JP2010096472A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2010096472A
JP2010096472A JP2008269694A JP2008269694A JP2010096472A JP 2010096472 A JP2010096472 A JP 2010096472A JP 2008269694 A JP2008269694 A JP 2008269694A JP 2008269694 A JP2008269694 A JP 2008269694A JP 2010096472 A JP2010096472 A JP 2010096472A
Authority
JP
Japan
Prior art keywords
valve
switching
electric expansion
drive
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269694A
Other languages
Japanese (ja)
Other versions
JP5357495B2 (en
Inventor
Koji Hirano
浩二 平野
Makoto Fukukawa
真 福川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008269694A priority Critical patent/JP5357495B2/en
Publication of JP2010096472A publication Critical patent/JP2010096472A/en
Application granted granted Critical
Publication of JP5357495B2 publication Critical patent/JP5357495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of using the same coil among refrigerating cycle devices of different voltages, and standardizing the refrigerating cycle device over a wide range. <P>SOLUTION: This refrigerating cycle device includes a compressor, a cycle switch valve, an electric expansion valve, and a control device controlling driving of the valves. The electric expansion valve is a valve of which an opening is controlled by driving pulse, and the cycle switch valve is a self-holding valve switched by power distribution to the coil only in a switching operation of the valve. A valve driving circuit includes one driving power source, an electric expansion valve driving circuit generating the driving pulse in the electric expansion valve, and a switch valve driving circuit for switching the cycle switch valve, and the control device includes a control means for controlling the electric expansion valve driving circuit to transmit the driving pulse in a normal operating state, and transmitting a drive control signal to the switch valve driving circuit in a state that the transmission of the driving pulse of the electric expansion valve driving circuit is stopped in switching motion of the switch valve. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は2個のシリンダを備え1個ないし2個を選択的に切換えて使用可能なコンプレッサの制御方法を改良した冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus having an improved compressor control method that includes two cylinders and can be used by selectively switching between one and two.

従来、空気調和機のような冷凍サイクル装置には、コンプレッサが搭載されている。   Conventionally, a compressor is mounted on a refrigeration cycle apparatus such as an air conditioner.

室外機の機械室には、2個のシリンダを備えた回転圧縮方式のコンプレッサが設けられ、このコンプレッサは、負荷に応じてその1個ないし2個を選択的に切換えて使用可能にするシリンダ数切換弁が介在し、また、一方のシリンダの吸込側にアキュムレータを介して直接吸込み配管が連通され、他方のシリンダの吸込側にバッファーマフラーを介した吸込み配管が接続され、アキュムレータを介して低圧側配管が連通されるか、吐出管からの高圧側配管が連通されるように切換えられる。   The machine room of the outdoor unit is provided with a rotary compression type compressor having two cylinders, and this compressor can be used by selectively switching one or two of them according to the load. A switching valve is interposed, and a suction pipe is directly connected to the suction side of one cylinder via an accumulator. A suction pipe via a buffer muffler is connected to the suction side of the other cylinder, and the low pressure side is connected via an accumulator. The piping is connected or switched so that the high-pressure side piping from the discharge pipe is connected.

従来、シリンダ数切換弁の駆動電源は、空気調和機の供給電源仕様側に合わせて選定を行い制御する方式をとっていた。この場合、例えば単相100V用機種と200V用機種では、同じ切換弁を利用する場合であっても異なる電源コイルとなり、部品の標準化、共通化が図られていない。   Conventionally, the drive power source of the cylinder number switching valve has been selected and controlled in accordance with the supply power specification side of the air conditioner. In this case, for example, a single-phase 100V model and a 200V model have different power supply coils even when the same switching valve is used, and standardization and commonization of parts are not achieved.

また、上記コイルには常時通電される方式をとるため、運転中に弁位置保持のための消費電力を必要とし電力を消費していた。   Further, since the coil is always energized, it requires power consumption for holding the valve position during operation and consumes power.

このことは、冷房、暖房を切換えるサイクル切換弁についても同様のことが言える。   The same can be said for the cycle switching valve that switches between cooling and heating.

なお、特許文献1には、負荷の大小に応じて圧縮運転と非圧縮運転をなす2シリンダ形ロータリ式コンプレッサを備え、圧縮運転から非圧縮運転への切換え、もしくはその逆の切換える冷凍サイクル装置が提案されている。
特開2005−171897号公報
Patent Document 1 discloses a refrigeration cycle apparatus that includes a two-cylinder rotary compressor that performs a compression operation and a non-compression operation according to the magnitude of a load, and that switches from a compression operation to a non-compression operation or vice versa. Proposed.
JP 2005-171897 A

本発明は上述した事情を考慮してなされたもので、電圧の異なる冷凍サイクル装置間で、同一コイルを使用することが可能となり、高範囲に渡る冷凍サイクル装置での標準化を図ることができ、さらに、コイルを切換え時のみの通電方式とし、運転中に弁位置保持のための消費電力を必要とせず省エネルギー化を図ることができる冷凍サイクル装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and it is possible to use the same coil between refrigeration cycle apparatuses having different voltages, and standardization in a refrigeration cycle apparatus over a high range can be achieved. It is another object of the present invention to provide a refrigeration cycle apparatus that is energized only at the time of switching the coil and can save energy without requiring power consumption for holding the valve position during operation.

上述した目的を達成するため、本発明に係る冷凍サイクル装置は、コンプレッサと、冷凍サイクルの冷房運転と暖房運転時に冷媒の流れを切換えるサイクル切換弁と、冷媒を減圧し流量を制御する電動膨張弁と、前記各弁の駆動動作を行う弁駆動回路と、この弁駆動回路に弁制御信号を送信し、前記各弁の駆動を制御する制御装置を備えた冷凍サイクル装置において、前記電動膨張弁は、駆動パルスにより弁開度が制御される弁であり、前記サイクル切換弁は、弁の切換え動作時のみコイルに通電して弁を切換える自己保持形弁であり、前記弁駆動回路は、1個の駆動電源と、この駆動電源に接続し前記電動膨張弁に駆動パルスを発生させる電動膨張弁駆動回路と、同じく前記駆動電源に接続しサイクル切換弁の切換えを行う切換弁駆動回路とを備え、前記制御装置は、通常運転状態で、前記電動膨張弁駆動回路に前記駆動パルスを発信するよう制御し、サイクル切換弁の切換動作時は、前記電動膨張弁駆動回路の前記駆動パルスの発信を停止させた状態で、切換弁駆動回路に駆動制御信号を送信する制御手段を備えていることを特徴とする。   In order to achieve the above-described object, a refrigeration cycle apparatus according to the present invention includes a compressor, a cycle switching valve that switches a refrigerant flow during cooling operation and heating operation of the refrigeration cycle, and an electric expansion valve that decompresses the refrigerant and controls the flow rate. A refrigeration cycle apparatus comprising: a valve drive circuit that performs a drive operation of each valve; and a control device that transmits a valve control signal to the valve drive circuit and controls the drive of each valve. , The valve opening degree is controlled by a drive pulse, the cycle switching valve is a self-holding valve that switches the valve by energizing the coil only during the valve switching operation, and the valve driving circuit includes one Drive power source, an electric expansion valve drive circuit that is connected to the drive power source and generates a drive pulse in the electric expansion valve, and a switching valve drive circuit that is connected to the drive power source and switches a cycle switching valve The control device controls to transmit the drive pulse to the electric expansion valve drive circuit in a normal operation state, and during the switching operation of the cycle switching valve, the control device controls the drive pulse of the electric expansion valve drive circuit. Control means for transmitting a drive control signal to the switching valve drive circuit in a state where transmission is stopped is provided.

また、本発明に係る冷凍サイクル装置は、2個のシリンダを備え1個ないし2個を選択的に切換えて使用可能なコンプレッサと、このコンプレッサの吸込側に設けられ前記シリンダの1個または2個運転に切換えるシリンダ数切換弁と、冷凍サイクルの冷房運転と暖房運転時に冷媒の流れを切換えるサイクル切換弁と、冷媒を減圧し流量を制御する電動膨張弁と、前記各弁の駆動動作を行う弁駆動回路と、この弁駆動回路に弁制御信号を送信し、前記各弁の駆動を制御する制御装置を備えた冷凍サイクル装置において、前記電動膨張弁は、駆動パルスにより弁開度が制御される弁であり、前記シリンダ数切換弁および前記サイクル切換弁は、夫々弁の切換え動作時のみコイルに通電して弁を切換える自己保持形弁であり、前記弁駆動回路は、1個の駆動電源と、この駆動電源に接続し前記電動膨張弁に駆動パルスを発生させる電動膨張弁駆動回路と、同じく前記駆動電源に接続しシリンダ数切換弁あるいはサイクル切換弁の切換を行う切換弁駆動回路とを備え、前記制御装置は、通常運転状態では、前記電動膨張弁駆動回路に前記駆動パルスを発信するよう制御すると共に、シリンダ数切換弁およびサイクル切換弁の切換動作時は、前記電動膨張弁駆動回路の前記駆動パルスの発信を停止させた状態で、切換弁駆動回路に切換え駆動信号を送信することを特徴とする。   The refrigeration cycle apparatus according to the present invention includes a compressor having two cylinders that can be used by selectively switching one or two, and one or two of the cylinders provided on the suction side of the compressor. A cylinder number switching valve for switching to operation, a cycle switching valve for switching the flow of refrigerant during cooling and heating operations of the refrigeration cycle, an electric expansion valve for depressurizing the refrigerant and controlling the flow rate, and a valve for driving each of the valves In the refrigeration cycle apparatus including a drive circuit and a control device that transmits a valve control signal to the valve drive circuit and controls the drive of each valve, the valve opening degree of the electric expansion valve is controlled by a drive pulse. Each of the cylinder number switching valve and the cycle switching valve is a self-holding valve that switches the valve by energizing the coil only during the switching operation of the valve, and the valve drive circuit includes: A drive valve, an electric expansion valve drive circuit connected to the drive power supply and generating a drive pulse for the electric expansion valve, and a switching valve connected to the drive power supply for switching a cylinder number switching valve or a cycle switching valve A drive circuit, and the control device controls to transmit the drive pulse to the electric expansion valve drive circuit in a normal operation state, and at the time of switching operation of the cylinder number switching valve and the cycle switching valve, A switching drive signal is transmitted to the switching valve driving circuit in a state where transmission of the driving pulse of the expansion valve driving circuit is stopped.

