JP2010097092A - Oscillating body apparatus, deflection device using the same, and method of controlling the same - Google Patents

Oscillating body apparatus, deflection device using the same, and method of controlling the same Download PDF

Info

Publication number
JP2010097092A
JP2010097092A JP2008269264A JP2008269264A JP2010097092A JP 2010097092 A JP2010097092 A JP 2010097092A JP 2008269264 A JP2008269264 A JP 2008269264A JP 2008269264 A JP2008269264 A JP 2008269264A JP 2010097092 A JP2010097092 A JP 2010097092A
Authority
JP
Japan
Prior art keywords
frequency
vibration
data set
waveform
fundamental frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008269264A
Other languages
Japanese (ja)
Inventor
Makoto Takagi
誠 高木
Yukio Furukawa
幸生 古川
Yasuhiro Soeda
康宏 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008269264A priority Critical patent/JP2010097092A/en
Publication of JP2010097092A publication Critical patent/JP2010097092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillating body apparatus that achieves stable drive of an oscillation system regardless of conditions such as the individual difference of an oscillation system or a drive environment, and to provide a deflection device or the like. <P>SOLUTION: In the oscillating body apparatus, a position detection means 106 detects an oscillation waveform of the oscillation system. A drive command waveform update means 102 performs feedback control of a drive command waveform data set, based on an oscillation waveform data set converted by a conversion means 107 and an ideal waveform data set stored in an ideal waveform storage means 101. A drive means 104 drives the oscillation system, based on the output of the drive command waveform update means. A frequency characteristic detection means 109 detects an amplitude ratio or a phase difference between the drive command waveform data set and the oscillation waveform data set about each component of oscillation. A control means 110 controls one of the fundamental frequency of the oscillation and the resonance frequency of the oscillation system, based on the output of the frequency characteristics detection means. The oscillation system is driven, while the frequency that maximizes a rate of change of the amplitude ratio or the phase difference in the oscillation system is not matched with each frequency of the oscillation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揺動可能な揺動体を持つ振動系を有する揺動体装置、揺動体装置を用いた一次元、二次元等の偏向装置、揺動体装置の制御方法等に関する。 The present invention relates to an oscillating body device having an oscillating system having an oscillating body that can oscillate, a one-dimensional or two-dimensional deflection device using the oscillating body device, a control method of the oscillating body device, and the like.

従来、光偏向を行う偏向装置を有する光学装置として走査型プロジェクタが知られている。上記の偏向装置では、光線経路に沿って進むレーザ光を一つの小さな光点に絞りやすいことを利用し、光源から出射される光束を小さな光点に集光して対象物面に照射し、走査面に表示される光点を一画素とする。この画素を、主走査及び主走査と略直交する方向の副走査によって二次元に並べ、人間の目の残像効果を利用してプロジェクタの表示面を構成している。 2. Description of the Related Art Conventionally, a scanning projector is known as an optical device having a deflecting device that deflects light. In the above deflecting device, utilizing the fact that the laser beam traveling along the light path is easily narrowed to one small light spot, the light beam emitted from the light source is condensed on the small light spot and irradiated onto the object surface, A light spot displayed on the scanning plane is defined as one pixel. These pixels are arranged two-dimensionally by main scanning and sub-scanning in a direction substantially perpendicular to the main scanning, and the display surface of the projector is configured using the afterimage effect of the human eye.

上記の様なプロジェクション装置では、光点を並べて表示面を構成するために、第一の偏向装置で主走査方向に光点を走査した後、第二の偏向装置を用いて主走査のラインを順次副走査方向に並べていく。この様な走査方式をラスタスキャンという。ラスタスキャンによって精度の高い描画を行うため、第二の偏向装置による走査には、描画面において一定の描画速度を持つこと、すなわち描画軌跡の線形性の高さが要求される。 In the projection apparatus as described above, in order to configure the display surface by arranging the light spots, the first deflection apparatus scans the light spots in the main scanning direction, and then uses the second deflection apparatus to change the main scanning line. They are sequentially arranged in the sub-scanning direction. Such a scanning method is called raster scanning. In order to perform drawing with high accuracy by raster scanning, scanning by the second deflecting device is required to have a constant drawing speed on the drawing surface, that is, high linearity of the drawing locus.

この様な要求を満たすために、特許文献1、特許文献2では、偏向装置の偏向位置を検出するセンサの出力を、繰り返し偏向の基本周波数成分及びその整数次高調波成分の振幅・位相情報として取り扱う。得られた振幅・位相情報により、周波数領域で駆動指令波形のフィードバック操作を行い、その結果から関数発生器を駆動し、駆動電流を生成する。
特開平11−231253号公報 特開2005−080355号公報
In order to satisfy such a requirement, in Patent Document 1 and Patent Document 2, the output of the sensor that detects the deflection position of the deflection device is used as the amplitude / phase information of the fundamental frequency component of the repeated deflection and its integer harmonic component. handle. Based on the obtained amplitude / phase information, a feedback operation of the drive command waveform is performed in the frequency domain, and the function generator is driven from the result to generate a drive current.
JP-A-11-231253 JP 2005-080355 A

図15に、一次元偏向装置の駆動指令波形に対する偏向波形の振幅比と周波数との関係の一例を示す。振幅比は、偏向装置の振動系の共振周波数における振幅比で正規化した値で示す。共振特性を持つ偏向装置では、利得(駆動指令波形[動きの指示に相当]と偏向波形[実際の動きに相当]の間の振幅比)が周波数により顕著に変化し、共振周波数付近で最も大きくなる。特に、図15に示す様な特性を持つ、共振周波数が比較的低い周波数に存在する制御対象に対して、非共振駆動で繰り返し偏向の波形制御を周波数成分の合成により行うとする。この場合、制御に使用する周波数成分(繰り返し基本周波数成分及びその整数次高調波成分)毎に、利得が大きく変動する。この結果、従来の周波数合成による波形制御では、共振特性の共振周波数をまたぐ様な周波数成分を利用する場合、制御に使用する周波数の一つが共振周波数と一致し、想定外の高い利得になることが起こり得る。こうした事態に対する対策を行わないと、共振周波数と一致した周波数成分では、大きなオーバーシュートが発生し制御の収束が遅くなるといった問題が発生し得る。 FIG. 15 shows an example of the relationship between the amplitude ratio of the deflection waveform to the drive command waveform of the one-dimensional deflection apparatus and the frequency. The amplitude ratio is indicated by a value normalized by the amplitude ratio at the resonance frequency of the vibration system of the deflecting device. In a deflection device having resonance characteristics, the gain (amplitude ratio between the drive command waveform [corresponding to the motion command] and the deflection waveform [corresponding to the actual motion] changes significantly depending on the frequency, and is the largest near the resonance frequency. Become. In particular, it is assumed that waveform control of repetitive deflection with non-resonant driving is performed by synthesizing frequency components for a control target having characteristics as shown in FIG. In this case, the gain fluctuates greatly for each frequency component (repetitive fundamental frequency component and its integer harmonic component) used for control. As a result, in the conventional waveform control by frequency synthesis, when using a frequency component that crosses the resonance frequency of the resonance characteristics, one of the frequencies used for control coincides with the resonance frequency, resulting in an unexpectedly high gain. Can happen. If measures against such a situation are not taken, there may be a problem that a large overshoot occurs at the frequency component that matches the resonance frequency, and the convergence of the control becomes slow.

一方、MEMS(micro-electro-mechanical-systems)スキャナでは、個体ごとに共振周波数に大きなばらつきがあることが広く知られている。また、経時変化や環境変化によってもMEMSスキャナの共振周波数は変化しやすい。 On the other hand, in a micro-electro-mechanical-systems (MEMS) scanner, it is widely known that there is a large variation in resonance frequency for each individual. Also, the resonance frequency of the MEMS scanner is likely to change due to changes over time and environmental changes.

しかしながら、特許文献1及び特許文献2では、偏向装置の持つ共振特性に対して考慮がなされていない。従って、この様に様々な条件で決まる共振特性への対応のため、一般的には、コントローラのフィードバックゲインを小さく設定しておく必要がある。 However, in Patent Document 1 and Patent Document 2, no consideration is given to the resonance characteristics of the deflecting device. Therefore, in order to cope with the resonance characteristics determined by various conditions as described above, it is generally necessary to set the feedback gain of the controller small.

上記課題に鑑み、本発明の揺動体を含む振動系を持つ揺動体装置は、クロック発生手段と、振動系と、位置検出手段と、変換手段と、理想波形記憶手段と、駆動指令波形更新手段と、関数発生手段と、駆動手段と、周波数特性検出手段と、制御手段を備える。前記振動系は、クロック発生手段の出力に同期して繰り返し振動を行う揺動体を含む。前記位置検出手段は、振動系の揺動体の振動波形を検出する。前記変換手段は、位置検出手段の出力を繰り返し振動の基本周波数成分及びその整数次高調波成分の振幅及び位相で構成される振動波形データセットに変換する。前記理想波形記憶手段は、繰り返し振動の基本周波数成分及びその整数次高調波成分について前記振動波形の目標とする理想的な振幅及び位相の値で構成される理想波形データセットを保存する。前記駆動指令波形更新手段は、振動波形データセットと理想波形データセットに基づき、繰り返し振動の基本周波数成分とその整数次高調波成分について、振動系への駆動指令波形の振幅及び位相で構成される駆動指令波形データセットをフィードバック制御する。前記関数発生手段は、駆動指令波形更新手段の出力に基づいて振動系の駆動指令信号を生成する。前記駆動手段は、関数発生手段の出力に基づいて振動系を駆動する。前記周波数特性検出手段は、駆動指令波形データセットと振動波形データセットとの間の振幅比または位相差を、繰り返し振動の基本周波数成分及びその整数次高調波成分について検出する。前記制御手段は、周波数特性検出手段の出力に基づき、繰り返し振動の基本周波数と振動系の共振周波数の一方を制御する。そして、振動系において振幅比または位相差の変化率が最大になる周波数と、繰り返し振動の基本周波数及びその整数次高調波周波数とが一致しない状態で振動系の駆動を行う様にする。 In view of the above problems, an oscillator device having an oscillation system including an oscillator according to the present invention includes a clock generation means, an oscillation system, a position detection means, a conversion means, an ideal waveform storage means, and a drive command waveform update means. And a function generation means, a drive means, a frequency characteristic detection means, and a control means. The vibration system includes a rocking body that repeatedly vibrates in synchronization with the output of the clock generation means. The position detecting means detects a vibration waveform of the oscillator of the vibration system. The converting means converts the output of the position detecting means into a vibration waveform data set composed of the fundamental frequency component of the repeated vibration and the amplitude and phase of the integer harmonic component thereof. The ideal waveform storage means stores an ideal waveform data set composed of ideal amplitude and phase values targeted for the vibration waveform with respect to the fundamental frequency component of repetitive vibration and its integer harmonic components. The drive command waveform update means is composed of the amplitude and phase of the drive command waveform to the vibration system with respect to the fundamental frequency component of the repeated vibration and its integer harmonic component based on the vibration waveform data set and the ideal waveform data set. Feedback control is performed on the drive command waveform data set. The function generator generates a vibration system drive command signal based on the output of the drive command waveform update unit. The driving means drives the vibration system based on the output of the function generating means. The frequency characteristic detecting means detects the amplitude ratio or phase difference between the drive command waveform data set and the vibration waveform data set for the fundamental frequency component of repetitive vibration and its integer harmonic component. The control means controls one of the fundamental frequency of repetitive vibration and the resonance frequency of the vibration system based on the output of the frequency characteristic detection means. Then, the vibration system is driven in a state where the frequency at which the change rate of the amplitude ratio or the phase difference is maximum in the vibration system does not match the fundamental frequency of the repeated vibration and the integer harmonic frequency thereof.

また、上記課題に鑑み、本発明の偏向装置は、前記揺動体装置を有し、前記振動系の揺動体が、入射光を偏向するための光偏向素子を備えることを特徴とする。 In view of the above problems, the deflection device of the present invention includes the oscillator device, and the oscillator of the oscillation system includes an optical deflection element for deflecting incident light.

また、上記課題に鑑み、本発明の二次元偏向装置は、第一方向に入射光を偏向するための第一の偏向装置と、第一方向に略直交する第二方向に入射光を偏向するための前記偏向装置である第二の偏向装置を含む。そして、第二の偏向装置は第一の偏向装置に同期して動作する構成であることを特徴とする。 In view of the above problems, the two-dimensional deflection apparatus of the present invention deflects incident light in a second direction substantially perpendicular to the first direction and a first deflection apparatus for deflecting incident light in the first direction. A second deflection device which is the deflection device for. The second deflecting device is configured to operate in synchronization with the first deflecting device.

