JP2010096491A - Raw material drying device and method of drying raw material by using the same - Google Patents

Raw material drying device and method of drying raw material by using the same Download PDF

Info

Publication number
JP2010096491A
JP2010096491A JP2009213116A JP2009213116A JP2010096491A JP 2010096491 A JP2010096491 A JP 2010096491A JP 2009213116 A JP2009213116 A JP 2009213116A JP 2009213116 A JP2009213116 A JP 2009213116A JP 2010096491 A JP2010096491 A JP 2010096491A
Authority
JP
Japan
Prior art keywords
drying
raw material
tank
gas
drying tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009213116A
Other languages
Japanese (ja)
Other versions
JP5597960B2 (en
Inventor
Yasuyuki Morikawa
泰之 森川
Tomoaki Tadama
智明 田玉
Hiroomi Miyata
浩臣 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009213116A priority Critical patent/JP5597960B2/en
Publication of JP2010096491A publication Critical patent/JP2010096491A/en
Application granted granted Critical
Publication of JP5597960B2 publication Critical patent/JP5597960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material drying device and a method of drying raw materials by using the same, capable of being used for drying a large amount of raw materials charged into a blast furnace and the like, and continuously drying the raw materials. <P>SOLUTION: This raw material drying device includes a raw material receiving tank 2 and a drying tank 3 positioned at a lower part of the receiving tank 2 and connected with the receiving tank 2 through a chute 4, and further includes an air supply port 5 for supplying a drying gas into the drying tank, and a discharge port 8 for discharging the raw materials, formed at a lower part of the drying tank 3, and an exhaust port 7 formed at an upper part of the drying tank 3 for sucking the drying gas in the drying tank 3. A state that the raw materials are charged into the chute 4 at all times, is kept when the raw materials are charged into the drying tank from the receiving tank 3 through the chute 4, and the raw materials in the drying tank 3 is dried by the drying gas supplied from the air supply port 5, and discharged from the discharge port 8 by using the raw material drying device, thus the raw materials are dried while preventing inflow of the drying gas in the drying tank 3 from the chute 4 into the receiving tank 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄鉱石、コークス等の高炉装入原料の乾燥に好適な、原料の乾燥装置およびこれを用いた原料の乾燥方法に関する。   The present invention relates to a raw material drying apparatus suitable for drying raw materials charged in a blast furnace such as iron ore and coke, and a raw material drying method using the same.

高炉では、鉄鉱石、コークス、造滓剤を原料として炉頂から炉内へ装入し、炉下部から高温空気あるいは酸素を富化した高温空気を炉内へ吹き込むことによりコークスを燃焼し、この燃焼により発生する熱とCOガスを利用して鉄鉱石の還元、溶融を行なうことで、溶銑を製造している。炉頂から装入される原料は数mmから数十mmの粒状に調整されて、炉内へ装入されるので、炉下部でコークスの燃焼によって発生する燃焼ガスは炉内に充填された粒状の原料の間隙を炉頂へ向けて上昇することになる。   In a blast furnace, iron ore, coke, and a coagulant are charged into the furnace from the top of the furnace, and high temperature air or high temperature air enriched with oxygen is blown into the furnace from the bottom of the furnace to burn the coke. Hot metal is produced by reducing and melting iron ore using heat and CO gas generated by combustion. The raw material charged from the top of the furnace is adjusted to a granularity of several mm to several tens of mm and charged into the furnace, so the combustion gas generated by the combustion of coke at the lower part of the furnace is granular filled in the furnace. The gap between the raw materials will rise toward the furnace top.

原料への熱供給は主としてこの燃焼ガスからの伝熱により行われるために、炉内における燃焼ガスの流れが適正な状態でなければ、原料の昇温が不安定となり、鉄鉱石の還元、溶融に支障をきたすことになる。   Since the heat supply to the raw material is mainly performed by heat transfer from this combustion gas, if the flow of the combustion gas in the furnace is not in an appropriate state, the temperature rise of the raw material becomes unstable, and iron ore is reduced and melted. Will be disturbed.

したがって、炉内のガス流を適正な状態とするために、炉頂における原料の炉内装入時に、炉内の適正な位置へ適正な粒度の原料を装入するための、炉頂装入装置や炉頂装入方法の開発が鋭意進められている。   Therefore, in order to make the gas flow in the furnace in an appropriate state, the furnace top charging device for charging the raw material of the right particle size to the appropriate position in the furnace when the raw material in the furnace top enters the furnace. And the development of furnace top charging methods are underway.

しかしながら、このような原料装入装置や方法の工夫を精緻に行っても、原料そのものに粉が混入したり、高炉ガスに同伴され炉外へ排出される粉の量が減ったりした場合には、炉内の原料充填層に侵入する粉の量が増加し、充填層全体、または局部に通気抵抗の高い部分が生じ、上記したガス流の適正化は困難となってしまう。   However, even if such a raw material charging apparatus and method are elaborated, if the powder is mixed into the raw material itself or the amount of powder discharged outside the furnace accompanying the blast furnace gas is reduced As a result, the amount of powder entering the raw material packed bed in the furnace increases, and a portion having high ventilation resistance is generated in the entire packed bed or locally, making it difficult to optimize the gas flow described above.

高炉で使用される原料には、焼結機やコークス炉において製造されて粒度調整後直接、高炉の原料槽へ送られてくる原料と、製造後一旦ヤードと呼ばれる露天の保管場所にて保管された後に、改めてこれを回収して高炉原料槽へ送られてくる原料、さらには、鉄鉱石の中には、工場に入荷後に粒状のままヤードに保管され、これを回収して粒度調整後に高炉の原料槽へ送られてくる原料もある。これらの原料のうち、ヤードで保管された後に高炉原料槽へ送られてくるものについては、ヤード保管時に雨水等による湿潤が進むことが避けられず、水分含有量が数mass%となり、中には水分含有量が10mass%を超えるような原料もある。   The raw materials used in the blast furnace are stored in an open-air storage area called a yard once manufactured and directly sent to the blast furnace raw material tank after grain size adjustment after being manufactured in a sintering machine or coke oven. After that, this material is collected again and sent to the blast furnace raw material tank, and some iron ore is stored in the yard in granular form after it arrives at the factory. Some raw materials are sent to the raw material tank. Among these raw materials, those that are sent to the blast furnace raw material tank after being stored in the yard are inevitably wet with rainwater when stored in the yard, and the moisture content becomes several mass%. Some raw materials have a water content exceeding 10 mass%.

こうした水分量の多い原料では、原料の粒子に粉原料が水分によって付着しているため、篩等により粒度調整をおこなっても粉原料が除去できない場合が生じる。また、このような水分を含んだ粉原料は篩の網そのものにも付着しやすいため、篩の目詰まりの原因となり、その結果さらに原料の篩分けが困難になるという問題がある。   In such a raw material with a large amount of water, the powder raw material adheres to the raw material particles due to water, and thus the powder raw material may not be removed even if the particle size is adjusted by a sieve or the like. Moreover, since the powder raw material containing such moisture easily adheres to the sieve net itself, it causes clogging of the sieve, and as a result, there is a problem that sieving of the raw material becomes more difficult.

篩により粒原料から除去しきれなかった粉原料は粒原料に付着したまま炉頂へ運ばれて炉内へ装入されると、炉内の熱により乾燥されて粒原料の表面から離脱し、結果として、持ち込まれる粉の量が増加する。   When the powder raw material that could not be removed from the granular raw material by the sieve is transported to the top of the furnace while being attached to the granular raw material and charged into the furnace, it is dried by the heat in the furnace and detached from the surface of the granular raw material, As a result, the amount of powder brought in increases.

また、水分量の多い原料が炉内に入ると、炉頂ガスの顕熱をうばい、炉頂ガスの温度が低下した結果、炉頂ガスにより同伴され、炉外に排出される粉の量が低下し、この場合も炉内の原料充填層に侵入する粉の量が増加する。侵入した粉は、炉内の原料充填層の間隙を流れ、場合によっては原料同士の間隙に粒原料が溜まって炉内のガス流を阻害するといった現象を引き起こす。   In addition, when raw material with a high water content enters the furnace, the sensible heat of the furnace top gas is absorbed and the temperature of the furnace top gas decreases, resulting in the amount of powder entrained by the furnace top gas and discharged outside the furnace. In this case, the amount of powder entering the raw material packed bed in the furnace also increases. The invaded powder flows through the gap between the raw material packed beds in the furnace, and in some cases, a granular raw material accumulates in the gap between the raw materials and causes a phenomenon in which the gas flow in the furnace is inhibited.

