;nanotex&#39;&#39;
US20090288875A1 (en) Electromagnetic wave shielding mesh
CN212208973U (en) Opening self-rolling braided tube for electromagnetic shielding protection
KR20180109587A (en) Superior conductive carbon fabric having excellent electromagnetic wave shielding property using electroless copper-nickel plating and manufacturing method thereof
JP4867263B2 (en) Electromagnetic wave shielding sheet
JP2007096164A (en) Electromagnetic wave shielding sheet
CN109371668A (en) A kind of electromagnetic shielding anti-radiation electric conduction cloth
CN109244865A (en) A kind of distribution box with shell structure
JP2004253588A (en) Composite material and its manufacturing method
JP2012064846A (en) Electromagnetic wave shield sheet, method of producing the same, and image display unit
JP2007096165A (en) Electromagnetic wave shielding sheet