また、上記課題に鑑み、本発明の揺動体装置の制御方法は、次の工程を含む。
クロックに同期して繰り返し振動を行う振動系の揺動体の振動波形を、繰り返し振動の基本周波数成分及びその整数次高調波成分の振幅及び位相で構成される振動波形データセットに変換する変換工程。
繰り返し振動の基本周波数成分及びその整数次高調波成分について振動波形の目標とする理想的な振幅及び位相の値で構成される理想波形データセットを振動波形データセットと比較する比較工程。
比較する工程の結果に基づき、繰り返し振動の基本周波数成分及びその整数次高調波成分について、振動系に対する駆動指令波形の振幅及び位相で構成される駆動指令波形データセットをフィードバック制御するフィードバック制御工程。
駆動指令波形データセットに基づいて振動系を駆動する駆動工程。
駆動指令波形データセットと振動波形データセットとの間の振幅比または位相差を、繰り返し振動の基本周波数成分及びその整数次高調波成分について検出する検出工程。
検出の振幅比または位相差を基に、振動系で振幅比または位相差の変化率が最大になる周波数と、繰り返し振動の基本周波数及びその整数次高調波周波数が一致しない様に、繰り返し振動の基本周波数と振動系の共振周波数の少なくとも一方を制御する制御工程。
Moreover, in view of the said subject, the control method of the oscillator device of this invention includes the following process.
A conversion step of converting a vibration waveform of a vibrating body of a vibration system that repeatedly vibrates in synchronization with a clock into a vibration waveform data set composed of the amplitude and phase of the fundamental frequency component of the repeated vibration and its integer harmonic component.
A comparison step of comparing an ideal waveform data set composed of ideal amplitude and phase values of the vibration waveform with respect to the fundamental frequency component of the repetitive vibration and its integer harmonic component with the vibration waveform data set.
A feedback control step of feedback-controlling a drive command waveform data set composed of the amplitude and phase of the drive command waveform for the vibration system with respect to the fundamental frequency component of repeated vibration and its integer harmonic component based on the result of the comparing step.
A driving process for driving the vibration system based on the drive command waveform data set.
A detection step of detecting an amplitude ratio or phase difference between the drive command waveform data set and the vibration waveform data set with respect to the fundamental frequency component of the repeated vibration and its integer harmonic component.
Based on the detected amplitude ratio or phase difference, the frequency at which the change rate of the amplitude ratio or phase difference is maximum in the vibration system does not match the fundamental frequency of the repeated vibration and its integer harmonic frequency. A control process for controlling at least one of the fundamental frequency and the resonance frequency of the vibration system.

本発明によれば、振動系で振幅比または位相差の変化率が最大になる周波数と、繰り返し振動ないし偏向の基本周波数及びその整数次高調波周波数が一致しない様に、繰り返し振動ないし偏向の基本周波数と振動系の共振周波数の少なくとも一方を制御する。この様にして制御対象に適した駆動条件を設定するので、MEMSスキャナなどの振動系の個体差や駆動環境などの諸条件によらず、利得が最も高くなる周波数と、制御に使用する周波数成分との一致を防止でき、安定な振動系の駆動を実現できる。 According to the present invention, the frequency at which the rate of change of the amplitude ratio or phase difference in the vibration system is maximized, the fundamental frequency of the repeated vibration or deflection, and the integer harmonic frequency thereof do not coincide with each other. Control at least one of the frequency and the resonance frequency of the vibration system. Since driving conditions suitable for the control target are set in this way, the frequency with the highest gain and the frequency components used for control are independent of various conditions such as individual differences in vibration systems such as MEMS scanners and driving environments. And a stable vibration system can be realized.

以下、本発明の実施の形態について説明する。本発明において重要なことは、次のことである。すなわち、駆動指令波形の形成に使用する周波数成分の範囲内で、駆動指令波形と振動波形の間の利得が大きく変動することは、適切に繰り返し振動の基本周波数と共振周波数の少なくとも一方を選択することで、周波数特性のばらつきを吸収できることを意味する。本発明ではこの点に着目し、制御に使用する周波数成分それぞれについて利得または位相差を検出し、この結果から、利得が最大になる周波数を推定する。そして、利得が最大になる周波数と、繰り返し振動の基本周波数及びその整数次高調波周波数とが一致しない様な駆動補正値を算出し、これを用いて駆動条件を設定する。この様にして制御対象に適した駆動条件を設定することで、MEMSスキャナなどの揺動体装置の個体差や駆動環境などの諸条件によらず、利得が最大になる周波数と繰り返し偏向の基本周波数及びその整数次高調波が一致するのを防ぐことができる。ここで、利得が最大になる周波数を推定する際、利得自体を検出して推定しても良いし、位相差を検出して位相差の変化率から推定しても良い。なぜなら、利得が最大になる所で位相差の変化率も最大になるからである。 Embodiments of the present invention will be described below. What is important in the present invention is the following. That is, when the gain between the drive command waveform and the vibration waveform varies greatly within the range of the frequency component used to form the drive command waveform, it is possible to appropriately select at least one of the fundamental frequency and the resonance frequency of the repeated vibration. This means that the variation in frequency characteristics can be absorbed. In the present invention, paying attention to this point, the gain or phase difference is detected for each frequency component used for control, and the frequency at which the gain is maximized is estimated from the result. Then, a drive correction value is calculated such that the frequency at which the gain is maximized, the fundamental frequency of the repetitive vibration, and its integer harmonic frequency do not match, and the drive condition is set using this. By setting the driving conditions suitable for the controlled object in this way, the frequency at which the gain is maximized and the fundamental frequency of repeated deflection are independent of the individual differences of the oscillator device such as the MEMS scanner and the driving environment. And their integer harmonics can be prevented from matching. Here, when estimating the frequency at which the gain is maximized, the gain itself may be detected and estimated, or the phase difference may be detected and estimated from the change rate of the phase difference. This is because the change rate of the phase difference is maximized where the gain is maximized.

以上の考え方に基づき、本発明の揺動体装置の基本的な実施形態は、上述したクロック発生手段と、振動系と、位置検出手段と、変換手段と、理想波形記憶手段と、駆動指令波形更新手段と、関数発生手段と、駆動手段と、周波数特性検出手段と、制御手段を備える。偏向装置の基本的な実施形態は、この揺動体装置を有し、前記振動系の揺動体が、入射光を偏向するための光偏向素子を備える。また、二次元偏向装置の基本的な実施形態は、第一方向に入射光を偏向するための第一の偏向装置と、第一方向に略直交する第二方向に入射光を偏向するための前記偏向装置である第二の偏向装置を含む。そして、第二の偏向装置は第一の偏向装置に同期して動作する様に構成される。 Based on the above concept, the basic embodiment of the oscillator device of the present invention includes the above-described clock generation means, vibration system, position detection means, conversion means, ideal waveform storage means, and drive command waveform update. Means, function generation means, drive means, frequency characteristic detection means, and control means. A basic embodiment of the deflecting device includes this oscillator device, and the oscillator of the oscillation system includes an optical deflection element for deflecting incident light. Further, the basic embodiment of the two-dimensional deflecting device includes a first deflecting device for deflecting incident light in the first direction and a deflecting device for deflecting incident light in a second direction substantially orthogonal to the first direction. A second deflection device which is the deflection device; The second deflecting device is configured to operate in synchronization with the first deflecting device.

また、本発明の揺動体装置の制御方法の基本的な実施形態は、上述した変換工程、比較工程、フィードバック制御工程、駆動工程、検出工程、制御工程を含む。 Further, the basic embodiment of the control method of the oscillator device of the present invention includes the conversion step, the comparison step, the feedback control step, the driving step, the detection step, and the control step described above.

前記基本構成を基礎にして、以下の様に構成することもできる。前記制御手段は、クロックの周期を制御するためにクロック発生手段に接続される様に構成することができる(後述の図2の例等を参照)。この場合、クロック発生手段の作成する信号の周期に応じて理想波形を再構成する理想波形生成部を備え、前記制御手段が理想波形生成部に接続される様に構成することができる(後述の図11の例を参照)。また、前記振動系の共振周波数を調整するための周波数特性調整手段を備え、前記制御手段が周波数特性調整手段に接続される様に構成することができる(後述の図6の例等を参照)。 On the basis of the basic configuration, the following configuration can also be adopted. The control means can be configured to be connected to the clock generation means in order to control the clock cycle (see the example of FIG. 2 described later). In this case, an ideal waveform generation unit that reconfigures an ideal waveform according to the cycle of a signal generated by the clock generation unit can be provided, and the control unit can be configured to be connected to the ideal waveform generation unit (described later). (See the example in FIG. 11). In addition, a frequency characteristic adjusting means for adjusting the resonance frequency of the vibration system can be provided, and the control means can be configured to be connected to the frequency characteristic adjusting means (see the example of FIG. 6 described later). .

また、前記二次元偏向装置において、前記制御手段が、前記第一の偏向装置の偏向周期を制御するために駆動周期生成部に接続され、駆動周期生成部が、前記クロック発生手段の出力周期を制御するためにクロック発生手段に接続される様に構成することができる。これについては、後述の図13の例に示される。前記第一の偏向装置が周波数特性調整手段を備え、前記制御手段が、第一の偏向装置の共振周波数を制御するために周波数特性調整手段に接続される様に構成することもできる(後述の図14の例を参照)。 In the two-dimensional deflection apparatus, the control unit is connected to a drive cycle generation unit for controlling a deflection cycle of the first deflection unit, and the drive cycle generation unit sets an output cycle of the clock generation unit. It can be configured to be connected to clock generation means for control. This is shown in the example of FIG. 13 described later. The first deflecting device may include a frequency characteristic adjusting unit, and the control unit may be connected to the frequency characteristic adjusting unit in order to control the resonance frequency of the first deflecting device (described later). (See the example in FIG. 14).

また、前記揺動体装置の制御方法において、前記制御工程が次の工程を含む様にすることができる(後述の図3(a)の例を参照)。すなわち、振幅比または位相差の変化率が最も大きくなる周波数を推定する工程。繰り返し振動の基本周波数成分及びその整数次高調波成分の中から、最大の振幅比または位相差の変化率を与える周波数の近傍の、二つの連続した次数の周波数成分を選択する工程。前記二つの連続した次数の周波数成分の振幅比または位相差の変化率が一致する様に、繰り返し振動の基本周波数または前記振動系の共振周波数の補正値を算出する工程。 In the control method of the oscillator device, the control step may include the following steps (see an example of FIG. 3A described later). That is, a step of estimating the frequency at which the change rate of the amplitude ratio or phase difference is the largest. A step of selecting two consecutive order frequency components in the vicinity of the frequency giving the maximum rate of change of the amplitude ratio or phase difference from the fundamental frequency component of the repetitive vibration and its integer harmonic component. Calculating a correction value of the fundamental frequency of the repetitive vibration or the resonance frequency of the vibration system so that the change rate of the amplitude ratio or the phase difference between the two consecutive order frequency components coincides.

また、前記揺動体装置の制御方法において、前記制御工程が次の工程を含む様にすることもできる(後述の図3(b)の例を参照)。すなわち、振幅比または位相差の変化率が最も大きくなる周波数を推定する繰り返し振動の基本周波数成分及びその整数次高調波成分の中から、二つの周波数成分からなる周波数成分の組を選択する工程。選択された周波数成分の組について、B/Aの値が周波数成分の組から定まる所定の値に一致する様に、繰り返し振動の基本周波数または振動系の共振周波数の補正値を算出する工程。ここで、一方の周波数成分における振幅比または位相差の変化率をA、他方の周波数における振幅比または位相差の変化率をBとする。この場合、前記制御工程が、周波数成分の組を複数組選択し、複数組で補正値をそれぞれ算出する工程と、複数組で求められた補正値から、繰り返し振動の基本周波数または振動系の共振周波数の補正値を決定する工程を含む様にもできる。 Further, in the control method of the oscillator device, the control step may include the following steps (see an example of FIG. 3B described later). That is, a step of selecting a set of frequency components composed of two frequency components from the fundamental frequency component of the repetitive vibration for estimating the frequency at which the change rate of the amplitude ratio or the phase difference is maximized and the integer harmonic components thereof. Calculating a correction value of the fundamental frequency of the repetitive vibration or the resonance frequency of the vibration system so that the B / A value matches a predetermined value determined from the set of frequency components for the selected set of frequency components; Here, the change rate of the amplitude ratio or phase difference in one frequency component is A, and the change rate of the amplitude ratio or phase difference in the other frequency is B. In this case, the control step selects a plurality of sets of frequency components, calculates a correction value for each of the plurality of sets, and the basic frequency of repetitive vibration or resonance of the vibration system from the correction values obtained for the plurality of sets. A step of determining a frequency correction value may be included.