そのため、以上のような高炉原料に付着する粉原料および水分を除去することにより、高炉の操業は安定化し、出銑能力の増加、還元材比の低下を実施することができる。   Therefore, by removing the powder raw material and moisture adhering to the blast furnace raw material as described above, the operation of the blast furnace can be stabilized, the output capacity can be increased, and the reducing material ratio can be reduced.

したがって、高炉原料に付着する粉原料および水分を除去する技術は、高炉炉内への原料装入技術と同等に重要な技術であるといえる。   Therefore, it can be said that the technology for removing the powder raw material and moisture adhering to the blast furnace raw material is as important as the raw material charging technology into the blast furnace furnace.

高炉原料に付着する粉原料および水分を除去するために、高炉原料を貯蔵するホッパー内に加熱ガスを供給して原料を乾燥させた後に粉状部を篩い分け除去して高炉に装入する、高炉原料の乾燥予熱装置が知られている。   In order to remove the powder raw material and moisture adhering to the blast furnace raw material, after supplying the heated gas into the hopper for storing the blast furnace raw material and drying the raw material, the powdery portion is removed by sieving and charged into the blast furnace. A drying preheating apparatus for blast furnace raw materials is known.

特開2007−254837号公報JP 2007-254837 A 特開2007−247914号公報JP 2007-247914 A

亀井三郎編 「化学機械の理論と計算(第2版)」産業図書 1980年、p.370−379Edited by Saburo Kamei “Theory and Calculation of Chemical Machines (2nd edition)” Sangyo Tosho 1980, p. 370-379

特許文献1に記載の乾燥予熱装置を用いれば、高炉原料からの水分の除去が容易となり、篩分けによる粉原料除去を行なうことで、高炉への粉原料の持込量が減少するので、炉内のガス流を適正化して、高炉の操業安定に大きく寄与することができる。この乾燥予熱装置は、加熱ガスの送気装置と、排気装置とを有し、加熱ガスを強制的に原料内に流通させるものであるが、加熱ガスを効果的に吸引するためには、ホッパー内への原料装入時以外は、原料を装入する開口部である装入口を蓋等を用いて閉口することが好ましく、原料を装入しながら乾燥させる操業形態に対応するものではなく、連続的に原料の乾燥を行なうことが困難であるという問題がある。   If the drying preheating apparatus described in Patent Document 1 is used, it is easy to remove moisture from the blast furnace raw material, and the amount of powder raw material brought into the blast furnace is reduced by removing the powder raw material by sieving. By optimizing the gas flow inside, it can greatly contribute to the stable operation of the blast furnace. This drying preheating device has a heated gas supply device and an exhaust device, and forcibly circulates the heated gas into the raw material. In order to suck the heated gas effectively, a hopper Except at the time of raw material charging into the inside, it is preferable to close the charging port, which is an opening for charging the raw material, using a lid or the like, not corresponding to the operation mode of drying while charging the raw material, There is a problem that it is difficult to continuously dry the raw material.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉等に装入する多量の原料を乾燥するために用いることができ、連続して原料の乾燥を行なうことが可能な、原料の乾燥装置およびこれを用いた原料の乾燥方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and can be used to dry a large amount of raw material charged in a blast furnace or the like, and can continuously dry the raw material. An object of the present invention is to provide a raw material drying apparatus and a raw material drying method using the same.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、原料の受け入れ槽と、該受け入れ槽の下方に位置しシュートを介して前記受け入れ槽と連結された乾燥槽とを有し、該乾燥槽の底面および/または側面下部に乾燥用ガスを前記乾燥槽内に供給する送気口と原料を排出する排出口とを有し、前記乾燥槽の上面および/または側面上部に該乾燥槽内の乾燥用ガスを吸引する排気口を有することを特徴とする原料の乾燥装置。
(2)、シュートの下端部が乾燥槽内に突出していることを特徴とする(1)に記載の原料の乾燥装置。
(3)、乾燥槽の下部を加熱する、加熱装置を有することを特徴とする(1)または(2)に記載の原料の乾燥装置。
(4)、(1)ないし(3)のいずれかに記載の原料の乾燥装置を用い、受け入れ槽に原料を装入し、シュートを介して乾燥槽内に前記原料を充填し、該乾燥槽内の原料を送気口から供給する乾燥用ガスで乾燥させて排出口から排出する際に、常にシュート内に原料が充填された状態を維持して、前記乾燥槽内の乾燥用ガスのシュートから受け入れ槽への流入を防止することを特徴とする原料の乾燥方法。
The features of the present invention for solving such problems are as follows.
(1) A raw material receiving tank and a drying tank located below the receiving tank and connected to the receiving tank via a chute, and a drying gas on the bottom and / or lower side of the drying tank And an exhaust port for sucking the drying gas in the drying tank at the upper surface and / or the upper side of the drying tank. A raw material drying device.
(2) The raw material drying apparatus according to (1), wherein a lower end portion of the chute protrudes into the drying tank.
(3) The raw material drying apparatus according to (1) or (2), further including a heating device that heats a lower portion of the drying tank.
(4) The raw material drying apparatus according to any one of (1) to (3) is used, the raw material is charged into a receiving tank, the raw material is filled into the drying tank through a chute, and the drying tank When the raw material in the inside is dried with the drying gas supplied from the air supply port and discharged from the discharge port, the chute of the drying gas in the drying tank is always maintained while the chute is filled with the raw material. A method for drying a raw material, characterized in that it prevents inflow into a receiving tank.

なお、乾燥槽の底面および/または側面下部とは、乾燥槽中で原料が充填される部位に相当する。一方、乾燥槽の上面および/または側面上部とは、乾燥槽中で原料が充填されない部位に相当する。   In addition, the bottom face and / or the lower part of the side face of the drying tank corresponds to a portion where the raw material is filled in the drying tank. On the other hand, the upper surface and / or the upper part of the side surface of the drying tank corresponds to a portion where the raw material is not filled in the drying tank.

本発明によれば、原料の水分の除去を連続して行なうことが可能となり、操業効率が向上する。これにより多量の原料の乾燥を、低コストで行なうことができる。   According to the present invention, it is possible to continuously remove moisture from the raw material, and the operation efficiency is improved. Thereby, a large amount of raw materials can be dried at a low cost.

原料を乾燥させることで、水分を低下すると共に、粉原料除去を確実に行なうことができ、炉内のガス流を適正化して、炉の操業安定にも大きく寄与することができる。   By drying the raw material, moisture can be reduced and the powder raw material can be removed reliably, and the gas flow in the furnace can be optimized to greatly contribute to stable operation of the furnace.

本発明の原料の乾燥装置の一実施形態を示す概略図。Schematic which shows one Embodiment of the drying apparatus of the raw material of this invention. 本発明の原料の乾燥装置に原料を装入した状態を示す概略図。Schematic which shows the state which inserted the raw material in the drying apparatus of the raw material of this invention. 乾燥槽における層厚設定方法の説明図。Explanatory drawing of the layer thickness setting method in a drying tank. 絶対湿度と温度との関係を示す質量基準湿度図表。Mass reference humidity chart showing the relationship between absolute humidity and temperature. 乾燥槽の上部を示す説明図。Explanatory drawing which shows the upper part of a drying tank. 本発明の一実施形態を示す概略図。Schematic which shows one Embodiment of this invention. 本発明の原料の乾燥装置の他の一実施形態を示す概略図。Schematic which shows other one Embodiment of the drying apparatus of the raw material of this invention. 本発明の原料の乾燥装置の他の一実施形態を示す概略図。Schematic which shows other one Embodiment of the drying apparatus of the raw material of this invention. 図7、8の水平断面の概略図。Schematic of the horizontal cross section of FIG. 生鉱石の水分含有量と、粒径3mm以下の粉鉱石の混入率の関係を示す グラフ。The graph which shows the relationship between the moisture content of a raw ore, and the mixing rate of the fine ore with a particle size of 3 mm or less. 炉頂ガス温度上昇による出銑能力増加を示すグラフ。The graph which shows the output capacity increase by a furnace top gas temperature rise. 原料水分と粉混入量、還元材比の関係を示すグラフ。The graph which shows the relationship between raw material water | moisture content, the amount of powder mixing, and a reducing material ratio. 従来の原料の乾燥装置の一例を示す概略図。Schematic which shows an example of the conventional drying apparatus of a raw material.

