JP2010096970A - Model of topological soliton circuit - Google Patents

Model of topological soliton circuit Download PDF

Info

Publication number
JP2010096970A
JP2010096970A JP2008267385A JP2008267385A JP2010096970A JP 2010096970 A JP2010096970 A JP 2010096970A JP 2008267385 A JP2008267385 A JP 2008267385A JP 2008267385 A JP2008267385 A JP 2008267385A JP 2010096970 A JP2010096970 A JP 2010096970A
Authority
JP
Japan
Prior art keywords
shaft member
hollow elastic
elastic shaft
model
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267385A
Other languages
Japanese (ja)
Other versions
JP5098946B2 (en
Inventor
Kosuke Tanaka
康資 田中
Kichu Tanaka
希宙 田中
Kaiku Tanaka
快空 田中
Kazuhiko Sotooka
和彦 外岡
Naoto Kikuchi
直人 菊地
Keiko Masuko
恵子 益子
Akira Iyo
彰 伊豫
Sachihiro Kai
幸弘 下位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008267385A priority Critical patent/JP5098946B2/en
Publication of JP2010096970A publication Critical patent/JP2010096970A/en
Application granted granted Critical
Publication of JP5098946B2 publication Critical patent/JP5098946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a model of a topological soliton circuit. <P>SOLUTION: A hollow elastic shaft 11 is used which stores elastic energy as a restoring force when it is twisted in the circumference direction around the center axis, reduces its outside diameter ϕn inward in the radial direction when a tensile force is applied in the axial direction and it is extended in the axial direction, has a diameter expanding force serving as a restoring force outward in the radial direction, and has a restoring force also in the axial direction. A plurality of unit cells 12 are attachably and detachably fixed at intervals in the axial direction of the hollow elastic shaft 11. The unit cell is provided with a rotary drive shaft 51 which is inserted in the inside of the hollow elastic shaft 11 along the axial direction, has the outside diameter ϕr smaller than the inside diameter ϕi of the hollow elastic shaft and, therefore, is in contact with the inner peripheral surface of the hollow elastic shaft 11 at a position Pc vertically above the outer circumference surface of the hollow elastic shaft, and conveys a rotary drive force to the hollow elastic shaft 11 via a friction force at the contact portion Pc when it receives rotary drive. This rotary drive shaft 51 is rotated by a rotary drive mechanism capable of controlling the numbers of rotation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は超伝導回路の一つであるトポロジカル・ソリトン回路の動作を可視化して説明するための模型に関する。   The present invention relates to a model for visualizing and explaining the operation of a topological soliton circuit which is one of superconducting circuits.

一次元のソリトンの中、サイン・ゴードン(Sine-Gordon)方程式に従うトポロジカル・ソリトンは、素粒子のモデルや結晶の転移等のモデルとして、下記非特許文献1等に認められるように、1960年代から詳しく研究されている。
岩波講座:現代の物理学14,「非線形波動」,和達三樹(ISBN4-00-010444-6),特に第三節 p.34-p.42
Among the one-dimensional solitons, topological solitons that follow the Sine-Gordon equation have been used since the 1960s as recognized in the following non-patent document 1 as models of elementary particles and crystal transitions. It has been studied in detail.
Iwanami Lecture: Modern Physics 14, “Nonlinear Waves”, Miki Wada (ISBN4-00-010444-6), especially Section 3 p.34-p.42

もっとも、このトポロジカル・ソリトンにも種類があって、フラクソンと呼ばれるように磁束量子として定義されるものの外、多バンド超伝導体を伝送線路とし、複数の超伝導成分の位相差を利用することで、磁束の関与無くして動作するバンド間位相差ソリトンもあり、後者に関しては例えば本件発明者等も関与した下記特許文献1〜3に開示されている。
特開2003-209301号公報 特開2005-085971号公報 特開2008-053597号公報
However, this topological soliton is also of a type, and in addition to what is defined as flux quanta, called fluxon, a multiband superconductor is used as a transmission line, and the phase difference between multiple superconducting components is used. There is also an interband phase difference soliton that operates without the involvement of magnetic flux, and the latter is disclosed in, for example, the following Patent Documents 1 to 3 in which the present inventors are also involved.
Japanese Patent Laid-Open No. 2003-209301 Japanese Unexamined Patent Publication No. 2005-085971 JP 2008-053597

実際、バンド間位相差ソリトンも現実味のある研究段階に入っており、その発生に関しては、上記特許文献1,2及び下記非特許文献2に開示されているように、バンド間位相差ソリトンが発生するための境界条件を磁場によって作りだす方法や、上記特許文献3ないし下記非特許文献3に開示されているように、超伝導体に非平衡な電流を流し込み、電流と一緒にバンド間位相差ソリトンを作り出す方法が提案されている。
“Soliton in Two-Band Superconductor”, Y.Tanaka, Physical ReviewLetters, Vol.88, Number 1, 017002 “Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors”, A.Gurevich and V.M.Vinokur, Physical Review Letters, Vol.90, Number 4, 047004
Actually, the interband phase difference solitons are also in a realistic research stage. Regarding the generation of the interband phase difference solitons, as disclosed in Patent Documents 1 and 2 and Non-Patent Document 2 below, the interband phase difference solitons are generated. A boundary condition for creating a boundary condition by using a magnetic field, or a non-equilibrium current flowing into a superconductor as disclosed in Patent Document 3 or Non-Patent Document 3 below, and an interband phase difference soliton along with the current. A method has been proposed.
“Soliton in Two-Band Superconductor”, Y. Tanaka, Physical ReviewLetters, Vol.88, Number 1, 017002 “Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors”, A.Gurevich and VMVinokur, Physical Review Letters, Vol.90, Number 4, 047004

同様に検出に関しても、上記特許文献1,2や非特許文献2に開示のように、バンド間位相差ソリトンが作り出す中途半端な磁束量子(Fractional Flux)の発生を検出する方法と、上記非特許文献3に認められるように、バンド間位相差ソリトンと反バンド間位相差ソリトンの対消滅による電圧の発生を検出したり、上記特許文献3に開示のように、ジョセフソン接合にソリトンを衝突させて交流ジョセフソン効果により電圧を発生させ、これを検出する方法が開示されている。   Similarly, with respect to detection, as disclosed in Patent Documents 1 and 2 and Non-Patent Document 2, a method of detecting the generation of a halfway magnetic flux quantum (Fractional Flux) generated by an interband phase difference soliton, and the above-mentioned non-patent As can be seen in Document 3, the generation of a voltage due to the pair annihilation of the interband phase difference soliton and the antiband phase difference soliton is detected, or, as disclosed in Patent Document 3, the soliton collides with the Josephson junction. A method of generating a voltage by the AC Josephson effect and detecting it is disclosed.

複数の超伝導成分の位相差を利用するものとして、下記非特許文献4,5に開示のように、薄い超伝導層を二枚重ねた構造のものも提案されている。厚い膜であると、超伝導膜が磁束を二枚の超伝導の層間に閉じ込めフラクソンになるが、磁場侵入長より薄い膜を使うと磁束は層間に閉じ込められることがなく、ソリトンに伴う磁束をフラクソンに比べて小さくできる。磁束の効果がとても小さい時、これはバンド間位相差ソリトンと同じと考えるとことができる。つまり、複数の超伝導成分の位相差を利用することによる磁束の関与を無くした(無視できる位に小さくした)成分間位相差ソリトンによるデバイスが実現できる。
“Magnetic Response of Mesoscopic Superconducting Rings with Two Order Parameters”, Hendrik Bluhm, Nicholas C. Koshnick, Martin E. Huber, and Kathryn A. Moler, Physical Review Letters, Vol.97,(2006)237002 “Phase Textures Induced by dc-Current Pair Breaking in Weakly Coupled Multilayer Structures and Two-Gap Superconductors”、A. Gurevich and V. M. Vinokur, Physical Review Letters, Vol.97,(2006)137003
As one utilizing a phase difference of a plurality of superconducting components, a structure in which two thin superconducting layers are stacked as disclosed in Non-Patent Documents 4 and 5 below has been proposed. If the film is thick, the superconducting film confines the magnetic flux between the two superconducting layers, and becomes a fluxon. Smaller than Flaxson. When the effect of magnetic flux is very small, this can be considered the same as the interband phase difference solitons. That is, it is possible to realize a device using a component phase difference soliton that eliminates the involvement of magnetic flux by utilizing the phase difference of a plurality of superconducting components (reduced to a negligible level).
“Magnetic Response of Mesoscopic Superconducting Rings with Two Order Parameters”, Hendrik Bluhm, Nicholas C. Koshnick, Martin E. Huber, and Kathryn A. Moler, Physical Review Letters, Vol. 97, (2006) 237002 “Phase Textures Induced by dc-Current Pair Breaking in Weakly Coupled Multilayer Structures and Two-Gap Superconductors”, A. Gurevich and VM Vinokur, Physical Review Letters, Vol. 97, (2006) 137003

しかるに、フラクソンに関するものであっても、こうしたバンド間位相差ソリトンに関するものであっても、それらの回路動作を分かり易く説明するために模型を作ることはとても有意義であるし、回路の機能設計に実践的に応用することもできる。   However, it is very meaningful to create a model to explain the circuit operation in an easy-to-understand manner regardless of whether it is related to fluxon or such interband phase difference solitons. It can also be applied practically.

現に、下記非特許文献6〜9に認められるように、フラクソンに関してではあるが、その回路動作を可視的に表示することで理解の助けとするための模型は考案されていた。
“Physics and Applications of Josephson Effect”, A.Barone and G.Paterno, John Wiley & Sons,ISBN-0-471-01469-9,Chapter10 Fluxson Dynamics P264-271. “A Nonlinear Klein-Gordon Equation”,A. C. Scott, Am. J. Phys. 37 (1969) 52-61. “Mechanical analogue of active Josephson transmission line”,Koji Nakajima, Tsutomu Yamashita, and Yutaka Onodera, J. Appl. Phys. 45 (1974)3141-3145. ジョゼフソン効果 <<基礎と応用>> 電気学会クライオエレクトロニクス常置専門委員会編 1978年(コロナ社)3055-007690-2353,特に38〜51ページ
Actually, as recognized in Non-Patent Documents 6 to 9 below, a model has been devised to assist understanding by visually displaying the circuit operation, although it relates to Fluxon.
“Physics and Applications of Josephson Effect”, A. Barone and G. Paterno, John Wiley & Sons, ISBN-0-471-01469-9, Chapter 10 Fluxson Dynamics P264-271. “A Nonlinear Klein-Gordon Equation”, AC Scott, Am. J. Phys. 37 (1969) 52-61. “Mechanical analogue of active Josephson transmission line”, Koji Nakajima, Tsutomu Yamashita, and Yutaka Onodera, J. Appl. Phys. 45 (1974) 3141-3145. Josephson effect << Fundamentals and Applications >> The Institute of Electrical Engineers of Japan, cryoelectronics permanent edition 1978 (Corona) 3055-007690-2353, especially pages 38-51

このような模型では、サイン・ゴードン方程式はいずれも離散的なモデルに置き換えられている。つまり、単位セルを複数個、軸部材の軸方向(軸部材が一次元的に長さを持つ方向)に互いに隣接するもの同士を間隔を置いて並設固定した模型となっていて、通常の場合、軸部材は長尺のゴムやコイル・スプリング等、その中心軸の周りに周方向に捻ると復元力としての弾性エネルギを蓄える弾性部材で構成されている。   In such a model, all the Sine-Gordon equations are replaced by discrete models. In other words, it is a model in which a plurality of unit cells are arranged and fixed in parallel with an interval between them adjacent to each other in the axial direction of the shaft member (the direction in which the shaft member has a one-dimensional length). In this case, the shaft member is made of an elastic member that stores elastic energy as a restoring force when twisted in the circumferential direction around its central axis, such as a long rubber or coil spring.

