JP2010096468A - Photovoltaic power generation heat collecting system - Google Patents

Photovoltaic power generation heat collecting system Download PDF

Info

Publication number
JP2010096468A
JP2010096468A JP2008269486A JP2008269486A JP2010096468A JP 2010096468 A JP2010096468 A JP 2010096468A JP 2008269486 A JP2008269486 A JP 2008269486A JP 2008269486 A JP2008269486 A JP 2008269486A JP 2010096468 A JP2010096468 A JP 2010096468A
Authority
JP
Japan
Prior art keywords
heat
power generation
roof
air circulation
circulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269486A
Other languages
Japanese (ja)
Other versions
JP5350744B2 (en
Inventor
Isamu Ota
勇 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Original Assignee
Misawa Homes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd filed Critical Misawa Homes Co Ltd
Priority to JP2008269486A priority Critical patent/JP5350744B2/en
Publication of JP2010096468A publication Critical patent/JP2010096468A/en
Application granted granted Critical
Publication of JP5350744B2 publication Critical patent/JP5350744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • F24S40/44Draining rainwater or condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • F24S25/35Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles by means of profiles with a cross-section defining separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/67Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for coupling adjacent modules or their peripheral frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/11Solar modules layout; Modular arrangements in the form of multiple rows and multiple columns, all solar modules being coplanar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/12Coplanar arrangements with frame overlapping portions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Building Environments (AREA)
  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltaic power generation heat collecting system capable of being easily constructed and reducing the number of components. <P>SOLUTION: A see-through solar cell module 8 is disposed on a roof surface 42 of a building 1 in a state of interposing an air circulation layer S between the roof surface 42 and the same, which dispenses with a translucent member conventionally used to form the air circulation layer S. Accordingly, the air circulation layer S can be formed in installing the photovoltaic power generation module 8 only by installation work of the see-through photovoltaic power generation module 8. Thus the construction can be simplified, and the number of components can be reduced as the translucent member becomes unnecessary. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽エネルギーを利用して、発電と集熱の両方を行うことのできる太陽光発電集熱システムに関する。   The present invention relates to a solar power generation heat collection system capable of performing both power generation and heat collection using solar energy.

太陽エネルギーを利用して、発電と集熱の両方を行うことのできる太陽光発電集熱システムの一例として、特許文献1に記載のものが知られている。
この太陽光発電集熱システムは、屋根面に複数の太陽光発電モジュールが配設され、これら太陽光発電モジュールの上方に透光性部材が少なくとも前記太陽光発電モジュールの上方を覆うようにして設けられ、前記透光性部材と前記屋根面との間に、空気流通層が形成され、この空気流通層に、床下に配置されて熱を蓄える蓄熱手段に連結する伝熱手段が接続されているものである。
The thing of patent document 1 is known as an example of the solar power generation heat collection system which can perform both electric power generation and heat collection using solar energy.
In this solar power generation heat collecting system, a plurality of solar power generation modules are disposed on a roof surface, and a translucent member is provided above the solar power generation modules so as to cover at least the upper side of the solar power generation modules. An air circulation layer is formed between the translucent member and the roof surface, and heat transfer means connected to the heat storage means that is disposed under the floor and stores heat is connected to the air circulation layer. Is.

このような太陽光発電集熱システムでは、屋根面に配設された太陽光発電モジュールによって、太陽光を電気(電力)に変換することができ、建物で消費する電力を賄うことができるため、電力の自給自足を行うことができる。
また、太陽光発電モジュールの上方に透光性部材が少なくとも太陽光発電モジュールの上方を覆うようにして設けられ、透光性部材と屋根面との間に空気流通層が形成され、さらに、空気流通層には床下の蓄熱手段に連結する伝熱手段が接続されているので、太陽熱が透光性部材を透光して空気流通層内の空気に伝達されることによって、その空気が加熱されて、さらに伝熱手段を介して蓄熱手段で蓄熱される。その結果、蓄熱手段に蓄熱された熱を床暖房に利用できるとともに、暖房機器等に使用される電力を削減することが可能となる。
したがって、このように発電と集熱とを同時に行うことができるため、太陽エネルギーの利用効率の向上を図ることができる。
特開2005−226978号公報
In such a solar power generation heat collection system, sunlight can be converted into electricity (electric power) by the solar power generation module disposed on the roof surface, and the power consumed in the building can be covered. Self-sufficiency of electricity can be performed.
Further, a translucent member is provided above the solar power generation module so as to cover at least the upper side of the solar power generation module, an air circulation layer is formed between the translucent member and the roof surface, and further, air Since the heat transfer means connected to the heat storage means under the floor is connected to the circulation layer, the solar heat is transmitted through the translucent member and transmitted to the air in the air circulation layer, whereby the air is heated. In addition, heat is stored in the heat storage means via the heat transfer means. As a result, the heat stored in the heat storage means can be used for floor heating, and the power used for the heating device or the like can be reduced.
Therefore, since power generation and heat collection can be performed simultaneously in this way, the utilization efficiency of solar energy can be improved.
JP 2005-226978 A

ところが、前記従来の太陽光発電集熱システムでは、屋根面に太陽光発電モジュールを配設したうえで、これら太陽光発電モジュールの上方に透光性部材を太陽光発電モジュールの上方を覆うようにして設けているので、太陽光発電モジュールと透光性部材の双方の設置作業が必要となり、施工に手間がかかるとともに、空気流通層を形成するために、透光性部材が必要となり、その分部品点数が増えるという課題があった。   However, in the conventional solar power collection system, a solar power generation module is disposed on the roof surface, and a transparent member is covered above the solar power generation module above the solar power generation module. Therefore, it is necessary to install both the photovoltaic power generation module and the translucent member, and it takes time for the construction, and a translucent member is necessary to form an air circulation layer. There was a problem that the number of parts increased.

本発明は上記事情に鑑みてなされたもので、施工が容易でかつ部品点数を軽減できる太陽光発電集熱システムを提供することを課題としている。   This invention is made | formed in view of the said situation, and makes it a subject to provide the solar power generation heat collecting system which is easy to construct and can reduce a number of parts.