原料を乾燥するために、原料を貯蔵する従来のホッパー等を用いて原料の乾燥を行なう場合には、例えば、図13に示すように、ホッパー21の下部に、乾燥用ガスをホッパー21内に供給する送気口22と原料を排出する排出口23とを有し、ホッパー21の上部に、原料装入口24とホッパー内の乾燥用ガスを吸引する排気口25を有するものを用いて、原料装入口24からホッパー21内に原料を装入し、原料装入口24に蓋26をして、送気口22から乾燥用ガスを供給し、排気口25から排気することで、原料を乾燥し、乾燥した原料を排出口23から排出する。多量の原料を乾燥する際には、引き続いて原料を乾燥するために、蓋26を開けて新たな原料をホッパー21に装入して行なうことになり、基本的にバッチ式の操業形態となる。   When the raw material is dried using a conventional hopper for storing the raw material in order to dry the raw material, for example, as shown in FIG. A material having an air supply port 22 to be supplied and a discharge port 23 for discharging the raw material, and having a raw material charging port 24 and an exhaust port 25 for sucking the drying gas in the hopper above the hopper 21, The raw material is charged into the hopper 21 from the charging port 24, the lid 26 is placed on the raw material charging port 24, the drying gas is supplied from the air supply port 22, and exhausted from the exhaust port 25 to dry the raw material. The dried raw material is discharged from the discharge port 23. When a large amount of raw material is dried, in order to subsequently dry the raw material, the lid 26 is opened and a new raw material is charged into the hopper 21, which basically becomes a batch type operation mode. .

これに対して本発明の原料の乾燥装置を用いれば、蓋を使用しない方式で乾燥用ガスを原料中に流通させることができるので、連続的に原料を乾燥することが可能である。本発明の原料の乾燥装置の一実施形態を図1に示す。   On the other hand, if the raw material drying apparatus of the present invention is used, the drying gas can be circulated in the raw material without using a lid, so that the raw material can be continuously dried. One embodiment of the raw material drying apparatus of the present invention is shown in FIG.

図1は原料の乾燥装置の側面図であり、原料の乾燥装置1は、原料の受け入れ槽2と、受け入れ槽2の下部に位置する乾燥槽3と、シュート4とから構成され、受け入れ槽2と乾燥槽3とはシュート4を介して連結されている。乾燥槽3は、下部に乾燥用ガスを乾燥槽3内に供給する送気口5と原料を排出する排出口8とを有している。本実施形態においては、送気口5に熱風環状管9が接続され、排出口8にはフィーダー6が設置されている。乾燥槽3の上部には乾燥槽3内の乾燥用ガスを吸引する排気口7が形成されている。排気口7は乾燥槽3の側面でなく上面に形成することも可能である。   FIG. 1 is a side view of a raw material drying apparatus. The raw material drying apparatus 1 includes a raw material receiving tank 2, a drying tank 3 positioned below the receiving tank 2, and a chute 4. And the drying tank 3 are connected via a chute 4. The drying tank 3 has an air supply port 5 for supplying a drying gas into the drying tank 3 and a discharge port 8 for discharging the raw material. In the present embodiment, a hot air annular tube 9 is connected to the air supply port 5, and a feeder 6 is installed at the discharge port 8. An exhaust port 7 for sucking the drying gas in the drying tank 3 is formed in the upper part of the drying tank 3. The exhaust port 7 can be formed not on the side surface of the drying tank 3 but on the upper surface.

1つの受け入れ槽2に対して、乾燥槽3の数は任意に設定可能である。1つの受け入れ槽に対して乾燥槽は1つでもよいし複数でも良い。実操業上は、1つの受け入れ槽に対する乾燥槽の数は1〜4槽が適当である。   The number of drying tanks 3 can be arbitrarily set for one receiving tank 2. There may be one drying tank or a plurality of drying tanks for one receiving tank. In actual operation, 1 to 4 drying tanks are appropriate for one receiving tank.

次に、図1の乾燥装置を用いた場合の、原料の乾燥方法を図2を用いて説明する。   Next, the raw material drying method when the drying apparatus of FIG. 1 is used will be described with reference to FIG.

たとえば鉄鉱石やコークス等の高炉で使用する原料を乾燥する際には、乾燥装置1の受け入れ槽2の上部の開口部から原料を一定速度で供給して、受け入れ槽2に原料10aを装入し、シュート4を介して乾燥槽3内に原料10cを充填する。乾燥槽3内の原料10cは、一定速度でフィーダー6により排出口8から排出される。このようにして乾燥槽3に連続して原料を供給するが、その際に、乾燥槽3からシュート4内に連続して原料10b、cが積層されるように十分な量の原料10を受け入れ槽2に装入する。ここで受け入れ槽2は、原料投入速度のばらつきを吸収して、常に十分な量の原料をシュート4に供給できるよう、十分な大きさを有する必要がある。   For example, when drying a raw material used in a blast furnace such as iron ore or coke, the raw material is supplied at a constant speed from the upper opening of the receiving tank 2 of the drying apparatus 1, and the raw material 10 a is charged into the receiving tank 2. Then, the raw material 10 c is filled into the drying tank 3 through the chute 4. The raw material 10c in the drying tank 3 is discharged from the discharge port 8 by the feeder 6 at a constant speed. In this way, the raw material is continuously supplied to the drying tank 3, and at that time, a sufficient amount of the raw material 10 is received so that the raw materials 10 b and c are continuously stacked from the drying tank 3 into the chute 4. The tank 2 is charged. Here, the receiving tank 2 needs to have a sufficient size so as to absorb a variation in the raw material charging speed and always supply a sufficient amount of the raw material to the chute 4.

乾燥槽3内の原料10cは、熱風環状管9から送気口5を介して供給される(押込み)乾燥用ガスで乾燥される。乾燥用ガスは排気口7から吸引して排出される。乾燥用ガスによる乾燥の際には、常にシュート4内に原料10bが充填された状態を維持することで、乾燥槽3内の乾燥用ガスがシュート4から受け入れ槽2へと流通することを防止する。図2において、原料の流れを太い実線の矢印で、乾燥用ガスの流れを点線の矢印で示している。   The raw material 10 c in the drying tank 3 is dried with a drying gas supplied (indented) from the hot air annular tube 9 through the air supply port 5. The drying gas is sucked and discharged from the exhaust port 7. During drying with the drying gas, the state where the chute 4 is always filled with the raw material 10b is maintained to prevent the drying gas in the drying tank 3 from flowing from the chute 4 to the receiving tank 2. To do. In FIG. 2, the raw material flow is indicated by a thick solid arrow, and the drying gas flow is indicated by a dotted arrow.

同時に、乾燥槽3上部には原料10cの安息角に応じて空洞が形成されるので、この部分に排気口を配置することで、排気口の流路に原料が吸引されて排気ガス中に原料が混入することを防止できる。   At the same time, a cavity is formed in the upper part of the drying tank 3 in accordance with the angle of repose of the raw material 10c. By disposing an exhaust port in this portion, the raw material is sucked into the flow path of the exhaust port so Can be prevented.

上記のように、乾燥槽の原料装入部は上部から装入される原料によりシールされた状態となり、さらに乾燥槽内の乾燥用ガスを、強制排気装置や排気塔によるドラフト効果等により、排気口7から吸引することでシュート4の上端部での圧力を負圧にし、原料装入部からの乾燥用ガスの吹き出しが完全に防止できる。また、乾燥槽内の排出口部分については、送気口5と原料の排出口8との距離を長くすることで、原料の排出口からの吹き出し量を抑えることができる。吹き出しが発生する場合には、排出口8下方に設置したフィーダー6において、吸引装置により、吹き出した量の全量を強制的に吸引することが好ましい。ここで吸引された乾燥用ガスは、乾燥した粉を同伴するため、集塵機を介して大気放散することで発塵を防止することが望ましい。   As described above, the raw material charging section of the drying tank is sealed with the raw material charged from above, and the drying gas in the drying tank is exhausted by a draft effect by a forced exhaust device or an exhaust tower. By sucking from the mouth 7, the pressure at the upper end of the chute 4 is made negative, and blowing of the drying gas from the raw material charging portion can be completely prevented. Moreover, about the discharge port part in a drying tank, the amount of blowing from the discharge port of a raw material can be suppressed by lengthening the distance of the air supply port 5 and the discharge port 8 of a raw material. In the case where a blowout occurs, it is preferable to forcibly suck the entire amount of the blowout with a suction device in the feeder 6 installed below the discharge port 8. Since the drying gas sucked here is accompanied by dried powder, it is desirable to prevent the generation of dust by being diffused into the atmosphere through a dust collector.