本発明に係る冷凍サイクル装置によれば、電圧の異なる冷凍サイクル装置間で、同一コイルを使用することが可能となり、高範囲に渡る冷凍サイクル装置での標準化を図ることができ、また、本コイルを切換え時のみの通電方式とし、運転中に弁位置保持のための消費電力を必要とせず省エネルギー化を図ることができる冷凍サイクル装置を提供することができる。   According to the refrigeration cycle apparatus according to the present invention, the same coil can be used between refrigeration cycle apparatuses having different voltages, and standardization in a refrigeration cycle apparatus over a wide range can be achieved. Thus, it is possible to provide a refrigeration cycle apparatus that can save energy without using power consumption for holding the valve position during operation, by using an energization method only during switching.

本発明に係る冷凍サイクル装置の一実施形態を空気調和機を例にとり図面を参照して説明する。   An embodiment of a refrigeration cycle apparatus according to the present invention will be described with reference to the drawings, taking an air conditioner as an example.

図1は本発明の一実施形態に係る空気調和機に用いる冷凍サイクルの概念図であり、図2は本発明の一実施形態の空気調和機に用いる室外機の機械室内構造を示す斜視図、図3は本発明の一実施形態の空気調和機に用いるシリンダ数切換弁を備えたコンプレッサの縦断面図である。   FIG. 1 is a conceptual diagram of a refrigeration cycle used in an air conditioner according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a machine room structure of an outdoor unit used in the air conditioner of an embodiment of the present invention. FIG. 3 is a longitudinal sectional view of a compressor provided with a cylinder number switching valve used in the air conditioner of one embodiment of the present invention.

図1および図2に示すように、本発明に係る冷凍サイクル装置の一実施例である空気調和機1は、室外機2と室内機3に分離される。   As shown in FIGS. 1 and 2, an air conditioner 1 which is an embodiment of a refrigeration cycle apparatus according to the present invention is separated into an outdoor unit 2 and an indoor unit 3.

この室外機2は、筐体内を熱交換器室(図示しない)と機械室5とに仕切板(図示しない)で左右に分割し、熱交換器室に収容される室外ファン6および室外熱交換器7と、機械室5内に収容されるコンプレッサ8、冷暖切換え用のサイクル切換弁(四方弁)9、バッファーマフラー10、シリンダ数切換弁11、パルスモータ駆動バルブ(PMV)である電動膨張弁12を備え、室内機3には室内ファン14を備えた室内熱交換器13を備え、室外機2と室内機3は連通管15、16、室外機2に設けられたパックドバルブ17、18を介して順次連通して冷凍サイクルが構成される。   The outdoor unit 2 is divided into a heat exchanger room (not shown) and a machine room 5 by a partition plate (not shown) on the left and right sides, and the outdoor fan 6 and the outdoor heat exchange accommodated in the heat exchanger room. 7, compressor 8 accommodated in machine room 5, cycle switching valve (four-way valve) 9 for cooling / heating switching, buffer muffler 10, cylinder number switching valve 11, electric expansion valve which is a pulse motor drive valve (PMV) 12, the indoor unit 3 includes an indoor heat exchanger 13 including an indoor fan 14, and the outdoor unit 2 and the indoor unit 3 include communication pipes 15 and 16, and packed valves 17 and 18 provided in the outdoor unit 2. The refrigeration cycle is configured by sequentially communicating with each other.

図3に示すように、コンプレッサ8は密閉容器22を備え、この密閉容器22内の下部には圧縮機構部23が、上部には電動機部24がそれぞれ設けられ、これら圧縮機構部23と電動機部24は、回転軸25を介して連結される。   As shown in FIG. 3, the compressor 8 includes a sealed container 22, and a compression mechanism portion 23 is provided in the lower portion of the sealed container 22, and an electric motor portion 24 is provided in the upper portion. The compression mechanism portion 23 and the electric motor portion are provided. 24 are connected via a rotating shaft 25.

圧縮機構部23は、2個のシリンダを備えるツインタイプ形で、第1の圧縮機構部を構成する第1のシリンダ23Aと第2の圧縮機構部を構成する第2のシリンダ23Bとから構成される。   The compression mechanism section 23 is a twin type having two cylinders, and is composed of a first cylinder 23A constituting the first compression mechanism section and a second cylinder 23B constituting the second compression mechanism section. The

第1のシリンダ23Aは上部側に設けられ、第1のローリングピストン23aが偏心回転自在に収容され、第2のシリンダ23Bは第1のシリンダ23Aの下部に中間仕切板26で離間されて設けられ、第2のローリングピストン23bが偏心回転自在に収容される。 The first cylinder 23A is provided on the upper side, the first rolling piston 23a 1 is accommodated so as to be eccentrically rotatable, and the second cylinder 23B is provided below the first cylinder 23A and separated by an intermediate partition plate 26. is, the second rolling piston 23b 1 is eccentrically rotatably accommodated.

サイクル切換弁9(図1)およびシリンダ数切換弁11は、弁の切換え動作時のみ通電して、コイル(ソレノイド)を付勢し、この付勢されたコイルにより弁体を作動させて所定位置に移動させ、所定位置に弁体を機械的手段あるいは磁石などにより保持する自己保持形で、電圧の極性を変換することで弁の切換えを行うことが可能であり、コイルには、例えば12V以下のような直流弱電圧用のものを使用する。従って、サイクル切換弁9およびシリンダ数切換弁11は、弁体を所定位置に保持するために、コイルを常時付勢しておく必要がない。   The cycle switching valve 9 (FIG. 1) and the cylinder number switching valve 11 are energized only during the valve switching operation to energize the coil (solenoid), and the energized coil actuates the valve body to a predetermined position. The valve can be switched by changing the polarity of the voltage in a self-holding type in which the valve body is held at a predetermined position by mechanical means or a magnet. Use the one for DC weak voltage. Therefore, the cycle switching valve 9 and the cylinder number switching valve 11 need not always energize the coil in order to hold the valve body in a predetermined position.

また、サイクル切換弁11は上面に第1の接続口、下面に第2および第3の接続口を備えた3方弁として機能する弁で構成し、第1の接続口と第3の接続口が連通、または第2の接続口と第3の接続口が連通するよう切換えられる構成とする。なお、この弁は、このために設計された3方弁を使用しても良いが、水平方向に弁が作動する構成でなり、通常冷凍サイクルの流路切換え用として使用され量産されている四方切換弁を1箇所の接続口を閉塞して使用しても良い。   The cycle switching valve 11 is constituted by a valve functioning as a three-way valve having a first connection port on the upper surface and second and third connection ports on the lower surface, and the first connection port and the third connection port. Are connected to each other or switched so that the second connection port and the third connection port communicate. Although this valve may be a three-way valve designed for this purpose, it is configured so that the valve operates in the horizontal direction, and is normally used for mass switching and used for switching the flow path of the refrigeration cycle. The switching valve may be used with one connection port closed.

第1のシリンダ23Aは、吸込側に第1の吸込側配管27aが接続し、一方、第2のシリンダ23Bは、吸込側に第2の吸込側配管27bが接続し、この第2の吸込側配管27bには冷媒のマフラー効果を得るバッファーマフラー10が介設している。   The first cylinder 23A has a first suction side pipe 27a connected to the suction side, while the second cylinder 23B has a second suction side pipe 27b connected to the suction side. A buffer muffler 10 for obtaining a refrigerant muffler effect is interposed in the pipe 27b.

冷凍サイクルのコンプレッサ8の吸込側に冷媒を戻すための低圧側配管29には、蒸発器でガス化しきれなかった冷媒が液状のままコンプレッサ8に吸入されるのを防ぐ役割を持つ筒状構造をしたアキュムレータ28が介在されている。   The low-pressure side pipe 29 for returning the refrigerant to the suction side of the compressor 8 of the refrigeration cycle has a cylindrical structure that prevents the refrigerant that has not been gasified by the evaporator from being sucked into the compressor 8 in a liquid state. The accumulator 28 is interposed.