また、前記揺動体装置の制御方法において、前記制御工程が、繰り返し振動の基本周波数の補正値に基づいて、前記クロックを発生するクロック発生手段の出力周波数を操作する工程を含む様にもできる。この場合、前記制御工程が、前記クロック発生手段の発生する周波数を設定する工程と、前記クロック発生手段の作成する信号の周期に応じて前記理想波形データセットを再構成する工程を含む様にもできる(後述の図11の例を参照)。更に、前記制御工程が、前記振動系の共振周波数の補正値に基づいて、振動系の共振周波数を操作する工程を含む様にもできる(後述の図6の例を参照)。 In the control method for the oscillator device, the control step may include a step of manipulating the output frequency of the clock generation means for generating the clock based on a correction value of the fundamental frequency of repetitive vibration. In this case, the control step may include a step of setting a frequency generated by the clock generation unit and a step of reconfiguring the ideal waveform data set according to a cycle of a signal generated by the clock generation unit. (See the example of FIG. 11 described later). Further, the control step may include a step of manipulating the resonance frequency of the vibration system based on the correction value of the resonance frequency of the vibration system (see the example of FIG. 6 described later).

図を用いて本発明の好適な実施形態を説明する。図1は本発明の好適な実施形態の構成を示すブロック図である。揺動体装置を用いる本偏向装置は、周波数領域における理想(目標)波形記憶手段101、駆動波形更新手段102、関数発生器103、ドライバ104、偏向器105、センサユニット106、フーリエ変換器107、クロック生成回路108で構成される。また、これらに加えて、周波数特性検出手段109、制御手段である制御ユニット110を備える。関数発生器103は駆動指令信号を出力する関数発生手段であり、ドライバ104は駆動手段であり、センサユニット106は位置検出手段であり、フーリエ変換器107は変換手段であり、クロック生成回路108はクロック発生手段である。駆動指令波形更新手段である駆動波形更新手段102は、加算器1021、除算器1022、加算器1023、駆動指令波形記憶手段1024を備える。 A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a preferred embodiment of the present invention. This deflection apparatus using the oscillator device includes an ideal (target) waveform storage means 101, a drive waveform update means 102, a function generator 103, a driver 104, a deflector 105, a sensor unit 106, a Fourier transformer 107, a clock in the frequency domain. The generation circuit 108 is configured. In addition to these, a frequency characteristic detection means 109 and a control unit 110 as control means are provided. The function generator 103 is function generating means for outputting a drive command signal, the driver 104 is drive means, the sensor unit 106 is position detection means, the Fourier transformer 107 is conversion means, and the clock generation circuit 108 is Clock generation means. The drive waveform update unit 102 that is a drive command waveform update unit includes an adder 1021, a divider 1022, an adder 1023, and a drive command waveform storage unit 1024.

本偏向装置は、振動系を含む偏向器105の駆動結果である偏向波形について、繰り返し偏向の基本周波数成分及びその整数次高調波成分の振幅と位相を算出し、駆動位置指令値の一周期分の変化を表す駆動指令波形を周波数領域でフィードバック制御している。 This deflection apparatus calculates the amplitude and phase of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof for the deflection waveform that is the driving result of the deflector 105 including the vibration system, and provides one cycle of the drive position command value. The drive command waveform representing the change in the frequency is feedback controlled in the frequency domain.

このフィードバック制御を詳述する。クロック生成回路108は一定の周期の信号を発生しており、偏向器105の偏向の繰り返し周期を規定する。本偏向装置では、偏向器105をクロック生成回路108の周期に従って駆動する。駆動指令波形記憶手段1024には、繰り返し偏向の基本周波数成分とその整数次高調波成分について一周期分の駆動指令波形の振幅と位相が保存されている。これを駆動指令波形データセットと呼ぶ。関数発生器103は、記憶装置1024に保存されている駆動位置指令波形を全て重ね合わせた位置指令波形を発生し、ドライバ104に送出する。ドライバ104は、関数発生器103の信号を偏向器105の駆動電流に変換する。偏向器105はこの駆動電流により駆動され、この動きが偏向位置としてセンサユニット106によって取得される。 This feedback control will be described in detail. The clock generation circuit 108 generates a signal having a constant period, and defines a repetition period of deflection of the deflector 105. In this deflection apparatus, the deflector 105 is driven according to the cycle of the clock generation circuit 108. The drive command waveform storage means 1024 stores the amplitude and phase of the drive command waveform for one cycle for the fundamental frequency component of repetitive deflection and its integer harmonic component. This is called a drive command waveform data set. The function generator 103 generates a position command waveform obtained by superimposing all the drive position command waveforms stored in the storage device 1024, and sends it to the driver 104. The driver 104 converts the signal from the function generator 103 into a driving current for the deflector 105. The deflector 105 is driven by this driving current, and this movement is acquired by the sensor unit 106 as a deflection position.

センサユニット106によって取得された偏向波形(偏向位置の時間変化のデータ)は、繰り返し偏向の基本周波数の一周期分収集され、フーリエ変換器107で繰り返し偏向の基本周波数成分及びその整数次高調波成分の振幅と位相情報に変換される。ここで得られた各周波数成分の振幅及び位相の情報を、偏向ないし振動波形データセットと呼ぶ。 A deflection waveform (time change data of the deflection position) acquired by the sensor unit 106 is collected for one period of the fundamental frequency of the repeated deflection, and the fundamental frequency component of the repeated deflection and its integer order harmonic component by the Fourier transformer 107. Is converted into amplitude and phase information. The information on the amplitude and phase of each frequency component obtained here is called a deflection or vibration waveform data set.

これに対して、理想波形記憶手段101には、目標とする理想的な偏向波形の振幅、位相の各周波数成分についての係数の集合が保管されている。これを理想波形データセットと呼ぶ。 On the other hand, the ideal waveform storage means 101 stores a set of coefficients for each frequency component of the amplitude and phase of the target ideal deflection waveform. This is called an ideal waveform data set.

偏向波形データセットは、理想波形データセットと共に駆動波形更新手段102に入力され、駆動指令波形データセットに含まれる各周波数成分の振幅及び位相の修正を行う。これにより、新たな駆動指令波形が生成される。この一連の手順を繰り返すことで、駆動指令波形は、理想波形記憶手段101に保存される理想波形で偏向器105を駆動させ得る形状に形成される。 The deflection waveform data set is input to the drive waveform update unit 102 together with the ideal waveform data set, and the amplitude and phase of each frequency component included in the drive command waveform data set are corrected. As a result, a new drive command waveform is generated. By repeating this series of procedures, the drive command waveform is formed in a shape that can drive the deflector 105 with the ideal waveform stored in the ideal waveform storage means 101.

本発明は、図1に示された様な繰り返し振動ないし偏向の装置における駆動条件設定の手法に係る。駆動条件設定のため、本実施形態では、周波数領域で駆動指令波形をフィードバック制御する繰り返し偏向の偏向装置において、周波数特性検出手段109を有する。そして、その出力に基づいて、利得が最大になる周波数と繰り返し偏向の基本周波数及びその整数次高調波周波数とを一致させない様な駆動条件に係る補正値を算出し、その補正値を用いて駆動条件を設定する制御ユニット110を備える。 The present invention relates to a method for setting drive conditions in a repetitive vibration or deflection apparatus as shown in FIG. In order to set drive conditions, the present embodiment includes a frequency characteristic detection unit 109 in a repetitive deflection deflector that feedback-controls a drive command waveform in the frequency domain. Then, based on the output, a correction value is calculated according to a driving condition such that the frequency at which the gain is maximized, the fundamental frequency of repetitive deflection, and the integer harmonic frequency thereof are not matched, and driving is performed using the correction value. A control unit 110 for setting conditions is provided.

周波数特性検出手段109は、駆動指令波形の基本周波数成分及びその整数次高調波成分の振幅と位相で構成される駆動指令波形データセットと、偏向波形の基本周波数成分及びその整数次高調波の振幅と位相で構成される偏向波形データセットを入力に持つ。そしてこれらを比較して、繰り返し偏向の基本周波数成分及びその整数次高調波成分の利得または位相差(各周波数成分の駆動指令波形と偏向波形の間の位相差)を算出する。制御ユニット110は、周波数特性検出手段109で算出された利得または位相差を用いて、利得または位相差の変化率が最大になる周波数と繰り返し偏向の基本周波数及びその整数次高調波周波数とを一致させない様な駆動条件の補正値を算出する。より詳細には、特定の条件を満たすまで、繰り返し偏向の基本周波数成分及びその整数次高調波成分の利得の最大値を減少させる様な駆動条件に係る補正値を算出する。 The frequency characteristic detection means 109 is a drive command waveform data set composed of the amplitude and phase of the fundamental frequency component of the drive command waveform and its integer harmonic component, and the fundamental frequency component of the deflection waveform and the amplitude of the integer harmonic thereof. And a deflection waveform data set composed of and phase. Then, by comparing these, the gain or phase difference (the phase difference between the drive command waveform and the deflection waveform of each frequency component) of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof is calculated. The control unit 110 uses the gain or phase difference calculated by the frequency characteristic detection means 109 to match the frequency at which the rate of change of the gain or phase difference is maximum with the fundamental frequency of repeated deflection and its integer harmonic frequency. The correction value of the driving condition that is not allowed is calculated. More specifically, a correction value related to a driving condition that reduces the maximum value of the gain of the fundamental frequency component of the repeated deflection and its integer harmonic component until a specific condition is satisfied is calculated.

本発明では、最も利得が高くなる周波数と、制御に用いる周波数成分とを一致させないために、繰り返し振動ないし偏向の基本周波数及び揺動体装置の共振周波数のうち、少なくとも一方を操作する。以下、本発明の実施例について、図面を参照しながら説明する。 In the present invention, in order not to make the frequency with the highest gain coincide with the frequency component used for control, at least one of the fundamental frequency of repetitive vibration or deflection and the resonance frequency of the oscillator device is operated. Embodiments of the present invention will be described below with reference to the drawings.

以下の説明中では、fv0は繰り返し偏向の基本周波数を、nは繰り返し偏向の基本周波数及びその整数次高調波の次数を表す。また、繰り返し偏向の基本周波数の第N(例えば、20)次高調波までを波形形成に用いているものとする。また、偏向器の振動系は、例えばミラーを有する1つの揺動体を含み、その固有振動モードの共振周波数は1つであるものとする。 In the following description, fv0 represents the fundamental frequency of repeated deflection, and n represents the fundamental frequency of repeated deflection and the order of its integer harmonics. Further, it is assumed that up to the Nth (for example, 20th) harmonic of the fundamental frequency of repeated deflection is used for waveform formation. Further, the vibration system of the deflector includes, for example, one oscillating body having a mirror, and the resonance frequency of the natural vibration mode is one.

振動系の共振周波数が2以上ある場合は、例えば、共振周波数を挟む複数組の周波数成分について補正値を算出し、その平均を最終的な補正値として用いたり、一番大きい補正値を最終的な補正値として用いたりすればよい。 When the resonance frequency of the vibration system is 2 or more, for example, a correction value is calculated for a plurality of sets of frequency components sandwiching the resonance frequency, and the average is used as a final correction value, or the largest correction value is finally determined. It may be used as a correct correction value.

(実施例1)
第一の実施例では、最も利得が高くなる周波数(共振周波数)と、制御に用いる周波数成分を一致させない様にする。そのために、本実施例では、繰り返し偏向の基本周波数についての補正値の算出、及び繰り返し偏向の基本周波数による駆動条件の補正を実行する。
Example 1
In the first embodiment, the frequency at which the gain is highest (resonance frequency) is not matched with the frequency component used for control. For this purpose, in this embodiment, a correction value for the fundamental frequency of repeated deflection is calculated, and driving conditions are corrected by the fundamental frequency of repeated deflection.

図2は本実施例のシステム構成を示す。本実施例は、制御ユニット110がクロック生成回路108に接続されている点で、図1を用いて説明した上記実施形態と異なる。本実施例の図2において、図1の構成要素と共通の構成要素には、図1と同符号を付す。 FIG. 2 shows the system configuration of this embodiment. This embodiment is different from the above embodiment described with reference to FIG. 1 in that the control unit 110 is connected to the clock generation circuit 108. In FIG. 2 of the present embodiment, the same reference numerals as those in FIG.