また、シュート4の下端部は、乾燥槽3内に突出していることが好ましい。図2に示すように排気口7が乾燥槽3の上部側面にある場合、シュート4の下端部が乾燥槽3内の高い位置にあると、装入される原料により排気口7が閉塞される場合があるので、これを防止するのに十分な長さ、シュート4の下端部を乾燥槽3内に突出させることが好ましい。また、シュート4の下端部位置で、乾燥槽3に装入される原料10cの装入高さ(層厚)hが決まるので、突出長さにより層厚を任意に設定できる。   Moreover, it is preferable that the lower end part of the chute 4 protrudes into the drying tank 3. As shown in FIG. 2, when the exhaust port 7 is on the upper side surface of the drying tank 3, if the lower end of the chute 4 is at a high position in the drying tank 3, the exhaust port 7 is blocked by the charged raw material. Since there is a case, it is preferable that the lower end of the chute 4 is protruded into the drying tank 3 with a length sufficient to prevent this. Further, since the charging height (layer thickness) h of the raw material 10c charged into the drying tank 3 is determined at the lower end position of the chute 4, the layer thickness can be arbitrarily set according to the protruding length.

乾燥槽3内の原料の装入高さである層厚hは、原料の乾燥効率等を考慮して適宜設定することができる。   The layer thickness h which is the charging height of the raw material in the drying tank 3 can be appropriately set in consideration of the drying efficiency of the raw material.

以下に、乾燥槽における層厚h(=必要長さ)を設定する方法の一例について説明する。   Below, an example of the method of setting the layer thickness h (= required length) in a drying tank is demonstrated.

図3に、乾燥槽3に出入する原料と熱風が向流の場合における一般的な諸元を示す。図3に示すように、原料は、無水原料供給速度W、含水率w、温度tmで乾燥槽3に入り、無水原料供給速度W、含水率w、温度tmで乾燥槽から出て、熱風は、流量G、湿度H、温度tで乾燥槽に入り、流量G、湿度H、温度tで乾燥槽から出る。 FIG. 3 shows general specifications in the case where the raw material entering and leaving the drying tank 3 and the hot air are countercurrent. As shown in FIG. 3, the raw material is anhydrous feeding rate W 0, the water content w 1, enters the drying vessel 3 at a temperature tm 1, the drying chamber over anhydrous feeding rate W 0, the water content w 2, temperature tm 2 The hot air enters the drying tank at a flow rate G 0 , humidity H 2 and temperature t 2 , and exits the drying tank at a flow rate G 0 , humidity H 1 and temperature t 1 .

ここで、乾燥槽3の上部(I)は原料予熱期間に相当する部分であり、原料予熱期間とは原料温度が乾燥条件に対して定常になるまでの期間であり、原料温度は加熱によって上昇し、あるいは顕熱を失って温度降下し、水分蒸発はほとんど行われない。   Here, the upper part (I) of the drying tank 3 is a portion corresponding to the raw material preheating period. The raw material preheating period is a period until the raw material temperature becomes steady with respect to the drying conditions, and the raw material temperature is increased by heating. However, it loses sensible heat and drops in temperature, and the water is hardly evaporated.

また、乾燥槽3の中央部(II)は表面蒸発期間に相当する部分であり、表面蒸発期間とは液状水が原料表面に存在する限り原料温度が常に一定となり、流入熱量はすべて水分蒸発に使用され、水分蒸発速度(=乾燥速度)が一定となる期間であり、含水率は乾燥時間に比例して減少する。   Further, the central part (II) of the drying tank 3 is a part corresponding to the surface evaporation period. In the surface evaporation period, the raw material temperature is always constant as long as liquid water is present on the raw material surface, and the inflow heat is all evaporated. It is a period during which the water evaporation rate (= drying rate) is constant, and the water content decreases in proportion to the drying time.

さらに、乾燥槽3の下部(III)は減率乾燥期間に相当する部分であり、減率乾燥期間とは水分蒸発と原料加熱が行われる期間であり、液状水が原料表面に存在しなくなれば、原料温度が上昇し流入熱量は減少して乾燥速度も次第に減少し、最終的に乾燥条件と平衡する含水率および原料温度に到達して乾燥が終結するのである。   Further, the lower part (III) of the drying tank 3 is a portion corresponding to a reduced rate drying period, and the reduced rate drying period is a period in which moisture evaporation and raw material heating are performed, and liquid water does not exist on the raw material surface. As the raw material temperature rises, the inflow heat quantity decreases and the drying speed gradually decreases. Finally, the moisture content and raw material temperature that are in equilibrium with the drying conditions are reached and the drying is terminated.

原料と熱風との間の水分および熱量の収支と実験式を用いて計算された伝熱容量係数に基づき、上記(I)、(II)および(III)の各部分における乾燥槽の容積をそれぞれ求め、各容積を合計した全容積を求める。   Based on the moisture and heat balance between the raw material and hot air and the heat transfer capacity coefficient calculated using the empirical formula, obtain the volume of the drying tank in each of the above (I), (II) and (III) parts. Then, the total volume of each volume is obtained.

また、乾燥槽の断面積は、例えば特許文献2の記載に従い、以下の制約に基づき、熱風流量Gを所定の槽内熱風質量速度で除することにより決定することができる。
L>W/2
但し、L:乾燥用熱気体(熱風)の噴流の移動方向が水平方向から垂直方向へ変化した位置と噴出口(送気口)との水平距離、W:噴出口(送気口)間の水平距離である。
Further, the cross-sectional area of the drying chamber, for example according to the description of Patent Document 2, based on the following constraints can be determined by dividing the hot air flow rate G 0 at a predetermined intracisternal hot air mass velocity.
L> W / 2
Where, L: horizontal distance between the position where the moving direction of the jet of the hot gas for drying (hot air) changes from the horizontal direction to the vertical direction and the outlet (air inlet), W: between the outlet (air inlet) Horizontal distance.

上記で求めた全容積を上記で決定した乾燥槽の断面積で除することにより、乾燥槽の必要長さを求めることができる。なお、原料と熱風との間の水分の物質収支は次式で表される。
(w−w)=G(H−H
このようにして求めた乾燥槽の必要長さより、原料の装入高さである層厚hを設定することができるのである。
The required length of the drying tank can be determined by dividing the total volume determined above by the cross-sectional area of the drying tank determined above. The moisture mass balance between the raw material and the hot air is expressed by the following equation.
W 0 (w 1 -w 2) = G 0 (H 1 -H 2)
The layer thickness h, which is the raw material charging height, can be set from the required length of the drying tank thus obtained.

なお、乾燥槽3の容積は、公知の方法(例えば、非特許文献1参照。)により理論的に求めることができるが、質量基準湿度図表を用いた場合における層厚の考え方について以下に示す。   In addition, although the volume of the drying tank 3 can be calculated | required theoretically by a well-known method (for example, refer nonpatent literature 1), it shows below about the view of layer thickness at the time of using a mass reference | standard humidity chart.

図4は、乾燥空気1kgおよび全圧760mmHgを基準とした時の質量基準湿度図表であり、絶対湿度と温度との関係を示している。大気を加熱して熱風を発生させ、これを乾燥対象の充填層内に通風して、乾燥を行なう本発明と同様のプロセスを考えた場合、図4中に「大気」として示した点の大気を加熱装置等で加熱すると状態点は「熱風」で示した点に移る。この後、乾燥槽内で乾燥対象と熱交換すると共に、蒸発した水分を同伴していくと、状態点は断熱冷却線上を温度低下の方向に向かって移行していく。ここで充填層厚が十分にある場合を想定すると、充填層内の通過距離と共に、空気の相対湿度は上昇し続け、飽和に達し、図4中の「排風(飽和)」点に至る。乾燥槽出側(排気口位置)がこの状態になるような充填層厚で、乾燥水分量は最大となる。これ以上に充填層厚を増すと、乾燥対象との熱交換によりさらに熱風の温度が下がるため、図4中の「(過層厚)」の点に移行し、絶対湿度が低下して、乾燥水分量は低下していく。さらに充填層厚を増すと、最終的には大気温度に達し、この条件では、加熱装置により大気を昇温した効果がなくなってしまうことになる。   FIG. 4 is a mass reference humidity chart based on 1 kg of dry air and a total pressure of 760 mmHg, and shows the relationship between absolute humidity and temperature. When considering a process similar to that of the present invention in which hot air is generated by heating the air, and this is passed through a packed bed to be dried and dried, the air at the point indicated as “atmosphere” in FIG. When heated by a heating device or the like, the state point moves to the point indicated by “hot air”. Thereafter, when heat is exchanged with the object to be dried in the drying tank and the evaporated water is accompanied, the state point moves on the adiabatic cooling line in the direction of decreasing temperature. Assuming that the packed bed thickness is sufficient, the relative humidity of the air continues to rise and reaches saturation with the passing distance in the packed bed, reaching the “exhaust (saturated)” point in FIG. The dry water content is maximized with a packed bed thickness such that the drying tank outlet side (exhaust port position) is in this state. If the thickness of the packed bed is increased further, the temperature of the hot air is further lowered by heat exchange with the object to be dried, so that the point moves to the point of “(overlayer thickness)” in FIG. The amount of water decreases. When the packed bed thickness is further increased, the temperature finally reaches the atmospheric temperature, and under this condition, the effect of raising the temperature by the heating device is lost.