このアキュムレータ28は、上部に冷媒流入用の低圧側配管29が上方から挿入され、下部に冷媒流出用の2本の配管が下方に延出し、その一方は前記第1の吸込側配管27aとしてコンプレッサの第1のシリンダ23Aに常時連通するよう配管される。また、もう一方は、低圧側連通管29aによりシリンダ数切換弁11の第2の接続口に接続している。   In this accumulator 28, a refrigerant inflow low-pressure side pipe 29 is inserted into the upper part from above, and two refrigerant outflow pipes extend downward in the lower part, one of which is a compressor as the first suction side pipe 27a. The first cylinder 23A is always in communication with the first cylinder 23A. The other is connected to the second connection port of the cylinder number switching valve 11 by a low-pressure side communication pipe 29a.

さらにコンプレッサ8の吐出管30と連通する高圧側配管31がシリンダ数切換弁11の第1の接続口に接続し、バッファーマフラー10が介設している第2の吸込側配管27bがシリンダ数切換弁11の第3の接続口に接続される。   Further, a high-pressure side pipe 31 communicating with the discharge pipe 30 of the compressor 8 is connected to the first connection port of the cylinder number switching valve 11, and a second suction side pipe 27b provided with the buffer muffler 10 switches the number of cylinders. Connected to the third connection port of the valve 11.

また、密閉容器22の内底部には潤滑油を集溜する油溜り部32が設けられ、第2のシリンダ23Bの全部と、第1のシリンダ23Aのほとんど大部分が油溜り部32の潤滑油中に浸漬される。   An oil reservoir 32 for collecting lubricating oil is provided at the inner bottom of the sealed container 22, and most of the second cylinder 23 </ b> B and most of the first cylinder 23 </ b> A are provided in the oil reservoir 32. Soaked in.

回転軸25の最下端面は第2の軸受25aから露出していて、ここに図示しない給油ポンプが設けられる。この給油ポンプには給油通路が連通していて、回転軸25の回転にともなって給油ポンプが油溜り部32の潤滑油を吸い上げ、給油通路に導くようになっている。   The lowermost end surface of the rotating shaft 25 is exposed from the second bearing 25a, and an oil supply pump (not shown) is provided here. The oil supply passage communicates with the oil supply pump, and the oil supply pump sucks up the lubricating oil in the oil reservoir 32 as the rotary shaft 25 rotates, and guides it to the oil supply passage.

従って、図4に示すように、コンプレッサ8の2個のシリンダを用いた通常の運転では、シリンダ数切換弁11が、第2の接続口と第3の接続口が連通する状態に保持される。アキュムレータ28に流入した冷媒は、ガス冷媒がアキュムレータ28で2分され、一方のガス冷媒は、直接第1のシリンダ23Aに吸い込まれ、他方のガス冷媒はシリンダ数切換弁11を介して第2のシリンダ23Bに吸込まれ、第1のシリンダと第2のシリンダ双方で圧縮作用が行われ、密閉容器22を介して、高圧ガスが吐出管30より吐出される。   Therefore, as shown in FIG. 4, in a normal operation using the two cylinders of the compressor 8, the cylinder number switching valve 11 is held in a state where the second connection port and the third connection port communicate with each other. . The refrigerant that has flowed into the accumulator 28 is divided into two by the accumulator 28, one gas refrigerant is directly sucked into the first cylinder 23 </ b> A, and the other gas refrigerant is passed through the cylinder number switching valve 11 to the second one. The air is sucked into the cylinder 23 </ b> B, the compression action is performed in both the first cylinder and the second cylinder, and the high-pressure gas is discharged from the discharge pipe 30 through the sealed container 22.

これに対して、図5に示すように、コンプレッサ8の1個のシリンダを用いた小能力運転では、サイクル切換弁11が、第1の接続口と第3の接続口が連通する状態に保持される。第2のシリンダ23Bは、高圧側配管31、サイクル切換弁11およびバッファーマフラー10、第2の吸込側配管27bを介して吐出管30に連通するので、第2シリンダ23Bの吸込側は高圧になり、第2のシリンダ23Bの圧縮室内の圧力差により第2のローリングピストン23bへと押し付けられ、追従していたベーン23bは離れ、フリーとなる。この状態で、ベーン背面側に埋め込んだ小磁石23b3によりベーンを吸着、保持する。シリンダではベーンによる仕切りがないため、空運転状態となり、第2のシリンダ23Bでの圧縮作用は停止状態となる。このためアキュムレータ28に戻ったガス冷媒は、一方の、第1の吸込側配管27aを介して第1のシリンダ23Aのみに吸い込まれる。この結果、1個のシリンダのみの運転になる。 On the other hand, as shown in FIG. 5, in the small capacity operation using one cylinder of the compressor 8, the cycle switching valve 11 is maintained in a state where the first connection port and the third connection port communicate with each other. Is done. Since the second cylinder 23B communicates with the discharge pipe 30 via the high pressure side pipe 31, the cycle switching valve 11, the buffer muffler 10, and the second suction side pipe 27b, the suction side of the second cylinder 23B has a high pressure. , the pressure difference in the compression chamber of the second cylinder 23B is pressed against the second to the rolling piston 23b 1, vane 23b 2 which has been followed is away, it becomes free. In this state, the vanes are attracted and held by the small magnets 23b3 embedded on the back side of the vanes. Since there is no partition by a vane in a cylinder, it will be in an idling state and the compression action in the 2nd cylinder 23B will be in a stop state. For this reason, the gas refrigerant that has returned to the accumulator 28 is sucked into only the first cylinder 23A via the first suction side pipe 27a. As a result, only one cylinder is operated.

図6に示すように、室外機2は、室外機制御回路41を備える。   As shown in FIG. 6, the outdoor unit 2 includes an outdoor unit control circuit 41.

室外機制御回路41は、メイン基板43に室外機MCU(マイクロコントローラ・ユニット)44をはじめ各種の回路が取り付けられ、室外機MCU44は整流器などを備えた電源回路45を介して電源に接続される。   In the outdoor unit control circuit 41, various circuits including an outdoor unit MCU (microcontroller unit) 44 are attached to the main board 43, and the outdoor unit MCU 44 is connected to a power source via a power circuit 45 including a rectifier and the like. .

室外機MCU44は本発明における室外機側の制御装置をなし、CPU、メモリなどを備え、CPUがROM及びRAMとデータのやりとりを行いながらROMに記憶されている制御プログラムを実行することによって、コンプレッサ8、シリンダ数切換弁11、サイクル切換弁9、電動膨張弁10を含む室外機2の被制御部品を制御する。   The outdoor unit MCU 44 is a control unit on the outdoor unit side in the present invention, and includes a CPU, a memory, etc., and the CPU executes a control program stored in the ROM while exchanging data with the ROM and the RAM, thereby compressing the compressor. 8. Controlled components of the outdoor unit 2 including the cylinder number switching valve 11, the cycle switching valve 9, and the electric expansion valve 10 are controlled.

また、室外機MCU44にはコンプレッサ8を回転制御するコンプレッサ駆動回路46が接続され、さらに、室外ファン6の回転を制御する室外ファン駆動回路47が接続される。   The outdoor unit MCU 44 is connected to a compressor drive circuit 46 that controls the rotation of the compressor 8, and is further connected to an outdoor fan drive circuit 47 that controls the rotation of the outdoor fan 6.

また、室外機MCU44にはシリンダ数切換弁11、サイクル切換弁9、電動膨張弁10を開閉駆動する弁駆動回路49が接続される。   The outdoor unit MCU 44 is connected to a valve drive circuit 49 that opens and closes the cylinder number switching valve 11, the cycle switching valve 9, and the electric expansion valve 10.

さらに、室外機MCU44にはコンプレッサ8の吐出側に設けられる吐出センサS1、吸込側に設けられる吸込センサS2、室外熱交換器7に設けられる熱交換器センサS3および外気温センサS4が接続され、吐出センサS1はコンプレッサ8から吐出される冷媒温度を、吸込センサS2はコンプレッサ8に吸込まれる冷媒温度を、熱交換器センサS3は室外熱交換器7内の冷媒温度を、外気温センサS4は外気温度を各々検知し、温度情報として室外機MCU44に入力する。   Furthermore, a discharge sensor S1 provided on the discharge side of the compressor 8, a suction sensor S2 provided on the suction side, a heat exchanger sensor S3 provided on the outdoor heat exchanger 7 and an outside air temperature sensor S4 are connected to the outdoor unit MCU44. The discharge sensor S1 is the refrigerant temperature discharged from the compressor 8, the suction sensor S2 is the refrigerant temperature sucked into the compressor 8, the heat exchanger sensor S3 is the refrigerant temperature in the outdoor heat exchanger 7, and the outside air temperature sensor S4 is Each of the outdoor temperatures is detected and input to the outdoor unit MCU 44 as temperature information.

電源回路45は配線50を介して室内機3側に接続され、配線50には電流センサ51が設けられる。   The power supply circuit 45 is connected to the indoor unit 3 side via a wiring 50, and a current sensor 51 is provided in the wiring 50.