上記課題を解決するために、請求項1に記載の発明は、例えば図1〜図5に示すように、建物1の屋根面42に、シースルー型太陽電池モジュール8が前記屋根面42との間に空気流通層Sを介在させた状態で設けられており、
前記空気流通層Sには、建物1内に配置されて熱を蓄える蓄熱手段12に連結する伝熱手段13が接続されていることを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is configured such that, for example, as shown in FIGS. 1 to 5, the see-through solar cell module 8 is placed between the roof surface 42 and the roof surface 42 of the building 1. Is provided with the air circulation layer S interposed therebetween,
The air circulation layer S is connected to a heat transfer means 13 that is connected to the heat storage means 12 that is disposed in the building 1 and stores heat.

請求項1に記載の発明によれば、建物1の屋根面42に、シースルー型太陽電池モジュール8が前記屋根面42との間に空気流通層Sを介在させた状態で設けられているので、空気流通層Sを形成するための従来のような透光性部材を必要としない。
したがって、シースルー型太陽光発電モジュール8の設置作業だけで、太陽光発電モジュール8の設置とともに、空気流通層Sを形成できる。したがって、施工が容易となるとともに、透光性部材が不要となるので、その分部品点数を軽減できる。
According to invention of Claim 1, since the see-through solar cell module 8 is provided on the roof surface 42 of the building 1 with the air circulation layer S interposed between the roof surface 42 and A conventional translucent member for forming the air circulation layer S is not required.
Therefore, the air circulation layer S can be formed together with the installation of the solar power generation module 8 only by the installation work of the see-through solar power generation module 8. Therefore, the construction is facilitated, and the translucent member is not required, so that the number of parts can be reduced accordingly.

請求項2に記載の発明は、請求項1に記載の太陽光発電集熱システムにおいて、
前記伝熱手段13は、前記屋根4の棟側において前記空気流通層Sに接続されていることを特徴とする。
The invention according to claim 2 is the solar power collection system according to claim 1,
The heat transfer means 13 is connected to the air circulation layer S on the ridge side of the roof 4.

請求項2に記載の発明によれば、伝熱手段13は、屋根4の棟側において空気流通層Sに接続されているので、空気流通層S内で加熱された空気を屋根4の棟側からそのまま伝熱手段13に伝達することができる。つまり、温度の高い空気は屋根4の棟側に上昇し易いことから、伝熱手段13を棟側に設けた方が軒先側に設ける場合よりも集熱率が高くなるため好ましい。   According to the invention described in claim 2, the heat transfer means 13 is connected to the air circulation layer S on the ridge side of the roof 4, so that the air heated in the air circulation layer S is transferred to the ridge side of the roof 4. To the heat transfer means 13 as it is. That is, since high temperature air tends to rise to the ridge side of the roof 4, it is preferable to provide the heat transfer means 13 on the ridge side because the heat collection rate is higher than the case where it is provided on the eaves side.

請求項3に記載の発明は、請求項1または2に記載の太陽光発電集熱システムにおいて、
前記屋根面42には、屋根4の軒先から棟に向けて延在する支持レール10が棟方向に所定間隔で複数設けられ、これら支持レール10によって前記シースルー型太陽電池モジュー8ルが支持されていることを特徴とする。
The invention according to claim 3 is the solar heat collecting system according to claim 1 or 2,
A plurality of support rails 10 extending from the eaves of the roof 4 toward the ridge are provided on the roof surface 42 at predetermined intervals in the ridge direction, and the see-through solar cell module 8 is supported by the support rails 10. It is characterized by being.

請求項3に記載の発明によれば、シースルー型太陽電池モジュール8が屋根面42に設けられた支持レール10によって支持されているので、シースルー型太陽電池モジュール8を屋根面42に該屋根面42との間に空気流通層Sを介在させた状態で容易かつ確実に設置することができる。
また、屋根4の軒先から棟に向けて延在する支持レール10が棟方向に所定間隔で複数設けられているので、伝熱手段13が屋根の棟側において空気流通層Sに接続されている場合に、空気流通層S内で加熱された空気が支持レール10の延在方向に沿ってスムーズに流れて、伝熱手段13に至る。
According to the third aspect of the present invention, since the see-through solar cell module 8 is supported by the support rail 10 provided on the roof surface 42, the see-through solar cell module 8 is attached to the roof surface 42. Can be easily and reliably installed with the air circulation layer S interposed therebetween.
In addition, since a plurality of support rails 10 extending from the eaves of the roof 4 toward the ridge are provided at predetermined intervals in the ridge direction, the heat transfer means 13 is connected to the air circulation layer S on the ridge side of the roof. In this case, the air heated in the air circulation layer S flows smoothly along the extending direction of the support rail 10 and reaches the heat transfer means 13.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の太陽光発電集熱システムにおいて、
前記蓄熱手段12は、潜熱を利用して蓄熱する潜熱蓄熱材であり、所定間隔に複数段設けられていることを特徴とする。
Invention of Claim 4 is a solar power generation heat collecting system as described in any one of Claims 1-3,
The heat storage means 12 is a latent heat storage material that stores heat using latent heat, and is provided with a plurality of stages at predetermined intervals.

請求項4に記載の発明によれば、蓄熱手段12が潜熱蓄熱材であるので、蓄熱容量を比較的大きくすることができ、また、蓄熱温度が安定するので蓄熱効果を高めることができる。   According to the invention described in claim 4, since the heat storage means 12 is a latent heat storage material, the heat storage capacity can be made relatively large, and the heat storage temperature is stabilized, so that the heat storage effect can be enhanced.

本発明によれば、建物の屋根面に、シースルー型太陽電池モジュールが前記屋根面との間に空気流通層を介在させた状態で設けられているので、シースルー型太陽光発電モジュールの設置作業だけで、太陽光発電モジュールの設置とともに、空気流通層を形成できる。したがって、施工が容易となるとともに、透光性部材が不要となるので、その分部品点数を軽減できる。   According to the present invention, since the see-through solar cell module is provided on the roof surface of the building with an air circulation layer interposed between the roof surface and the roof surface of the building, only the installation work of the see-through photovoltaic module is performed. Thus, the air circulation layer can be formed together with the installation of the photovoltaic power generation module. Therefore, the construction is facilitated, and the translucent member is not required, so that the number of parts can be reduced accordingly.