したがって、層厚は、排ガスが水分飽和範囲となるように設定することが望ましく、加熱ガスの排気口における排気温度が、加熱ガスの送気口における送気温度と加熱ガスの湿度とから計算される断熱飽和温度となるように層厚を保つことが望ましい。加熱ガスの排気温度が断熱飽和温度となるような層厚の場合は、乾燥槽内の原料の上部に湿潤帯が形成される。湿潤帯とは、加熱ガスの結露により、原料が濡れている領域であり、原料の乾燥により発生した粉が加熱ガスに随伴して乾燥槽内を上昇した場合に、これを再度水分により原料に付着させて、加熱ガスとともに粉が排気口から排出されることを防止する。原料に付着させてトラップされた粉は、乾燥槽内下方で再度乾燥され、塊状の原料と共にフィーダーより排出される。   Therefore, it is desirable to set the layer thickness so that the exhaust gas is in the moisture saturation range, and the exhaust temperature at the exhaust port of the heated gas is calculated from the supply temperature at the heated gas supply port and the humidity of the heated gas. It is desirable to keep the layer thickness so that the adiabatic saturation temperature is high. When the layer thickness is such that the exhaust temperature of the heated gas becomes the adiabatic saturation temperature, a wet zone is formed on the upper part of the raw material in the drying tank. The wet zone is an area where the raw material is wet due to condensation of the heated gas, and when powder generated by drying of the raw material rises in the drying tank accompanying the heated gas, it is again converted to the raw material by moisture. It is made to adhere and it prevents that powder with a heated gas is discharged | emitted from an exhaust port. The powder trapped by adhering to the raw material is dried again in the lower part in the drying tank and discharged from the feeder together with the bulk material.

層厚が加熱ガスの水分飽和(図4中の「排風(飽和)」点)に到達するのに足りない領域(層厚<排ガスの水分飽和範囲)では、乾燥した粉をトラップする湿潤帯が十分に形成されず、排気される加熱ガスに乾燥した粉が同伴されるため、集塵機の設置が必須となる。また、加熱ガスも飽和に達していないため、加熱ガス質量あたりの水分持ち去り量、即ち乾燥水分量も少ない。   In the region where the layer thickness is insufficient to reach the moisture saturation of the heated gas (“exhaust air (saturation)” point in FIG. 4) (layer thickness <the moisture saturation range of the exhaust gas), a wet zone that traps dry powder Is not sufficiently formed, and dry powder is accompanied by the heated gas to be exhausted, so that it is essential to install a dust collector. In addition, since the heating gas has not reached saturation, the amount of moisture removed per heating gas mass, that is, the dry moisture amount is small.

層厚が厚くなると、鉱石との熱交換により、加熱ガス温度は低下し、いずれ結露点に達する。さらに層厚が厚くなると、加熱ガス温度は結露点以下となり、鉱石との熱交換による加熱ガス温度低下に対し、結露による加熱ガスの温度上昇が加わり、相殺されるため、勾配が緩やかとなる。   When the layer thickness increases, the heat gas temperature decreases due to heat exchange with the ore, and eventually reaches the dew point. As the layer thickness further increases, the heating gas temperature becomes lower than the dew point, and the heating gas temperature decrease due to heat exchange with the ore is offset and offset by the heating gas temperature increase due to condensation, so the gradient becomes gentler.

この層厚≧排ガスの水分飽和範囲の場合は、「湿潤帯」が形成され、乾燥した粉がトラップされるため、集塵機の設置を省略することができる。   When the layer thickness is equal to or greater than the moisture saturation range of the exhaust gas, a “wet zone” is formed and the dried powder is trapped, so that the installation of a dust collector can be omitted.

しかしながら、層厚≧排ガスの水分飽和範囲となるように層厚を設定すると、層厚が高くなるほど、排ガスの温度が低下し、加熱ガスが持ち去ることができるトータルの水分量が減少するため、逆に乾燥後の原料の水分は増加傾向となる。代わりに、水分蒸発潜熱が減った分、余剰となった乾燥ガスの顕熱が、原料の昇温に消費されるため、乾燥後の原料の温度が上昇する。乾燥槽を出た後、高炉までの輸送の過程で、大気による乾燥が期待できる場合や、輸送時間が短く原料が昇温されたまま、高炉で使用できる場合には、原料昇温による炉頂温度上昇、水分低下による粉の持込み量の低下の効果を一部、享受できるが、最も効率がよいのは、乾燥槽で最大限に水分を低下することであることから、層厚>排ガスの水分飽和範囲と設定することは、あまり好ましくない。   However, if the layer thickness is set so that the layer thickness is equal to or greater than the moisture saturation range of the exhaust gas, the higher the layer thickness, the lower the temperature of the exhaust gas, and the total amount of water that the heated gas can take away. In addition, the moisture content of the raw material after drying tends to increase. Instead, since the sensible heat of the excess drying gas is consumed for the temperature rise of the raw material, the temperature of the raw material after drying rises as the latent heat of water evaporation decreases. After leaving the drying tank, in the process of transportation to the blast furnace, if drying in the atmosphere can be expected, or if the raw material can be used in a blast furnace with a short transportation time, the top Part of the effect of lowering the amount of powder brought in due to temperature rise and moisture reduction can be enjoyed, but the most efficient is to reduce moisture to the maximum in the drying tank. It is not preferable to set the moisture saturation range.

したがって、層厚≒排ガスの水分飽和範囲となる条件が最も乾燥効率がよく、しかも、集塵機を設置する必要がない。ただし、実際のプロセスの場合、原料の水分や温度等の前提条件が一定ではなく大きく変動するため、加熱ガスの流量や温度を高精度で制御可能な構造にする必要がある。例えば、乾燥用の加熱ガスとして他のプロセスにおける排ガスを用いた場合には、本発明者ら等が提案した特願2008−245541に記載されるように、排ガス回収装置において環状管に連通するノズルをバランス良く配置すると共に、ノズルと排気筒との断面積比率を十分に考慮した構造にして排ガス速度を変化させないようにして、他プロセスに影響を与えずに加熱ガス流量を制御する方法がある。   Therefore, the condition where the layer thickness is approximately equal to the moisture saturation range of the exhaust gas is most efficient for drying, and it is not necessary to install a dust collector. However, in the case of an actual process, since the preconditions such as moisture and temperature of the raw material are not constant but greatly fluctuate, it is necessary to have a structure in which the flow rate and temperature of the heating gas can be controlled with high accuracy. For example, when exhaust gas in another process is used as a heating gas for drying, as described in Japanese Patent Application No. 2008-245541 proposed by the present inventors, a nozzle communicating with an annular pipe in the exhaust gas recovery device There is a method of controlling the heating gas flow rate without affecting other processes by making the structure in a well-balanced manner and taking into account the cross-sectional area ratio between the nozzle and the exhaust pipe so as not to change the exhaust gas speed. .