例えば、上記非特許文献6に開示されている模型では、軸部材としては長尺のコイル・スプリングが用いられ、これの軸方向に間隔を置いて点々と青銅製のプラグがスプリング内部に半田付け固定され、さらにこのプラグから半径方向に伸び出す釘が固定的に設けられていて、この釘の一本一本が単位セルを構成している。   For example, in the model disclosed in Non-Patent Document 6 described above, a long coil spring is used as a shaft member, and a bronze plug is soldered inside the spring at intervals in the axial direction. A nail that is fixed and extends radially from the plug is fixedly provided, and each nail constitutes a unit cell.

初期状態(リセット状態)ではコイル・スプリングは捻られて居らず、周方向に復元力を呈する弾性エネルギは蓄えられていない。この状態でコイル・スプリングを地上面と平行にしたとき、全ての単位セルが重力方向、すなわち鉛直方向にぶら下がるように上記の半田付けを気を付けて行い、模型を作っておく。   In the initial state (reset state), the coil spring is not twisted, and elastic energy that exhibits a restoring force in the circumferential direction is not stored. In this state, when the coil spring is parallel to the ground surface, the above soldering is performed so that all unit cells hang in the direction of gravity, that is, the vertical direction, and a model is made.

コイル・スプリングの一端を固定し、他端を捻ると、弾性エネルギが増して行く。もちろん、隣り合うセルの回転角の差が360度になって一回りしても弾性エネルギが初期状態の零に戻ることはなく、360度を超えてさらに回せば回す程、どんどん弾性エネルギは増え続ける。蓄えられる弾性エネルギの大きさは回転角の差の絶対値に依存し、逆方向に回転させても回転角の絶対値が同じならば同じだけの弾性エネルギが蓄えられる。   When one end of the coil spring is fixed and the other end is twisted, the elastic energy increases. Of course, even if the difference in the rotation angle between adjacent cells is 360 degrees, the elastic energy does not return to the initial state of zero, and the elastic energy increases more as it is rotated beyond 360 degrees. to continue. The magnitude of the elastic energy that is stored depends on the absolute value of the difference in rotation angle. If the absolute value of the rotation angle is the same even if rotated in the opposite direction, the same amount of elastic energy is stored.

一方、模型の軸方向(一次元方向)を地面と平行にしているので、単位セルの重力エネルギは360度回転するごとに零に戻る。つまり、重力エネルギは回転角に対して周期的ポテンシャルを持っていることになる。また、単位セルには回転時に慣性モーメントも見込まれる。   On the other hand, since the axial direction (one-dimensional direction) of the model is parallel to the ground, the gravitational energy of the unit cell returns to zero each time it rotates 360 degrees. That is, the gravitational energy has a periodic potential with respect to the rotation angle. The unit cell is also expected to have an inertia moment during rotation.

このような三つの物理量、すなわち、軸部材を中心軸の周りに捻ると発生する弾性エネルギ、単位セルに印加される重力エネルギ、そして単位セルに見込まれる慣性モーメントは、サイン・ゴードン方程式にて取り扱われる各パラメータを満たすことになる。基本的には隣接する単位セルと自身との回転角差に対して単調増加するエネルギ構造と、自身の回転に対しては360度回ると元の零に戻る周期的ポテンシャル構造を持つようにすることが、トポロジカル・ソリトン回路の模型に求められる条件になる。単位セルは重力を受ける有質量の有形物体なのであるから、当然のことに慣性モーメントは見込まれる。ただし、実際にどのような関数系になるかは、トポロジカル・ソリトンの模型を作るときに本質的な問題ではないとは言える。   These three physical quantities, namely, the elastic energy generated when the shaft member is twisted around the central axis, the gravitational energy applied to the unit cell, and the moment of inertia expected in the unit cell are handled by the sine-Gordon equation. Each parameter is satisfied. Basically, it has an energy structure that monotonously increases with the rotation angle difference between the adjacent unit cell and itself, and a periodic potential structure that returns to zero when it rotates 360 degrees with respect to its own rotation. This is a condition required for a model of a topological soliton circuit. Since the unit cell is a massive tangible object that receives gravity, the moment of inertia is naturally expected. However, it can be said that what kind of functional system is actually not an essential problem when creating a model of a topological soliton.

上記の非特許文献6では、より簡単とする模型の作製例についても触れられており、裁縫用のピン(まち針)とゴム紐を用い、ゴム紐の長さ方向に点々とまち針を刺して模型を作る案も開示されている。   Non-Patent Document 6 mentioned above also touches on an example of making a model that is simpler, using a sewing pin (town needle) and a rubber string, and piercing the needle in the length direction of the rubber string. There is also a proposal to make

しかし、上記非特許文献6に開示されている模型は必ずしも作製が容易とは言えない。コイル・スプリングの中に単位セルを固定するためのプラグを収め、これを一つずつ注意しながら所定位置に配し、そこで半田付け固定して行く作業は極めて大変であるし、初期状態において全ての単位セルが軸部材の中心軸を含む一平面内に全て整列するように気を付けて固定する作業も甚だしく面倒である。ゴム紐にまち針を刺して行く作業も大変に厄介であり、一平面内に全てのまち針が位置するように刺して行く作業には神経を使う。第一、まち針を使う作業は危険でもあり、模型を動かしたときに外れて飛んで怪我をする虞もある。既掲の非特許文献7〜9においても同様の欠点があり、実際に模型を作ろうとすると大変な手間を要し、大型化してしまいがちである。   However, the model disclosed in Non-Patent Document 6 is not necessarily easy to manufacture. Plugs for fixing the unit cells in the coil springs, placing them one by one carefully, and placing them in place and soldering there are extremely hard work. The work of fixing the cells so that all the unit cells are aligned in one plane including the central axis of the shaft member is also extremely troublesome. The work of piercing the rubber string with the town needle is also very troublesome, and the nerve is used for the work of piercing so that all the town needles are located in one plane. First, the work of using the gusset needle is also dangerous, and when you move the model, you may fly off and get injured. The above-mentioned non-patent documents 7 to 9 also have the same drawbacks, and if an attempt is made to actually make a model, it takes a lot of trouble and tends to increase in size.

しかし、それ以上に問題なのは、ソリトンに印加されるバイアスを模擬する際の当該バイアスの印加手法である。バイアスを模擬できない模型では、ソリトンもいずれ止まってしまう。そのため、上記非特許文献8,9等では、単位セルにそれぞれ風を吹き付ける装置を付属させ、これでバイアスを模擬していた。しかし、このような風力利用法ではかなり装置の大型化を招く。実際、相当に大きな扇風機が必要になったりするからである。また、風を吹き付ける吹き付け角度の設定等も面倒であったり、再現性に難点が出たりもする。模型を動かす度に、大きな扇風機も動かし、改めて正確に設置し直さねばならないこと等は煩雑以外の何物でもない。   However, what is more problematic is the method of applying the bias when simulating the bias applied to the soliton. In models that cannot simulate bias, solitons will eventually stop. For this reason, in Non-Patent Documents 8 and 9 and the like, a device for blowing wind is attached to each unit cell, thereby simulating a bias. However, such a wind power utilization method considerably increases the size of the apparatus. In fact, a fairly large fan is required. In addition, the setting of the blowing angle for blowing the wind is troublesome, and the reproducibility is difficult. Every time you move the model, you have to move the big fan and set it up again.

本発明は従来のこのような実情に鑑み、フラクソンやバンド間位相差ソリトン等、トポロジカル・ソリトンの回路動作を説明する模型として、バイアスの印加も大型な装置を用いることなく合理的、確実に行うことができ、さらに望ましくは組み立ても分解も容易である外、初期状態へのリセットも極めて簡単であり、要すればパラメータの調整、変更、例えば隣接単位セル間の間隔調整や変更等も簡単に行える模型の提供をその目的としてなされたものである。   In view of such a conventional situation, the present invention performs a bias application reasonably and reliably without using a large apparatus as a model for explaining the circuit operation of topological solitons such as fluxon and interband phase difference solitons. In addition, it is easy to assemble and disassemble, and it is very easy to reset to the initial state, and if necessary, parameter adjustment and change, for example, adjustment and change of the interval between adjacent unit cells, etc. The purpose is to provide a model that can be used.

本発明は上記目的を達成するため、まず基本的な構成として、
一次元方向を軸方向として長さを有し、中心軸を中心に周方向に捻ると復元力としての弾性エネルギを蓄えると共に、軸方向に引っ張り力が印加されて軸方向に引き延ばされるとその外径を半径方向内方に縮径し、縮径した状態では半径方向外方への復元力である拡径力を呈すると共に、軸方向にも復元力を呈する中空弾性軸部材と;
この中空弾性軸部材の軸方向に互いに間隔を置いて複数個が着脱可能に固定され、当該中空弾性軸部材との固定部とは異なる位置に重心位置がある単位セルと;
中空弾性軸部材の内部に軸方向に沿って挿入され、中空弾性軸部材の内径よりも小径の外径を有し、もって中空弾性軸部材を地面と平行にした姿勢では外周面の鉛直方向上部の位置で当該中空弾性軸部材の内周面に接触し、回転駆動を受けるとこの接触部での摩擦力を介して中空弾性軸部材に回転駆動力を伝達する回転駆動用軸部材と;
この回転駆動用軸部材を回転させるための回転数制御可能な回転駆動機構と;
を有して成るトポロジカル・ソリトン回路の模型を提案する。
In order to achieve the above object, the present invention first has a basic configuration as follows:
It has a length with the one-dimensional direction as the axial direction, and when it is twisted in the circumferential direction around the central axis, it stores elastic energy as a restoring force, and when it is stretched in the axial direction by applying a tensile force in the axial direction A hollow elastic shaft member that reduces the outer diameter radially inward, exhibits a diameter expansion force that is a restoring force radially outward in the reduced state, and also exhibits a restoring force in the axial direction;
A unit cell in which a plurality of the hollow elastic shaft members are detachably fixed at intervals in the axial direction and the center of gravity is located at a position different from the fixing portion with the hollow elastic shaft member;
The hollow elastic shaft member is inserted along the axial direction in the axial direction, has an outer diameter smaller than the inner diameter of the hollow elastic shaft member, and in the posture in which the hollow elastic shaft member is parallel to the ground, the upper part of the outer peripheral surface in the vertical direction A shaft member for rotation driving that contacts the inner peripheral surface of the hollow elastic shaft member at the position and transmits the rotation driving force to the hollow elastic shaft member through frictional force at the contact portion when receiving rotational driving;
A rotational drive mechanism capable of controlling the rotational speed for rotating the rotational drive shaft member;
We propose a model of topological soliton circuit.

上記の基本構成に加え、上記の回転駆動用軸部材外周面と中空弾性軸部材内周面の接触部は、単位セルの固定されている部分でのみ接触することで、略々点接触となっている構成も提案する。そのための下位構成としては次ぎのような構成を提案できる。   In addition to the basic configuration described above, the contact portion between the outer peripheral surface of the rotary drive shaft member and the inner peripheral surface of the hollow elastic shaft member is substantially point contact by contacting only at a portion where the unit cell is fixed. Also proposed is the configuration. For this purpose, the following configuration can be proposed.