以下図面を参照して本発明の実施の形態について説明する。
図1は、本発明に係る太陽光発電集熱システムを備えた建物の外観斜視図、図2は図1におけるX−X断面図、図3は図1におけるY−Y断面図、図4は図3の要部拡大図、図5は床下構造を示す側断面図である。
図1に示す建物1は、基礎2上に構築された建物本体3と、この建物本体3の上に形成された屋根4とを備えたものである。屋根4は、複数の屋根パネル41が桁方向に配列されてなり、屋根パネル41は、図2に示すように框材を矩形枠状に組み立てるとともに、この矩形枠の内部に補強用の桟材を縦横に組み付けて枠体41aを構成し、枠体41aの上面に野地板等の面材41bが設けられてなる。そして、屋根パネル41が複数配列されることによって、棟5の両側に棟5から軒先に向かって下り勾配を有する屋根面42が形成されている。
Embodiments of the present invention will be described below with reference to the drawings.
1 is an external perspective view of a building equipped with a solar power collection system according to the present invention, FIG. 2 is a sectional view taken along line XX in FIG. 1, FIG. 3 is a sectional view taken along line YY in FIG. FIG. 5 is a side sectional view showing an underfloor structure.
A building 1 shown in FIG. 1 includes a building main body 3 constructed on a foundation 2 and a roof 4 formed on the building main body 3. The roof 4 is formed by arranging a plurality of roof panels 41 in a girder direction, and the roof panel 41 assembles the eaves into a rectangular frame shape as shown in FIG. 2, and reinforcing bars inside the rectangular frame. Are assembled vertically and horizontally to constitute a frame body 41a, and a face material 41b such as a field plate is provided on the upper surface of the frame body 41a. A plurality of roof panels 41 are arranged to form roof surfaces 42 having a downward slope from the ridge 5 toward the eaves on both sides of the ridge 5.

これら棟5の両側に形成された屋根面42のうちの片側の屋根面42には、複数のシースルー型太陽電池モジュール8が前記屋根面42との間に空気流通層Sを介在させた状態で設けられている。
シースルー型太陽電池モジュール8は、矩形薄板状をなすものであり、単結晶シリコンのPVセルを強化ガラス(上面)と透明バックシート(下面)との間に、EVA樹脂を使って封入したものであり、PVセルとPVセルとの間に照射された太陽光が透明バックシートを透過することによって、採光性を確保するようになっている。
The roof surface 42 on one side of the roof surfaces 42 formed on both sides of the ridge 5 has a plurality of see-through solar cell modules 8 with the air circulation layer S interposed between the roof surfaces 42. Is provided.
The see-through solar cell module 8 has a rectangular thin plate shape, in which PV cells of single crystal silicon are enclosed between tempered glass (upper surface) and transparent backsheet (lower surface) using EVA resin. In addition, the sunlight irradiated between the PV cell and the PV cell is transmitted through the transparent back sheet, so that the daylighting property is secured.

上記のようなシースルー型太陽電池モジュール8(以下、太陽電池モジュール8と略称する。)の周縁部には、該周縁部を囲む四角枠状のフレーム9が設けられている。
フレーム9は、屋根4の傾斜方向に沿って左右に配置される一対の縦枠部9Aと、これら縦枠部9Aの上下端部を接続し、かつ、屋根4の桁方向に沿って配置される上枠部9B及び下枠部9Cとを備えている。これら縦枠部9A、上枠部9B及び下枠部9Cによって太陽電池モジュール8の防水及び補強がなされている。
A rectangular frame-shaped frame 9 is provided around the periphery of the see-through solar cell module 8 (hereinafter abbreviated as “solar cell module 8”).
The frame 9 connects a pair of vertical frame portions 9 </ b> A arranged on the left and right along the inclination direction of the roof 4 and the upper and lower ends of the vertical frame portions 9 </ b> A and is arranged along the girder direction of the roof 4. The upper frame portion 9B and the lower frame portion 9C are provided. The solar cell module 8 is waterproofed and reinforced by the vertical frame portion 9A, the upper frame portion 9B, and the lower frame portion 9C.

上枠部9Bは、図4に示すように、アルミニウムの押出成形等により一体成形された長尺部材であって、断面四角筒状の枠本体91Bと、この枠本体91Bの上部から屋根4の傾斜方向に沿って斜め上方に設けられた断面略L字型の当接片92B(なお、図4では図面の関係上、当接片92Bは左方向に延びている)とを備えている。また、枠本体91Bの下部には、太陽電池モジュール8が嵌め込まれる一対の突出片93Bが設けられている。   As shown in FIG. 4, the upper frame portion 9B is a long member integrally formed by extrusion molding of aluminum or the like. The upper frame portion 9B is a frame main body 91B having a square cylindrical section, and the roof 4 from the upper portion of the frame main body 91B. A contact piece 92B (substantially L-shaped in cross section provided in an obliquely upward direction along the inclined direction) is provided (in FIG. 4, the contact piece 92B extends to the left in terms of the drawing). In addition, a pair of projecting pieces 93B into which the solar cell module 8 is fitted are provided at the lower part of the frame main body 91B.