本実施例において、駆動波形更新手段102、関数発生器103、周波数特性検出手段109、制御ユニット110は、マイコンの様な演算手段で実現できる。関数発生器103はマイコンを用いても良いし、任意波形発生器を用いても良い。また、ドライバ104は、関数発生器103の形態によって実現方法が異なるが、例えばPWM回路の様な手段で実現される。センサユニット106は、例えば静電容量型のセンサにA/D変換器を組み合わせることで実現できる。 In this embodiment, the drive waveform update unit 102, the function generator 103, the frequency characteristic detection unit 109, and the control unit 110 can be realized by a calculation unit such as a microcomputer. The function generator 103 may use a microcomputer or an arbitrary waveform generator. The driver 104 is implemented by means such as a PWM circuit, although the implementation method differs depending on the form of the function generator 103. The sensor unit 106 can be realized by combining an A / D converter with a capacitance type sensor, for example.

図3(a)は、本実施例において、制御ユニット110を用いて、繰り返し偏向の基本周波数及びその整数次高調波における利得から繰り返し周期の補正量を算出する過程を示すフローチャートである。図4(a)、(b)は、それぞれ、補正前と補正後の繰り返し偏向の基本周波数成分とその整数次高調波成分についての利得を示す図である。図4(a)、(b)の利得は、共振周波数の利得で正規化した値で示している。 FIG. 3A is a flowchart showing the process of calculating the correction amount of the repetition period from the fundamental frequency of the repeated deflection and the gain at the integer harmonic using the control unit 110 in this embodiment. FIGS. 4 (a) and 4 (b) are diagrams showing the fundamental frequency component of the repetitive deflection before and after the correction and the gain for the integer harmonic component thereof, respectively. The gains in FIGS. 4 (a) and 4 (b) are shown as values normalized by the gain of the resonance frequency.

本実施例では、最も利得が高くなる周波数と、制御に用いる周波数成分を一致させない様にするために、まず周波数特性検出手段109の出力から利得を最大にする周波数を探索する。さらに、繰り返し偏向の基本周波数成分及びその整数次高調波成分の中から、最大の利得を与える周波数の近傍の、二つの連続した次数の周波数成分を選択する。そして、選択した二つの周波数成分における利得が一致するよう、繰り返し周波数を調整する。この結果、繰り返し周波数調整が終了後、繰り返し偏向の基本周波数成分とその整数次高調波成分の利得は、例えば図4(b)の様に一定(等しい)の関係になる。以下に、本実施例の具体的手順を図3(a)のフローチャートに基づいて説明する。 In this embodiment, in order not to make the frequency with the highest gain coincide with the frequency component used for the control, first, a frequency that maximizes the gain is searched from the output of the frequency characteristic detecting means 109. Further, two consecutive order frequency components in the vicinity of the frequency that gives the maximum gain are selected from the fundamental frequency component of the repetitive deflection and the integer harmonic components thereof. Then, the repetition frequency is adjusted so that the gains in the two selected frequency components match. As a result, after the repetition frequency adjustment is completed, the fundamental frequency component of the repeated deflection and the gain of the integer harmonic component thereof have a constant (equal) relationship as shown in FIG. 4B, for example. Hereinafter, a specific procedure of this embodiment will be described based on the flowchart of FIG.

図3(a)のフローチャートにおいて、S101では、制御ユニット110は、クロック生成回路108の出力する繰り返し周期を補正するにあたり、波形更新のループを停止させる。S102では、周波数特性検出手段109で取得された繰り返し偏向の基本周波数成分とその整数次高調波成分の利得{Gain(fv0),Gain(2×fv0),Gain(3×fv0),…,Gain(N×fv0)}から、利得が最も大きくなる周波数fAmaxを推定する。これらの周波数成分の利得は、{Gain(fv0),Gain(2×fv0),Gain(3×fv0),…,Gain(N×fv0)}である。ここでは、利得の最も大きい方から3つの周波数f1,f2,f3を選択し、以下の式に当てはめて利得が最大となる周波数を探索する。
fAma={f1×Gain(f1)+f2×Gain(f2)+f3×Gain(f3)}/{Gain(f1)+Gain(f2)+Gain(f3)}
(式1)
In the flowchart of FIG. 3A, in S101, the control unit 110 stops the waveform update loop in correcting the repetition period output from the clock generation circuit 108. In S102, the fundamental frequency component of the repetitive deflection acquired by the frequency characteristic detecting means 109 and the gain of its integer harmonic component {Gain (fv0), Gain (2 × fv0), Gain (3 × fv0),... From (N × fv0)}, the frequency f Amax at which the gain is maximized is estimated. The gains of these frequency components are {Gain (fv0), Gain (2 × fv0), Gain (3 × fv0),..., Gain (N × fv0)}. Here, the three frequencies f1, f2, and f3 are selected from the one with the largest gain, and the frequency that maximizes the gain is searched by applying to the following equation.
f Ama = {f1 × Gain (f1) + f2 × Gain (f2) + f3 × Gain (f3)} / {Gain (f1) + Gain (f2) + Gain (f3)}
(Formula 1)

S103では、n×fv0≦fAmax<(n+1)×fv0となる様な整数nを求める。S104では、S103で導出したnを用いて、以下の式に従って(n-1)×fv0≦f≦n×fv0の区間での利得の周波数に対する傾き量Xを導出する(図5参照)。 In S103, an integer n such that n × fv0 ≦ f Amax <(n + 1) × fv0 is obtained. In S104, using the n derived in S103, a slope amount X with respect to the gain frequency in the section of (n−1) × fv0 ≦ f ≦ n × fv0 is derived according to the following equation (see FIG. 5).

Figure 2010097092
Figure 2010097092

また、同様にして以下の式に従って(n+1)×fv0≦f≦(n+2)×fv0の区間における、利得の周波数に対する傾き量Yを算出する(図5参照)。 Similarly, the slope amount Y with respect to the frequency of the gain in the section of (n + 1) × fv0 ≦ f ≦ (n + 2) × fv0 is calculated according to the following equation (see FIG. 5).

Figure 2010097092
Figure 2010097092

S105では、以下の式に従って、n×fv0及び(n+1)×fv0の二つの周波数成分において、利得の比が1になる繰り返し周波数の調整量Δfv0を算出する。 In S105, the repetition frequency adjustment amount Δfv0 at which the gain ratio is 1 is calculated for the two frequency components of n × fv0 and (n + 1) × fv0 according to the following equation.

Figure 2010097092
この式は、Gain(n×fv0)+X×(n×Δfv0))=Gain((n+1)×fv0)+Y((n+1)×(Δfv0))の関係式から導かれるものである。
Figure 2010097092
This formula is derived from the relational expression Gain (n × fv0) + X × (n × Δfv0)) = Gain ((n + 1) × fv0) + Y ((n + 1) × (Δfv0)) It is.

S106では、以下の式で示す様に、導出されたΔfv0を現在の繰り返し周波数fv0に加えて新たな繰り返し周波数を求め、クロック生成回路108に新たなfv0を指示する。
fv0←fv0+Δfv0×G (←は代入を示す) (式5)
Gは調整用ゲインで、0<G<1の範囲にある。適用対象の偏向器105のQ値に応じて設定するとよい。
In S106, as shown by the following expression, the derived Δfv0 is added to the current repetition frequency fv0 to obtain a new repetition frequency, and a new fv0 is instructed to the clock generation circuit 108.
fv0 ← fv0 + Δfv0 × G (← indicates substitution) (Formula 5)
G is an adjustment gain and is in the range of 0 <G <1. It may be set according to the Q value of the deflector 105 to be applied.

S107では、S102からS106の動作を繰り返すかどうかの判定を行う。その条件は、n×fv0及び(n+1)×fv0の二つの周波数成分において、利得の比が1になっているかどうかである。本実施例では、周波数に対する利得の変化を利得曲線の傾きを用いて近似し、繰り返し偏向の基本周波数の再設定を行っている。そのため、何度かこの動作を繰り返すことで、上記条件を満たすfv0を算出することになる。 In S107, it is determined whether to repeat the operations from S102 to S106. The condition is whether or not the gain ratio is 1 in two frequency components of n × fv0 and (n + 1) × fv0. In this embodiment, the gain change with respect to the frequency is approximated using the slope of the gain curve, and the basic frequency of the repeated deflection is reset. Therefore, fv0 that satisfies the above condition is calculated by repeating this operation several times.

S108では、S101で停止させていた駆動波形更新手段102を再び動作させる。この一連の動作を繰り返すことにより、繰り返し偏向の基本周波数成分及びその整数次高調波成分の利得の最大値を最も小さくする様に、繰り返し偏向の基本周波数を設定できる。この結果、共振モードが駆動周波数の付近に出やすいMEMSスキャナの様な制御対象についても、個体差や経時変化、環境変化による各駆動周波数の利得変動を考慮することなしに、フィードバックゲインを好適に設定できる。こうして、常に設計通りの制御性能を得ることができる。 In S108, the drive waveform update unit 102 that has been stopped in S101 is operated again. By repeating this series of operations, the fundamental frequency of the repeated deflection can be set so as to minimize the maximum value of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof. As a result, even for a control target such as a MEMS scanner in which the resonance mode is likely to occur in the vicinity of the drive frequency, the feedback gain is suitably set without considering the gain variation of each drive frequency due to individual differences, changes over time, and environmental changes. Can be set. In this way, the control performance as designed can always be obtained.

以上の様に、本実施例では、利得が最大になる周波数近傍の二つの周波数成分についての利得の比を1にする様に構成した。これにより、偏向装置の特性を予め計測しておくことなく、繰り返し偏向の基本周波数成分及びその整数次高調波成分についての利得の最大値を好適に小さく保つ様に、繰り返し偏向の基本周波数を設定することが可能になる。 As described above, in this embodiment, the gain ratio for two frequency components near the frequency at which the gain is maximized is set to 1. As a result, the basic frequency of the repeated deflection is set so that the maximum value of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof is suitably kept small without measuring the deflection device characteristics in advance. It becomes possible to do.

(実施例2)
実施例1では、最も利得の高くなる周波数近傍の二つの周波数成分における利得の比を1にするよう構成したが、本発明の実施例はこれに限らない。例えば、所望の二つの周波数成分における利得の比を、選択した二つの周波数から定まる値Pにする様に構成することができる。第二の実施例はこうした構成を有する。この場合のフローチャートを図3(b)に示す。
(Example 2)
In the first embodiment, the ratio of gains in two frequency components near the frequency with the highest gain is set to 1, but the embodiment of the present invention is not limited to this. For example, the gain ratio between two desired frequency components can be set to a value P determined from the two selected frequencies. The second embodiment has such a configuration. A flowchart in this case is shown in FIG.

S204では、S103で導出したnを用いて、任意の異なる二つの周波数成分a×fv0とb×fv0(a及びbは整数)を選択する。さらに、選択した周波数付近における、利得の周波数に対する傾き量A及びBを以下の式に基づいて導出する。 In S204, any two different frequency components a × fv0 and b × fv0 (a and b are integers) are selected using n derived in S103. Further, slope amounts A and B with respect to the frequency of the gain in the vicinity of the selected frequency are derived based on the following equations.

Figure 2010097092
Figure 2010097092

Figure 2010097092
Figure 2010097092

S205では、以下の式に従って、a×fv0及びb×fv0の二つの周波数成分についての利得の比が、二つの整数値a及びbから定まる値P(a,b)になる様に、繰り返し周波数の調整量Δfv0を算出する。 In S205, the repetition frequency is set so that the gain ratio for the two frequency components of a × fv0 and b × fv0 is a value P (a, b) determined from two integer values a and b according to the following equation. The adjustment amount Δfv0 is calculated.

Figure 2010097092
この式は、Gain(a×fv0)+A(a×Δfv0)=P×{Gain(b×fv0)+B(b×Δfv0))の関係式から導かれるものである。
Figure 2010097092
This equation is derived from the relational expression Gain (a × fv0) + A (a × Δfv0) = P × {Gain (b × fv0) + B (b × Δfv0)).

なお、このとき使用するP(a,b)は、偏向器105の振動系の共振周波数を挟む二つの周波数成分の利得の比を1にする様な駆動条件下でのP(a,b)の値を予め計測して使用してもよい。また、Q値や共振周波数に基づいて予測した値を用いてもよい。 Note that P (a, b) used at this time is P (a, b) under a driving condition in which the ratio of gains of two frequency components sandwiching the resonance frequency of the vibration system of the deflector 105 is 1. The value of may be measured and used in advance. A value predicted based on the Q value or the resonance frequency may be used.