図7に示すように、弁駆動回路49には、DC12Vの駆動電源60としてのトランスと、電動膨張弁12のパルスモータへ駆動パルスを出力するPMV駆動回路67と、サイクル切換弁9とシリンダ切換弁11の切換えを行う切換弁駆動回路61とを備える。この切換弁駆動回路61は、常開スイッチ62Aから構成する通電リレー62と、ON端子63aおよびOFF端子63aを備えた第1切換スイッチ63AならびにON端子63bおよびOFF端子63bを備えた第2切換スイッチ63Bから構成する極性切換手段としての極性切換リレー63と、ON端子64aおよびOFF端子64aを備えた切換スイッチ64Aを構成する弁選択リレー64と、12V以下の直流弱電圧で作動し極性が切り換わることで吸着、離脱の動作を行うサイクル切換弁コイル9Cおよびシリンダ数切換弁コイル11Cとを備えている。 As shown in FIG. 7, the valve drive circuit 49 includes a transformer as a DC 12 V drive power supply 60, a PMV drive circuit 67 that outputs a drive pulse to the pulse motor of the electric expansion valve 12, a cycle switching valve 9, and a cylinder switch. And a switching valve drive circuit 61 for switching the valve 11. The changeover valve driving circuit 61, with an energized relay 62 constituting a normally open switch 62A, the ON terminals 63a 1 and OFF terminal 63a first changeover switch 63A and ON terminal 63b with 2 1 and OFF terminals 63b 2 a polarity switching relay 63 as polarity switching means consist of a second changeover switch 63B, the valve selection relay 64 constituting the switch 64A having a ON terminals 64a 1 and OFF terminals 64a 2, the following DC weak voltage 12V It has a cycle switching valve coil 9C and a cylinder number switching valve coil 11C that operate to perform adsorption and separation when the polarity is switched.

弁駆動回路49の回路構成は、前記駆動電源60の両端子にPMV駆動回路67が直接接続されると共に、切換弁駆動回路61が前記PMV駆動回路67と並列接続される。即ち、前記駆動電源60のプラス電位側に、通電リレー62の常開スイッチ62Aを介して、極性切換リレー63の第1の切換スイッチ63Aが接続され、前記駆動電源60のマイナス電位側に、極性切換リレー63の第2の切換スイッチ63Bが接続される。極性切換リレー63の第1切換スイッチ63AのON端子63aは、抵抗65を介して第2切換スイッチ63BのOFF端子63bに接続され、第2切換スイッチ63BのON端子63bは、第1切換スイッチ63AのOFF端子63aに配線接続される。この第1切換スイッチ63AのOFF端子63aに弁選択リレー64の切換スイッチ64Aが接続され、このOFF端子64a側にサイクル切換弁コイル9Cの一端側が接続し、またON端子64a側にシリンダ数切換弁コイル11Cの一端側が接続される。サイクル切換弁コイル9Cおよびシリンダ数切換弁コイル11Cの他端側は、夫々極性切換リレー63の第2の切換スイッチ63BのOFF端子63bに接続される。さらに、極性切換リレー63の第1切換スイッチ63Aと第2切換スイッチ63B間における配線間にはサージ吸収用のダイオード66が接続される。 The valve drive circuit 49 is configured such that a PMV drive circuit 67 is directly connected to both terminals of the drive power supply 60 and a switching valve drive circuit 61 is connected in parallel to the PMV drive circuit 67. That is, the first changeover switch 63A of the polarity changeover relay 63 is connected to the positive potential side of the drive power supply 60 via the normally open switch 62A of the energization relay 62, and the polarity of the drive power supply 60 is changed to the negative potential side. A second changeover switch 63B of the changeover relay 63 is connected. ON terminal 63a of the first changeover switch 63A of polarity switching relay 63 1 via the resistor 65 is connected to the OFF terminal 63 b 2 of the second changeover switch 63B, ON terminal 63 b 1 of the second changeover switch 63B is first It is wired to OFF terminal 63a 2 of the switch 63A. The change-over switch 64A in the OFF terminals 63a 2 on the valve selection relay 64 of the first changeover switch 63A is connected, one end connected to the cycle switching valve coil 9C in the OFF terminals 64a 2 side and cylinder ON terminal 64a 1 side One end side of the number switching valve coil 11C is connected. The other end of the cycle switch valve coils 9C and cylinder number switch valve coil 11C is connected to the OFF terminal 63 b 2 of the second change-over switch 63B each polarity switching relay 63. Further, a surge absorbing diode 66 is connected between the wirings between the first selector switch 63A and the second selector switch 63B of the polarity selector relay 63.

常開スイッチ62A開閉制御を行う通電リレー62の、第1切換スイッチ63Aと第2切換スイッチ63Bの端子切換えを行う極性切換リレー63、切換スイッチ64Aの端子切換えを行う弁選択リレー64への通電制御は室外機MCU44からの指令によって行われる。   Energization control of the energizing relay 62 that performs opening / closing control of the normally open switch 62A, the polarity switching relay 63 that switches terminals of the first switching switch 63A and the second switching switch 63B, and the valve selection relay 64 that switches terminals of the switching switch 64A. Is performed by a command from the outdoor unit MCU44.

従って、前記PMV駆動回路67と、前記切換弁駆動回路61の前記サイクル切換弁9の弁位置切換え用のコイル9Cまたは前記シリンダ数切換弁コイル11Cとが、駆動電源60に対し、並列接続されるため、サイクル切換弁9の弁位置切換え用のコイル9Cへの通電、極性切換リレー63による弁切換えおよびシリンダ数切換弁11の弁位置切換え用のコイル11Cへの通電、入力される駆動パルスの数に応じて開度が連続的に変化する電動膨張弁(PMV)のパルス発生は1個の共通の駆動電源60によって行われ、駆動電源が共通化する。   Accordingly, the PMV driving circuit 67 and the valve position switching coil 9C or the cylinder number switching valve coil 11C of the cycle switching valve 9 of the switching valve driving circuit 61 are connected in parallel to the driving power source 60. Therefore, the energization of the coil 9C for switching the valve position of the cycle switching valve 9, the switching of the valve by the polarity switching relay 63, the energization of the coil 11C for switching the valve position of the cylinder number switching valve 11, and the number of input drive pulses The pulse generation of the electric expansion valve (PMV) whose opening degree changes continuously according to is performed by one common drive power supply 60, and the drive power supply is shared.

図8はリレー、弁の制御相関図で、図中左側は、室外機MCU44のポート、極性切換リレー63、サイクル切換弁コイル9C、およびシリンダ数切換弁コイル11Cの通電の相関を示し、さらに、図中右側では、室外機MCU44のポート、弁選択リレー64と通電されるコイルの相関を示す。   FIG. 8 is a control correlation diagram of relays and valves. The left side of the figure shows the correlation of energization of the port of the outdoor unit MCU 44, the polarity switching relay 63, the cycle switching valve coil 9C, and the cylinder number switching valve coil 11C. The right side of the figure shows the correlation between the port of the outdoor unit MCU 44, the valve selection relay 64, and the energized coil.

室外機MCU44のポートがLowの場合、極性切換リレー63がOFFとなり、第1切換スイッチ63AがOFF端子63aに、第2切換スイッチ63BがOFF端子63bに接続される。 If the port of the outdoor unit MCU44 is Low, polarity switching relay 63 is turned OFF, the first changeover switch 63A is turned OFF terminal 63a 2, the second changeover switch 63B is connected to the OFF terminal 63 b 2.

この際弁選択ポートがLowの場合は、弁選択リレー64がOFF端子64aに接続され冷暖切換えのサイクル切換弁コイル9C側に接続されるため、通電リレー62に1秒間通電を行うとサイクル切換弁コイル9Cが吸着方向に作用し、その状態を保持する。したがって、冷凍サイクルは、冷房モードに維持される。 If this Saiben selected port is Low, since the valve selection relay 64 is connected to the cycle switch valve coil 9C side connected to cooling and heating switched OFF terminal 64a 2, the cycle switching is performed for one second energized energized relay 62 The valve coil 9C acts in the adsorption direction and maintains that state. Therefore, the refrigeration cycle is maintained in the cooling mode.

また、極性ポートが上記したLowの状態で、弁選択ポートがHighとなった場合は、弁選択リレー64がON端子64aに接続され、シリンダ数切換弁コイル11C側に接続されるため、通電リレー62に1秒間通電を行うとシリンダ数切換弁コイル11Cが吸着方向に作用し、その状態を保持する。したがって、コンプレッサ8は1シリンダでの運転モードに維持される。 When the polarity port is in the Low state and the valve selection port becomes High, the valve selection relay 64 is connected to the ON terminal 64a 1 and connected to the cylinder number switching valve coil 11C side. When the relay 62 is energized for 1 second, the cylinder number switching valve coil 11C acts in the attracting direction and maintains this state. Therefore, the compressor 8 is maintained in the operation mode with one cylinder.