下枠部9Cは、図4に示すように、アルミニウムの押出成形等により一体成形された長尺部材であって、断面L字型の筒状の枠本体91Cと、この枠本体91Cの下部から屋根4の傾斜方向に沿って斜め下方へ突出した鍔部92C(なお、図4では図面の関係上、鍔部92Cは右方向に突出している)と、この鍔部92Cの下面から下方へ垂れ下がる水切部93Cと、この水切部93Cの中間部分と枠本体91Cの側面とを連結する中間連結部94Cとを備えている。また、枠本体91Cの上部には、太陽電池モジュール8が嵌め込まれる一対の突出片95Cが設けられている。   As shown in FIG. 4, the lower frame portion 9C is a long member integrally formed by extrusion molding of aluminum or the like, and has a cylindrical frame main body 91C having an L-shaped cross section and a lower portion of the frame main body 91C. A collar portion 92C that projects obliquely downward along the inclination direction of the roof 4 (note that the collar portion 92C projects rightward in FIG. 4 due to the drawing) and hangs downward from the lower surface of the collar portion 92C. A draining portion 93C and an intermediate connecting portion 94C that connects an intermediate portion of the draining portion 93C and a side surface of the frame main body 91C are provided. In addition, a pair of protruding pieces 95C into which the solar cell module 8 is fitted is provided on the upper portion of the frame main body 91C.

一方、縦枠部9Aは、図2に示すように、断面略L字型の長尺部材であって、屋根4の傾斜方向に沿って左右に配置される一対の縦枠部9Aは、屋根面42上に取り付けられる支持レール10にそれぞれ固定される。各縦枠部9Aは、その上部に上述した上枠部9B及び下枠部9Cと同様の透光性部材8が嵌め込まれる一対の突出片91Aと、支持レール10に固定される固定片92Aとを備えている。また、左右に配置される一対の縦枠部9Aは、その上面に開口Kが形成され、該開口Kにはカバー部材93AがビスB2により取り付けられるようになっている。   On the other hand, as shown in FIG. 2, the vertical frame portion 9 </ b> A is a long member having a substantially L-shaped cross section, and the pair of vertical frame portions 9 </ b> A arranged on the left and right along the inclination direction of the roof 4 Each is fixed to a support rail 10 mounted on the surface 42. Each vertical frame portion 9A has a pair of protruding pieces 91A into which the same light-transmissive member 8 as the upper frame portion 9B and the lower frame portion 9C described above is fitted, and a fixed piece 92A fixed to the support rail 10. It has. The pair of vertical frame portions 9A arranged on the left and right sides has an opening K formed on the upper surface thereof, and a cover member 93A is attached to the opening K with a screw B2.

周縁部に上記のようなフレーム9が設けられた太陽電池モジュール8は支持レール10によって屋根面42との間に空気流通層Sを介在させた状態で支持されている。
支持レール10は、屋根面42に屋根4の軒先から棟に向けて延在する長尺なものであり、該支持レール10は、棟方向に所定間隔で複数設けられ、隣り合う支持レール10,10によって太陽電池モジュール8が支持されている。
支持レール10は、図2に示すように、内部が中空で縦枠部9Aの固定片92Aを受けてビスB3で固定される縦枠受部101と、この縦枠受部101を支持し、屋根面42上にビスB4で固定される縦枠支持部102とを備えている。縦枠受部101の長手方向に沿った両端には、太陽電池モジュール8及びカバー部材93Aとの間から万が一侵入してきた雨水等が屋根面42上に落ちることを防ぐ止水部103が形成されている。
The solar cell module 8 in which the frame 9 as described above is provided at the periphery is supported by the support rail 10 with the air circulation layer S interposed between the solar cell module 8 and the roof surface 42.
The support rails 10 are long ones that extend from the eaves of the roof 4 toward the ridge on the roof surface 42, and a plurality of the support rails 10 are provided at predetermined intervals in the ridge direction. The solar cell module 8 is supported by 10.
As shown in FIG. 2, the support rail 10 supports the vertical frame receiving portion 101 and the vertical frame receiving portion 101 which is hollow inside and receives the fixing piece 92A of the vertical frame portion 9A and is fixed by screws B3. A vertical frame support portion 102 fixed on the roof surface 42 with screws B4 is provided. At both ends along the longitudinal direction of the vertical frame receiving portion 101, water stop portions 103 are formed to prevent rainwater or the like that has entered from between the solar cell module 8 and the cover member 93 </ b> A from falling on the roof surface 42. ing.

上記のように構成された太陽光発電モジュール8は以下のように屋根面42に取り付けられている。
すなわち、太陽電池モジュール8には、その周縁部が縦枠部9A、上枠部9B及び下枠部9Cの一対の突出片91A、93B、95C内に嵌め込まれることによってフレーム9が取り付けられている。また、図2に示すように、屋根面42上には、支持レール10がその縦枠支持部102がビスB4で固定されることによって取り付けられており、この支持レール102に縦枠部9Aが支持されることによって太陽電池モジュール8が取り付けられている。
具体的には、上下方向に互いに隣接する太陽電池モジュール8は、図3及び図4に示すように、下方に配置される太陽電池モジュール8の上枠部9Bと上方に配置される太陽電池モジュール8の下枠部9Cとにおいて、下枠部9Cの鍔部92Cが上枠部9Bの枠本体91Bの上面に当接するとともに、上枠部9Bの当接片92Bが下枠部9Cの枠本体91Cの側面に当接することによって、互いに遊嵌している。
また、左右方向に互いに隣接する太陽電池モジュール8は、右側に配置される太陽電池モジュール8の縦枠部9Aと左側に配置される太陽電池モジュール8の縦枠部9Aとにおいて、支持レール10の縦枠受部101に各縦枠部9Aの固定片92AがビスB3でそれぞれ固定されている。さらに、これら両縦枠部9Aの上面に形成された開口Kには、ビスB2によりカバー部材93Aが取り付けられている。つまり、左右に隣接する太陽電池モジュール8どうしの間に、カバー部材93Aが配置されている。
このようにして太陽電池モジュール8が、前記屋根面42との間に空気流通層Sを介在させた状態で設けられている。
なお、図1に示すように、太陽電池モジュール8は屋根4の傾斜方向に複数枚設置されるが、棟近傍には、太陽電池モジュール8に代えて、PVセルがないことを除いて太陽電池モジュール8と同様の構造の透明ガラスモジュール8aが設置される。これによって、空気流通層Sの温度上昇と日照量向上を図ることができる。なお、透明ガラスモジュール8aの納まりは、太陽電池モジュール8と同様である。
The photovoltaic power generation module 8 configured as described above is attached to the roof surface 42 as follows.
That is, the frame 9 is attached to the solar cell module 8 by fitting the peripheral edge portion thereof into the pair of projecting pieces 91A, 93B, and 95C of the vertical frame portion 9A, the upper frame portion 9B, and the lower frame portion 9C. . As shown in FIG. 2, the support rail 10 is mounted on the roof surface 42 by fixing the vertical frame support portion 102 with screws B4, and the vertical frame portion 9A is attached to the support rail 102. The solar cell module 8 is attached by being supported.
Specifically, the solar cell modules 8 adjacent to each other in the vertical direction are, as shown in FIGS. 3 and 4, an upper frame portion 9 </ b> B of the solar cell module 8 disposed below and the solar cell module disposed above. 8C, the flange 92C of the lower frame portion 9C contacts the upper surface of the frame main body 91B of the upper frame portion 9B, and the contact piece 92B of the upper frame portion 9B is the frame main body of the lower frame portion 9C. By abutting the side surfaces of 91C, they are loosely fitted to each other.
Further, the solar cell modules 8 adjacent to each other in the left-right direction are formed by the support rails 10 in the vertical frame portion 9A of the solar cell module 8 arranged on the right side and the vertical frame portion 9A of the solar cell module 8 arranged on the left side. A fixed piece 92A of each vertical frame portion 9A is fixed to the vertical frame receiving portion 101 with screws B3. Further, a cover member 93A is attached to the opening K formed on the upper surfaces of both the vertical frame portions 9A by screws B2. That is, the cover member 93 </ b> A is disposed between the solar cell modules 8 adjacent to the left and right.
Thus, the solar cell module 8 is provided in a state where the air circulation layer S is interposed between the solar cell module 8 and the roof surface 42.
As shown in FIG. 1, a plurality of solar cell modules 8 are installed in the inclination direction of the roof 4, but the solar cells except that there are no PV cells in the vicinity of the building instead of the solar cell modules 8. A transparent glass module 8a having the same structure as that of the module 8 is installed. As a result, the temperature of the air circulation layer S can be increased and the amount of sunlight can be improved. The housing of the transparent glass module 8a is the same as that of the solar cell module 8.