S207では、S102からS106の動作を繰り返すかどうかの判定を行う。その条件は、選択した二つの周波数の利得の比がPになっているかどうかである。本実施例では、利得と周波数の関係を示す曲線を、傾きを用いて近似しているため、何度かこの動作を繰り返すことで条件を満たすfv0を算出することになる。 In S207, it is determined whether to repeat the operations from S102 to S106. The condition is whether or not the ratio of the gains of the two selected frequencies is P. In this embodiment, since the curve indicating the relationship between the gain and the frequency is approximated by using the slope, fv0 that satisfies the condition is calculated by repeating this operation several times.

また、本実施例のS204及びS205では、繰り返し偏向の基本周波数成分及びその整数次高調波成分の中から選んだ一組の周波数成分に対して、その利得の比を、選択した周波数で定まる一定の値Pにする様に繰り返し周波数の補正量を算出する。ただし、本実施例で使用する二つの周波数の選択について、a,bは可能な限りnに近いことが望ましい。これは、共振周波数付近のほうがのゲインが大きく目標の駆動状態からの誤差を検出しやすいためである。また、a≦nまたはn+1≦b、の条件を満たす周波数が選択されることが望ましい。a,bが共振周波数をまたいで選択されることで、双方の周波数がより共振周波数に近い値を選択できるためである。また、S204及びS205については、複数組の周波数成分について行い、その中から何れか一つを選択し、出力を得ても良い。この様な構成をとることで、特定の周波数成分の振幅が0である様な場合でも、制御対象に適した駆動周波数を求めることができる。この方法は、実施例1でも採用することができる。 In S204 and S205 of this embodiment, the gain ratio of a set of frequency components selected from the fundamental frequency component of repetitive deflection and its integer order harmonic component is constant determined by the selected frequency. The correction amount of the repetition frequency is calculated so that the value P becomes. However, regarding the selection of the two frequencies used in this embodiment, it is desirable that a and b be as close to n as possible. This is because the gain near the resonance frequency is larger and it is easier to detect an error from the target drive state. Further, it is desirable to select a frequency that satisfies the condition of a ≦ n or n + 1 ≦ b. This is because a and b are selected across the resonance frequency, so that both frequencies can select values closer to the resonance frequency. S204 and S205 may be performed for a plurality of sets of frequency components, and one of them may be selected to obtain an output. By adopting such a configuration, even when the amplitude of a specific frequency component is 0, it is possible to obtain a driving frequency suitable for the control target. This method can also be employed in the first embodiment.

さらに、S204及びS205の動作を複数組の周波数成分について行い、その平均を採って、補正量を定めてもよい。この様にすることで、特定の周波数成分にのみ重畳する様なノイズの影響を小さく抑えることができる。この方法も、実施例1でも採用することができる。また、この方法は、上述した様に、振動系の共振周波数が2以上ある場合に採用することができる。 Further, the correction amount may be determined by performing the operations of S204 and S205 for a plurality of sets of frequency components and taking the average thereof. By doing in this way, the influence of noise which is superimposed only on a specific frequency component can be suppressed small. This method can also be employed in the first embodiment. Further, this method can be employed when the resonance frequency of the vibration system is 2 or more as described above.

本実施例で説明した駆動条件の補正は、起動時にのみ行っても良いし、制御中に一定の時間間隔をおいて行っても良い。起動時にのみ実行すれば、装置の個体差や経時変化に対応することができる。さらに、一定の時間間隔を置いて実行した場合は、装置の置かれた環境の変化が大きく変動した場合にも追従することができる。これらのことは、他の実施例でも同様である。 The correction of the driving condition described in the present embodiment may be performed only at the time of starting, or may be performed at regular time intervals during the control. If it is executed only at the time of startup, it is possible to cope with individual differences of devices and changes with time. Furthermore, when it is executed at regular time intervals, it is possible to follow even when a change in the environment in which the apparatus is placed fluctuates greatly. These are the same in other embodiments.

本実施例でも、周波数特性検出手段109で検出した利得と周波数の関係から、繰り返し偏向の基本周波数を操作する構成について述べた。本実施例でも、実施例1と同様な効果が達成できる。 Also in the present embodiment, the configuration in which the fundamental frequency of repetitive deflection is manipulated from the relationship between the gain and frequency detected by the frequency characteristic detecting means 109 has been described. In the present embodiment, the same effect as that of the first embodiment can be achieved.

(実施例3)
第三の実施例では、最大の利得を与える周波数と繰り返し偏向の基本周波数成分及びその整数次高調波成分との一致を防止するための、偏向器105の共振周波数特性に係る補正値の算出を実行する。また、偏向装置の共振周波数特性を用いた駆動条件の補正の好適な実現手法に係る。
(Example 3)
In the third embodiment, the correction value related to the resonance frequency characteristic of the deflector 105 is calculated in order to prevent the frequency that gives the maximum gain, the fundamental frequency component of repeated deflection, and the integer harmonic component thereof from matching. Execute. Further, the present invention relates to a preferable method for realizing correction of driving conditions using the resonance frequency characteristics of the deflecting device.

図6は本実施例に係る偏向装置の構成を示す図である。本実施例において、実施例1と同じ構成要素には、実施例1と同符号を付す。実施例1(図2参照)では、繰り返し偏向の基本周波数成分及びその整数次高調波成分の利得から、繰り返し偏向の基本周波数の操作量を算出したが、本実施例では、次の様にする。繰り返し偏向の基本周波数成分及びその整数次高調波成分の利得から、最も利得の大きくなる周波数fAmaxを推定し、次の(式9)を満たす様にする。
n×fv0≦fAmax≦(n+1)×fv0 (式9)
すなわち、繰り返し偏向周波数のn次高調波とn+1次高調波の周波数の中間にfAmaxが制御される様に、偏向器105の共振周波数の補正量を算出する。
FIG. 6 is a diagram illustrating the configuration of the deflection apparatus according to the present embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment. In the first embodiment (see FIG. 2), the manipulated variable of the fundamental frequency of the repeated deflection is calculated from the gain of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof. In this embodiment, the operation amount is as follows. . The frequency f Amax at which the gain is maximized is estimated from the gain of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof, so that the following (Equation 9) is satisfied.
n × fv0 ≦ f Amax ≦ (n + 1) × fv0 (Formula 9)
That is, the correction amount of the resonance frequency of the deflector 105 is calculated so that f Amax is controlled to be intermediate between the frequency of the nth-order harmonic and the n + 1th- order harmonic of the repetitive deflection frequency.

このため、実施例1とは以下の構成要素が異なる。偏向器105が偏向の周波数特性調整手段212を備え、制御ユニット210は周波数特性調整手段212に接続される。また、周波数特性の操作のために、偏向器105の特性を保管する熱特性記憶手段211を備える。 For this reason, the following components differ from Example 1. The deflector 105 includes a deflection frequency characteristic adjusting unit 212, and the control unit 210 is connected to the frequency characteristic adjusting unit 212. Further, a thermal characteristic storage unit 211 for storing the characteristics of the deflector 105 is provided for the operation of the frequency characteristics.

熱特性記憶手段211には、予め計測された偏向器105の共振周波数の温度による移動量T(Hz/℃)が保存される。また、制御ユニット210は、周波数特性検出手段109及び熱特性記憶手段211の内容に基づいて、周波数特性調整手段212の操作量を算出する(算出方法は後述する)。周波数特性調整手段212は、例えば、ヒーターやペルチェ素子の様な手段で構成できる。 The thermal characteristic storage unit 211 stores a movement amount T (Hz / ° C.) measured in advance according to the temperature of the resonance frequency of the deflector 105. The control unit 210 calculates the operation amount of the frequency characteristic adjusting unit 212 based on the contents of the frequency characteristic detecting unit 109 and the thermal characteristic storage unit 211 (a calculation method will be described later). The frequency characteristic adjusting means 212 can be constituted by means such as a heater or a Peltier element, for example.

図7は、本実施例において制御ユニット210が周波数特性調整手段212の操作量を決定する過程を示したフローチャートである。図8(a)、(b)は補正前と補正後の繰り返し偏向の基本周波数成分とその整数次高調波成分の利得を示す図である。ここでも、利得は、共振周波数の利得で正規化した値で示している。 FIG. 7 is a flowchart illustrating a process in which the control unit 210 determines the operation amount of the frequency characteristic adjusting unit 212 in the present embodiment. FIGS. 8A and 8B are diagrams showing the fundamental frequency components of repetitive deflection before and after correction and the gains of their integer harmonic components. Here again, the gain is shown as a value normalized by the gain of the resonance frequency.

本実施例では、制御ユニット210は、繰り返し偏向の基本周波数及びその整数次高調波の中の隣り合う二つの周波数の中間に、利得が最大になる周波数fAmaxを移動するために、偏向器の共振周波数の補正量を算出する。この補正量に基づき、周波数特性調整手段212を用いて補正を行う。この結果、繰り返し周波数調整終了後、繰り返し偏向の基本周波数成分とその整数次高調波成分の利得は、例えば図8(b)の様な一定の関係になる。以下に、その具体的手順を図7のフローチャートに基づいて説明する。 In this embodiment, the control unit 210 moves the frequency f Amax of the deflector to the maximum between the two adjacent frequencies of the fundamental frequency of repetitive deflection and its integer harmonics. A correction amount of the resonance frequency is calculated. Based on this correction amount, the frequency characteristic adjusting means 212 is used for correction. As a result, after the repetition frequency adjustment is completed, the gain of the fundamental frequency component of the repeated deflection and the integer harmonic component thereof has a certain relationship as shown in FIG. 8B, for example. Below, the specific procedure is demonstrated based on the flowchart of FIG.

S301では、周波数特性検出手段109で取得された繰り返し偏向の基本周波数及びその整数次高調波の利得から、利得が最も大きくなる周波数fAmaxを推定する。これらの周波数成分の利得は、{Gain(fv0),Gain(2×fv0),Gain(3×fv0),…,Gain(N×fv0)}である。ここでも、利得の最も大きい方から3つの周波数f1,f2,f3を選択し、上述の(式1)に当てはめて利得が最大となる周波数を推定する。S302では、n×fv0≦fAmax<(n+1)×fv0となる様な整数nを求める。 In S301, the frequency f Amax at which the gain is maximized is estimated from the fundamental frequency of the repetitive deflection acquired by the frequency characteristic detecting means 109 and the gain of its integer harmonic. The gains of these frequency components are {Gain (fv0), Gain (2 × fv0), Gain (3 × fv0),..., Gain (N × fv0)}. Again, the three frequencies f1, f2, and f3 are selected from the one with the largest gain, and the frequency at which the gain is maximized is estimated by applying to the above (Equation 1). In S302, an integer n such that n × fv0 ≦ f Amax <(n + 1) × fv0 is obtained.

S303では、S302で導出したnを用いて、以下の(式10)に従って利得が最大となる周波数fAmaxと、繰り返し偏向の基本周波数の第n次高調波と第n+1次高調波の中間の周波数(n+0.5)fv0との差Δfを求める。
Δf=fAmax−(n+0.5)fv0 (式10)
In S303, using n derived in S302, the frequency f Amax at which the gain is maximized according to the following (Equation 10), and the intermediate between the nth and n + 1th harmonics of the fundamental frequency of repeated deflection. The difference Δf with respect to the frequency (n + 0.5) fv0 is obtained.
Δf = f Amax − (n + 0.5) fv0 (Formula 10)

S304では、熱特性記憶手段211から、偏向器105の共振周波数の温度変化の特性T(Hz/℃)を読み出す。 In S 304, the temperature change characteristic T (Hz / ° C.) of the resonance frequency of the deflector 105 is read from the thermal characteristic storage unit 211.

S305では、以下の式に従って必要となる温度変化ΔWを算出し、周波数特性調整手段212を操作する。
ΔW=Δf/T (式11)
In S305, the necessary temperature change ΔW is calculated according to the following equation, and the frequency characteristic adjusting unit 212 is operated.
ΔW = Δf / T (Formula 11)

S306では、温度変化対象の偏向器105の温度変化が終了するまで待機する。S307では、S301からS306の動作を繰り返すかどうかの判定を行う。その条件は、選択した二つの周波数成分について利得の比が1になっているかどうかである。 In S306, the process waits until the temperature change of the deflector 105 subject to temperature change is completed. In S307, it is determined whether to repeat the operations from S301 to S306. The condition is whether or not the ratio of gain is 1 for the two selected frequency components.