また、極性切換ポートをHighに設定した場合は、極性切換リレー63がONとなり、第1切換スイッチ63AがON端子63aに、第2切換スイッチ63BがON端子63bに接続される。このため、サイクル切換弁コイル9Cもしくはシリンダ数切換弁コイル11Cへの通電される極性がプラスマイナス逆転する。 Also, if you set the polarity switching port High, the polarity switching relay 63 is turned ON, the first changeover switch 63A is in the ON terminal 63a 1, the second changeover switch 63B is connected to the ON terminal 63 b 1. For this reason, the polarity to which the cycle switching valve coil 9C or the cylinder number switching valve coil 11C is energized is reversed.

したがって、上述した際弁選択ポートがLowの場合は、通電リレー62に1秒間通電を行うとサイクル切換弁コイル9Cが離脱方向に作用し、その状態を保持する。したがって、冷凍サイクルは、暖房モードに切り換わりその状態が維持される。   Therefore, when the valve selection port is Low at the time described above, when the energization relay 62 is energized for 1 second, the cycle switching valve coil 9C acts in the disengagement direction and maintains that state. Therefore, the refrigeration cycle is switched to the heating mode and the state is maintained.

また、極性ポートがHighの状態で、弁選択ポートがHighとなった場合は、弁選択リレー64がON端子64aに接続され、シリンダ数切換弁コイル11C側に接続されるため、通電リレー62に1秒間通電を行うと、シリンダ数切換弁コイル11Cが離脱方向に作用し、その状態を保持する。したがって、コンプレッサ8は2シリンダでの運転モードに維持される。 Further, when the polarity port is High and the valve selection port is High, the valve selection relay 64 is connected to the ON terminal 64a 1 and is connected to the cylinder number switching valve coil 11C side. Is energized for 1 second, the cylinder number switching valve coil 11C acts in the disengagement direction, and the state is maintained. Therefore, the compressor 8 is maintained in the operation mode with two cylinders.

図9は、リレー、弁のシーケンス制御図で、下段から上段へ、PMV駆動回路44から電動膨張弁12のパルスモータへ発せられる駆動パルス、弁選択リレー64への制御信号、極性切換リレー63への制御信号、通電リレーへの制御信号のシーケンスを示す。この図に示されるとおり、通常時は、駆動電源からの電源供給は、全てPMV駆動パルスに供給され、切換弁を切換え操作する場合のみ、PMV駆動パルスを停止し、通電リレー側への電源供給を行う制御を実施している。具体的には、室外機MCUから弁切換え操作信号が出た場合、PMV駆動パルスの発信中にPMV駆動回路にストップパルスを送り、5秒間パルス発信を停止させる。その際、極性切換ポート、および弁選択ポートにLowまたはHighに信号を送り極性切換リレー63、弁選択リレー64を所定モードに設定し、2秒後に1秒間通電リレーをONとし、弁の切換え操作を実行し、その後2秒間その状態を保持した後、PMV駆動回路にスタートパルスを送りPMV駆動パルスの発信を再開する制御を実施する。   FIG. 9 is a sequence control diagram of the relays and valves. From the lower stage to the upper stage, the drive pulse issued from the PMV drive circuit 44 to the pulse motor of the electric expansion valve 12, the control signal to the valve selection relay 64, and the polarity switching relay 63. The sequence of the control signal and the control signal to the energizing relay are shown. As shown in this figure, in the normal state, all the power supply from the drive power supply is supplied to the PMV drive pulse, and only when the switching valve is switched, the PMV drive pulse is stopped and the power supply to the energizing relay side is performed. The control which performs is performed. Specifically, when a valve switching operation signal is output from the outdoor unit MCU, a stop pulse is sent to the PMV drive circuit during transmission of the PMV drive pulse, and the pulse transmission is stopped for 5 seconds. At that time, a signal is sent Low or High to the polarity switching port and the valve selection port, the polarity switching relay 63 and the valve selection relay 64 are set to a predetermined mode, and the energization relay is turned on for 1 second after 2 seconds to switch the valve. After that, the state is maintained for 2 seconds, and then a control is performed to send a start pulse to the PMV drive circuit and resume transmission of the PMV drive pulse.

次に本実施形態の冷凍サイクル装置の動作について説明する。   Next, operation | movement of the refrigerating-cycle apparatus of this embodiment is demonstrated.

例えば、冷房サイクル運転、暖房サイクル運転が可能な自動運転を実施した場合を説明する。   For example, a case where an automatic operation capable of a cooling cycle operation and a heating cycle operation is performed will be described.

図6および図7に示すように、リモコンなどにより、所望室内温度を設定し、自動運転の運転を操作すると、指定した自動運転の指令が室内機3内に配置した室内制御回路に入力され、室内温度と設定温度差などの条件により冷房運転或いは暖房運転などの運転モードが設定され、この設定されたモードに基づく運転信号が、室内機3側の制御回路から室外機2内に配置した室外機制御回路41に送られ、室外機制御回路41の室外機MCU44からの指令により、設定された運転モードに基づく室外機側の冷凍サイクル回路、圧縮機の運転モードなど運転が実行される。   As shown in FIGS. 6 and 7, when a desired indoor temperature is set by a remote controller or the like and an automatic operation is operated, a designated automatic operation command is input to an indoor control circuit disposed in the indoor unit 3, An operation mode such as a cooling operation or a heating operation is set according to a condition such as a difference between the room temperature and a set temperature, and an operation signal based on the set mode is transmitted from the control circuit on the indoor unit 3 side to the outdoor unit 2. In response to a command from the outdoor unit MCU 44 of the outdoor unit control circuit 41 sent to the outdoor unit control circuit 41, operations such as an outdoor unit side refrigeration cycle circuit and a compressor operating mode based on the set operation mode are executed.

例えば、室内温度が設定温度より高い場合は、冷房モードが設定され運転が開始される。   For example, when the room temperature is higher than the set temperature, the cooling mode is set and the operation is started.

図7および図8に示すように、この室内温度情報の入力により、冷房サイクル運転が必要であると指令を受けた室外機MCU44は、室外機MCU44の極性切換ポートがLowにあり、極性切換リレー63を第1、第2切換スイッチ63A、63BがOFF端子63a、63bに接続された状態に、弁選択リレー64を切換スイッチ64AがOFF端子64aに接続された状態にし、通電リレー1を1秒間通電することで、図7および図8に示すように、サイクル切換弁コイル9Cを吸着させる方向に電流が流れ、弁体は、冷凍サイクルが冷房運転可能な状態に保持される。 As shown in FIG. 7 and FIG. 8, the outdoor unit MCU 44 that has received an instruction that the cooling cycle operation is required by the input of the indoor temperature information has the polarity switching port of the outdoor unit MCU 44 at Low, and the polarity switching relay 63, the first and second change-over switches 63A, 63B are connected to the OFF terminals 63a 2 , 63b 2 , the valve selection relay 64 is connected to the OFF terminal 64a 2 , and the energizing relay 1 As shown in FIGS. 7 and 8, a current flows in a direction in which the cycle switching valve coil 9C is adsorbed, and the valve body is maintained in a state where the refrigeration cycle can be cooled.

なお、予め冷房サイクル運転になっており、極性切換リレー63および弁選択64はOFF状態で待機している場合はこの動作は省略される。   Note that this operation is omitted when the cooling cycle operation is performed in advance and the polarity switching relay 63 and the valve selection 64 are waiting in the OFF state.

一方、通常運転では、弁体は離脱状態にあり、図4に示すようなコンプレッサ8の2個のシリンダ23a3Bを用いた通常の冷房運転が可能な状態としている。 On the other hand, in the normal operation, the valve body is in the detached state, and the normal cooling operation using the two cylinders 23a 2 3B of the compressor 8 as shown in FIG. 4 is possible.

図1に実線で冷媒の流れ方向を矢示する冷房運転が開始されると、コンプレッサ8の2個のシリンダ23a3Bを用いた通常の運転では、シリンダ数切換弁11が、第2の接続口と第3の接続口が連通する状態に保持される。アキュムレータ28に戻ったガス冷媒は、アキュムレータ28で2分され、一方の冷媒ガスは、直接第1のシリンダ23Aに吸い込まれ、他方の冷媒ガスはシリンダ数切換弁11を介して第2のシリンダ23Bに吸込まれ、第1のシリンダと第2のシリンダ双方で圧縮作用が行われ、密閉容器22を介して、高圧ガスが吐出管30より吐出される。 When the cooling operation indicated by the solid line in FIG. 1 is started, in the normal operation using the two cylinders 23a 23B of the compressor 8, the cylinder number switching valve 11 is connected to the second connection. The mouth and the third connection port are held in communication. The gas refrigerant that has returned to the accumulator 28 is divided into two by the accumulator 28, one refrigerant gas is directly sucked into the first cylinder 23 </ b> A, and the other refrigerant gas passes through the cylinder number switching valve 11 to the second cylinder 23 </ b> B. The first cylinder and the second cylinder are compressed, and high-pressure gas is discharged from the discharge pipe 30 through the sealed container 22.