また、空気流通層Sは、太陽電池モジュール8の軒先側に取り付けられた面戸46の隙間423と、屋根面42の棟5側に形成されて屋根裏に通じる屋内開口部424とに連通している。また、屋内開口部424には、建物1内に配されて後述する床下11に配置された蓄熱手段12(図4参照)に連通する伝熱手段13が接続されている。
ここで、伝熱手段13を屋根面42の棟5側に形成された屋内開口部424に接続したのは、空気流通層S内で加熱された空気を屋根4の棟5側からそのまま伝熱手段13に伝達することができるためである。つまり、温度の高い空気は屋根4の棟5側に上昇し易いことから、伝熱手段13を棟5側に設けた方が軒先側に設ける場合よりも集熱率が高くなるため好ましい。
The air circulation layer S communicates with a gap 423 of the face door 46 attached to the eaves side of the solar cell module 8 and an indoor opening 424 formed on the ridge 5 side of the roof surface 42 and leading to the attic. Yes. The indoor opening 424 is connected to a heat transfer means 13 which is arranged in the building 1 and communicates with a heat storage means 12 (see FIG. 4) arranged in the floor 11 described later.
Here, the heat transfer means 13 is connected to the indoor opening 424 formed on the ridge 5 side of the roof surface 42 because the air heated in the air circulation layer S is directly transferred from the ridge 5 side of the roof 4. This is because it can be transmitted to the means 13. That is, since high temperature air tends to rise to the ridge 5 side of the roof 4, it is preferable to provide the heat transfer means 13 on the ridge 5 side because the heat collection rate is higher than the case where it is provided on the eaves side.

伝熱手段13としては、空気流通層Sで集熱された熱を伝達するものであれば良く、搬送ファンとダクトの組み合わせの他、例えば熱伝導率の大きなアルミニウムや銅等の金属製のパイプやダクト等が挙げられる。特に、パイプ内に揮発性の液体を封入した周知のヒートパイプが好適である。そして、この伝熱手段13は、建物1を構成する後述する壁パネル14及び床パネル15を貫通して床下11に配されている。   Any heat transfer means 13 may be used as long as it can transfer the heat collected in the air circulation layer S. In addition to a combination of a transport fan and a duct, for example, a metal pipe such as aluminum or copper having a high thermal conductivity. And ducts. In particular, a known heat pipe in which a volatile liquid is sealed in the pipe is suitable. The heat transfer means 13 is disposed under the floor 11 through a wall panel 14 and a floor panel 15 (to be described later) constituting the building 1.

蓄熱手段12としては、蓄熱容量を比較的大きくすることができ、蓄熱効果を高める点で、例えば潜熱を利用して蓄熱する潜熱蓄熱材が好ましい。この潜熱蓄熱材とは、単体、共融混合物、又は凝固点降下物質の融解と凝固の潜熱によって蓄熱と放熱とが行われるものである。具体的には、硫酸ナトリウム10水塩をポリプロピレン性の容器に充填したものや、パラフィンを特殊樹脂加工したアルミシートで封印したもの等を有効に用いることができる。このような蓄熱手段12は、図5に示すように、床下11に所定間隔で複数段設けられており、これら蓄熱手段12に伝熱手段13である搬送ファン・ダクト又はパイプがそれぞれ熱授受可能に連結されている。   As the heat storage means 12, a latent heat storage material that stores heat using latent heat, for example, is preferable in that the heat storage capacity can be made relatively large and the heat storage effect is enhanced. The latent heat storage material is a material that stores and releases heat by melting and solidifying latent heat of a single substance, a eutectic mixture, or a freezing point depressing substance. Specifically, it is possible to effectively use a material in which a sodium sulfate decahydrate is filled in a polypropylene container or a material in which paraffin is sealed with an aluminum sheet processed with a special resin. As shown in FIG. 5, such heat storage means 12 is provided in a plurality of stages at a predetermined interval in the floor 11, and a heat transfer means 13 can transfer heat to the heat storage means 12 by a transfer fan, duct, or pipe, respectively. It is connected to.