本実施例の操作を繰り返すことにより、偏向器105の利得が最大になる周波数fAmaxは、制御に用いる周波数の内の隣り合う二つの周波数成分の間に位置する様に制御される。この様に構成することで、繰り返し偏向の基本周波数を切り換えるときに発生する目標波形の不連続性の影響を回避しながら、駆動条件を設定することができる。 By repeating the operation of the present embodiment, the frequency f Amax at which the gain of the deflector 105 is maximized is controlled so as to be positioned between two adjacent frequency components of the frequencies used for control. With this configuration, it is possible to set the driving conditions while avoiding the influence of the discontinuity of the target waveform that occurs when switching the fundamental frequency of repeated deflection.

また、周波数特性調整手段212による偏向器の昇温/冷却のみを規定する様に構成しても良い。この場合、S306では一定時間のウェイトを行い、温度保持の判定条件を満たす様になるまで、連続して駆動条件の設定の判定ループを実行することになる。制御ループをこの様に構成する場合、温度特性記憶手段211には偏向器105の温度特性の正・負のみを保管しておけば良い。そのため、温度の保持機構も不要になるため、システムを簡易化することができる。 Alternatively, only the temperature raising / cooling of the deflector by the frequency characteristic adjusting means 212 may be defined. In this case, in S306, a wait for a fixed time is performed, and the determination loop for setting the driving condition is continuously executed until the temperature holding determination condition is satisfied. When the control loop is configured in this way, only the positive / negative temperature characteristics of the deflector 105 need be stored in the temperature characteristic storage unit 211. This eliminates the need for a temperature holding mechanism, thus simplifying the system.

熱特性記憶手段211に修正可能温度も記憶させ、本実施例で述べた共振周波数の調整による駆動条件の補正を実施する時に、次の様にしてもよい。すなわち、共振周波数を調整可能な範囲を上回る調整量が必要になる場合に、実施例1で述べた繰り返し周波数の補正手段を操作する様に構成しても良い。 When the correctable temperature is also stored in the thermal characteristic storage unit 211 and the drive condition is corrected by adjusting the resonance frequency described in this embodiment, the following may be performed. That is, when the adjustment amount exceeding the range in which the resonance frequency can be adjusted is required, the repetition frequency correction unit described in the first embodiment may be operated.

図9に、この別の実現手法に関するフローチャートを示す。図7との違いは、温度修正量の合計の演算工程(S308)があることと、現状の温度修正量が最大修正可能温度Wmaxを上回っているか否かの判定工程(S309)を設け、これを上回る時のみ繰り返し偏向の基本周波数の調整(S310)を行う点である。最大修正可能温度Wmaxはヒーターに流せる電流など、周波数特性調整手段212の能力の限界によって決定される。この様に構成することで、偏向器105の共振周波数を調整する方法のメリットである制御の連続性と、繰り返し偏向の基本周波数を調整する方法のメリットである制御可能範囲の広さとを両立させることが可能になる。 FIG. 9 shows a flowchart relating to this other technique. The difference from FIG. 7 is that there is a calculation step (S308) of the total temperature correction amount, and a determination step (S309) for determining whether or not the current temperature correction amount exceeds the maximum correctable temperature Wmax. It is a point that the fundamental frequency of deflection is repeatedly adjusted (S310) only when the value exceeds. The maximum correctable temperature Wmax is determined by the limit of the capability of the frequency characteristic adjusting unit 212, such as a current that can flow through the heater. With this configuration, both control continuity, which is a merit of the method for adjusting the resonance frequency of the deflector 105, and a wide controllable range, which is a merit of the method for adjusting the basic frequency of repeated deflection, are achieved. It becomes possible.

本実施例においても、最も振幅(すなわち利得)が大きくなる周波数を、繰り返し偏向の基本周波数及びその整数次高調波の位相から推定してもよい。上述した様に、利得が最も大きくなる周波数のところで上記位相差の変化率が最も大きく変化するので、こうした推定が可能である。 Also in the present embodiment, the frequency with the largest amplitude (that is, gain) may be estimated from the fundamental frequency of repeated deflection and the phase of its integer harmonic. As described above, since the rate of change of the phase difference changes the most at the frequency where the gain becomes the largest, this estimation is possible.

(実施例4)
第四の実施例は、本発明による揺動体装置を用いる偏向装置を用いた二次元偏向装置に係る。図10に、本実施例の二次元偏向装置の模式的構成図を示す。本画像表示装置において、赤色レーザを発する変調光源321より出力されたレーザ光は、第一方向へ偏向する第一方向偏向装置315と、第一方向に略直交する第二方向へ光を偏向する上記実施例で説明した偏向器105によって走査される。第一方向偏向装置315は第一方向走査制御装置319で制御され、偏向器105は、第一方向偏向装置315と繋がった第二方向走査制御装置320で制御される。こうして、スクリーン322上に走査線が形成される。本実施例の画像表示装置では、第二方向への偏向は第一方向への偏向に同期して行われる。画像情報から生成された階調情報により光源321の出力を変調することによって、スクリーン322上に2次元の画像が表示される。ここでは、スクリーン322上の画像の画素に対応した変調信号に応じて、画素の周期ごとに変調電流を制御すればよい。
Example 4
The fourth embodiment relates to a two-dimensional deflection apparatus using a deflection apparatus using an oscillator device according to the present invention. In FIG. 10, the typical block diagram of the two-dimensional deflection | deviation apparatus of a present Example is shown. In the present image display device, the laser light output from the modulation light source 321 that emits the red laser deflects the light in the first direction deflecting device 315 that deflects in the first direction and the second direction substantially orthogonal to the first direction. Scanning is performed by the deflector 105 described in the above embodiment. The first direction deflecting device 315 is controlled by a first direction scanning control device 319, and the deflector 105 is controlled by a second direction scanning control device 320 connected to the first direction deflecting device 315. Thus, a scanning line is formed on the screen 322. In the image display apparatus according to the present embodiment, the deflection in the second direction is performed in synchronization with the deflection in the first direction. A two-dimensional image is displayed on the screen 322 by modulating the output of the light source 321 with gradation information generated from the image information. Here, the modulation current may be controlled for each pixel period in accordance with the modulation signal corresponding to the pixel of the image on the screen 322.

本実施例の二次元偏向装置に含まれる二つの偏向装置のうち、第二方向への偏向器105では、その繰り返し偏向の周期内にスクリーン上を等速で走査する時間が規定されている。これを等速偏向期間と呼ぶ。有効描画期間以外の時間を帰線期間と呼ぶ。また、この様な波形を鋸波と呼ぶこととする。第一の偏向装置315は、この等速偏向期間中に規定の回数の繰り返し偏向を行い、走査線が等間隔に並んだ走査領域をスクリーン322上に構成する。 Of the two deflecting devices included in the two-dimensional deflecting device of the present embodiment, in the deflector 105 in the second direction, the time for scanning on the screen at a constant speed is defined within the repeated deflection period. This is called a constant velocity deflection period. Time other than the effective drawing period is called a blanking period. Such a waveform is called a sawtooth wave. The first deflecting device 315 repeatedly performs a predetermined number of deflections during this constant velocity deflection period, and configures a scanning region on the screen 322 in which scanning lines are arranged at equal intervals.

この様なシステムでは、第二方向の偏向器105について繰り返し偏向の周期を変える際、第二方向に並ぶ走査線数を規定数に維持する。そのため、等速偏向期間の長さを一定に保ったまま、帰線期間の長さを変える必要がある。この時、上記理想波形の再構成が必要になる。 In such a system, when the deflection cycle is repeatedly changed for the deflector 105 in the second direction, the number of scanning lines arranged in the second direction is maintained at a specified number. Therefore, it is necessary to change the length of the blanking period while keeping the constant velocity deflection period constant. At this time, it is necessary to reconstruct the ideal waveform.

図11に本実施例のシステム構成を示す。本実施例において、実施例1と同じ構成要素には、実施例1と同符号を付す。本実施例に係る二次元偏向装置は、第二方向に繰り返し偏向を行う偏向器105の他に、第一方向に繰り返し偏向を行う第一方向偏向装置315を備える。第一方向偏向装置315は駆動周期生成回路313を備え、駆動周期生成回路313の発生する周期で第一方向への偏向を行う。第一方向偏向装置315の偏向位置はセンサユニット316により検出され、駆動信号生成部314に送られる。駆動信号生成部314は、偏向位置情報に基づき、第一方向偏向装置315の偏向動作を一定に維持する様に駆動する。 FIG. 11 shows the system configuration of this embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment. The two-dimensional deflection apparatus according to this embodiment includes a first direction deflection apparatus 315 that repeatedly performs deflection in the first direction, in addition to the deflector 105 that repeatedly performs deflection in the second direction. The first direction deflecting device 315 includes a drive cycle generation circuit 313 and performs deflection in the first direction at a cycle generated by the drive cycle generation circuit 313. The deflection position of the first direction deflection device 315 is detected by the sensor unit 316 and sent to the drive signal generation unit 314. The drive signal generation unit 314 is driven based on the deflection position information so as to maintain the deflection operation of the first direction deflection device 315 constant.

一方、第二方向の偏向器105の繰り返し周期を規定するクロック生成回路308は、駆動周期生成回路313の信号をk分周して第二方向の繰り返し偏向クロックを生成する。すなわち、駆動周期生成回路313の出力kパルスごとに、クロック生成回路308は1パルスを出力することになる。さらに、本システム構成は、クロック生成回路308における分周比に応じて理想波形を再構築する理想波形生成手段317を備える。 On the other hand, the clock generation circuit 308 that defines the repetition cycle of the deflector 105 in the second direction generates a second deflection clock by dividing the signal of the drive cycle generation circuit 313 by k. That is, for every k pulses output from the drive cycle generation circuit 313, the clock generation circuit 308 outputs one pulse. Furthermore, this system configuration includes an ideal waveform generation unit 317 that reconstructs an ideal waveform according to the frequency division ratio in the clock generation circuit 308.

本実施例では、一走査の中での有効走査期間の長さを維持するために、クロック生成回路308の分周比kを操作して繰り返し偏向の基本周波数を調整する。これと共に、理想波形生成部317により理想波形を再構築して、理想波形記憶手段101の理想波形データセットを書き換える構成となっている。 In this embodiment, in order to maintain the length of the effective scanning period in one scan, the division ratio k of the clock generation circuit 308 is operated to adjust the fundamental frequency of repetitive deflection. At the same time, the ideal waveform generation unit 317 reconstructs the ideal waveform and rewrites the ideal waveform data set in the ideal waveform storage unit 101.

図12に、本実施例における繰り返し偏向の基本周波数の周期の制御手順のフローチャートを示す。実施例1における繰り返し偏向の基本周波数の周期の制御手順と同じ動作を行う工程については、同じ記号を付した。 FIG. 12 shows a flowchart of the control procedure of the period of the fundamental frequency of repetitive deflection in this embodiment. Steps for performing the same operation as the control procedure for the period of the fundamental frequency of repetitive deflection in the first embodiment are given the same symbols.

S401では、変更後のfv0に対して以下の値を満たす整数kを算出する。この時点における第一方向の偏向装置315の偏向周波数はfHとする。
k≦fH/fv0<k+1 (式12)
In S401, an integer k satisfying the following value is calculated for fv0 after the change. At this time, the deflection frequency of the deflecting device 315 in the first direction is f H.
k ≦ f H / fv0 <k + 1 (Formula 12)

S402では、分周比kに対応した駆動波形を計算する。なお、この駆動波形の生成は時間領域で行われる。例えば、第二方向について鋸波形状に駆動する場合、等速走査を行う領域の信号を生成した後、帰線期間を滑らかに繋ぐよう、既知の方法を用いて理想波形が生成される。算出された理想波形はフーリエ変換された後、理想波形記憶手段101に書き込まれる。 In S402, a drive waveform corresponding to the frequency division ratio k is calculated. The generation of the drive waveform is performed in the time domain. For example, when driving in a sawtooth shape in the second direction, an ideal waveform is generated using a known method so as to smoothly connect a blanking period after generating a signal of an area where constant speed scanning is performed. The calculated ideal waveform is Fourier-transformed and then written in the ideal waveform storage means 101.

S403では新たな分周比kをクロック(同期信号)生成回路308に書き込む。以上の様に構成することで、有効描画期間における第一方向の走査ライン数を一定に保ちながら、第二方向の偏向器105の駆動特性を調整することが可能になる。 In S403, a new frequency division ratio k is written in the clock (synchronization signal) generation circuit 308. With the configuration described above, it is possible to adjust the drive characteristics of the deflector 105 in the second direction while keeping the number of scanning lines in the first direction constant during the effective drawing period.