すなわち、単位セルはそれぞれ、上記の固定部において中空弾性軸部材を貫通させる透孔を持ち、この透孔の内径は中空弾性軸部材に上記の引っ張り力が印加されていないときの外径よりも小さく、もって中空弾性軸部材が透孔内において半径方向に縮径されたときに呈する既述した半径方向外方への拡径力で単位セルが中空弾性軸部材に固定されている一方、中空弾性軸部材に引っ張り力が印加されると当該中空弾性軸部材の外径が透孔内径よりも小径に縮径することで単位セルの固定が釈放され、単位セルは中空弾性軸部材に対し軸方向にも周方向にも動き得るようになるように構成されていると共に、単位セルが上記の固定部において中空弾性軸部材に固定されているときには、当該固定部での中空弾性軸部材は半径方向内方に撓(たわ)んで当該撓んだ部分での中空弾性軸部材の内径は単位セルが固定されていない部分の内径よりも小さくなっている結果、当該撓んだ内周面部分でのみ、回転駆動用軸部材の外周面と接触するように構成されている模型を提案できる。   That is, each unit cell has a through hole that penetrates the hollow elastic shaft member in the fixed portion, and the inner diameter of the through hole is larger than the outer diameter when the tensile force is not applied to the hollow elastic shaft member. The unit cell is fixed to the hollow elastic shaft member by the above-described radial outward expansion force that is exhibited when the hollow elastic shaft member is radially reduced in the through hole. When a tensile force is applied to the elastic shaft member, the outer diameter of the hollow elastic shaft member is reduced to a smaller diameter than the inner diameter of the through hole, so that the unit cell is fixed, and the unit cell is fixed to the hollow elastic shaft member. When the unit cell is fixed to the hollow elastic shaft member at the fixed portion, the hollow elastic shaft member at the fixed portion has a radius. Bending inward Therefore, the inner diameter of the hollow elastic shaft member at the bent portion is smaller than the inner diameter of the portion where the unit cell is not fixed. A model configured to come into contact with the outer peripheral surface can be proposed.

一方、回転駆動用軸部材は中空弾性軸部材の長さの途中まで設けられていても良い。これで中空弾性軸部材の途中まで、バイアスが印加されている状態を模擬できる。   On the other hand, the rotational drive shaft member may be provided halfway along the length of the hollow elastic shaft member. This can simulate a state in which a bias is applied to the middle of the hollow elastic shaft member.

また、回転駆動用軸部材が上記のように中空弾性軸部材の長さの途中までしかない場合に限らず、中空弾性軸部材の全長を抜けるように中空弾性軸部材よりも長い場合にも、この回転駆動用軸部材自体も内部中空にして、この中にさらに、回転駆動用軸部材の回転を妨げない状態で模型支持用の支持軸部材を軸方向に通すこともできる。   In addition, not only when the rotational drive shaft member is only halfway through the length of the hollow elastic shaft member as described above, but also when it is longer than the hollow elastic shaft member so as to pass through the entire length of the hollow elastic shaft member, The rotational drive shaft member itself can also be hollowed, and a model support support shaft member can be passed in the axial direction without impeding the rotation of the rotational drive shaft member.

さらに本発明の下位態様としては、回転数制御可能な回転駆動機構は通常、電力で駆動されるモータで簡単に構成できるし、極めて周知のように、そうしたモータは電圧ないし電流の可変調整で回転数も簡単に制御できる。変速機、望ましくは無段変速機を回転駆動機構と回転駆動用軸部材の間に介在させても、回転駆動用軸部材の回転数制御は可能である。また、上記の中空弾性軸部材はゴム・ホースやコイル・スプリングであって良いし、単位セルはシート状部材であっても、そうではなく、透孔の輪郭を形成する円形または円弧状の透孔形成部材と、この透孔形成部材の一部分から伸び出す棒状部材とから構成されていても良い。もっとも、単位セルは上記の基本構成で定義される要件を満たせばその形状は殆ど自由である。   Further, as a subordinate aspect of the present invention, the rotation drive mechanism capable of controlling the rotation speed can be simply configured by a motor driven by electric power, and as is well known, such a motor can be rotated by variable adjustment of voltage or current. The number can be easily controlled. Even if a transmission, preferably a continuously variable transmission, is interposed between the rotational drive mechanism and the rotational drive shaft member, the rotational speed of the rotational drive shaft member can be controlled. The hollow elastic shaft member may be a rubber hose or a coil spring, and the unit cell may be a sheet-like member. You may be comprised from the hole-shaped member and the rod-shaped member extended from a part of this through-hole formed member. However, the shape of the unit cell is almost free as long as it satisfies the requirements defined by the above basic configuration.

また、単位セルの透孔の輪郭の一部は当該単位セルの周縁部に向けて開いたスリットに繋がっており、このスリットを介して軸部材を当該透孔に対し半径方向に嵌め入れることができるような構成も提案できる。   Further, a part of the outline of the through hole of the unit cell is connected to a slit opened toward the peripheral edge of the unit cell, and the shaft member can be fitted into the through hole in the radial direction via the slit. A possible configuration can also be proposed.

さらに、単位セルの透孔の内周縁には半径方向内方に向かって突出し、軸部材の外周面に噛み付く突起が設けられていても良いし、単位セルは透孔内を渡る分割線に沿って少なくとも二つの部分に分割でき、これら二つの部分はスナップ係合するファスナ構造を介し互いに組み付くことで透孔を形成する一方、スナップ係合を解くことで軸部材から取り外すことができるようになっていても良い。   Furthermore, the inner peripheral edge of the through hole of the unit cell may be provided with a protrusion that protrudes inward in the radial direction and engages with the outer peripheral surface of the shaft member, and the unit cell is along a dividing line that passes through the through hole. Can be divided into at least two parts, and these two parts can be assembled with each other via a snap-engaging fastener structure to form a through-hole, and can be detached from the shaft member by releasing the snap-engagement. It may be.

これらの構成とは別の観点から、ソリトン形状の変化や線路インピータンスの変化についての振る舞いを見るに好適な構成として、単位セルの少なくとも幾つかには選択的に嵌め付け得る重りを設けるようにしても良い。   From a point of view different from these configurations, as a configuration suitable for observing the behavior of soliton shape change and line impedance change, at least some of the unit cells are provided with weights that can be selectively fitted. May be.

本発明によると、バイアスを模擬する必要のあるトポロジカル・ソリトン回路の模型を提供するに際し、当該バイアスを模擬するために大型な装置を要することは一切ない。従前のように、模型とは全く別な装置としてのイメージしかない、大型であって設置、設定も面倒な装置としての扇風機等は不要となり、殆ど模型と一体化した、極めて小型で組立ても容易、動作も確実なバイアス印加装置の内蔵された模型とすることができる。   According to the present invention, when a model of a topological soliton circuit that needs to simulate a bias is provided, a large-scale device is not required to simulate the bias. As before, there is only an image as a completely separate device from the model, and there is no need for a fan that is large and troublesome to install and set up. It is almost integrated with the model and is extremely small and easy to assemble. In addition, it can be a model with a built-in bias application device that also operates reliably.

しかも、中空弾性軸部材の内周面と回転駆動用軸部材の外周面との接触部での滑りを伴う摩擦力を巧みに利用してソリトンにバイアスを与えるため、回転駆動機構の回転数をその場で適宜に調整することで、中空弾性軸部材を全体として回転させてしまうことなく、ソリトンにのみ、走行力に繋がるバイアスを具合良く印加できる。特にこれは、本発明の特定の態様に従い、単位セルが固定されていて中空弾性軸部材が半径方向内方に撓んでいる部分の内周面でのみ、回転駆動用軸部材の外周面が接触するような、すなわち略々点接触に近い状態での接触部の集合とすることで、さらに制御性の高いものとなる。   Moreover, since the bias is applied to the soliton by skillfully using the frictional force accompanied by the slip at the contact portion between the inner peripheral surface of the hollow elastic shaft member and the outer peripheral surface of the rotary drive shaft member, the rotational speed of the rotary drive mechanism is reduced. By appropriately adjusting on the spot, the bias that leads to the running force can be applied in a good manner only to the soliton without rotating the hollow elastic shaft member as a whole. In particular, according to a specific aspect of the present invention, the outer peripheral surface of the rotary drive shaft member is in contact only with the inner peripheral surface of the portion where the unit cell is fixed and the hollow elastic shaft member is bent radially inward. In other words, by making a set of contact portions in a state that is substantially close to a point contact, the controllability is further improved.

また、上記のように単位セルの固定部での中空弾性軸部材と回転駆動用軸部材との略々点接触と認められるような接触を図るために、上記のような本発明の特定の態様に従う構成を採用すると、これはまた、甚だしく組み立てや分解の容易なトポロジカル・ソリトン回路の模型を提供することにもなる。全ての単位セルの重心位置が軸部材との固定部から見て鉛直方向下向きに揃うべき状態である初期状態への復元(リセット)も全くにして簡単となり、殆ど一瞬で行える。   Further, in order to achieve a contact that can be recognized as a substantially point contact between the hollow elastic shaft member and the rotary drive shaft member at the fixed portion of the unit cell as described above, a specific aspect of the present invention as described above is used. This also provides a model of a topological soliton circuit that is extremely easy to assemble and disassemble. Restoration (reset) to the initial state in which the center of gravity of all the unit cells should be aligned vertically downward when viewed from the fixed portion with the shaft member is completely simplified and can be performed almost instantaneously.

つまり、軸部材を軸方向に引っ張りながら縮径させれば、単位セルの透孔内径よりそのときの縮径した軸部材外径の方が小径となり得るので、当該単位セルの透孔内に軸部材を簡単に通して行くことができ、単位セル間の間隔を調整するために当該各単位セルを軸方向にずらす作業も甚だしく簡単である。軸部材の引っ張り力を釈放すれば軸部材自身の持つ半径方向への復元力で軸部材が元の径に向けて拡径し、透孔内径よりも十分大径となって、その半径方向拡径力により単位セルは軸部材に固定される。分解も簡単なことは自明で、軸部材を引っ張っておいて各単位セルを順次軸方向に引き抜いて行けば良い。   That is, if the diameter of the shaft member is reduced while pulling in the axial direction, the outer diameter of the reduced diameter shaft member can be smaller than the inner diameter of the through-hole of the unit cell. The members can be easily passed, and the operation of shifting each unit cell in the axial direction in order to adjust the interval between the unit cells is extremely simple. If the pulling force of the shaft member is released, the shaft member expands toward the original diameter by the restoring force in the radial direction of the shaft member itself, and becomes sufficiently larger than the inner diameter of the through hole. The unit cell is fixed to the shaft member by the radial force. It is self-evident that the disassembly is easy, and it is only necessary to pull out the unit cell sequentially in the axial direction by pulling the shaft member.

同様に、模型を動作させた後、単位セルの全てが鉛直方向下向きにぶら下がった初期状態に戻ることがなく、幾つかの単位セルは捻られた姿勢のまま静止してしまっても、軸部材を軸方向に引っ張って縮径させれば、一時的に軸部材とそれら単位セルの固定が解け、単位セルは軸部材の半径方向拡径力による拘束から逃れ、自重で周方向に回転し、重心を鉛直方向に向けるように簡単にリセットされる。   Similarly, after the model is operated, all the unit cells do not return to the initial state where they are hung downward in the vertical direction. If the shaft member is pulled in the axial direction to reduce the diameter, the shaft member and the unit cell are temporarily fixed, the unit cell escapes from the restraint due to the radial expansion force of the shaft member, and rotates in the circumferential direction by its own weight. It is easily reset so that the center of gravity is directed vertically.

また、単位セルの軸部材への組み付け後に間隔を調整するのも簡単で、その単位セルの近くの軸部材部分を引っ張って縮径させれば単位セルは自由に軸方向にも動けるので、その位置を容易に微調整することができる。   In addition, it is easy to adjust the interval after assembly of the unit cell to the shaft member, and if the shaft member part near the unit cell is pulled to reduce the diameter, the unit cell can move freely in the axial direction, so that The position can be easily fine-tuned.

本発明の特定の態様に従い、軸部材に固定された複数の単位セルの中、少なくとも所定の軸方向位置に固定されている一つまたは複数の単位セルに重りを選択的に付し、少なくとも幾つかの単位セルの慣性モーメントを変えると、線路インピータンスの変化等、非一様な伝搬線路におけるソリトンの振る舞いを観察することも簡単にできる。   According to a specific aspect of the present invention, among the plurality of unit cells fixed to the shaft member, at least one unit cell fixed at least at a predetermined axial position is selectively weighted, and at least some By changing the moment of inertia of each unit cell, it is possible to easily observe the behavior of solitons in a non-uniform propagation line, such as a change in line impedance.