送気口と排気口との設置位置を、図5を用いて説明する。本発明の原料の乾燥装置は乾燥槽の底面および/または側面下部に送気口を、乾燥槽の上面および/または側面上部に排気口を有しているが、送気口は乾燥槽中で原料が充填される部位に、排気口は乾燥槽中で原料が充填されない部位に配置する。図5は図1および図2における乾燥槽3の上部を示すが、シュート4の半径をr0、乾燥槽3の半径をr1、シュート4の乾燥槽3内への突出長さをxa、原料の安息角をθとすると、図5におけるxbは、
b=tanθ・(r1−r0
であり、
c=xa+xb=xa+tanθ・(r1−r0
となるので、乾燥槽の上面、および/または上面からxcの高さ位置までの側面に排気口を、乾燥槽の底面、および/または上面からxcの長さ下がった位置よりも低い位置の側面に送気口を設置すればよいことになる。安息角θは、ペレットで25〜30°、焼結鉱・鉄鉱石(生鉱石)で30〜35°、コークスで35〜40°程度であるので、安息角θとしては、通常の原料であれば25〜40°程度を用いれば良い。
The installation positions of the air supply port and the exhaust port will be described with reference to FIG. The raw material drying apparatus of the present invention has an air supply port at the bottom and / or lower side of the drying tank and an exhaust port at the upper and / or upper side of the drying tank. The exhaust port is arranged at a portion where the raw material is not filled in the drying tank in the portion where the raw material is filled. FIG. 5 shows the upper part of the drying tank 3 in FIGS. 1 and 2, but the radius of the chute 4 is r 0, the radius of the drying tank 3 is r 1 , and the protrusion length of the chute 4 into the drying tank 3 is x a. If the angle of repose of the raw material is θ, x b in FIG.
x b = tan θ · (r 1 −r 0 )
And
x c = x a + x b = x a + tan θ · (r 1 −r 0 )
Since the upper surface of the drying vessel, and / or the exhaust port side to the height position of the x c from the top, the bottom surface of the drying vessel, and / or a position lower than the length down position from the top surface x c It is only necessary to install an air supply port on the side of the. The angle of repose θ is 25 to 30 ° for pellets, 30 to 35 ° for sintered ore ore (raw ore), and about 35 to 40 ° for coke. For example, about 25 to 40 ° may be used.

図2において、乾燥槽3の下部の、側壁の傾斜部分11の内部、及びフィーダー6は原料10cが付着しやすい。前者については、この部分を加熱する、加熱装置を有することが好ましい。乾燥槽3の下部にらせん状に管を配置し、管に原料の乾燥に用いる乾燥用ガスや、その他水蒸気等の高温のガスを流すことで、乾燥槽3の下部を加熱することができる。後者については、付着部分が振動するため、加熱装置の設置が困難であれば、原料と接触する部分に、低粗度の高分子ライナーを貼り付ける等、その他の方法による付着防止策を実施することが好ましい。   In FIG. 2, the raw material 10 c tends to adhere to the inside of the inclined portion 11 of the side wall at the bottom of the drying tank 3 and the feeder 6. About the former, it is preferable to have a heating apparatus which heats this part. The lower part of the drying tank 3 can be heated by arranging a pipe in a spiral shape at the lower part of the drying tank 3 and flowing a gas for drying used for drying the raw material or other high-temperature gas such as water vapor into the pipe. For the latter, the adhesion part vibrates, and if it is difficult to install a heating device, other measures such as attaching a low-roughness polymer liner to the part in contact with the raw material are implemented. It is preferable.

フィーダー6から排出された、乾燥された原料は、篩い設備等により、粉状部を分離除去して、粗粒部分の原料を高炉等に装入して使用する。   The dried raw material discharged from the feeder 6 is used by separating and removing the powdery portion with a sieving facility or the like and charging the raw material of the coarse grain portion into a blast furnace or the like.

乾燥用ガスを乾燥槽3内へ供給するには昇圧ファン等の送気装置を用いて乾燥用ガスを昇圧することが好ましい。熱風発生源で発生させた乾燥用ガスを送気装置によって昇圧し各乾燥槽3内へ送気する。各乾燥槽3の送気口5毎に流調弁を設置しておくと、一つの送気装置で複数の乾燥槽3へ同時に乾燥用ガスを供給するときに、それぞれの送気量を調整でき、好適である。各乾燥槽3の送気口5は1個でも複数個でも良い。   In order to supply the drying gas into the drying tank 3, it is preferable to increase the pressure of the drying gas using an air supply device such as a booster fan. The drying gas generated by the hot air generation source is pressurized by an air supply device and is supplied into each drying tank 3. If a flow control valve is installed for each air supply port 5 of each drying tank 3, when supplying the drying gas to a plurality of drying tanks 3 simultaneously with one air supply device, the amount of each air supply is adjusted. It is possible and suitable. One or a plurality of air supply ports 5 of each drying tank 3 may be used.

乾燥槽3内の乾燥用ガスを排気口吸引するには、吸引ファン等を有する排気装置を用いることが好ましく、排気口7から、集塵器を介して吸引ファンによって排気することが好ましい。また、原料層内に原料層湿潤帯を形成することで、発生したダストをトラップする効果があるので、吸引を排気塔によるドラフト効果で代用し、集塵器を介さずに排気を大気放散することもできるが、この場合には、乾燥槽3の設計段階で、湿潤帯を保つための層厚を十分に保った上、運転中は排ガス温度、湿分等の測定により、原料水分の低下等に起因する湿潤帯の消失傾向を検知し、乾燥槽3内や送気中への水分添加、送気量の低下、または原料フィード量の低下等により、湿潤帯を保持する制御を必要とする。   In order to suck the drying gas in the drying tank 3 through the exhaust port, it is preferable to use an exhaust device having a suction fan or the like, and it is preferable to exhaust the exhaust gas from the exhaust port 7 through a dust collector. In addition, by forming a raw material layer wet zone in the raw material layer, there is an effect of trapping the generated dust, so the draft is replaced by the draft effect by the exhaust tower, and the exhaust is diffused to the atmosphere without going through the dust collector In this case, in the design stage of the drying tank 3, the layer thickness for keeping the wet zone is kept sufficiently, and the raw material moisture is reduced by measuring the exhaust gas temperature, moisture, etc. during operation. It is necessary to control the retention of the wet zone by detecting the tendency of the disappearance of the wet zone due to, etc., and by adding moisture to the drying tank 3 or during feeding, lowering the feed rate, or lowering the feed amount of raw materials. To do.

乾燥槽3内の乾燥用ガスを排気口吸引することにより、乾燥槽3の送気口5から送気された乾燥用ガスが乾燥槽3内を上昇して排気口7から排出されるガスの流れが形成され、乾燥用ガスによる原料10cの乾燥が容易に行われる。したがって、乾燥の観点からは乾燥用ガスを乾燥槽3内へ送気する送気口5の位置はできる限り乾燥槽3側壁の下部に設けると良い。   By sucking the drying gas in the drying tank 3 to the exhaust port, the drying gas sent from the air supply port 5 of the drying tank 3 rises in the drying tank 3 and is discharged from the exhaust port 7. A flow is formed, and the raw material 10c is easily dried with the drying gas. Therefore, from the viewpoint of drying, the position of the air supply port 5 for supplying the drying gas into the drying tank 3 is preferably provided as low as possible on the side wall of the drying tank 3.

原料の乾燥に用いる乾燥用ガスとしては、工場で発生する各種の加熱ガス(排ガス)が利用できる。特に300℃以下程度の比較的低温で排出されて熱回収が困難な排ガスが有効に利用できるため、これを用いることが好ましい。高炉原料を乾燥する場合、近隣に焼結機が設置されている場合がほとんどであるので、焼結機のクーラー排ガスを利用すると、送気経路が短く、放熱が少ないため最適であり、特に好ましい。その他、高炉熱風炉排ガス、圧延の加熱炉排ガス等それぞれの工場の立地条件にあわせて適宜乾燥用ガスを選択できる。もちろん、乾燥用ガス発生用に燃焼炉、電気炉等を設置して、専用の熱風発生源としても良い。   As a drying gas used for drying the raw material, various heating gases (exhaust gas) generated in a factory can be used. In particular, exhaust gas that is discharged at a relatively low temperature of about 300 ° C. or less and difficult to recover heat can be used effectively. When drying blast furnace raw materials, a sintering machine is often installed in the vicinity, so using the cooler exhaust gas from the sintering machine is optimal because it has a short air supply path and less heat dissipation, and is particularly preferable. . In addition, a drying gas can be appropriately selected according to the location conditions of each factory such as blast furnace hot stove exhaust gas and rolling heating furnace exhaust gas. Of course, a combustion furnace, an electric furnace, or the like may be installed to generate a drying gas, and a dedicated hot air generation source may be used.

乾燥用ガスの温度は、高炉原料の乾燥の際には、送気口5で60℃以上とすることが好ましく、より好適には、80℃以上あれば良い。ただし300℃を超えるような高温とすると、高温ガスに対応できる昇圧ファンを設置する必要があり、また原料の乾燥装置周辺の機器の耐熱性等も問題となり、設備コストが上昇する可能性があるので、300℃以下とすることが好ましい。乾燥の目的から考えれば、200℃以下で十分である。   When drying the blast furnace raw material, the temperature of the drying gas is preferably 60 ° C. or higher at the air supply port 5, and more preferably 80 ° C. or higher. However, if the temperature exceeds 300 ° C., it is necessary to install a booster fan that can handle high-temperature gas, and heat resistance of the equipment around the raw material drying device also becomes a problem, which may increase the equipment cost. Therefore, it is preferable to set it as 300 degrees C or less. Considering the purpose of drying, 200 ° C. or lower is sufficient.