本実施例の第一方向偏向装置315は、一定方向に回転して光偏向を行うポリゴンミラーや、往復偏向を行うガルバノスキャナで構成することができる。また、制御ユニット310、理想波形生成手段317はマイコンの様な演算手段で実現できる。さらに、駆動周期生成回路313は発振器で実現でき、クロック生成回路308は分周器で実現できる。 The first direction deflecting device 315 of the present embodiment can be configured by a polygon mirror that rotates light in a certain direction and deflects light, or a galvano scanner that performs reciprocal deflection. Further, the control unit 310 and the ideal waveform generation means 317 can be realized by a calculation means such as a microcomputer. Further, the driving cycle generation circuit 313 can be realized by an oscillator, and the clock generation circuit 308 can be realized by a frequency divider.

(実施例5)
第五の実施例は、本発明の揺動体装置を用いた二次元偏向装置の別の実現方法に係る。実施例4では、第二方向の偏向器105で繰り返し偏向の基本周波数を操作するために、クロック生成回路308において分周比の操作を行うと共に、理想波形生成手段317において理想波形の再構成を行う構成とした。これに対して、本実施例では、第一方向の偏向装置315の駆動周期を操作することで、間接的に偏向器105の繰り返し偏向の基本周波数を操作する構成としている点が、実施例4と異なる。
(Example 5)
The fifth embodiment relates to another method for realizing a two-dimensional deflection apparatus using the oscillator device of the present invention. In the fourth embodiment, in order to repeatedly operate the fundamental frequency of deflection by the deflector 105 in the second direction, the clock generation circuit 308 operates the division ratio, and the ideal waveform generation unit 317 performs reconstruction of the ideal waveform. The configuration is to be performed. On the other hand, in the present embodiment, the configuration is such that the fundamental frequency of the repeated deflection of the deflector 105 is indirectly operated by operating the drive cycle of the deflecting device 315 in the first direction. And different.

図13に、本実施例に係る二次元偏向装置の一部の構成を示す。制御ユニット410は、駆動周期生成部413を操作して、以下の(式13)を満たす様な第二方向の繰り返し偏向周期を生成する。fv0は制御ユニット410で算出された偏向器105における繰り返し偏向の基本周波数、kは、第二方向への繰り返し偏向の基本周波数の第一方向への駆動周波数に対する分周比である。
fH=fv0×k (式13)
FIG. 13 shows a partial configuration of the two-dimensional deflection apparatus according to the present embodiment. The control unit 410 operates the drive cycle generation unit 413 to generate a repetitive deflection cycle in the second direction that satisfies the following (Equation 13). fv0 is a fundamental frequency of repeated deflection in the deflector 105 calculated by the control unit 410, and k is a frequency division ratio of the fundamental frequency of repeated deflection in the second direction to the driving frequency in the first direction.
f H = fv0 × k (Formula 13)

駆動周期生成部413の出力周波数が変更されることで、クロック生成回路308で生成される第二方向の繰り返し偏向の基本周波数も同時に変更される。 By changing the output frequency of the drive cycle generation unit 413, the fundamental frequency of the repeated deflection in the second direction generated by the clock generation circuit 308 is also changed at the same time.

この様に構成することでも、二次元偏向装置において、第二方向偏向器105の有効描画期間に含まれる第一方向走査の回数を保ったまま、駆動条件の変更を行うことが可能になる。 Even with this configuration, in the two-dimensional deflection apparatus, it is possible to change the driving conditions while maintaining the number of first-direction scans included in the effective drawing period of the second-direction deflector 105.

図14に、本実施例に係る別の構成を示す。本実施例では、第一方向偏向装置315の駆動周期を操作することで、第二方向偏向器105の周波数を操作する手法について述べているが、前記別の構成は次の様に制御する。 FIG. 14 shows another configuration according to the present embodiment. In the present embodiment, a method of operating the frequency of the second direction deflector 105 by operating the driving cycle of the first direction deflecting device 315 is described, but the other configuration is controlled as follows.

二次元偏向装置は共振駆動される第一方向偏向装置515を備える。そして、センサユニット316で駆動データを収集することによって、第一方向偏向装置515が共振状態を維持する様に駆動周期補正部517で駆動周期生成部513を制御している。この様なシステムにおいて、第一方向偏向装置515を周波数特性調整手段518で温度制御すると、第一方向偏向装置515の共振周波数が変わり、これを追従して、駆動周期生成部513の出力周波数が変えられる。 The two-dimensional deflection apparatus includes a first direction deflection apparatus 515 that is driven to resonate. Then, by collecting the drive data by the sensor unit 316, the drive cycle generation unit 513 is controlled by the drive cycle correction unit 517 so that the first direction deflecting device 515 maintains the resonance state. In such a system, when the temperature of the first direction deflecting device 515 is controlled by the frequency characteristic adjusting means 518, the resonance frequency of the first direction deflecting device 515 changes, and the output frequency of the drive cycle generating unit 513 is changed accordingly. be changed.

この様に構成することで、第一方向偏向装置515の共振駆動状態を崩すことなく、第二方向偏向器105の繰り返し偏向の基本周波数を調整し、駆動条件を設定することが可能になる。 With this configuration, it is possible to adjust the fundamental frequency of the repeated deflection of the second direction deflector 105 and set the driving conditions without destroying the resonance driving state of the first direction deflecting device 515.

本発明の揺動体装置を用いた偏向装置の実施形態を示すブロック図。The block diagram which shows embodiment of the deflection | deviation apparatus using the oscillator device of this invention. 本発明の実施例1に係る偏向装置のシステム構成を示すブロック図。1 is a block diagram showing a system configuration of a deflection apparatus according to Embodiment 1 of the present invention. (a)は実施例1における繰り返し周波数の補正値の算出のためのフローチャート1、(b)は実施例2に係る偏向装置における繰り返し周波数の補正値の算出のためのフローチャート2。(a) is a flowchart 1 for calculating a correction value of a repetition frequency in the first embodiment, and (b) is a flowchart 2 for calculating a correction value of a repetition frequency in the deflecting device according to the second embodiment. (a)は繰り返し偏向の基本周波数調整前の周波数成分ごとの正規化利得を示す図、(b)は繰り返し偏向の基本周波数調整後の周波数成分ごとの正規化利得を示す図。FIG. 5A is a diagram showing a normalized gain for each frequency component before adjusting the fundamental frequency of repeated deflection, and FIG. 5B is a diagram showing a normalized gain for each frequency component after adjusting the fundamental frequency of repeated deflection. 利得が最大になる周波数の算出を説明する図。The figure explaining calculation of the frequency where a gain becomes the maximum. 本発明の実施例3に係る偏向装置の構成を示すブロック図。FIG. 6 is a block diagram illustrating a configuration of a deflecting device according to a third embodiment of the invention. 実施例3における共振周波数の補正値の算出のためのフローチャート3A。9 is a flowchart 3A for calculating a resonance frequency correction value according to the third embodiment. (a)は共振周波数調整前の周波数成分ごとの正規化利得を示す図、(b)は共振周波数調整後の周波数成分ごとの正規化利得を示す図。(a) is a figure which shows the normalization gain for every frequency component before resonance frequency adjustment, (b) is a figure which shows the normalization gain for every frequency component after resonance frequency adjustment. 実施例3における共振周波数の補正値の算出に係るフローチャート3B。9 is a flowchart 3B related to calculation of a correction value of a resonance frequency in the third embodiment. 本発明の実施例4に係る二次元偏向装置のシステム構成を示す斜視図。The perspective view which shows the system configuration | structure of the two-dimensional deflection | deviation apparatus which concerns on Example 4 of this invention. 実施例4のシステム構成を示すブロック図。FIG. 9 is a block diagram showing a system configuration of Embodiment 4. 実施例4の繰り返し偏向の基本周波数の周期の制御に係るフローチャート4。10 is a flowchart 4 for controlling the period of the fundamental frequency of repetitive deflection according to the fourth embodiment. 本発明の実施例5に係る二次元偏向装置の構成を示すブロック図。FIG. 9 is a block diagram showing a configuration of a two-dimensional deflection apparatus according to Embodiment 5 of the present invention. 本発明の実施例5の別の構成に係る二次元偏向装置の構成を示すブロック図。The block diagram which shows the structure of the two-dimensional deflection | deviation apparatus which concerns on another structure of Example 5 of this invention. MEMSスキャナの駆動周波数に対する偏向波形の振幅比を示す図。The figure which shows the amplitude ratio of the deflection waveform with respect to the drive frequency of a MEMS scanner.

符号の説明Explanation of symbols

101 理想波形記憶手段
102 駆動指令波形更新手段(駆動波形更新手段)
103 関数発生手段(関数発生器)
104 駆動手段(ドライバ)
105 偏向器(第二方向偏向装置)
106 位置検出手段(センサユニット)
107 変換手段(フーリエ変換器)
108、308 クロック発生手段(クロック生成回路)
109 周波数特性検出手段
110、210、310、410、510 制御手段(制御ユニット)
212、518 周波数特性調整手段
313、413、513 駆動周期生成回路
314 駆動信号生成部
315、515 第一方向偏向装置
317 理想波形作成部(理想波形生成手段)
101 Ideal waveform storage means 102 Drive command waveform update means (drive waveform update means)
103 Function generation means (function generator)
104 Driving means (driver)
105 Deflector (second direction deflector)
106 Position detection means (sensor unit)
107 Conversion means (Fourier transformer)
108, 308 Clock generation means (clock generation circuit)
109 Frequency characteristic detection means 110, 210, 310, 410, 510 Control means (control unit)
212, 518 Frequency characteristic adjustment means 313, 413, 513 Drive cycle generation circuit 314 Drive signal generation section 315, 515 First direction deflection device 317 Ideal waveform generation section (ideal waveform generation means)

Claims (10)