総合するに、本発明によれば、トポロジカル・ソリトン回路の動作、機能を直感的に理解し、回路設計にも役立つ模型として、大型な付帯装置を要せずにバイアスの印加された模様を模擬するに好適な模型を提供できる。また、組み立て、分解も容易で、空間の非一様性も含めてパラメータを容易に変化させることもできる極めて有用な模型を提供でき、各研究機関の外、多くの教育現場において大いに活用され得るものとなる。バイアス模擬に必要な部品をも含め、総部品点数の少なさもあって、本質的に廉価なものを提供できる構造原理にある。   In summary, according to the present invention, the operation and function of the topological soliton circuit can be understood intuitively, and as a model useful for circuit design, a pattern with a bias applied can be simulated without requiring a large incidental device. Therefore, a suitable model can be provided. In addition, it is easy to assemble and disassemble, and can provide extremely useful models that can easily change parameters, including non-uniformity of space, and can be used in many educational settings outside research institutions. It will be a thing. There is a small number of parts, including parts necessary for bias simulation, and it is based on a structural principle that can provide an inexpensive product.

図1には、トポロジカル・ソリトン回路の模型として、本発明の適用された望ましい一実施形態が示されている。まず、必要な部品要素として、一次元方向を軸方向として長さを有する中空弾性軸部材11があり、これは中心軸を中心に周方向に捻ると復元力としての弾性エネルギを蓄えるものである。この中空弾性軸部材11はまた、後に組み立て等に関して説明する図3(C),(D)に示されているように、軸方向に引っ張り力Ftが印加されて軸方向に引き延ばされると、図3(B)に示されている定常時の外径、すなわち引っ張り力Ftが印加されていないときの外径φnを半径方向内方に縮径して径φs(<φn)とするが、このように縮径した状態では元の定常時外径φnに戻ろうとする復元力である半径方向外方への拡径力を呈し、また、軸方向にも元の長さに戻ろうとする復元力を呈する。こうした中空弾性軸部材11として入手容易で廉価なものには、限定的ではないが、例えば適当な材質のゴム・ホース(ゴム・チューブ)がある。   FIG. 1 shows a preferred embodiment to which the present invention is applied as a model of a topological soliton circuit. First, as a necessary component element, there is a hollow elastic shaft member 11 having a length with a one-dimensional direction as an axial direction, which stores elastic energy as a restoring force when twisted in the circumferential direction around the central axis. . When the hollow elastic shaft member 11 is extended in the axial direction by applying a tensile force Ft in the axial direction, as shown in FIGS. The outer diameter in a steady state shown in FIG. 3B, that is, the outer diameter φn when the tensile force Ft is not applied is reduced radially inward to a diameter φs (<φn). In such a reduced diameter state, it exhibits a radially outward expansion force that is a restoring force to return to the original steady-state outer diameter φn, and also restores to return to the original length in the axial direction. Shows power. Examples of such a hollow elastic shaft member 11 that are easily available and inexpensive include, but are not limited to, a rubber hose (rubber tube) made of an appropriate material.

次ぎに重要な部品要素は単位セル12であり、この単位セル12は中空弾性軸部材11の軸方向に沿って互いに間隔を置きながら複数個12....が着脱可能に固定され、各々、中空弾性軸部材11に固定される固定部21とは異なる位置に重心位置がある。   Next, an important component element is a unit cell 12, and this unit cell 12 is detachably fixed to a plurality of 12 .... while being spaced from each other along the axial direction of the hollow elastic shaft member 11, There is a position of the center of gravity at a position different from the fixed portion 21 fixed to the hollow elastic shaft member 11.

図示実施形態における単位セル12は、作製容易な構成の一例として、シート状部材、特に矩形の厚紙で構成された短冊状のもので、その矩形の対角線交点から外れた位置21が固定部21となり、ここで中空弾性軸部材11に固定されることにより、当該固定部21とは異なる位置に重心位置が来るように構成されている。なお、この実施形態では、後に改めて説明するように、この固定部21は、単位セル12に開けられた透孔13(図3)と、軸方向引っ張り力Ftが印加されていない状態では透孔13の内径φc より定常径φn の方が太い中空弾性軸部材11との弾性係合関係で実質的に構成されている。   The unit cell 12 in the illustrated embodiment is, as an example of a configuration that is easy to manufacture, a sheet-like member, in particular, a strip-like shape made of rectangular cardboard, and a position 21 that deviates from the diagonal intersection of the rectangle becomes the fixing portion 21. Here, by being fixed to the hollow elastic shaft member 11, the center of gravity is located at a position different from the fixing portion 21. In this embodiment, as will be described later, the fixing portion 21 includes a through-hole 13 (FIG. 3) opened in the unit cell 12 and a through-hole in a state where no axial tensile force Ft is applied. The inner diameter φc of 13 is substantially constituted by the elastic engagement relationship with the hollow elastic shaft member 11 having a larger steady diameter φn.

さらに必要な部品要素として、中空弾性軸部材11の中空部に軸方向に挿入される回転駆動用軸部材51がある。図示の場合、当該回転駆動用軸部材51は中空弾性軸部材11よりも長さが長く、中空弾性軸部材11を抜け切っていて、軸方向一端には例えば回転駆動機構52として一般的なモータ52の回転軸が接続し、中空弾性軸部材11を抜け切った他端はベアリング軸受等、望ましくはなるべく回転摩擦力の少ない軸受54により、回転自在に支持されている。ただし、予め述べておくと、回転駆動用軸部材51を必要に応じ回転駆動する回転駆動機構52は、機械系において公知の任意の構造を採ることができ、回転数制御の可能なものであれば良く、原理的な限定はない。   Further, as a necessary component element, there is a rotational drive shaft member 51 inserted in the hollow portion of the hollow elastic shaft member 11 in the axial direction. In the case shown in the figure, the rotational drive shaft member 51 is longer than the hollow elastic shaft member 11, passes through the hollow elastic shaft member 11, and has a general motor as a rotational drive mechanism 52 at one end in the axial direction. The other end of the rotary shaft 52 connected to the hollow elastic shaft member 11 is rotatably supported by a bearing 54 such as a bearing bearing, which preferably has as little rotational frictional force as possible. However, if stated in advance, the rotational drive mechanism 52 that rotationally drives the rotational drive shaft member 51 as needed can adopt any known structure in the mechanical system and can control the rotational speed. There is no principle limitation.

ただ、回転駆動機構52として最も一般的に考えられる電力駆動型のモータ52を選べば、それは印加する電圧または電流の可変調整により、簡単かつ確実に相当な精度で回転数を制御できるので便利である。本件発明者の実験においてもモータを用いているが、模型操作者が回転数制御装置53に付属のノブを回すこと等によってモータ52に印加される電力が可変になり、モータ回転数が異なるような装置は極めて容易に入手できる。ただし、これも限定的なことではなく、回転数調整も電気量での可変によらす、例えば変速機、望ましくは無段変速機を介することでなすような装置であっても良い。   However, if you select the most commonly considered power drive type motor 52 as the rotation drive mechanism 52, it is convenient because it can easily and reliably control the rotation speed with considerable accuracy by variable adjustment of the applied voltage or current. is there. Although the motor is used also in the experiment of the present inventors, the electric power applied to the motor 52 becomes variable by the model operator turning the knob attached to the rotation speed control device 53, so that the motor rotation speed is different. Such devices are very readily available. However, this is not restrictive, and the device may be a device that adjusts the rotational speed by changing the amount of electricity, for example, via a transmission, preferably a continuously variable transmission.

さて、本発明に用いる回転駆動用軸部材51は、図3(B)に示されているように、その外径φrは中空弾性軸部材11の内径φiよりも細く、また、望ましくは図3(D)に示されるように、後述する本模型の組立て作業時や単位セルのリセット時に外径がφsにまで縮径させられたときの中空弾性軸部材11の内径よりも細くなっている。このことの意味は後述する。   As shown in FIG. 3 (B), the rotational drive shaft member 51 used in the present invention has an outer diameter φr smaller than the inner diameter φi of the hollow elastic shaft member 11, and preferably FIG. As shown in (D), the outer diameter of the hollow elastic shaft member 11 is smaller than that of the hollow elastic shaft member 11 when the outer diameter is reduced to φs at the time of assembling this model, which will be described later, or at the time of resetting the unit cell. The meaning of this will be described later.

図1(A) には模型の初期状態が示されていて、中空弾性軸部材11を地面と平行な姿勢に配置したとき、複数の単位セル12は固定部21から重心位置を見る方向が全て鉛直方向下向き(重力方向)となるように、そのぶら下がり姿勢が揃えられている。   FIG. 1 (A) shows the initial state of the model. When the hollow elastic shaft member 11 is placed in a posture parallel to the ground, the plurality of unit cells 12 are all viewed from the fixed portion 21 in the position of the center of gravity. The hanging postures are aligned so as to be vertically downward (gravity direction).

中空弾性軸部材11はこの実施形態の場合、単に回転駆動用軸部材51上に乗っている関係になっており、その軸方向両端、すなわち図面上手前の第一自由端11faも、これに軸方向で対向する第二自由端11fbも、共に積極的には固定されてはおらず、回転駆動用軸部材51に対し周方向に滑動的に回転可能な状態ではあるが、当該回転駆動用軸部材51の外周面と自身の内周面との摩擦力により、謂わば仮固定された関係となっている。   In the case of this embodiment, the hollow elastic shaft member 11 is simply placed on the rotational drive shaft member 51, and both ends in the axial direction, that is, the first free end 11fa on the front side of the drawing are also connected to the shaft. The second free ends 11fb that face each other in the direction are not positively fixed together, and can be slidably rotated in the circumferential direction with respect to the rotation drive shaft member 51, but the rotation drive shaft member A so-called temporary fixed relationship is established by the frictional force between the outer peripheral surface of 51 and its own inner peripheral surface.

しかるに、まずは回転駆動用軸部材51を回転させずに、中空弾性軸部材11の第一自由端11faを図1(B) 中の仮想線の矢印Frで示すように、例えば手の指等で360度程度からそれ以上捻ったとしよう。すると、単位セル12は手前から順に一枚ずつ、少し遅れながら回転して行き、その回転態様が第二自由端11fbに向けて伝搬して行くような状態となり、これがトポロジカル・ソリトンが発生して伝送線路中を伝搬して行く様子を模擬したものとなる。   However, first, without rotating the rotational drive shaft member 51, the first free end 11fa of the hollow elastic shaft member 11 is, for example, as shown by an imaginary line arrow Fr in FIG. Let's say you twisted from about 360 degrees. Then, the unit cells 12 are rotated one by one in order from the front, and the state of rotation is propagated toward the second free end 11fb, which generates topological solitons. It is a simulation of how it propagates through the transmission line.

例えば、真横から見た映像をある時間幅で撮像したとすると、それは図2(A) に示すようになり、サイン波状の波ないし山が図示の場合、矢印Fr方向に捻った第一自由端11faの側から他端の第二自由端11fbに向けて中空弾性軸部材11上を方向Ffに沿って進んで行く模様が観察される。この山に相当する部分がトポロジカル・ソリトンSoであり、また、この山の麓から麓までの軸方向距離は当該トポロジカル・ソリトンSoの長さになる。   For example, if an image viewed from the side is taken with a certain time width, it is as shown in FIG. 2 (A). When a sine wave or mountain is shown, the first free end twisted in the direction of the arrow Fr. It is observed that the pattern proceeds on the hollow elastic shaft member 11 along the direction Ff from the 11fa side toward the second free end 11fb at the other end. The part corresponding to this mountain is the topological soliton So, and the axial distance from the foot to the foot of this mountain is the length of the topological soliton So.