吐出管30より吐出された高圧ガスは室外熱交換器7で冷却され、液冷媒となり、液冷媒は電動膨張弁(PMV)12により減圧されると共に所要流量に制御されてから室内熱交換器13内に流入し、ここで蒸発して気化し、外気から吸熱して周囲の空気を冷却し、その冷却空気を室内ファン14により室内へ送風することにより室内を冷房する。   The high-pressure gas discharged from the discharge pipe 30 is cooled by the outdoor heat exchanger 7 and becomes liquid refrigerant. The liquid refrigerant is decompressed by the electric expansion valve (PMV) 12 and controlled to a required flow rate, and then the indoor heat exchanger 13. The air flows into the interior, evaporates and vaporizes, absorbs heat from the outside air, cools the surrounding air, and blows the cooling air into the room by the indoor fan 14 to cool the room.

一方、室内熱交換器13で蒸発してガス化したガス冷媒は、サイクル切換弁9、シリンダ数切換弁11を介して、第1のシリンダ23Aおよび第2のシリンダ23Bに吸込まれる。   On the other hand, the gas refrigerant evaporated and gasified in the indoor heat exchanger 13 is sucked into the first cylinder 23A and the second cylinder 23B via the cycle switching valve 9 and the cylinder number switching valve 11.

この冷房運転時、電動膨張弁12の開度が絞られ過ぎて室内熱交換器13内に流入する液状冷媒の流入量が少な過ぎると、その過少の冷媒により外気から大量の熱量を吸熱するので、過熱状態となる場合がある。   During this cooling operation, if the amount of liquid refrigerant flowing into the indoor heat exchanger 13 is too small because the opening of the electric expansion valve 12 is too narrow, a large amount of heat is absorbed from the outside air by the insufficient refrigerant. In some cases, overheating may occur.

そこで、コンプレッサの吸込温度センサS2冷媒の過熱状態を検知し、その情報を室外機MCU44に入力し、この室外機MCU44からの弁制御信号に基づき、弁駆動回路49に設けたPMV駆動回路67が発生する駆動パルスにより、電子膨張弁12に制御パルスを与えて所定開度ずつ開閉し、冷媒流量を制御するようになっている。   Therefore, the compressor intake temperature sensor S2 detects the refrigerant overheating state, inputs the information to the outdoor unit MCU 44, and based on the valve control signal from the outdoor unit MCU 44, the PMV drive circuit 67 provided in the valve drive circuit 49 A control pulse is given to the electronic expansion valve 12 by the generated drive pulse to open and close it by a predetermined degree of opening to control the refrigerant flow rate.

図9に示すように、室外機MCU44から電動膨張弁12の開度調整指令が出され、図9中「PMV動作中」で示すように、電動膨張弁12のパルスモータに、電動膨張弁駆動回路が発生する駆動パルスが入力され、電動膨張弁12の開度調整が行なわれ、冷媒流量が適正に制御される。   As shown in FIG. 9, an opening degree adjustment command for the electric expansion valve 12 is issued from the outdoor unit MCU 44, and as shown by “PMV in operation” in FIG. 9, the electric expansion valve drive is driven by the pulse motor of the electric expansion valve 12. The drive pulse generated by the circuit is input, the opening degree of the electric expansion valve 12 is adjusted, and the refrigerant flow rate is appropriately controlled.

通常の冷房運転が継続され、室内温度が所望の温度に達すると、室内機3に設けた室内温度センサからの温度情報に基づき、室外機MCU44は小能力での省エネルギー運転を行う判断をする。   When the normal cooling operation is continued and the room temperature reaches a desired temperature, the outdoor unit MCU 44 determines to perform the energy saving operation with a small capacity based on the temperature information from the room temperature sensor provided in the indoor unit 3.

室外機MCU44が省エネルギー運転を行うと判断するとコンプレッサ8の1シリンダ運転に切換えるための動作を行い、図9に示すシーケンスが実行される。   When the outdoor unit MCU 44 determines that the energy saving operation is to be performed, an operation for switching to the single cylinder operation of the compressor 8 is performed, and the sequence shown in FIG. 9 is executed.

切換弁駆動回路61による弁切換え動作中は、室外機MCU44からPMV駆動回路67へのパルスの送信は行われず、電動膨張弁12の絞り、開放動作は停止される。   During the valve switching operation by the switching valve drive circuit 61, no pulse is transmitted from the outdoor unit MCU 44 to the PMV drive circuit 67, and the throttle and opening operations of the electric expansion valve 12 are stopped.

室外機MCU44は弁選択ポートがHighであり、室外機MCU44は弁駆動回路49に弁選択リレー64を切換えるための駆動信号を送信し、弁選択リレー64の切換スイッチ64AをON端子64aに接続された状態にする。 The outdoor unit MCU44 is High valve selected port, the outdoor unit MCU44 transmits a drive signal for switching the valve selection relay 64 to the valve drive circuit 49, connects the changeover switch 64A of the valve selected relay 64 ON terminal 64a 1 To the state.

この弁選択リレー64の動作は通電リレー62を1秒間通電動作させる前後2秒の5秒間設定される。   The valve selection relay 64 is set for 5 seconds, 2 seconds before and after the energization relay 62 is energized for 1 second.

この場合も、切換弁駆動回路61による弁切換え動作中は、室外機MCU44からPMV駆動回路67のパルスの送信は行われず、電動膨張弁12の開度制御動作は停止される。   Also in this case, during the valve switching operation by the switching valve drive circuit 61, the pulse transmission of the PMV drive circuit 67 is not performed from the outdoor unit MCU44, and the opening degree control operation of the electric expansion valve 12 is stopped.

弁選択リレー64がON端子64aに接続されると、シリンダ数切換弁コイル11Cに弁体を吸着する方向の電流が流れ、図5に示すような小能力モード運転が開始される。 When the valve select relay 64 is connected to the ON terminal 64a 1, the direction of current flows to adsorb the valve on the cylinder number switching valve coil 11C, the small capacity mode operation as shown in FIG. 5 is started.

小能力モード運転が開始されると、サイクル切換弁11が、第1の接続口と第3の接続口が連通する状態に保持される。   When the small capacity mode operation is started, the cycle switching valve 11 is held in a state where the first connection port and the third connection port communicate with each other.

第2のシリンダ23Bは、高圧側配管31、サイクル切換弁11およびバッファーマフラー10、第2の吸込側配管27bを介して吐出管30に連通するので、第2のシリンダ23Bの吸込側は高圧になり、第2のシリンダ23Bの圧縮室内の圧力差により第2のローリングピストン23bへと押し付けられ、追従していたベーン23bは離れ、フリーとなる。 Since the second cylinder 23B communicates with the discharge pipe 30 via the high pressure side pipe 31, the cycle switching valve 11, the buffer muffler 10, and the second suction side pipe 27b, the suction side of the second cylinder 23B has a high pressure. becomes, the pressure difference in the compression chamber of the second cylinder 23B is pressed against the second to the rolling piston 23b 1, vane 23b 2 which has been followed is away, becomes free.

この状態で、ベーン背面側に埋め込んだ小磁石23b3によりベーンを吸着、保持する。シリンダではベーンによる仕切りがないため、空運転状態となり、第2のシリンダ23Bでの圧縮作用は停止状態となる。   In this state, the vanes are attracted and held by the small magnets 23b3 embedded on the back side of the vanes. Since there is no partition by a vane in a cylinder, it will be in an idling state and the compression action in the 2nd cylinder 23B will be in a stop state.

このためアキュムレータ28に戻ったガス冷媒は、一方の、第1の吸込側配管27aを介して第1のシリンダ23Aのみに吸い込まれる。この結果、1個のシリンダのみの運転になり、小能力運転となるため、運転停止を繰り返すことなく運転継続が可能となり省エネルギー運転が行われる。   For this reason, the gas refrigerant that has returned to the accumulator 28 is sucked into only the first cylinder 23A via the first suction side pipe 27a. As a result, since only one cylinder is operated and a small capacity operation is performed, the operation can be continued without repeating the operation stop, and the energy saving operation is performed.

室内温度が上昇して冷房負荷が増加し、室外機MCU44が通常の冷房運転に復帰させると判断すると、通常冷房運転をさせるために、図9に示すシーケンスに基づき、室外機MCU44は弁駆動回路49に極性切換リレー63を切換えるための駆動信号を送信し、極性切換リレー63の第1、第2切換スイッチ63A、63BがON端子63a、63bに接続された状態にし、弁選択リレー64を切換スイッチ64AがON端子64aに接続された状態にし、シリンダ数切換弁コイル11Cに弁体を離脱させる方向の電流を流し、2個のシリンダを用いた通常運転に復帰させる。 If it is determined that the indoor temperature rises and the cooling load increases and the outdoor unit MCU 44 returns to the normal cooling operation, the outdoor unit MCU 44 uses the valve drive circuit based on the sequence shown in FIG. 9 to perform the normal cooling operation. It transmits a driving signal for switching the polarity changeover relay 63 to 49, first, the second changeover switch 63A, in a state 63B is connected to the oN terminal 63a 1, 63 b 1, the valve selection relay 64 of the polarity switching relay 63 was in a state of change-over switch 64A is connected to the oN terminal 64a 1, flowing direction of the current to disengage the valve body to the cylinder number switching valve coils 11C, to return to normal operation with the two cylinders.