クロックを発生するクロック発生手段と、
前記クロック発生手段の出力に同期して繰り返し振動を行う揺動体を含む振動系と、
前記振動系の揺動体の振動波形を検出する位置検出手段と、
前記位置検出手段の出力を繰り返し振動の基本周波数成分及びその整数次高調波成分の振幅及び位相で構成される振動波形データセットに変換する変換手段と、
繰り返し振動の基本周波数成分及びその整数次高調波成分についての前記振動波形の理想的な振幅及び位相の値で構成される理想波形データセットを保存する理想波形記憶手段と、
前記振動波形データセットと前記理想波形データセットとに基づいて、繰り返し振動の基本周波数成分及びその整数次高調波成分について、前記振動系に対する駆動指令波形の振幅及び位相で構成される駆動指令波形データセットをフィードバック制御する駆動指令波形更新手段と、
前記駆動指令波形更新手段の出力に基づいて前記振動系の駆動指令信号を生成する関数発生手段と、
前記関数発生手段の出力に基づいて前記振動系を駆動する駆動手段と、
前記駆動指令波形データセットと前記振動波形データセットとの間の振幅比または位相差を、繰り返し振動の基本周波数成分及びその整数次高調波成分について検出する周波数特性検出手段と、
前記周波数特性検出手段の出力に基づいて、繰り返し振動の基本周波数と前記振動系の共振周波数のうちの一方を制御して、前記振動系において前記振幅比または前記位相差の変化率が最大になる周波数と、繰り返し振動の基本周波数及びその整数次高調波周波数とが一致しない状態で振動系の駆動を行う様にする制御手段と、
を備えることを特徴とする揺動体装置。
Clock generating means for generating a clock;
A vibration system including a rocking body that repeatedly vibrates in synchronization with the output of the clock generation means;
Position detecting means for detecting a vibration waveform of the oscillator of the vibration system;
Conversion means for converting the output of the position detection means into a vibration waveform data set composed of the amplitude and phase of the fundamental frequency component of the repeated vibration and its integer harmonic component;
Ideal waveform storage means for storing an ideal waveform data set composed of ideal amplitude and phase values of the vibration waveform for the fundamental frequency component of repetitive vibration and its integer harmonic components;
Based on the vibration waveform data set and the ideal waveform data set, drive command waveform data composed of the amplitude and phase of the drive command waveform for the vibration system with respect to the fundamental frequency component of repetitive vibration and its integer harmonic component Drive command waveform update means for feedback control of the set;
Function generating means for generating a drive command signal of the vibration system based on an output of the drive command waveform updating means;
Driving means for driving the vibration system based on the output of the function generating means;
A frequency characteristic detecting means for detecting an amplitude ratio or phase difference between the drive command waveform data set and the vibration waveform data set for a fundamental frequency component of repetitive vibration and an integer harmonic component thereof;
Based on the output of the frequency characteristic detection means, one of the fundamental frequency of repetitive vibration and the resonance frequency of the vibration system is controlled, and the change rate of the amplitude ratio or the phase difference is maximized in the vibration system. Control means for driving the vibration system in a state where the frequency and the fundamental frequency of the repetitive vibration and its integer harmonic frequency do not match,
An oscillator device comprising:
請求項1に記載の揺動体装置を有し、
前記振動系の揺動体が、入射光を偏向するための光偏向素子を備えることを特徴とする偏向装置。
The oscillator device according to claim 1,
The deflecting device, wherein the oscillator of the oscillation system includes an optical deflection element for deflecting incident light.
第一方向に入射光を偏向するための第一の偏向装置と、第一方向に略直交する第二方向に入射光を偏向するための請求項2に記載の偏向装置である第二の偏向装置と、を含み、
前記第二の偏向装置は前記第一の偏向装置に同期して動作する構成であることを特徴とする二次元偏向装置。
3. A second deflecting device according to claim 2, wherein the first deflecting device deflects incident light in a first direction and the deflecting device according to claim 2 for deflecting incident light in a second direction substantially orthogonal to the first direction. Including a device,
The two-dimensional deflection apparatus, wherein the second deflection apparatus operates in synchronization with the first deflection apparatus.
前記制御手段が前記クロック発生手段と前記クロック発生手段の生成するクロックの周期に応じて理想波形を再構成する理想波形生成手段とに接続され、前記制御手段が前記クロック発生手段を操作すると共に、前記理想波形生成手段が前記理想波形記憶手段に接続され前記理想波形データセットを書き換える構成であることを特徴とする請求項3に記載の二次元変更装置。 The control means is connected to the clock generation means and an ideal waveform generation means for reconstructing an ideal waveform according to the period of the clock generated by the clock generation means, and the control means operates the clock generation means, 4. The two-dimensional changing device according to claim 3, wherein the ideal waveform generation means is connected to the ideal waveform storage means and rewrites the ideal waveform data set. 前記制御手段が、前記第一の偏向装置の偏向周期を制御するために駆動周期生成部に接続され、前記駆動周期生成部が、前記クロック発生手段の出力周期を制御するために前記クロック発生手段に接続されていることを特徴とする請求項3又は4に記載の二次元偏向装置。 The control means is connected to a drive cycle generator for controlling the deflection cycle of the first deflecting device, and the drive cycle generator is used for controlling the output cycle of the clock generator. The two-dimensional deflection apparatus according to claim 3, wherein the two-dimensional deflection apparatus is connected to the two-dimensional deflection apparatus. 前記第一の偏向装置が周波数特性調整手段を備え、前記制御手段が、前記第一の偏向装置の共振周波数を制御するために前記周波数特性調整手段に接続されていることを特徴とする請求項3、4または5に記載の二次元偏向装置。 The first deflection apparatus includes a frequency characteristic adjusting unit, and the control unit is connected to the frequency characteristic adjusting unit to control a resonance frequency of the first deflection apparatus. The two-dimensional deflection apparatus according to 3, 4 or 5. クロックに同期して繰り返し振動を行う振動系の揺動体の振動波形を、繰り返し振動の基本周波数成分及びその整数次高調波成分の振幅及び位相で構成される振動波形データセットに変換し、
繰り返し振動の基本周波数成分及びその整数次高調波成分についての前記振動波形の理想的な振幅及び位相の値で構成される理想波形データセットを前記振動波形データセットと比較し、繰り返し振動の基本周波数成分及びその整数次高調波成分について、前記振動系に対する駆動指令波形の振幅及び位相で構成される駆動指令波形データセットをフィードバック制御し、
前記駆動指令波形データセットに基づいて前記振動系を駆動する揺動体装置の制御方法であって、
前記駆動指令波形データセットと前記振動波形データセットとの間の振幅比または位相差を、繰り返し振動の基本周波数成分及びその整数次高調波成分について検出する検出工程と、
検出された振幅比または位相差をもとに、前記振動系において前記振幅比または前記位相差の変化率が最大になる周波数と、繰り返し振動の基本周波数及びその整数次高調波周波数とが一致しない様に、繰り返し振動の基本周波数と前記振動系の共振周波数のうちの少なくとも一方を制御する制御工程と、
を含むことを特徴とする揺動体装置の制御方法。
Convert the vibration waveform of the oscillator of the vibration system that repeatedly vibrates in synchronization with the clock into a vibration waveform data set composed of the amplitude and phase of the fundamental frequency component of the repeated vibration and its integer harmonic component,
An ideal waveform data set composed of ideal amplitude and phase values of the vibration waveform for the fundamental frequency component of repetitive vibration and its integer harmonic components is compared with the vibration waveform data set, and the fundamental frequency of repetitive vibration Feedback control of the drive command waveform data set composed of the amplitude and phase of the drive command waveform for the vibration system for the component and its integer harmonic component
A control method for an oscillator device for driving the vibration system based on the drive command waveform data set,
A detection step of detecting an amplitude ratio or phase difference between the drive command waveform data set and the vibration waveform data set for a fundamental frequency component of repetitive vibration and an integer harmonic component thereof;
Based on the detected amplitude ratio or phase difference, the frequency at which the rate of change of the amplitude ratio or phase difference in the vibration system is maximum does not match the fundamental frequency of repetitive vibration and its integer harmonic frequency. A control step for controlling at least one of a fundamental frequency of repetitive vibration and a resonance frequency of the vibration system;
A control method for an oscillator device characterized by comprising:
前記制御工程は、
前記振幅比または前記位相差の変化率が最も大きくなる周波数を推定する工程と、
繰り返し振動の基本周波数成分及びその整数次高調波成分の中から、最大の前記振幅比または前記位相差の変化率を与える周波数の近傍の、二つの連続した次数の周波数成分を選択する工程と、
前記二つの連続した次数の周波数成分の前記振幅比または前記位相差の変化率が一致する様に、繰り返し振動の基本周波数または前記振動系の共振周波数の補正値を算出する工程と、
を含むことを特徴とする請求項7に記載の揺動体装置の制御方法。
The control step includes
Estimating a frequency at which a change rate of the amplitude ratio or the phase difference is maximized;
Selecting a frequency component of two consecutive orders in the vicinity of a frequency that gives a maximum rate of change of the amplitude ratio or the phase difference from the fundamental frequency component of the repetitive vibration and the integer harmonic component thereof;
Calculating a correction value of the fundamental frequency of the repetitive vibration or the resonance frequency of the vibration system so that the change rate of the amplitude ratio or the phase difference of the frequency components of the two consecutive orders matches.
The method of controlling an oscillator device according to claim 7, comprising:
前記制御工程は、
繰り返し振動の基本周波数成分及びその整数次高調波成分の中から、二つの周波数成分からなる周波数成分の組を選択する工程と、
選択された周波数成分の組について、一方の周波数成分における前記振幅比または前記位相差の変化率をA、他方の周波数における前記振幅比または前記位相差の変化率をBとした時、B/Aの値が前記周波数成分の組から定まる所定の値に一致する様に、繰り返し振動の基本周波数または前記振動系の共振周波数の補正値を算出する工程と、
を含むことを特徴とする請求項7に記載の揺動体装置の制御方法。
The control step includes
Selecting a set of frequency components consisting of two frequency components from the fundamental frequency component of the repetitive vibration and its integer harmonic components;
For a selected set of frequency components, B / A, where A is the rate of change of the amplitude ratio or phase difference in one frequency component and B is the rate of change of the amplitude ratio or phase difference in the other frequency Calculating a correction value of the fundamental frequency of the repetitive vibration or the resonance frequency of the vibration system so that the value of the frequency coincides with a predetermined value determined from the set of frequency components;
The method of controlling an oscillator device according to claim 7, comprising:
前記制御工程は、
前記周波数成分の組を複数組選択し、複数組で前記補正値をそれぞれ算出する工程と、
複数組で求められた前記補正値から、繰り返し振動の基本周波数または前記振動系の共振周波数の補正値を決定する工程と、
を含むことを特徴とする請求項9に記載の揺動体装置の制御方法。
The control step includes
Selecting a plurality of sets of frequency components, and calculating each of the correction values in a plurality of sets;
Determining a correction value of a fundamental frequency of repetitive vibration or a resonance frequency of the vibration system from the correction values obtained in a plurality of sets;
The method of controlling an oscillator device according to claim 9, comprising:
JP2008269264A 2008-10-20 2008-10-20 Oscillating body apparatus, deflection device using the same, and method of controlling the same Pending JP2010097092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269264A JP2010097092A (en) 2008-10-20 2008-10-20 Oscillating body apparatus, deflection device using the same, and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269264A JP2010097092A (en) 2008-10-20 2008-10-20 Oscillating body apparatus, deflection device using the same, and method of controlling the same

Publications (1)

Publication Number Publication Date
JP2010097092A true JP2010097092A (en) 2010-04-30

Family

ID=42258801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269264A Pending JP2010097092A (en) 2008-10-20 2008-10-20 Oscillating body apparatus, deflection device using the same, and method of controlling the same

Country Status (1)

Country Link
JP (1) JP2010097092A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884975B2 (en) 2010-11-19 2014-11-11 Ricoh Company, Ltd. Image projection apparatus, memory control apparatus, laser projector, and memory access method
US9448403B2 (en) 2013-03-18 2016-09-20 Seiko Epson Corporation Optical scanner, actuator, image display device, and head-mounted display
US9482864B2 (en) 2013-03-18 2016-11-01 Seiko Epson Corporation Optical scanner, actuator, image display device, and head-mounted display
JP2017129882A (en) * 2017-04-18 2017-07-27 パイオニア株式会社 Optical scanning device
WO2020087690A1 (en) * 2018-10-31 2020-05-07 歌尔股份有限公司 Signal adjustment method and laser scanning projection device
WO2023204092A1 (en) * 2022-04-22 2023-10-26 スタンレー電気株式会社 Abnormality detection device, abnormality detection method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884975B2 (en) 2010-11-19 2014-11-11 Ricoh Company, Ltd. Image projection apparatus, memory control apparatus, laser projector, and memory access method
US9448403B2 (en) 2013-03-18 2016-09-20 Seiko Epson Corporation Optical scanner, actuator, image display device, and head-mounted display
US9482864B2 (en) 2013-03-18 2016-11-01 Seiko Epson Corporation Optical scanner, actuator, image display device, and head-mounted display
JP2017129882A (en) * 2017-04-18 2017-07-27 パイオニア株式会社 Optical scanning device
WO2020087690A1 (en) * 2018-10-31 2020-05-07 歌尔股份有限公司 Signal adjustment method and laser scanning projection device
WO2023204092A1 (en) * 2022-04-22 2023-10-26 スタンレー電気株式会社 Abnormality detection device, abnormality detection method, and program

Similar Documents

Publication Publication Date Title
JP2010097092A (en) Oscillating body apparatus, deflection device using the same, and method of controlling the same
EP2329308B1 (en) Scanning mirror control
JP6891402B2 (en) Adjustment method of light deflector, image forming device, image display device, object device, and light deflector
JP6098349B2 (en) Oscillation device, scanning scanner device, information terminal, phase shift amount adjusting device, and phase shift amount adjusting method
EP2818909A1 (en) Image display device and mirror drive method therefor
CN110389442B (en) Mirror driving device, optical scanning control device, and mirror driving method
JP2007093644A (en) Optical scanning type display
EP2962984A1 (en) Optical deflection apparatus, image forming apparatus, image display apparatus, moving body apparatus, and adjusting method of optical deflection apparatus
JP2006047977A (en) Method for adjusting optical deflection apparatus having oscillating body
US20180064323A1 (en) Scanning endoscope and method for controlling the same
US9019176B2 (en) Image forming apparatus
US8547606B2 (en) Optical scanning apparatus provided with resonance-driven swing mirror and image forming apparatus
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP5974309B2 (en) Actuator drive
EP2960708A1 (en) Two-dimensional optical scanning device
US20080297869A1 (en) Oscillator device and drive control method for oscillation system of oscillator device
WO2006082827A1 (en) Optical scanning display and method for driving same
CN111381366A (en) Optical scanning device and control method thereof
JP2018013597A (en) Optical scanner
JP4865109B1 (en) Image display device
JP5235511B2 (en) Optical scanning device, driving method thereof, and optical apparatus
JP2009031671A (en) Optical scanning apparatus and image forming apparatus
JP2018128514A (en) Optical scanner
JP4555905B2 (en) Direction control system for scanner drive
US20090034039A1 (en) Image forming apparatus