そして、このトポロジカル・ソリトンSoは、最初の捻り力が大きければ、図2(B) に示すように、回転駆動用軸部材51上に乗ることで摩擦力により仮固定されているような関係にある第二自由端11fbに至るとそこで反射し、矢印Fbで示すように、第一自由端11faに向けて戻ってくるようにも進む。図2(C) には中空弾性軸部材11の捻りと共に同じ回転方向Frに360度回転する各単位セル12の正面図が模式的に示されており、回転角位置P0が初期状態、すなわち固定部21から見て重心位置を鉛直方向に整合させている状態であり、そこから回転角位置P1,P2.....P7と至って再び初期状態の位置P0に戻る。   If the initial torsional force is large, the topological soliton So has a relationship such that the topological soliton So is temporarily fixed by the frictional force by riding on the rotational drive shaft member 51 as shown in FIG. 2 (B). When it reaches a certain second free end 11fb, it is reflected there, and as indicated by the arrow Fb, it also moves back toward the first free end 11fa. FIG. 2 (C) schematically shows a front view of each unit cell 12 that rotates 360 degrees in the same rotation direction Fr along with the twist of the hollow elastic shaft member 11, and the rotation angle position P0 is in an initial state, that is, fixed. The position of the center of gravity is aligned in the vertical direction when viewed from the portion 21, and from there, the rotation angle positions P1, P2,..., P7 are reached again to return to the initial position P0.

すなわち、先に述べた通り、隣り合うセルの回転角の差が360度になって一回りしても、中空弾性軸部材11に関してはその弾性エネルギが零の状態に戻ることはなく、360度を超えてさらに回せば回す程、弾性エネルギは増し続けて行くが、単位セル12の重力エネルギは360度回転するごとに零に戻ることになる。本発明の模型ではこの状態を極めて部品点数の少ない模型で実現し、トポロジカル・ソリトンの振る舞いを端的に可視化できるようになっている。   That is, as described above, even if the difference in the rotation angle between adjacent cells is 360 degrees, the elastic energy of the hollow elastic shaft member 11 does not return to the zero state. As the number of rotations further increases, the elastic energy continues to increase, but the gravitational energy of the unit cell 12 returns to zero each time it rotates 360 degrees. In the model of the present invention, this state is realized by a model having an extremely small number of parts, and the behavior of the topological soliton can be visualized.

そしてさらに、本発明では特徴的なことに、バイアスを簡単な構造で合理的、確実に模擬できる。すなわち、上記のようにして、まずは中空弾性軸部材11を矢印Fr方向に少し捻り、トポロジカル・ソリトンSoを発生させる。しかし、そのまま何もしなければ、やがてトポロジカル・ソリトンSoは停止してしまう。   Furthermore, the present invention is characteristically that the bias can be reasonably and reliably simulated with a simple structure. That is, as described above, first, the hollow elastic shaft member 11 is slightly twisted in the direction of the arrow Fr to generate the topological soliton So. However, if nothing is done as it is, the topological soliton So will eventually stop.

そこで、図1(B)及び図2(B)に示すように、回転駆動機構52であるこの場合のモータ52を回転させ、回転駆動用軸部材51を中空弾性軸部材11を捻り回転させた方向Frと同じ方向に矢印Fmで示すように回転させると、回転速度を適正に制御することにより、発生したトポロジカル・ソリトンSoは停止することなく、走行を続けることができる。これはすなわち、バイアスを模擬したことになる。しかも、その構成は、従前のように別途に扇風機を用意する場合に比し、遙かに簡便である外、回転駆動に関しての確実性も格段に高い。蓋し、模型としての完成度が高いとも言える。   Therefore, as shown in FIGS. 1B and 2B, the motor 52 in this case, which is the rotation drive mechanism 52, is rotated, and the rotation elastic shaft member 51 is twisted to rotate the hollow elastic shaft member 11. When the rotation is performed in the same direction as the direction Fr as indicated by the arrow Fm, the generated topological soliton So can be continued without stopping by appropriately controlling the rotation speed. That is, it simulates a bias. Moreover, the configuration is much simpler than the case where a separate electric fan is prepared as before, and the reliability with respect to the rotational drive is remarkably high. It can be said that the model is fully covered as a model.

バイアスの印加程度はその場で任意に設定できるが、例えば回転駆動機構52をゆっくり回転させ始め、中空弾性軸部材11が全体として回転はしないがトポロジカル・ソリトンSoのみが進み始めた時をバイアスの基点状態として設定できる。大きなバイアス、すなわち回転駆動機構52の回転数を上げればソリトンSoは早く進むし、逆回転させると後退する模様も観察できる。   The degree of bias application can be arbitrarily set on the spot.For example, when the rotational drive mechanism 52 starts to rotate slowly and the hollow elastic shaft member 11 does not rotate as a whole, only the topological soliton So begins to advance. It can be set as the base point state. If the bias is increased, that is, if the rotational speed of the rotational drive mechanism 52 is increased, the soliton So can be advanced quickly, and if it is rotated in the reverse direction, it can be observed that it moves backward.

ここで、ある意味では微妙なバイアスの印加関係、すなわち回転駆動力の伝達関係も、例えば次のような構成に従うと実に巧みに実現でき、これが模型の組立て,分解の簡単化やトポロジカル・ソリトンSoの簡単なリセットにも寄与できるものとなる。ここで改めて図3(B)を見ると、回転駆動用軸部材51の外径φrは、外径が定常径φnにあるときの中空弾性軸部材11の内径φiよりも細い。その結果、中空弾性軸部材11は回転駆動用軸部材51の外側で自由に回転できる関係にある筈である。しかし、重力があるので、両軸部材11,51を地面と平行な姿勢としたとき、両者の接触位置は、回転駆動用軸部材51の外周面においてはその鉛直方向上部の位置、すなわち重力の印加方向とは反対方向で一番高い位置で軸方向には線状に伸びる面部分と、中空弾性軸部材11の内周面にあって同じく鉛直方向上部の位置の線状に伸びる面部分とになり、軸方向に沿って互いには線状接触となる。これは適度な滑りを生む摩擦力を伴う接触である。   Here, in a sense, a subtle bias application relationship, that is, a rotational drive force transmission relationship, can be realized very skillfully, for example, according to the following configuration. This can simplify the assembly and disassembly of the model and the topological soliton So. It is possible to contribute to a simple reset. 3B again, the outer diameter φr of the rotary drive shaft member 51 is smaller than the inner diameter φi of the hollow elastic shaft member 11 when the outer diameter is the steady diameter φn. As a result, the hollow elastic shaft member 11 should be in a relationship of being freely rotatable outside the rotation drive shaft member 51. However, since there is gravity, when both shaft members 11 and 51 are in a posture parallel to the ground, the contact position between them is the position of the upper part in the vertical direction on the outer peripheral surface of the rotary drive shaft member 51, that is, the gravity. A surface portion extending linearly in the axial direction at the highest position in the direction opposite to the application direction, and a surface portion extending linearly at the position on the inner peripheral surface of the hollow elastic shaft member 11 and in the same vertical direction And are in linear contact with each other along the axial direction. This is a contact with frictional force that produces moderate slip.

この接触は、さらに軸方向に見て点々と、略々点接触となるような接触であると、回転駆動用軸部材51の回転力を中空弾性軸部材11に適度に、かつ上手く伝えるのにより望ましい。そのため、この実施形態では次のような工夫がされている。すなわち、単位セル12に開けられた透孔13の内径φcよりも中空弾性軸部材11の定常径φn の方が太いため、各単位セル12が固定している部分では図3(B)に模式的に良く示されているように、中空弾性軸部材11の当該部分は半径方向内方に押し撓められ、そこでの内径は定常的な内径φiよりさらに細くなっているので、実質的に回転駆動用軸部材51と中空弾性軸部材11はこの中空弾性軸部材11が半径方向内方に撓んだ部分Pcでのみ、軸方向に見て点々と接触することになる。つまり、上記の軸方向に伸びる線状接触はさらに、略々点接触とみなせる接触部分Pcが軸方向に間隔を置いて並んだ接触関係に変わっていることになる。   If this contact is a contact that is point-to-point and substantially point-to-point when viewed in the axial direction, the rotational force of the rotational drive shaft member 51 is appropriately and well transmitted to the hollow elastic shaft member 11. desirable. Therefore, in this embodiment, the following devices are devised. That is, since the stationary diameter φn of the hollow elastic shaft member 11 is thicker than the inner diameter φc of the through-hole 13 opened in the unit cell 12, the portion where each unit cell 12 is fixed is schematically shown in FIG. As is well shown, the portion of the hollow elastic shaft member 11 is pushed radially inward, where the inner diameter is further narrower than the steady inner diameter φi so that it is substantially rotated. The driving shaft member 51 and the hollow elastic shaft member 11 come into contact with each other as viewed in the axial direction only at a portion Pc where the hollow elastic shaft member 11 is bent inward in the radial direction. That is, the above-described linear contact extending in the axial direction further changes to a contact relationship in which contact portions Pc that can be regarded as point contacts are arranged at intervals in the axial direction.

このように径関係を適切に選ぶと、実に上手くバイアスが模擬できるようになる。トポロジカル・ソリトンSoとなっていない部分、つまり鉛直方向下向きの単位セル12は自重と上記の略々点接触部分Pcでの摩擦力により、モータ52の回転により回転駆動用軸部材51が回転駆動されても回転を起こさず、中空弾性軸部材11からぶら下がったそのままの状態を維持できる一方で、既に回転を起こしているトポロジカル・ソリトンSo部分での各単位セル12は、固定部21から見た重心位置が鉛直方向下向きから外れ、重力エネルギの鉛直方向ベクトル成分が減っている結果、上記の略々点接触部分Pcでの滑りを伴う摩擦力を介し、回転駆動用軸部材51から適当なる回転駆動力を受け、結果、トポロジカル・ソリトンSoが安定に走行し続ける様子を見ることができる。   If the diameter relationship is appropriately selected in this way, the bias can be simulated very well. The portion of the topological soliton So, that is, the unit cell 12 facing downward in the vertical direction, is rotated by the rotation of the motor 52 by the rotation of the motor 52 due to its own weight and the frictional force at the point contact portion Pc. However, the unit cell 12 in the topological soliton So part that has already rotated is the center of gravity as viewed from the fixed part 21, while maintaining the state of hanging from the hollow elastic shaft member 11 as it is without causing rotation. As a result of the position deviating from the downward direction in the vertical direction and the vertical vector component of the gravitational energy being reduced, an appropriate rotational drive is performed from the rotational drive shaft member 51 via the frictional force accompanied by the slip at the point contact portion Pc. As a result, you can see how the topological soliton So continues to run stably.

なお、半径方向に見ると回転駆動用軸部材51上に乗っている中空弾性軸部材11の両端の中、第二自由端11fbを図示していないが適当な把持手段により意図的に回転不能に固定すると、これはバイアスが印加されていても、トポロジカル・ソリトンSoの記憶メカニズムを模擬できるものともなる。つまり、トポロジカル・ソリトンSoはバイアスが印加されながら走行してきても、この第二自由端11fbにて止まり、次々と後から回転させたトポロジカル・ソリトンSoがここに溜まってくるからである。   When viewed in the radial direction, the second free end 11fb is not shown in the both ends of the hollow elastic shaft member 11 riding on the rotation drive shaft member 51, but it is intentionally made non-rotatable by appropriate gripping means. When fixed, this also simulates the memory mechanism of the topological soliton So even when a bias is applied. That is, even if the topological soliton So travels while being applied with a bias, it stops at the second free end 11fb, and the topological solitons So that are rotated one after another accumulate here.