送気口5は乾燥槽3底面、側面に一つあるいは二つ以上設置する。乾燥槽3内の原料を均等に乾燥予熱するためには、乾燥槽3の周方向に複数送気口5を配置することが好ましい。また複数の送気口5は、周方向で均等位置に配置することが好ましい。乾燥槽3の周方向に複数送気口5を配置するには、上記のように乾燥槽3の周囲に熱風環状管を設け、熱風の送気配管を介して、送気口5へ乾燥用ガスを供給することが好ましい。熱風環状管がリザーバーの役目を果たし、各送気口5から均等に乾燥用ガスを供給することができる。   One or more air supply ports 5 are installed on the bottom and side surfaces of the drying tank 3. In order to dry and preheat the raw material in the drying tank 3 uniformly, it is preferable to arrange a plurality of air supply ports 5 in the circumferential direction of the drying tank 3. Moreover, it is preferable to arrange the plurality of air supply ports 5 at equal positions in the circumferential direction. In order to arrange a plurality of air supply ports 5 in the circumferential direction of the drying tank 3, as described above, a hot air annular pipe is provided around the drying tank 3, and drying air is supplied to the air supply port 5 through the hot air supply pipe. It is preferable to supply gas. The hot-air annular tube serves as a reservoir, and the drying gas can be supplied from each air supply port 5 evenly.

乾燥する原料の処理量を増やすためには、乾燥槽3の大型化が考えられるが、設備高さが高いほどコストの上昇が著しいため、乾燥槽3の断面積を大きくすることが望ましい。しかし、断面積が大きくなるほど乾燥槽3内の原料10cを中心部まで均一に乾燥させることが困難となるため、図6に示すように、原料の乾燥装置1を複数並べることで断面積を増加させることができる。各乾燥装置1にはトリッパーコンベヤ19等を用いて原料を装入することが望ましい。   In order to increase the processing amount of the raw material to be dried, the drying tank 3 can be increased in size. However, as the equipment height increases, the cost increases significantly, so it is desirable to increase the cross-sectional area of the drying tank 3. However, as the cross-sectional area increases, it becomes more difficult to uniformly dry the raw material 10c in the drying tank 3 to the center, so that the cross-sectional area is increased by arranging a plurality of raw material drying apparatuses 1 as shown in FIG. Can be made. It is desirable that raw materials are charged into each drying device 1 using a tripper conveyor 19 or the like.

立地条件等により、乾燥装置を複数並べることが困難な場合には、例えば図7、8に示す原料の乾燥装置1を用いることができる。乾燥槽3の中央部にも送気口5を配置し、外周部および中心部から乾燥用ガスを吹き込むことで、乾燥槽1つあたりの断面積を拡げることができる。図9は図7、8の送気口位置の水平断面での概略図である。図7、8に示すように受け入れ槽2と乾燥槽3とは複数のシュートで接続することもできる。   When it is difficult to arrange a plurality of drying apparatuses due to location conditions or the like, for example, the raw material drying apparatus 1 shown in FIGS. 7 and 8 can be used. By arranging the air supply port 5 at the center of the drying tank 3 and blowing the drying gas from the outer periphery and the center, the cross-sectional area per drying tank can be expanded. FIG. 9 is a schematic diagram in a horizontal section of the air supply port position of FIGS. As shown in FIGS. 7 and 8, the receiving tank 2 and the drying tank 3 can be connected by a plurality of chutes.

内容積5153m3の高炉で使用している生鉱石5600t/dの全量を、図1に示すものと同様の原料乾燥装置を用いて乾燥し、その後篩い分けを行った。 The total amount of raw ore 5600 t / d used in a blast furnace with an internal volume of 5153 m 3 was dried using the same raw material drying apparatus as shown in FIG. 1, and then sieved.

(熱風条件)
乾燥用の熱風は、隣接する焼結機のクーラー排ガス200℃の一部を使用し、これを導入ファンにて昇圧して乾燥用ガスとして各乾燥槽へ送給した。図10に、生鉱石の水分含有量と、粒径3mm以下(−3mm)の粉鉱石の混入率の関係を示す。生鉱石の水分含有量は実績で平均4mass%だったため、粉混入率が低下して、篩い効率が最大となる水分含有量2mass%まで低下するための熱量を計算し、160000m3(標準状態)/Hの熱風を吹き込み可能な設備とした。
(Hot air condition)
As the hot air for drying, a part of the cooler exhaust gas 200 ° C. of an adjacent sintering machine was used, and this was pressurized by an introduction fan and supplied to each drying tank as a drying gas. FIG. 10 shows the relationship between the water content of raw ore and the mixing rate of fine ore having a particle size of 3 mm or less (−3 mm). Since the average moisture content of raw ore was 4 mass%, the calorific value for reducing the moisture content to 2 mass%, which reduces the powder mixing rate and maximizes the sieving efficiency, was calculated to be 160000 m 3 (standard condition) It was set as the equipment which can blow in hot air of / H.

(乾燥槽条件)
乾燥槽は立地条件より、4槽とした。各送気口での乾燥用ガスのガス速度は20m/s、槽内の空塔ガス速度は0.4m/sとなるように、各乾燥槽の円周方向に等間隔で8本、径400mmφの送気口を設置した。乾燥後の品質が均一となるように、各送気口は平面視において、送気口から噴出される乾燥用ガスの噴流が排出口の少なくとも一部と重なるが、送気口が排出口と重ならない位置に配置した。乾燥槽は、下方に向かうにつれて内径が縮小し、且つ排出口に接続する縮径部を備え、送気口は、縮径部内に配置した。送気口の先端には吹き込みノズルを取り付けた。8本の送気口は水平に、2本ずつが対向した状態で等間隔に配置した。各対向した2本の送気口について、送気口先端部の水平距離は3000mmであり、乾燥用ガスの噴流の移動方向が乾燥槽内で水平方向から垂直方向へ変化する位置と送気口先端部との水平距離は1700mmであった。
(Drying tank conditions)
There were 4 drying tanks according to the site conditions. The diameter of the drying gas at each air inlet is 20 m / s, and the superficial gas velocity in the tank is 0.4 m / s. A 400 mmφ air inlet was installed. In order to make the quality after drying uniform, each air supply port has a jet of drying gas ejected from the air supply port overlapping at least part of the discharge port in plan view. Arranged in a position that does not overlap. The drying tank was provided with a reduced diameter portion connected to the discharge port, and the air supply port was disposed within the reduced diameter portion. A blowing nozzle was attached to the tip of the air supply port. The eight air supply ports were horizontally arranged at equal intervals with two each facing each other. For each of the two air supply ports facing each other, the horizontal distance of the front end of the air supply port is 3000 mm, and the position and air supply port where the moving direction of the jet of the drying gas changes from the horizontal direction to the vertical direction in the drying tank The horizontal distance from the tip was 1700 mm.

(乾燥、昇温効果)
乾燥していない生鉱石は水分含有量4mass%、25℃であったが、乾燥した生鉱石は水分含有量1.9mass%、温度60℃であり、所望の乾燥後水分含有量、温度を得ることができた。
(Drying, heating effect)
The raw ore not dried had a moisture content of 4 mass% and 25 ° C, but the dried raw ore had a moisture content of 1.9 mass% and a temperature of 60 ° C, and obtained the desired moisture content and temperature after drying. I was able to.

(粉混入量低減効果)
さらに、5mmの篩目の篩いで篩い分けを行った後の3mm以下の粉の混入率は、乾燥していない生鉱石では3.2mass%であったのに対して、本発明の原料乾燥予熱装置を設置して乾燥した生鉱石は、1.5mass%であり、高炉原料への粉の混入量はほぼ半分となった。
(Powder contamination reduction effect)
Furthermore, the mixing rate of the powder of 3 mm or less after sieving with a 5 mm sieve was 3.2 mass% for the raw ore that was not dried, whereas the raw material drying preheating of the present invention The raw ore dried by installing the apparatus was 1.5 mass%, and the amount of powder mixed into the blast furnace raw material was almost halved.