また、外気温が低下して暖房運転を行う場合、あるいは冷房運転が終了して、室内機に付着した結露を除去するための乾燥運転を行う場合には、暖房サイクル運転による暖房運転が行われる。   In addition, when the outside air temperature is lowered and the heating operation is performed, or when the cooling operation is finished and the drying operation for removing the condensation attached to the indoor unit is performed, the heating operation by the heating cycle operation is performed. .

室外機MCU44が暖房運転を行う指令を受けると、図9に示すシーケンスに基づき、室外機MCU44は弁駆動回路49に極性切換リレー63を切換えるための駆動信号を送信し、極性切換リレー63の第1、第2切換スイッチ63A、63BがON端子63a、63bに接続された状態にし、弁選択リレー64を切換スイッチ64AがOFF端子64aに接続された状態にし、電流の流れを逆にし、サイクル切換弁9のコイル9Cに弁体を離脱させる方向の電流を流し、サイクル切換弁9で冷媒の流れを図1に点線で矢視する方向にする。 When the outdoor unit MCU 44 receives a command to perform the heating operation, the outdoor unit MCU 44 transmits a drive signal for switching the polarity switching relay 63 to the valve drive circuit 49 based on the sequence shown in FIG. 1, the second change-over switch 63A, in a state 63B is connected to the oN terminal 63a 1, 63 b 1, and the valve selected relay 64 in a state where the changeover switch 64A is connected to the OFF terminal 64a 2, and the current flow in the reverse Then, a current in a direction for removing the valve element is passed through the coil 9C of the cycle switching valve 9, and the flow of the refrigerant is changed to the direction indicated by the dotted line in FIG.

この場合も、切換弁駆動回路61による弁切換え動作中は、室外機MCU44からPMV駆動回路67のパルスの送信は行われず、電動膨張弁12の開度制御動作は停止される。   Also in this case, during the valve switching operation by the switching valve drive circuit 61, the pulse transmission of the PMV drive circuit 67 is not performed from the outdoor unit MCU44, and the opening degree control operation of the electric expansion valve 12 is stopped.

この暖房運転においても、サイクル切換弁9の切換えにより、2シリンダによる通常運転、1シリンダによる小能力運転は行われるが、弁駆動回路49の動作は、上記に説明したサイクル切換弁9の切換え以外、冷房運転と異ならないので、説明は省略する。   Also in this heating operation, normal operation by two cylinders and small capacity operation by one cylinder are performed by switching the cycle switching valve 9, but the operation of the valve drive circuit 49 is other than the switching of the cycle switching valve 9 described above. Since it is not different from the cooling operation, the description is omitted.

本実施形態の空気調和機は、サイクル切換弁9およびシリンダ数切換弁11のコイルには直流弱電圧用のものを使用するので、従来の空気調和機が供給電源仕様(例えば、単相100Vと200V機種)間でそれぞれ異なるコイルを利用していたのと異なり、供給電源に係りなく、同一品を使用することが可能となり、高範囲に渡る空気調和機、冷凍機での標準化を図ることができる。   Since the air conditioner of this embodiment uses a DC weak voltage coil for the cycle switching valve 9 and the cylinder number switching valve 11, the conventional air conditioner has a power supply specification (for example, single-phase 100V and Unlike the 200V model), which uses different coils, the same product can be used regardless of the power supply, and standardization with a wide range of air conditioners and refrigerators can be achieved. it can.

また、サイクル切換弁9およびシリンダ数切換弁11は、切換え時のみに、コイルに通電する方式を採用しているため、運転中に弁位置保持のための消費電力を必要とせず省エネルギー効果に優れ、また、シリンダ数切換弁およびサイクル切換弁の両方に直流弱電圧用のコイルを使用した自己保持形弁を使用するので、一層、省エネルギー効果に優れる。   Further, since the cycle switching valve 9 and the cylinder number switching valve 11 adopt a system in which the coil is energized only at the time of switching, it does not require power consumption for holding the valve position during operation and is excellent in energy saving effect. Moreover, since the self-holding type valve using the DC weak voltage coil is used for both the cylinder number switching valve and the cycle switching valve, the energy saving effect is further improved.

さらに、機種間で駆動電源仕様が同一であるため、制御基盤に別々の駆動源を配置する必要がなく、同一回路上の切換えのみで2個のコイル操作を制御することが可能であり、生産性に優れる。   Furthermore, since the drive power supply specifications are the same between models, there is no need to place separate drive sources on the control board, and it is possible to control the operation of two coils by simply switching on the same circuit. Excellent in properties.

本実施形態の冷凍サイクル装置によれば、電圧の異なる冷凍サイクル装置間で、同一コイルを使用することが可能となり、高範囲に渡る冷凍サイクル装置での標準化を図ることができ、さらに、コイルを切換え時のみの通電方式とし、運転中に弁位置保持のための消費電力を必要とせず省エネルギー化を図ることができる冷凍サイクル装置が実現する。   According to the refrigeration cycle apparatus of the present embodiment, the same coil can be used between refrigeration cycle apparatuses having different voltages, and standardization in a refrigeration cycle apparatus over a high range can be achieved. A refrigeration cycle apparatus is realized that is energized only at the time of switching and does not require power consumption for holding the valve position during operation and can save energy.

本発明の一実施形態の空気調和機に用いる冷凍サイクルの概念図。The conceptual diagram of the refrigerating cycle used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる室外機の機械室内構造を示す斜視図。The perspective view which shows the machine room structure of the outdoor unit used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用い、シリンダ数切換弁を備えたコンプレッサの縦断面図。The longitudinal cross-sectional view of the compressor used for the air conditioner of one Embodiment of this invention and provided with the cylinder number switching valve. 本発明の一実施形態の空気調和機に用いる冷凍サイクル装置の通常運転時の概念図。The conceptual diagram at the time of the normal driving | operation of the refrigerating-cycle apparatus used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる冷凍サイクル装置の省エネルギー運転時の概念図。The conceptual diagram at the time of the energy saving operation | movement of the refrigerating-cycle apparatus used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる室外機の制御ブロック図。The control block diagram of the outdoor unit used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる弁駆動回路図。The valve drive circuit diagram used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる、リレー、弁の制御相関図。The control correlation figure of a relay and a valve used for the air conditioner of one Embodiment of this invention. 本発明の一実施形態の空気調和機に用いる、リレー、弁のシーケンス制御図。The sequence control figure of a relay and a valve used for the air conditioner of one Embodiment of this invention.

符号の説明Explanation of symbols

1…空気調和機、2…室外機、3…室内機、4…筐体、5…機械室、6…室外ファン、7…室外熱交換器、8…コンプレッサ、9…サイクル切換弁、9C…サイクル切換弁コイル、10…バッファーマフラー、11…シリンダ数切換弁、11C…シリンダ数切換弁コイル、12…電動膨張弁、13…室内熱交換器、14…室内ファン、22…密閉容器、23…圧縮機構部、23A…第1の圧縮機構部を構成する第1のシリンダ、23B…第2の圧縮機構部を構成する第2のシリンダ、24…電動機部、25…回転軸、25a…第2の軸受、26…中間仕切板、27a…第1の吸込側配管、27b…第2の吸込側配管、28…アキュムレータ、29…低圧側配管、29a…低圧側連通管、30…吐出管、31…高圧側配管、41…室外機制御回路、43…メイン基板、44…室外機MCU、45…電源回路、46…コンプレッサ駆動回路、47…室外ファン駆動回路、49…弁駆動回路、60…駆動電源、61…切換弁駆動回路、62…通電リレー、常開スイッチ62A、63…極性切換リレー、63A…第1切換スイッチ、63a…ON端子、63a…OFF端子、63B…第2切換スイッチ、63b…ON端子、63b…OFF端子、64…弁選択リレー、64A…切換スイッチ、64a…ON端子、64a…OFF端子、67…PMV駆動回路。 DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Outdoor unit, 3 ... Indoor unit, 4 ... Housing, 5 ... Machine room, 6 ... Outdoor fan, 7 ... Outdoor heat exchanger, 8 ... Compressor, 9 ... Cycle switching valve, 9C ... Cycle switching valve coil, 10 ... Buffer muffler, 11 ... Cylinder number switching valve, 11C ... Cylinder number switching valve coil, 12 ... Electric expansion valve, 13 ... Indoor heat exchanger, 14 ... Indoor fan, 22 ... Sealed container, 23 ... Compression mechanism section, 23A ... first cylinder constituting the first compression mechanism section, 23B ... second cylinder constituting the second compression mechanism section, 24 ... electric motor section, 25 ... rotating shaft, 25a ... second Bearings 26 ... intermediate partition plate 27a ... first suction side pipe 27b ... second suction side pipe 28 ... accumulator 29 ... low pressure side pipe 29a ... low pressure side communication pipe 30 ... discharge pipe 31 ... high-pressure side piping, 41 ... outdoor unit control times 43 ... Main board 44 ... Outdoor unit MCU 45 ... Power supply circuit 46 ... Compressor drive circuit 47 ... Outdoor fan drive circuit 49 ... Valve drive circuit 60 ... Drive power supply 61 ... Switching valve drive circuit 62 ... Energizing relay, normally open switch 62A, 63 ... polarity switching relay, 63A ... first switching switch, 63a 1 ... ON terminal, 63a 2 ... OFF terminal, 63B ... second switching switch, 63b 1 ... ON terminal, 63b 2 ... OFF 64, valve selection relay, 64A, changeover switch, 64a 1 ... ON terminal, 64a 2 ... OFF terminal, 67 ... PMV drive circuit.