また、回転駆動用軸部材51は中空弾性軸部材11の長さの途中までとすると、当該途中部分までのみ、バイアスが印加されている場合を模擬できる。この場合、中空弾性軸部材11の第二自由端11fbの支持は別途に考慮するが、例えば回転駆動用軸部材51自体も内部中空のパイプ状のものであるならば、図示はしていないがその中に剛性の高い軸部材を模型支持軸部材として挿入し、回転駆動用軸部材51自体を回転を損なわないように支持すれば、模型全体を安定に支持できることになる。   Further, assuming that the rotational drive shaft member 51 is halfway in the length of the hollow elastic shaft member 11, it is possible to simulate the case where a bias is applied only to the middle portion. In this case, the support of the second free end 11fb of the hollow elastic shaft member 11 is considered separately. For example, if the rotation drive shaft member 51 itself is a hollow hollow pipe, it is not shown in the figure. If a highly rigid shaft member is inserted as a model support shaft member and the rotation drive shaft member 51 is supported so as not to impair rotation, the entire model can be stably supported.

以上、本発明の一つの大きな特徴である、トポロジカル・ソリトンSoへのバイアス印加につき説明したが、本実施形態ではさらに加えて、以下に説明する通り、組み立ても分解も、そしてパラメータの調整や変更も極めて簡単に行うことができる構造となっている。   As described above, the bias application to the topological soliton So, which is one of the major features of the present invention, has been described. In addition, in this embodiment, as described below, assembling and disassembling, and parameter adjustment and change are performed. However, the structure can be performed very easily.

改めて図3(D)を見ると、本発明では単位セル12の透孔13の内径φcは、中空弾性軸部材11に引っ張り力Ftの印加されていないときの定常径φnよりも小さくなっていることが分かる。そのため、同図(B)に示されているように、組み立てた状態では中空弾性軸部材11が単位セル12の透孔13内において半径方向に無理に押し狭められ、既述した定常時の内径φiよりさらに縮径された格好になっているため、その弾性反発力である半径方向外方への拡径力により、単位セル12が中空弾性軸部材11に固定されるようになっている。すなわち、単位セル12の透孔13の内周面があたかも中空弾性軸部材11の外周面に食い付くような格好になり、もって中空弾性軸部材11と単位セル12の相対回転が防止されて、中空弾性軸部材11を捻り回転させれば、それと一緒に単位セル12も安定に回転する構造が具現している。このように、φc<φnなる径関係は、上述した通り、回転駆動用軸部材51からの回転駆動力を中空弾性軸部材11に、ひいては単位セル12に適度な滑りを伴う摩擦力を介して上手く伝える工夫となっているだけではなく、単位セル12を中空弾性軸部材11に簡単に固定するに役立つ関係ともなっている。   3D again, in the present invention, the inner diameter φc of the through hole 13 of the unit cell 12 is smaller than the steady diameter φn when the tensile force Ft is not applied to the hollow elastic shaft member 11. I understand that. Therefore, as shown in FIG. 5B, in the assembled state, the hollow elastic shaft member 11 is forcibly pressed and narrowed in the radial direction in the through-hole 13 of the unit cell 12, and the inner diameter in the steady state described above. Since the diameter is further reduced from φi, the unit cell 12 is fixed to the hollow elastic shaft member 11 by the radially outward expansion force that is the elastic repulsion force. That is, the inner peripheral surface of the through-hole 13 of the unit cell 12 looks as if it bites the outer peripheral surface of the hollow elastic shaft member 11, thereby preventing relative rotation between the hollow elastic shaft member 11 and the unit cell 12, When the hollow elastic shaft member 11 is twisted and rotated, the structure in which the unit cell 12 is also stably rotated is realized. Thus, as described above, the diameter relationship φc <φn is that the rotational driving force from the rotational driving shaft member 51 is applied to the hollow elastic shaft member 11 and thus to the unit cell 12 via the frictional force with appropriate slippage. This is not only a good idea to convey well, but also a relationship useful for easily fixing the unit cell 12 to the hollow elastic shaft member 11.

一方、図3(C),(D)に示されているように、中空弾性軸部材11に引っ張り力Ftが印加されると、軸方向にも弾性を有する当該中空弾性軸部材11が透孔13の内径φcよりも小径φs に縮径することができる。こうなると、中空弾性軸部材11と単位セルの透孔13との嵌り合い関係が謂わばブカブカの状態になるので、単位セル12の固定が釈放され、単位セル12は中空弾性軸部材11に対し軸方向にも周方向にも動き得るようになる。   On the other hand, as shown in FIGS. 3 (C) and 3 (D), when a tensile force Ft is applied to the hollow elastic shaft member 11, the hollow elastic shaft member 11 having elasticity in the axial direction also has a through hole. The inner diameter φc of 13 can be reduced to a smaller diameter φs. When this happens, the fitting relationship between the hollow elastic shaft member 11 and the through-holes 13 of the unit cell becomes a so-called “buzzy” state, so that the fixing of the unit cell 12 is released, and the unit cell 12 is released from the hollow elastic shaft member 11. It can move both axially and circumferentially.

これが何を意味するかと言えば、それは本模型の組み立て,分解の容易さと、模型を動作させた後、初期状態にリセットする操作が極めて簡単になるということである。例えばまず、中空弾性軸部材11を軸方向に引っ張りながら縮径させ、単位セル12の透孔内径φc よりそのときの縮径した軸部材外径φs を小径とすれば、単位セル12の透孔13内に中空弾性軸部材11を簡単に通して行くことができ、多数の単位セル12を中空弾性軸部材11に固定させて行く組み立て作業も著しく簡単化する。   What this means is that it is very easy to assemble and disassemble the model and to reset the model to its initial state after operating the model. For example, first, the hollow elastic shaft member 11 is reduced in diameter while being pulled in the axial direction, and the reduced diameter of the shaft member outer diameter φs at that time is smaller than the through hole inner diameter φc of the unit cell 12. The hollow elastic shaft member 11 can be easily passed through 13, and the assembling work in which a large number of unit cells 12 are fixed to the hollow elastic shaft member 11 is remarkably simplified.

隣接する単位セル12間の間隔を調整するために当該各単位セル12を軸方向にずらす作業も甚だしく簡単である。つまり、とりあえず全ての単位セル12を中空弾性軸部材11に通してから、中空弾性軸部材11を引っ張ったまま、全ての単位セル12をそれぞれの所定位置までずらす作業は、中空弾性軸部材11側からの何の抵抗も受けないため、極めてスムースに行える。   The operation of shifting each unit cell 12 in the axial direction in order to adjust the interval between adjacent unit cells 12 is extremely simple. That is, for the time being, after all the unit cells 12 are passed through the hollow elastic shaft member 11, the operation of shifting all the unit cells 12 to the respective predetermined positions while pulling the hollow elastic shaft member 11 is performed on the hollow elastic shaft member 11 side. Because it does not receive any resistance from, it can be done very smoothly.

もっとも、中空弾性軸部材11の一端部はこの組み立ての時、一時的にでもテープ等で捲いて十分縮径させた状態に維持しておけば、単位セル12を順次その透孔13で中空弾性軸部材11に通して行く作業はより捗る。   However, if one end of the hollow elastic shaft member 11 is kept in a state of being sufficiently reduced in diameter by being wound with a tape or the like even at the time of assembly, the unit cells 12 are sequentially hollowed out through the through-holes 13 in this manner. The work going through the shaft member 11 is more advanced.

全ての単位セル12をそれぞれ目的の位置に付けてから中空弾性軸部材11の引っ張り力を釈放すれば、軸部材自身の持つ半径方向への復元力で中空弾性軸部材11が定常径φn に向けて拡径し、透孔内径φc よりも十分大径となるため、図3(B) に即して既に述べたように、その半径方向拡径力により単位セル12は中空弾性軸部材11に固定される。従って、これとは逆の操作で分解も簡単なことは最早自明であろう。中空弾性軸部材11を引っ張っておいて各単位セル12を順次軸方向に引き抜いて行けば良い。   If the tensile force of the hollow elastic shaft member 11 is released after all the unit cells 12 are attached to the target positions, the hollow elastic shaft member 11 is directed toward the steady diameter φn by the restoring force in the radial direction of the shaft member itself. The diameter of the unit cell 12 is sufficiently larger than the inner diameter φc of the through hole. Therefore, as already described with reference to FIG. Fixed. Therefore, it will be obvious that the reverse operation and the disassembly are simple. The hollow elastic shaft member 11 may be pulled and the unit cells 12 may be sequentially pulled out in the axial direction.

さらに加えて、初期状態である、全ての単位セル12の重心が固定部21から見て鉛直方向に揃うようにする作業もたったの一手間で済む。組み立て時にとりあえず単位セル12を中空弾性軸部材11に嵌め付けた後とか、既述のように模型を動作させた後には、単位セル12の全てが鉛直方向にぶら下がった初期状態にはならないことがある。図3(A) に示すように、幾つかの単位セル12は捻られた姿勢のまま静止してしまうことがある。しかし、本発明の模型によれば、中空弾性軸部材11を軸方向に引っ張って縮径させるだけで、中空弾性軸部材11と単位セル12の固定を解くことができるので、単位セル12は自重で周方向に回転し、その重心を鉛直方向に向けるように簡単にセットないしリセットされ得る。   In addition, the initial state of all unit cells 12 so that the center of gravity of all unit cells 12 is aligned in the vertical direction when viewed from the fixed portion 21 is only one time. For the time being, after the unit cell 12 is fitted to the hollow elastic shaft member 11 or after the model is operated as described above, the unit cell 12 may not be in the initial state where it is suspended vertically. is there. As shown in FIG. 3 (A), some unit cells 12 may remain stationary while being twisted. However, according to the model of the present invention, the hollow elastic shaft member 11 and the unit cell 12 can be unfixed simply by pulling the hollow elastic shaft member 11 in the axial direction to reduce the diameter. Can be easily set or reset so as to rotate in the circumferential direction and direct its center of gravity in the vertical direction.

この効果は極めて大きい。既述の従来例では著しく組み立てが面倒であったり、初期状態へのリセットが厄介であったり、あるいはまち針等、怪我をしかねない部品を使う場合に比し、本発明の優位性は疑いない。特に、単に中空弾性軸部材11を軸方向に引っ張ればそれでもう初期状態にリセットされる巧みさは便利この上ない。   This effect is extremely large. There is no doubt that the present invention is superior to the conventional example described above as compared to the case where the assembly is remarkably troublesome, the reset to the initial state is troublesome, or parts that may cause injury such as gusset needles are used. . In particular, if the hollow elastic shaft member 11 is simply pulled in the axial direction, the skill of resetting it to the initial state with that is no more convenient.

ちなみに、本発明者の実験においては、外径φnが7mm,内径φiが5mmの弾性チューブを中空弾性軸部材11として用いた。具体的には、東京都文京区後楽在の日本理化学器械株式会社の販売に係る、商品名「ユニチューブ」なるものである。単位セル12としては長さ9cm,幅3cmの短冊を厚紙で作ったものとし、短冊の一方の短辺から内方に1cm程度の所に内径φcが6mmの透孔13を穿った。弾性チューブを引っ張るとその外径を透孔13の内径6mmより細い状態にまで縮径でき、簡単に単位セル12の組み付けや軸方向への位置調整移動を行えた。また、模型の操作後にも、この弾性チューブを引っ張るだけで全ての短冊12が鉛直方向に揃う状態にいとも簡単にリセットできた。短冊枚数は200枚程度作った。また、この弾性チューブ内に軸方向に挿入する回転駆動用軸部材51としては、外径φrが3mmのアルミパイプを用いた。   Incidentally, in the experiment of the present inventor, an elastic tube having an outer diameter φn of 7 mm and an inner diameter φi of 5 mm was used as the hollow elastic shaft member 11. Specifically, it is the product name “Unitube” related to the sales of Nippon Riken Kikai Co., Ltd. located in Koraku, Bunkyo-ku, Tokyo. As the unit cell 12, a strip having a length of 9 cm and a width of 3 cm was made of thick paper, and a through-hole 13 having an inner diameter φc of 6 mm was formed at a position about 1 cm inward from one short side of the strip. When the elastic tube was pulled, its outer diameter could be reduced to a state thinner than the inner diameter of 6 mm of the through hole 13, and the unit cell 12 could be easily assembled and moved in the axial direction. In addition, even after the model was operated, all the strips 12 were easily reset by simply pulling the elastic tube. About 200 strips were made. Further, an aluminum pipe having an outer diameter φr of 3 mm was used as the rotational drive shaft member 51 inserted in the elastic tube in the axial direction.