ここで、図5に示す床下構造について説明すると、構築された基礎2の内側で地盤G上には防湿土間コンクリート2aが打設されており、基礎2の上端には台輪21が敷き込まれ、台輪21の上面のうちの内側半分に床パネル15の端部、外側半分に半土台22が設置されている。また、半土台22及び床パネル15の端部の上面に壁パネル14が設置されている。台輪21と半土台22及び床パネル15との間には気密性を確保するためのコーキング材23が設けられている。   Here, the underfloor structure shown in FIG. 5 will be described. A moisture-proof interstitial concrete 2 a is placed on the ground G inside the constructed foundation 2, and a pedestal 21 is laid on the upper end of the foundation 2. The end portion of the floor panel 15 is installed on the inner half of the upper surface of the base ring 21, and the semi-base 22 is installed on the outer half. A wall panel 14 is installed on the upper surfaces of the end portions of the semi-base 22 and the floor panel 15. A caulking material 23 for ensuring airtightness is provided between the base 21 and the semi-base 22 and the floor panel 15.

壁パネル14は、框材を矩形枠状に組み立てるとともに、この矩形枠の内部に補強用の桟材を縦横に組み付けて枠体14aを構成し、この枠体14a内に軟質断熱材14bが充填され、枠体14aの両面に合板等の面材14cが設けられてなる。軟質断熱材14bとして
は、例えば、グラスウールやロックウール等が挙げられる。
The wall panel 14 assembles the frame material into a rectangular frame shape and assembles reinforcing bars in the rectangular frame vertically and horizontally to form a frame body 14a. The frame body 14a is filled with a soft heat insulating material 14b. Then, a face material 14c such as a plywood is provided on both surfaces of the frame body 14a. Examples of the soft heat insulating material 14b include glass wool and rock wool.

床パネル15は、框材を矩形枠状に組み立てるとともに、この矩形枠の内部に補強用の桟材を縦横に組み付けて枠体15aを構成し、この枠体15aの片面に合板等の面材15b
が設けられてなる。また、床パネル15内の外側端部と、床パネル15の下面から基礎2の内面に沿って防湿土間コンクリート2aの上面までの間に断熱材151が設けられてい
る。
防湿土間コンクリート2aの上方には、上述の蓄熱手段12が複数段配置されており、これら蓄熱手段12に、壁パネル14内及び床パネル15内に配された前記伝熱手段13が連結されている。
したがって、伝熱手段13を介して蓄熱手段12に蓄熱された熱が放熱することにより、各断熱材151によって断熱されて床暖房とすることができる。ここで、各断熱材151は、伝熱手段13及び蓄熱手段12以外への熱の拡散を防ぐことができ、暖房効果をより一層高めている。
The floor panel 15 assembles the frame material into a rectangular frame shape, and vertically and horizontally assembles reinforcing bars inside the rectangular frame to form a frame body 15a. A surface material such as plywood is formed on one side of the frame body 15a. 15b
Is provided. Further, a heat insulating material 151 is provided between the outer end portion in the floor panel 15 and the lower surface of the floor panel 15 along the inner surface of the foundation 2 to the upper surface of the moisture-proof soil concrete 2a.
Above the moisture-proof soil concrete 2a, the heat storage means 12 is arranged in a plurality of stages, and the heat transfer means 13 disposed in the wall panel 14 and the floor panel 15 is connected to the heat storage means 12. Yes.
Therefore, the heat stored in the heat storage means 12 through the heat transfer means 13 is dissipated, so that the heat can be insulated by each heat insulating material 151 and floor heating can be performed. Here, each heat insulating material 151 can prevent the diffusion of heat to other than the heat transfer means 13 and the heat storage means 12, further enhancing the heating effect.

なお、図3に示す屋根4の軒先側先端には、結合桁43を介して桶44が設けられており、屋根面42の軒先先端から桶44まで水切り45が設けられている。
また、屋根4の棟5側の上端側は、屋根面42上に横部材51が取り付けられており、横部材51上に棟換気金物52aや棟包み52b等で構成された棟役物52で覆われている。
In addition, the eaves side front-end | tip of the roof 4 shown in FIG. 3 is provided with the eaves 44 via the joint girder 43, and the draining 45 is provided from the eaves-end front of the roof surface 42 to the eaves 44.
In addition, the upper end side of the roof 4 on the side of the ridge 5 is provided with a horizontal member 51 on the roof surface 42, and a ridge member 52 constituted by a ridge ventilation hardware 52a, a ridge wrap 52b, etc. on the horizontal member 51. Covered.

本実施の形態によれば、屋根面42に配設された複数の太陽光発電モジュール8によって、太陽光を電気(電力)に変換することができ、建物1で消費する電力を賄うことができる。
また、太陽電池モジュール8と屋根面42との間に空気流通層Sが形成され、さらに、空気流通層Sには床下11の蓄熱手段12に連結する伝熱手段13が接続されているので、太陽熱が太陽電池モジュール8を透光して空気流通層Sの空気に伝達されることによって、その空気が加熱され、さらに伝熱手段13を介して蓄熱手段12で蓄熱される。その結果、蓄熱手段12に蓄熱された熱を床暖房に利用できるとともに、暖房機器等に使用される電力を削減することが可能となる。
このように本発明の太陽光発電集熱システムでは、発電と集熱とを同時に行うことができるため、太陽エネルギーの利用効率の向上を図ることができる。また、発電と集熱の両方を行うために別個の装置を設ける必要もないので、その設置面積の増大を防ぐことができるとともにコスト削減を図ることができる。
According to the present embodiment, sunlight can be converted into electricity (electric power) by the plurality of photovoltaic power generation modules 8 arranged on the roof surface 42, and the power consumed in the building 1 can be covered. .
Moreover, since the air circulation layer S is formed between the solar cell module 8 and the roof surface 42, and further, the heat transfer means 13 connected to the heat storage means 12 of the floor 11 is connected to the air circulation layer S. The solar heat is transmitted through the solar cell module 8 and transmitted to the air in the air circulation layer S, whereby the air is heated and further stored in the heat storage means 12 via the heat transfer means 13. As a result, the heat stored in the heat storage means 12 can be used for floor heating, and the electric power used for the heating device or the like can be reduced.
Thus, in the solar power generation heat collecting system of the present invention, since power generation and heat collection can be performed at the same time, utilization efficiency of solar energy can be improved. Further, since it is not necessary to provide a separate device for performing both power generation and heat collection, an increase in the installation area can be prevented and cost reduction can be achieved.