Claims (3)

コンプレッサと、冷凍サイクルの冷房運転と暖房運転時に冷媒の流れを切換えるサイクル切換弁と、冷媒を減圧し流量を制御する電動膨張弁と、前記各弁の駆動動作を行う弁駆動回路と、この弁駆動回路に弁制御信号を送信し、前記各弁の駆動を制御する制御装置を備えた冷凍サイクル装置において、
前記電動膨張弁は、駆動パルスにより弁開度が制御される弁であり、前記サイクル切換弁は、弁の切換え動作時のみコイルに通電して弁を切換える自己保持形弁であり、
前記弁駆動回路は、1個の駆動電源と、この駆動電源に接続し前記電動膨張弁に駆動パルスを発生させる電動膨張弁駆動回路と、同じく前記駆動電源に接続しサイクル切換弁の切換えを行う切換弁駆動回路とを備え、
前記制御装置は、通常運転状態で、前記電動膨張弁駆動回路に前記駆動パルスを発信するよう制御し、サイクル切換弁の切換動作時は、前記電動膨張弁駆動回路の前記駆動パルスの発信を停止させた状態で、切換弁駆動回路に駆動制御信号を送信する制御手段を備えている
ことを特徴とする冷凍サイクル装置。
A compressor, a cycle switching valve that switches a refrigerant flow during cooling operation and heating operation of the refrigeration cycle, an electric expansion valve that depressurizes the refrigerant and controls a flow rate, a valve drive circuit that performs a drive operation of each valve, and the valve In the refrigeration cycle apparatus comprising a control device that transmits a valve control signal to the drive circuit and controls the drive of each valve,
The electric expansion valve is a valve whose valve opening is controlled by a drive pulse, and the cycle switching valve is a self-holding valve that switches a valve by energizing a coil only during a valve switching operation,
The valve drive circuit is connected to one drive power supply, an electric expansion valve drive circuit that is connected to the drive power supply and generates a drive pulse in the electric expansion valve, and is also connected to the drive power supply to switch a cycle switching valve. A switching valve drive circuit,
The control device controls to transmit the drive pulse to the electric expansion valve drive circuit in a normal operation state, and stops the transmission of the drive pulse of the electric expansion valve drive circuit during the switching operation of the cycle switching valve. A refrigeration cycle apparatus comprising: control means for transmitting a drive control signal to the switching valve drive circuit in a state of being made to operate.
2個のシリンダを備え1個ないし2個を選択的に切換えて使用可能なコンプレッサと、このコンプレッサの吸込側に設けられ前記シリンダの1個または2個運転に切換えるシリンダ数切換弁と、冷凍サイクルの冷房運転と暖房運転時に冷媒の流れを切換えるサイクル切換弁と、冷媒を減圧し流量を制御する電動膨張弁と、前記各弁の駆動動作を行う弁駆動回路と、この弁駆動回路に弁制御信号を送信し、前記各弁の駆動を制御する制御装置を備えた冷凍サイクル装置において、
前記電動膨張弁は、駆動パルスにより弁開度が制御される弁であり、前記シリンダ数切換弁および前記サイクル切換弁は、夫々弁の切換え動作時のみコイルに通電して弁を切換える自己保持形弁であり、
前記弁駆動回路は、1個の駆動電源と、この駆動電源に接続し前記電動膨張弁に駆動パルスを発生させる電動膨張弁駆動回路と、同じく前記駆動電源に接続しシリンダ数切換弁あるいはサイクル切換弁の切換を行う切換弁駆動回路とを備え、
前記制御装置は、通常運転状態では、前記電動膨張弁駆動回路に前記駆動パルスを発信するよう制御すると共に、シリンダ数切換弁およびサイクル切換弁の切換動作時は、前記電動膨張弁駆動回路の前記駆動パルスの発信を停止させた状態で、切換弁駆動回路に切換え駆動信号を送信することを特徴とする冷凍サイクル装置。
A compressor having two cylinders that can be used by selectively switching one or two, a cylinder number switching valve that is provided on the suction side of the compressor and that switches between operation of one or two cylinders, and a refrigeration cycle A cycle switching valve that switches the flow of refrigerant during cooling and heating operations, an electric expansion valve that depressurizes the refrigerant and controls the flow rate, a valve drive circuit that drives each of the valves, and valve control for the valve drive circuit In the refrigeration cycle apparatus including a control device that transmits a signal and controls the driving of each valve,
The electric expansion valve is a valve whose valve opening degree is controlled by a drive pulse, and the cylinder number switching valve and the cycle switching valve are self-holding types in which the coil is switched by energizing the coil only during the valve switching operation. Valve,
The valve drive circuit includes one drive power supply, an electric expansion valve drive circuit that is connected to the drive power supply and generates a drive pulse in the electric expansion valve, and is connected to the drive power supply and is connected to the cylinder number switching valve or cycle switching. A switching valve drive circuit for switching the valve,
The control device controls to transmit the drive pulse to the electric expansion valve drive circuit in a normal operation state, and at the time of switching operation of the cylinder number switching valve and the cycle switching valve, the electric expansion valve drive circuit A refrigeration cycle apparatus that transmits a switching drive signal to a switching valve drive circuit in a state where transmission of drive pulses is stopped.
前記シリンダ数切換弁および前記サイクル切換弁の両方に直流弱電圧用のコイルを使用した自己保持形弁を使用し、前記電動膨張弁駆動回路の電動膨張弁駆動パルスを停止させた状態で、前記シリンダ数切換弁あるいは前記サイクル切換弁の一方のコイルに極性切換えの駆動信号を発生させて、弁切換することを特徴とする請求項2に記載の冷凍サイクル装置。 Using a self-holding type valve using a DC weak voltage coil for both the cylinder number switching valve and the cycle switching valve, with the electric expansion valve drive pulse of the electric expansion valve drive circuit stopped, 3. The refrigeration cycle apparatus according to claim 2, wherein a valve is switched by generating a polarity switching drive signal in one of the cylinder number switching valve or one coil of the cycle switching valve.
JP2008269694A 2008-10-20 2008-10-20 Refrigeration cycle equipment Active JP5357495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269694A JP5357495B2 (en) 2008-10-20 2008-10-20 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269694A JP5357495B2 (en) 2008-10-20 2008-10-20 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010096472A true JP2010096472A (en) 2010-04-30
JP5357495B2 JP5357495B2 (en) 2013-12-04

Family

ID=42258285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269694A Active JP5357495B2 (en) 2008-10-20 2008-10-20 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5357495B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158142A (en) * 1990-10-19 1992-06-01 Matsushita Electric Ind Co Ltd Controller of air conditioner
JPH06180140A (en) * 1992-12-11 1994-06-28 Toshiba Corp Air-conditioner
JPH11211291A (en) * 1998-01-20 1999-08-06 Saginomiya Seisakusho Inc Method and apparatus for supplying electric power for driving cooling-heating unit
JP2005098654A (en) * 2003-09-26 2005-04-14 Daikin Ind Ltd Power source controller and air conditioner using the same
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158142A (en) * 1990-10-19 1992-06-01 Matsushita Electric Ind Co Ltd Controller of air conditioner
JPH06180140A (en) * 1992-12-11 1994-06-28 Toshiba Corp Air-conditioner
JPH11211291A (en) * 1998-01-20 1999-08-06 Saginomiya Seisakusho Inc Method and apparatus for supplying electric power for driving cooling-heating unit
JP2005098654A (en) * 2003-09-26 2005-04-14 Daikin Ind Ltd Power source controller and air conditioner using the same
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device

Also Published As

Publication number Publication date
JP5357495B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
WO1998005907A1 (en) Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle
JP2007303732A (en) Air conditioner
JP2005121333A (en) Air conditioner
JPH0861790A (en) Air conditioner
JP5357495B2 (en) Refrigeration cycle equipment
JP2000346478A (en) Refrigerator
JP5223873B2 (en) Air conditioner
JP2010096479A (en) Air conditioner
JP2003004332A (en) Multiple gas heat pump type air conditioner
US3370437A (en) Defrosting system
JPH04251160A (en) Freezing cycle device
JP2010048500A (en) Refrigerating cycle device
US6276154B1 (en) Two step metering device
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP2002168534A (en) Heat pump system of air conditioner
JPH05322331A (en) Air conditioner
JP2001248882A (en) Controller for refrigeration cycle
JP6024203B2 (en) Air conditioner for vehicles
JP4658395B2 (en) Multi-type gas heat pump type air conditioner
RU2230265C2 (en) Operation method for vapor-compression cooling machine and cooling machine for method implementation
JP2017031819A (en) Reciprocating compressor, refrigerator, and humidity conditioner
JPS6340758Y2 (en)
JP2002295715A (en) Fluid control valve
JP2007154854A (en) Pwm driving system for inductive load
JPS6015849B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250