(高炉増産効果)
上記高炉にて生産能力最大2.35t/d/m3で操業を継続しながら、使用している生鉱石の全量の乾燥を開始した。その結果、高炉の生産能力を制約していた炉頂ガス温度が、図11に示すように、120℃から135℃まで上昇した。そこで、高炉への送風中の酸素富化率を高め、炉頂ガス温度が再度120℃になるまで生産量を増やした結果、炉頂からの粉の排出量は低下なく、出銑比を2.43t/d/m3とすることができた。すなわち、生産能力を0.08t/d/m3高めることができた。
(Blast furnace production increase effect)
While continuing operation at a maximum production capacity of 2.35 t / d / m 3 in the blast furnace, drying of the entire raw ore used was started. As a result, the furnace top gas temperature that restricted the production capacity of the blast furnace increased from 120 ° C. to 135 ° C. as shown in FIG. Therefore, as a result of increasing the oxygen enrichment rate during blowing to the blast furnace and increasing the production amount until the furnace top gas temperature becomes 120 ° C. again, the amount of powder discharged from the furnace top does not decrease and the output ratio is 2 .43 t / d / m 3 . That is, the production capacity could be increased by 0.08 t / d / m 3 .

(高炉還元材比低減効果)
さらに、上記粉混入量低下により、高炉内の通気抵抗が低下すると共に、高炉内のガス流速分布が均一化し、図12に示す通り、ガス利用率が49.8%から50.2%まで上昇し、溶銑温度も相当分上昇し、炉熱過剰となったため、還元材比を491kg/tから489kg/tまで低下させることができた。
(Blast furnace reducing material ratio reduction effect)
Furthermore, the reduction in the amount of mixed powder reduces the airflow resistance in the blast furnace and makes the gas flow velocity distribution in the blast furnace uniform, increasing the gas utilization rate from 49.8% to 50.2% as shown in FIG. However, the hot metal temperature also increased considerably and the furnace heat became excessive, so that the reducing material ratio could be reduced from 491 kg / t to 489 kg / t.

1 原料の乾燥装置
2 受け入れ槽
3 乾燥槽
4 シュート
5 送気口
6 フィーダー
7 排気口
8 排出口
9 熱風環状管
10(10a、10b、10c) 原料
11 側壁の傾斜部分
19 トリッパーコンベヤ
20 篩い設備
21 ホッパー
22 送気口
23 排出口
24 原料装入口
25 排気口
26 蓋
h 装入高さ(層厚)
0 シュートの半径
1 乾燥槽の半径
a、xb、xc 長さ
θ 原料の安息角
DESCRIPTION OF SYMBOLS 1 Raw material drying apparatus 2 Receiving tank 3 Drying tank 4 Chute 5 Air supply port 6 Feeder 7 Exhaust port 8 Discharge port 9 Hot air annular pipe 10 (10a, 10b, 10c) Raw material 11 Inclined part of side wall 19 Tripper conveyor 20 Sieving equipment 21 Hopper 22 Air inlet 23 Outlet 24 Raw material inlet 25 Exhaust outlet 26 Lid h Charge height (layer thickness)
r 0 chute radius r 1 drying tank radius x a , x b , x c length θ angle of repose of raw material

Claims (4)

原料の受け入れ槽と、該受け入れ槽の下方に位置しシュートを介して前記受け入れ槽と連結された乾燥槽とを有し、該乾燥槽の底面および/または側面下部に乾燥用ガスを前記乾燥槽内に供給する送気口と原料を排出する排出口とを有し、前記乾燥槽の上面および/または側面上部に該乾燥槽内の乾燥用ガスを吸引する排気口を有することを特徴とする原料の乾燥装置。   A raw material receiving tank, and a drying tank located below the receiving tank and connected to the receiving tank via a chute, and a drying gas is provided on the bottom surface and / or the lower side of the drying tank. It has an air supply port for supplying it into the inside and a discharge port for discharging the raw material, and has an exhaust port for sucking the drying gas in the drying tank at the upper surface and / or the upper side of the drying tank. Raw material drying equipment. シュートの下端部が乾燥槽内に突出していることを特徴とする請求項1に記載の原料の乾燥装置。   2. The raw material drying apparatus according to claim 1, wherein a lower end portion of the chute protrudes into the drying tank. 乾燥槽の下部を加熱する、加熱装置を有することを特徴とする請求項1または請求項2に記載の原料の乾燥装置。   The raw material drying apparatus according to claim 1, further comprising a heating device that heats a lower portion of the drying tank. 請求項1ないし請求項3のいずれかに記載の原料の乾燥装置を用い、受け入れ槽に原料を装入し、シュートを介して乾燥槽内に前記原料を充填し、該乾燥槽内の原料を送気口から供給する乾燥用ガスで乾燥させて排出口から排出する際に、常に前記シュート内に原料が充填された状態を維持して、前記乾燥槽内の乾燥用ガスのシュートから受け入れ槽への流入を防止することを特徴とする原料の乾燥方法。   Using the raw material drying apparatus according to any one of claims 1 to 3, the raw material is charged into a receiving tank, the raw material is filled into the drying tank through a chute, and the raw material in the drying tank is When drying with the drying gas supplied from the air supply port and discharging from the discharge port, the state where the raw material is always filled in the chute is always maintained and the receiving gas chute in the drying vessel is received. A method for drying a raw material, characterized in that the inflow of the raw material is prevented.
JP2009213116A 2008-09-19 2009-09-15 Blast furnace charging raw material drying method using blast furnace charging raw material drying device Active JP5597960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213116A JP5597960B2 (en) 2008-09-19 2009-09-15 Blast furnace charging raw material drying method using blast furnace charging raw material drying device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008240269 2008-09-19
JP2008240269 2008-09-19
JP2009213116A JP5597960B2 (en) 2008-09-19 2009-09-15 Blast furnace charging raw material drying method using blast furnace charging raw material drying device

Publications (2)

Publication Number Publication Date
JP2010096491A true JP2010096491A (en) 2010-04-30
JP5597960B2 JP5597960B2 (en) 2014-10-01

Family

ID=42258299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213116A Active JP5597960B2 (en) 2008-09-19 2009-09-15 Blast furnace charging raw material drying method using blast furnace charging raw material drying device

Country Status (1)

Country Link
JP (1) JP5597960B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033201A (en) * 1973-06-07 1975-03-31
JPS60138194U (en) * 1984-02-25 1985-09-12 カラ−トロニツク株式会社 Dry hopper for drying synthetic resin
JPH1151750A (en) * 1997-07-31 1999-02-26 Shimadzu Corp Metering machine
JP3065514U (en) * 1999-07-07 2000-02-02 株式会社パウダリングジャパン Garbage rot control weight loss storage device
JP2005201507A (en) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp Humidifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033201A (en) * 1973-06-07 1975-03-31
JPS60138194U (en) * 1984-02-25 1985-09-12 カラ−トロニツク株式会社 Dry hopper for drying synthetic resin
JPH1151750A (en) * 1997-07-31 1999-02-26 Shimadzu Corp Metering machine
JP3065514U (en) * 1999-07-07 2000-02-02 株式会社パウダリングジャパン Garbage rot control weight loss storage device
JP2005201507A (en) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp Humidifier

Also Published As

Publication number Publication date
JP5597960B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5061481B2 (en) Dry preheating equipment for blast furnace raw materials
CN1285388A (en) Method and apparatus for drying coal
JP4946119B2 (en) Drying and preheating equipment for hopper and blast furnace raw materials
CN108267013A (en) A kind of sinter cooling and afterheat utilizing system and hypoxemia complete alternation cooling means
CN206959601U (en) A kind of sintering deposit cooling and afterheat utilizing system
JP5597960B2 (en) Blast furnace charging raw material drying method using blast furnace charging raw material drying device
JP4946120B2 (en) Control method of drying preheater for blast furnace raw material
CN107356052A (en) A kind of grain drying plant
JP5145779B2 (en) Blast furnace raw material drying preheating method
CN206593485U (en) A kind of vertical sinter cooler
JP5835311B2 (en) Ferro-coke manufacturing method and manufacturing equipment
KR101050803B1 (en) Reduced iron production apparatus and its manufacturing method
JP2009235551A (en) Heating-drying hopper for blast furnace raw materials, and method for adjusting temperature thereof
CN108267019A (en) A kind of vertical sinter cooler and sinter cooling means
CN107152858A (en) Vertical drying screens tower
JP2012102406A (en) Hopper
JP4884705B2 (en) Sinter ore drying cooling apparatus and cooling method
CN208124909U (en) A kind of vertical cooling machine with fairing
JP6376689B2 (en) Heat treatment apparatus and treatment method for powder
CN207113623U (en) Vertical sinter cooler with chute feeder
CN106705621A (en) Drying device for metallurgical raw materials and drying method applying drying device
JP2006234205A (en) Fluidized bed dryer and wet material drying method using the same
JP6792337B2 (en) How to dry blast furnace raw materials
CN216205319U (en) Pyrite feeding device and roasting equipment thereof
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5597960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250