また、建物1の屋根面42に、太陽電池モジュール8が屋根面42との間に空気流通層Sを介在させた状態で設けられているので、空気流通層Sを形成するための従来のような透光性部材を必要としない。
したがって、太陽光発電モジュール8の設置作業だけで、太陽光発電モジュール8の設置とともに、空気流通層Sを形成できる。したがって、施工が容易となるとともに、透光性部材が不要となるので、その分部品点数を軽減できる。
さらに、伝熱手段13が、屋根4の棟側において空気流通層Sに接続されているので、空気流通層S内で加熱された空気を屋根4の棟側からそのまま伝熱手段12に伝達することができる。つまり、温度の高い空気は屋根4の棟側に上昇し易いことから、伝熱手段13を棟側に設けた方が軒先側に設ける場合よりも集熱率が高くなるため好ましい。
Further, since the solar cell module 8 is provided on the roof surface 42 of the building 1 with the air circulation layer S interposed between the solar cell module 8 and the roof surface 42, the conventional method for forming the air circulation layer S is provided. A transparent member is not required.
Therefore, the air circulation layer S can be formed together with the installation of the solar power generation module 8 only by the installation work of the solar power generation module 8. Therefore, the construction is facilitated, and the translucent member is not required, so that the number of parts can be reduced accordingly.
Furthermore, since the heat transfer means 13 is connected to the air circulation layer S on the ridge side of the roof 4, the air heated in the air circulation layer S is directly transferred from the ridge side of the roof 4 to the heat transfer means 12. be able to. That is, since air with high temperature tends to rise to the ridge side of the roof 4, it is preferable to provide the heat transfer means 13 on the ridge side because the heat collection rate is higher than the case where it is provided on the eaves side.

また、太陽電池モジュール8は屋根面42に設けられた支持レール10によって支持されているので、太陽電池モジュール8を屋根面42に該屋根面42との間に空気流通層Sを介在させた状態で容易かつ確実に設置することができる。
また、屋根4の軒先から棟に向けて延在する支持レール10が棟方向に所定間隔で複数設けられており、伝熱手段13が屋根の棟側において空気流通層Sに接続されているので、空気流通層S内で加熱された空気が支持レール10の延在方向に沿ってスムーズに流れて、伝熱手段13に至る。
また、蓄熱手段14が潜熱蓄熱材であるので、蓄熱容量を比較的大きくすることができ、また、蓄熱温度が安定するので蓄熱効果を高めることができる。
Moreover, since the solar cell module 8 is supported by the support rail 10 provided on the roof surface 42, the solar cell module 8 is in a state where the air circulation layer S is interposed between the roof surface 42 and the roof surface 42. It can be installed easily and reliably.
Further, a plurality of support rails 10 extending from the eaves of the roof 4 toward the ridge are provided at predetermined intervals in the ridge direction, and the heat transfer means 13 is connected to the air circulation layer S on the ridge side of the roof. The air heated in the air circulation layer S flows smoothly along the extending direction of the support rail 10 and reaches the heat transfer means 13.
Moreover, since the heat storage means 14 is a latent heat storage material, the heat storage capacity can be made relatively large, and since the heat storage temperature is stabilized, the heat storage effect can be enhanced.

なお、本実施の形態では、建物1として、壁パネル14、床パネル15を複数組み合わせたパネル工法による建物1を例に挙げたが、これに限らず、箱状に形成された建物ユニットを複数組み合わせたユニット式建物や、柱及び梁を建築現場で接合する在来工法からなる一般的な建物であっても構わない。
また、本実施の形態では、蓄熱手段12を床下に設置したが、例えば、図6に示すように、建物の1階と2階との間に天井高が0.9〜1.4m程度の収納空間Kがある場合、この収納空間Kに蓄熱手段12を設置してもよい。この場合、空気流通層Sに開口する屋根開口部424に伝熱手段13を接続し、この伝熱手段13を壁パネル及や床パネルを貫通したうえで、収納空間Kに配して、蓄熱手段12に接続すればよい。
In addition, in this Embodiment, although the building 1 by the panel construction method which combined the wall panel 14 and the floor panel 15 was mentioned as an example as the building 1, not only this but the building unit formed in the box shape is several. It may be a combined unit type building or a general building made of a conventional method of joining columns and beams at a construction site.
Moreover, in this Embodiment, although the thermal storage means 12 was installed under the floor, as shown in FIG. 6, for example, the ceiling height is about 0.9 to 1.4 m between the first floor and the second floor of the building. When there is a storage space K, the heat storage means 12 may be installed in the storage space K. In this case, the heat transfer means 13 is connected to the roof opening 424 that opens to the air circulation layer S, and the heat transfer means 13 passes through the wall panel and the floor panel, and is then disposed in the storage space K to store heat. What is necessary is just to connect to the means 12.

本発明の実施の形態を示すためのもので、太陽光発電集熱システムを備えた建物の外観斜視図である。It is for showing embodiment of this invention, and is an external appearance perspective view of the building provided with the photovoltaic power generation heat collecting system. 同、図1におけるX−X断面図である。It is XX sectional drawing in FIG. 同、図1におけるY−Y断面図である。FIG. 2 is a sectional view taken along line YY in FIG. 同、図3の要部拡大図である。FIG. 4 is an enlarged view of the main part of FIG. 3. 同、床下構造を示す側断面図である。It is a side sectional view showing the underfloor structure. 同、蓄熱手段を収納空間Kに設置した状態を示す建物の断面図である。It is sectional drawing of the building which shows the state which installed the thermal storage means in the storage space K same as the above.