ただし、単位セル12には本発明の要旨構成で限定される以外の限定は必要ない。中空弾性軸部材11との固定部21において中空弾性軸部材11を貫通させる透孔13を持ち、当該透孔13のある位置とは異なる位置に重心位置があり、かつ、この透孔13の内径φc が中空弾性軸部材11の定常径φn よりも小さければ良く、円形等も含め、その他任意の形状であって良い。円形であっても透孔13を中心から外して穿てば本発明の要件は満足される。   However, the unit cell 12 need not be limited other than that limited by the gist of the present invention. The fixing portion 21 with the hollow elastic shaft member 11 has a through-hole 13 that penetrates the hollow elastic shaft member 11, has a center of gravity position at a position different from the position where the through-hole 13 is located, and the inner diameter of the through-hole 13 As long as φc is smaller than the steady diameter φn of the hollow elastic shaft member 11, it may be any other shape including a circular shape. Even if it is circular, the requirement of the present invention is satisfied if the through-hole 13 is removed from the center.

単位セル12自体に対する便利な改変も幾つか提案でき、例えば図4(A) に示すように、単位セル12の透孔13の内周縁に半径方向内方に向かって突出し、中空弾性軸部材11の外周面に噛み付く突起14を設けると、中空弾性軸部材11が定常径φn にあるときの中空弾性軸部材11と単位セル12の固定力をより高められる。もちろん、中空弾性軸部材11を引っ張ったときには千切れることもなく、その縮径した径φs が突起14をもクリアするだけの縮径量を呈する弾性は中空弾性軸部材11に要求される。   Some convenient modifications to the unit cell 12 itself can be proposed. For example, as shown in FIG. 4A, the hollow elastic shaft member 11 protrudes radially inward from the inner peripheral edge of the through hole 13 of the unit cell 12. When the protrusion 14 that engages with the outer peripheral surface of the hollow elastic shaft member 11 is provided, the fixing force between the hollow elastic shaft member 11 and the unit cell 12 when the hollow elastic shaft member 11 is at the steady diameter φn can be further increased. Of course, when the hollow elastic shaft member 11 is pulled, the hollow elastic shaft member 11 is required to be elastic so that the diameter φs of the reduced diameter is sufficient to clear the protrusions 14 without being broken.

また、図4(B)〜(E)にそれぞれ示すように、単位セル12の透孔13の輪郭の一部は当該単位セル12の周縁部に向けて開いたスリット15に繋がっており、このスリット15を介し、中空弾性軸部材11を当該透孔13に対し半径方向に嵌め入れることで、簡単に組立てが可能となるようにしても良い。この場合にもやはり、中空弾性軸部材11を引っ張ることで全ての単位セル12を簡単にリセットする本発明の効果は同様に享受できる。   Further, as shown in FIGS. 4B to 4E, a part of the outline of the through-hole 13 of the unit cell 12 is connected to the slit 15 opened toward the peripheral edge of the unit cell 12, and this The hollow elastic shaft member 11 may be fitted into the through hole 13 in the radial direction via the slit 15 so that the assembly can be easily performed. Also in this case, the effect of the present invention in which all the unit cells 12 can be easily reset by pulling the hollow elastic shaft member 11 can be similarly enjoyed.

もちろん、スリット15の開口幅は、リセットのために中空弾性軸部材11を引っ張って縮径させても中空弾性軸部材11から外れることのない幅に留める必要はある。スリット形状も本来的に任意であるし、特に図4(D),(E)に示すように、テーパ上に口を開いた格好にすれば、中空弾性軸部材11の嵌め付け作業はより楽になる。   Of course, it is necessary to keep the opening width of the slit 15 at a width that does not come off the hollow elastic shaft member 11 even if the hollow elastic shaft member 11 is pulled to reduce the diameter for resetting. The slit shape is also arbitrarily arbitrary. Especially, as shown in FIGS. 4 (D) and 4 (E), if the mouth is opened on the taper, the fitting operation of the hollow elastic shaft member 11 is easier. Become.

単位セル12の材質は、既述の実験例では厚紙を用いたが、もとよりこれに限定されるものではなく、その材料はプラスティック、木材、場合により金属であっても良い。特にプラスティック製とするような場合には、図5(A),(B)に示すような便宜な構造も提案できる。所謂プラスティック・ファスナの分野では、簡単に着脱可能なファスナ構造が提案されているのでこれを利用し、単位セル12は透孔13内を渡る分割線に沿って少なくとも二つの部分12a,12bに分割でき、これら二つの部分12a,12bはファスナ構造16でのスナップ係合により互いに組み付くことで透孔13を形成し、中空弾性軸部材11に組み付き得るようにする一方で、スナップ係合を解けば中空弾性軸部材11から簡単に取り外すことができるようにしても良い。   The material of the unit cell 12 is cardboard in the experimental examples described above, but is not limited to this, and the material may be plastic, wood, or in some cases metal. In particular, when it is made of plastic, a convenient structure as shown in FIGS. 5A and 5B can be proposed. In the field of so-called plastic fasteners, an easily attachable / detachable fastener structure has been proposed, and this is used to divide the unit cell 12 into at least two parts 12a and 12b along a dividing line passing through the through hole 13. These two portions 12a and 12b can be assembled to each other by snap engagement in the fastener structure 16 to form a through hole 13 so that it can be assembled to the hollow elastic shaft member 11, while releasing the snap engagement. For example, the hollow elastic shaft member 11 may be easily removed.

このように、謂わば横方向からの嵌め付け操作で中空弾性軸部材11に取り付けることのできる単位セル12を用いると、パラメータの自由度を増すのにさらに便利になることもある。基本的に本発明模型では、中空弾性軸部材11を引っ張った状態で単位セルの間隔が一部分的に短い状態等も簡単に作れるので、非一様な伝搬線路でのトポロジカル・ソリトンの振る舞いを見るのも容易であるが、これに加えて、組み付け、取り外しがましてや容易な図4(B)〜(D),図5(A),(B)のような構造の単位セル12を用いるならば、予め長さの異なるものを複数種類用意し、必要に応じて全部あるいは一部を付け替えて実験する,ということも簡単に可能となり、短い単位セル、慣性モーメントの小さな単位セルを用いるとトポロジカル・ソリトンSoの長さが短くなる様子等も比較観察させることができる。   Thus, using the unit cell 12 that can be attached to the hollow elastic shaft member 11 by so-called lateral fitting operation may be more convenient to increase the degree of freedom of parameters. Basically, in the model of the present invention, it is possible to easily create a state in which the unit cell interval is partially short while the hollow elastic shaft member 11 is pulled, so that the behavior of topological solitons in a non-uniform propagation line is seen. In addition to this, if the unit cell 12 having a structure as shown in FIGS. 4 (B) to 4 (D), 5 (A) and 5 (B), which is easy to assemble and remove, is used. It is also possible to prepare multiple types of different lengths in advance and experiment with all or part of them as necessary. Using short unit cells and unit cells with a small moment of inertia, topological It can be observed that the length of the soliton So is shortened.

形状的な変更については、図6に示すように、単位セル12は透孔13の輪郭を形成する円形または円弧状の透孔形成部材12cと、この透孔形成部材12cの一部分から伸び出す棒状部材12dとから構成されているようにしても良い。このような構造は一般に軽い単位セルを作るのに適している。また、図示の場合、スリット15も透孔形成部材12cの一部に開けられていて、やはり半径方向での嵌め付けが可能となっている。図4(A) に示すように、単位セル12の透孔13の内周縁に突起14を設ける構造でも、スリット15をさらに設けることは当然に可能である。   As for the shape change, as shown in FIG. 6, the unit cell 12 has a circular or arc-shaped through-hole forming member 12c forming the outline of the through-hole 13, and a rod-like shape extending from a part of the through-hole forming member 12c. It may be configured of the member 12d. Such a structure is generally suitable for making light unit cells. Further, in the illustrated case, the slit 15 is also formed in a part of the through hole forming member 12c, and can be fitted in the radial direction. As shown in FIG. 4 (A), it is naturally possible to further provide the slit 15 even in the structure in which the protrusion 14 is provided on the inner peripheral edge of the through hole 13 of the unit cell 12.

中空弾性軸部材11も、ゴム・ホースの外、コイル・スプリング等も用いることができ、縦方向歪が横方向歪を生むポアソン効果を呈する中空弾性体であれば、等しく本発明の中空弾性軸部材11として利用することができる。これらでも、中空内部に通す回転駆動用軸部材51との適度な回転摩擦力は得ることができる。   The hollow elastic shaft member 11 can be a rubber spring, a coil spring, or the like, and can be used as long as it is a hollow elastic body exhibiting a Poisson effect in which a longitudinal strain produces a lateral strain. It can be used as the member 11. Even in these cases, it is possible to obtain an appropriate rotational frictional force with the rotational drive shaft member 51 passing through the hollow interior.

本発明の模型を利用してトポロジカル・ソリトン形状の変化や線路インピータンスの変化についての振る舞いを見るに好適な構成としては、図7に示すように、単位セル12の少なくとも幾つかには選択的に嵌め付け得る重り17を設けるようにしても良い。重り17の重さや幾つの単位セル12が重り付きで連続して設けられているかに応じ、本来ならば矢印Ffから矢印Fbで示される反射経路となる所、矢印Ff’と矢印Fb’で示すように、重り付き単位セル12のある部分以降は例えバイアスが印加されていても進むことができずにそこで反射し、戻ってくる様子等も可視的に明示できる。あるいは逆に、バイアスの大きさの如何によっては、この障壁を乗り越えることも模擬し得る。   As a preferred configuration for using the model of the present invention to see the behavior of changes in topological soliton shape and line impedance, as shown in FIG. 7, at least some of the unit cells 12 are selective. You may make it provide the weight 17 which can be fitted in. Depending on the weight of the weight 17 and how many unit cells 12 are continuously provided with weights, the reflection path indicated by the arrow Ff to the arrow Fb is normally indicated by the arrows Ff ′ and Fb ′. Thus, after a certain part of the unit cell 12 with the weight, even if a bias is applied, it is not possible to proceed, and the state of reflection and return can be clearly shown. Or, conversely, overcoming this barrier can be simulated depending on the magnitude of the bias.

以上、本発明を実施形態に即して説明したが、本発明の要旨構成に即する限り、任意の改変は自由である。いずれにしても本発明によれば、ソリトン回路を可視化し、直感的にその機能を把握させるための模型作製が極めて容易になり、特に一次元伝搬路におけるトポロジカル・ソリトンのダイナミクスについて空間の非一様性も含め、容易にパラメータを変化させることもできるようになる。そして何より、組立ても簡単で確実性の高い構成により、トポロジカル・ソリトンへのバイアス印加をも合理的に模擬できる。   As mentioned above, although this invention was demonstrated according to embodiment, as long as it corresponds to the summary structure of this invention, arbitrary modification | changes are free. In any case, according to the present invention, it becomes very easy to create a model for visualizing a soliton circuit and intuitively grasping its function, and in particular, the spatial dynamics of topological soliton dynamics in a one-dimensional propagation path. The parameters can be easily changed including the aspect. Above all, the bias application to the topological soliton can be rationally simulated by a simple and reliable configuration even when assembled.

本発明トポロジカル・ソリトン回路模型の望ましい一実施形態における概略的な構成図である。It is a schematic block diagram in desirable one Embodiment of the topological soliton circuit model of this invention. 本発明模型の基本動作に関する説明図である。It is explanatory drawing regarding the basic operation | movement of this invention model. 本発明模型の軸部材と単位セルの固定関係に関する説明図である。It is explanatory drawing regarding the fixed relationship of the shaft member and unit cell of this invention model. 本発明模型の単位セルの改変例に関する説明図である。It is explanatory drawing regarding the modification of the unit cell of this invention model. 本発明模型の単位セルに関する他の改変例の説明図である。It is explanatory drawing of the other modification regarding the unit cell of this invention model. 本発明模型の単位セルに関するさらに他の改変例の説明図である。It is explanatory drawing of the further another modification regarding the unit cell of this invention model. 本発明模型の他の実施形態とその動作例に関する説明図である。It is explanatory drawing regarding other embodiment of this invention model, and its operation example.

符号の説明Explanation of symbols

11 中空弾性軸部材
12 単位セル
13 透孔
14 透孔内の突起
15 スリット
16 ファスナ構造
17 重り
21 中空弾性軸部材と単位セルの固定部
51 回転駆動用軸部材
52 回転駆動機構(モータ)
53 回転数制御装置
54 軸受
So トポロジカル・ソリトン
11 Hollow elastic shaft member
12 unit cells
13 Through hole
14 Protrusion in the through hole
15 slit
16 Fastener structure
17 weights
21 Hollow elastic shaft member and unit cell fixing part
51 Rotating drive shaft member
52 Rotation drive mechanism (motor)
53 Speed controller
54 Bearing
So topological solitons

Claims (6)

一次元方向を軸方向として長さを有し、中心軸を中心に周方向に捻ると復元力としての弾性エネルギを蓄えると共に、上記軸方向に引っ張り力が印加されて該軸方向に引き延ばされるとその外径を半径方向内方に縮径し、該縮径した状態では半径方向外方への復元力である拡径力を呈すると共に、上記軸方向にも復元力を呈する中空弾性軸部材と;
該中空弾性軸部材の上記軸方向に互いに間隔を置いて複数個が着脱可能に固定され、該中空弾性軸部材との固定部とは異なる位置に重心位置がある単位セルと;
該中空弾性軸部材の内部に上記軸方向に沿って挿入され、該中空弾性軸部材の内径よりも小径の外径を有し、もって該中空弾性軸部材を地面と平行にした姿勢では外周面の鉛直方向上部の位置で該中空弾性軸部材の内周面に接触し、回転駆動を受けるとこの接触部での摩擦力を介して該中空弾性軸部材に回転駆動力を伝達する回転駆動用軸部材と;
該回転駆動用軸部材を回転させるための回転数制御可能な回転駆動機構と;
を有して成るトポロジカル・ソリトン回路の模型。
It has a length with the one-dimensional direction as the axial direction, and when it is twisted in the circumferential direction around the central axis, it stores elastic energy as a restoring force and is stretched in the axial direction by applying a tensile force in the axial direction. And a hollow elastic shaft member that exhibits a diameter expansion force that is a restoring force radially outward in the reduced diameter state and a restoring force also in the axial direction. When;
A unit cell in which a plurality of hollow elastic shaft members are detachably fixed at intervals in the axial direction, and the center of gravity is located at a position different from the fixing portion with the hollow elastic shaft member;
The hollow elastic shaft member is inserted along the axial direction and has an outer diameter smaller than the inner diameter of the hollow elastic shaft member. For the rotational drive that contacts the inner peripheral surface of the hollow elastic shaft member at the upper position in the vertical direction and transmits the rotational driving force to the hollow elastic shaft member via the frictional force at the contact portion when the rotational drive is received. A shaft member;
A rotational drive mechanism capable of controlling the rotational speed for rotating the rotational drive shaft member;
A model of a topological soliton circuit comprising:
請求項1記載のトポロジカル・ソリトン回路の模型であって;
上記回転駆動用軸部材の上記外周面と上記中空弾性軸部材の上記内周面との上記接触部は、上記単位セルの固定されている部分でのみの接触となっていること;
を特徴とするトポロジカル・ソリトン回路の模型。
A model of a topological soliton circuit according to claim 1;
The contact portion between the outer peripheral surface of the rotary drive shaft member and the inner peripheral surface of the hollow elastic shaft member is in contact only with a portion where the unit cell is fixed;
A model of a topological soliton circuit characterized by
請求項2記載のトポロジカル・ソリトン回路の模型であって;
上記単位セルはそれぞれ、上記固定部において上記中空弾性軸部材を貫通させる透孔を持ち、該透孔の内径は上記中空弾性軸部材に上記引っ張り力が印加されていないときの外径よりも小さく、もって該中空弾性軸部材が該透孔内において上記半径方向に縮径されたときに呈する上記半径方向外方への上記拡径力で上記単位セルが該中空弾性軸部材に固定されている一方;
該中空弾性軸部材に上記引っ張り力が印加されると該中空弾性軸部材の外径が上記透孔内径よりも小径に縮径することで上記単位セルの固定が釈放され、該単位セルは該中空弾性軸部材に対し軸方向にも周方向にも動き得るようになるように構成されていると共に;
上記単位セルが上記固定部において上記中空弾性軸部材に固定されているときには、該固定部での該中空弾性軸部材は上記半径方向内方に撓んで該撓んだ部分での該中空弾性軸部材の内径は該単位セルが固定されていない部分の内径よりも小さくなっている結果、該撓んだ内周面部分でのみ、上記回転駆動用軸部材の上記外周面と接触するように構成されていること;
を特徴とするトポロジカル・ソリトン回路の模型。
A model of a topological soliton circuit according to claim 2;
Each of the unit cells has a through hole penetrating the hollow elastic shaft member in the fixing portion, and the inner diameter of the through hole is smaller than the outer diameter when the tensile force is not applied to the hollow elastic shaft member. Thus, the unit cell is fixed to the hollow elastic shaft member by the radially expanding force exerted when the hollow elastic shaft member is radially reduced in the through hole. on the other hand;
When the tensile force is applied to the hollow elastic shaft member, the outer diameter of the hollow elastic shaft member is reduced to a diameter smaller than the inner diameter of the through hole, so that the unit cell is fixed, and the unit cell is Configured to be able to move axially and circumferentially relative to the hollow elastic shaft member;
When the unit cell is fixed to the hollow elastic shaft member at the fixed portion, the hollow elastic shaft member at the fixed portion is bent inward in the radial direction and the hollow elastic shaft at the bent portion. As a result of the inner diameter of the member being smaller than the inner diameter of the portion where the unit cell is not fixed, only the bent inner peripheral surface portion is in contact with the outer peripheral surface of the rotary drive shaft member. is being done;
A model of a topological soliton circuit characterized by
請求項1記載のトポロジカル・ソリトン回路の模型であって;
上記回転駆動用軸部材は上記中空弾性軸部材の長さの途中まで設けられていること;
を特徴とするトポロジカル・ソリトン回路の模型。
A model of a topological soliton circuit according to claim 1;
The rotational drive shaft member is provided partway along the length of the hollow elastic shaft member;
A model of a topological soliton circuit characterized by
請求項1記載のトポロジカル・ソリトン回路の模型であって;
上記回転駆動用軸部材自体も内部中空であり、該回転駆動用軸部材の回転を妨げない状態で模型支持用の支持軸部材が該回転駆動用軸部材の上記内部中空部を軸方向に通っていること;
を特徴とするトポロジカル・ソリトン回路の模型。
A model of a topological soliton circuit according to claim 1;
The rotary drive shaft member itself is also hollow inside, and the support shaft member for supporting the model passes through the internal hollow portion of the rotary drive shaft member in the axial direction without hindering the rotation of the rotary drive shaft member. What;
A model of a topological soliton circuit characterized by
請求項1記載のトポロジカル・ソリトン回路の模型であって;
上記回転数制御可能な回転駆動機構は電力で駆動されるモータであること;
を特徴とするトポロジカル・ソリトン回路の模型。
A model of a topological soliton circuit according to claim 1;
The rotational drive mechanism capable of controlling the rotational speed is a motor driven by electric power;
A model of a topological soliton circuit characterized by
JP2008267385A 2008-10-16 2008-10-16 Model of topological soliton circuit Active JP5098946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267385A JP5098946B2 (en) 2008-10-16 2008-10-16 Model of topological soliton circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267385A JP5098946B2 (en) 2008-10-16 2008-10-16 Model of topological soliton circuit

Publications (2)

Publication Number Publication Date
JP2010096970A true JP2010096970A (en) 2010-04-30
JP5098946B2 JP5098946B2 (en) 2012-12-12

Family

ID=42258699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267385A Active JP5098946B2 (en) 2008-10-16 2008-10-16 Model of topological soliton circuit

Country Status (1)

Country Link
JP (1) JP5098946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935141A (en) * 2019-04-02 2019-06-25 田家地 A kind of high school physics friction force demonstration device
CN111903060A (en) * 2018-03-26 2020-11-06 微软技术许可有限责任公司 Superconducting integrated circuit with clock signal distributed via inductive coupling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920264U (en) * 1982-07-29 1984-02-07 山下 克彌 Wave explainer
JPS6390279U (en) * 1986-12-01 1988-06-11
JPH04190281A (en) * 1990-11-24 1992-07-08 Keiji Nakayama Longitudinal wave making device
JP2004163716A (en) * 2002-11-14 2004-06-10 Japan Synchrotron Radiation Research Inst Acceleration model of charged particle
JP2009025566A (en) * 2007-07-19 2009-02-05 National Institute Of Advanced Industrial & Technology Model of topological-soliton circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920264U (en) * 1982-07-29 1984-02-07 山下 克彌 Wave explainer
JPS6390279U (en) * 1986-12-01 1988-06-11
JPH04190281A (en) * 1990-11-24 1992-07-08 Keiji Nakayama Longitudinal wave making device
JP2004163716A (en) * 2002-11-14 2004-06-10 Japan Synchrotron Radiation Research Inst Acceleration model of charged particle
JP2009025566A (en) * 2007-07-19 2009-02-05 National Institute Of Advanced Industrial & Technology Model of topological-soliton circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903060A (en) * 2018-03-26 2020-11-06 微软技术许可有限责任公司 Superconducting integrated circuit with clock signal distributed via inductive coupling
CN109935141A (en) * 2019-04-02 2019-06-25 田家地 A kind of high school physics friction force demonstration device

Also Published As

Publication number Publication date
JP5098946B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
TW201516773A (en) Electronic device
US9505032B2 (en) Dynamic mass reconfiguration
US9244497B2 (en) Hinge module and foldable device
US20130285490A1 (en) Dynamic center of mass
JP5098946B2 (en) Model of topological soliton circuit
JP2018060540A (en) Haptic actuator incorporating electropermanent magnet
JP2022169713A (en) Eddy current braking device, auto belay device, and self-retracting lifeline device
JP6906275B2 (en) Force presentation device
CN104937485B (en) Bistable electro magnetic control shutter
US9979259B2 (en) Electromagnetic levitator
TW201826083A (en) Electronic device including sensed location based driving of haptic actuators and related methods
JP2012519822A (en) Elastic motor spring actuator
JP5099483B2 (en) Model of topological soliton circuit
Kim et al. A Two-DOF impact actuator for haptic interaction
Du et al. High‐Speed Rotary Motor for Multidomain Operations Driven by Resonant Dielectric Elastomer Actuators
EP2029968A2 (en) Planetary gyroscopic drive system
JP5791835B1 (en) Rotary motion transmission device and generator using the same
Hawkes et al. One motor, two degrees of freedom through dynamic response switching
Welle et al. Shape-Memory Alloy Actuators for Small Satellites
JP2019185175A (en) Kinesthetic sense presenting device
JP4320437B2 (en) Moving system and moving method thereof
US2562569A (en) Motion translating apparatus
US9631684B1 (en) Velocity-dependent mechanical and magnetic clutch
JP2010094004A (en) Spherical motor
JP4620343B2 (en) Electromagnetic actuator and shutter device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250