符号の説明Explanation of symbols

1 建物
4 屋根
5 棟
8 シースルー型太陽光発電モジュール
10 支持レール
12 蓄熱手段
13 伝熱手段
42 屋根面
S 空気流通層
DESCRIPTION OF SYMBOLS 1 Building 4 Roof 5 Building 8 See-through type solar power generation module 10 Support rail 12 Heat storage means 13 Heat transfer means 42 Roof surface S Air circulation layer

Claims (4)

建物の屋根面に、シースルー型太陽電池モジュールが前記屋根面との間に空気流通層を介在させた状態で設けられており、
前記空気流通層には、建物内に配置されて熱を蓄える蓄熱手段に連結する伝熱手段が接続されていることを特徴とする太陽光発電集熱システム。
On the roof surface of the building, a see-through solar cell module is provided with an air circulation layer interposed between the roof surface and the roof surface,
The solar power generation heat collecting system, wherein the air circulation layer is connected to a heat transfer means connected to a heat storage means arranged in a building to store heat.
請求項1に記載の太陽光発電集熱システムにおいて、
前記伝熱手段は、前記屋根の棟側において前記空気流通層に接続されていることを特徴とする太陽光発電集熱システム。
In the solar power generation heat collecting system according to claim 1,
The solar heat collecting system, wherein the heat transfer means is connected to the air circulation layer on the roof ridge side.
請求項1または2に記載の太陽光発電集熱システムにおいて、
前記屋根面には、屋根の軒先から棟に向けて延在する支持レールが棟方向に所定間隔で複数設けられ、これら支持レールによって前記シースルー型太陽電池モジュールが支持されていることを特徴とする太陽光発電集熱システム。
In the solar energy collection system of Claim 1 or 2,
A plurality of support rails extending from the eaves of the roof toward the ridge are provided at predetermined intervals in the ridge direction on the roof surface, and the see-through solar cell module is supported by the support rails. Solar power collection system.
請求項1〜3のいずれか一項に記載の太陽光発電集熱システムにおいて、
前記蓄熱手段は、潜熱を利用して蓄熱する潜熱蓄熱材であり、所定間隔に複数段設けられていることを特徴とする太陽光発電集熱システム。
In the solar power generation heat collecting system as described in any one of Claims 1-3,
The heat storage means is a latent heat storage material that stores heat using latent heat, and is provided with a plurality of stages at predetermined intervals.
JP2008269486A 2008-10-20 2008-10-20 Solar power collection system Active JP5350744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269486A JP5350744B2 (en) 2008-10-20 2008-10-20 Solar power collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269486A JP5350744B2 (en) 2008-10-20 2008-10-20 Solar power collection system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013084479A Division JP2013178084A (en) 2013-04-15 2013-04-15 Photovoltaic power generation heat collecting system

Publications (2)

Publication Number Publication Date
JP2010096468A true JP2010096468A (en) 2010-04-30
JP5350744B2 JP5350744B2 (en) 2013-11-27

Family

ID=42258281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269486A Active JP5350744B2 (en) 2008-10-20 2008-10-20 Solar power collection system

Country Status (1)

Country Link
JP (1) JP5350744B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976007A1 (en) * 2011-05-31 2012-12-07 All Star Corp Ltd MODULAR COVER DEVICE
EP2530404A3 (en) * 2011-05-31 2014-06-11 All Star Corporation Limited Modular cover
JP2015068581A (en) * 2013-09-30 2015-04-13 株式会社Lixil Solar energy utilization system
CN113684935A (en) * 2021-08-26 2021-11-23 苏州邦得建筑科技有限责任公司 Healthy intelligent building of ultralow energy consumption

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266477A (en) * 1990-03-15 1991-11-27 Sanyo Electric Co Ltd Solar energy collector
JP2004039942A (en) * 2002-07-05 2004-02-05 National Institute Of Advanced Industrial & Technology Hybrid solar module
JP2004317117A (en) * 2003-04-02 2004-11-11 Showa Denko Kk Solar heat collector with solar power generation function
JP2005226978A (en) * 2004-02-16 2005-08-25 Misawa Homes Co Ltd Photovoltaic power generation heat collecting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266477A (en) * 1990-03-15 1991-11-27 Sanyo Electric Co Ltd Solar energy collector
JP2004039942A (en) * 2002-07-05 2004-02-05 National Institute Of Advanced Industrial & Technology Hybrid solar module
JP2004317117A (en) * 2003-04-02 2004-11-11 Showa Denko Kk Solar heat collector with solar power generation function
JP2005226978A (en) * 2004-02-16 2005-08-25 Misawa Homes Co Ltd Photovoltaic power generation heat collecting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976007A1 (en) * 2011-05-31 2012-12-07 All Star Corp Ltd MODULAR COVER DEVICE
EP2530404A3 (en) * 2011-05-31 2014-06-11 All Star Corporation Limited Modular cover
JP2015068581A (en) * 2013-09-30 2015-04-13 株式会社Lixil Solar energy utilization system
CN113684935A (en) * 2021-08-26 2021-11-23 苏州邦得建筑科技有限责任公司 Healthy intelligent building of ultralow energy consumption

Also Published As

Publication number Publication date
JP5350744B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
EP2338010B1 (en) Supporting frame for constructing a building including a thermal panel and a photovoltaic panel
WO1994016170A1 (en) Roof installed with solar batteries
JP2009162046A (en) Modular element equipped with solar cell module
JP5350744B2 (en) Solar power collection system
SE1951313A1 (en) Ventilated solar panel roof
JP5290061B2 (en) Solar power collection system
JP3481032B2 (en) Double roof structure using solar cell module in flat roof building
JP4676705B2 (en) Solar power collection system
JP2013178084A (en) Photovoltaic power generation heat collecting system
CN216766399U (en) Prefabricated photovoltaic integrated plate containing moisture management system and assembled photovoltaic enclosure system
CN210405221U (en) Solar energy device
JP6110920B2 (en) Solar power collection system
JP2565611B2 (en) Roof with solar cells
JP5608573B2 (en) Solar heat collection system
JP2001090296A (en) Solar-ray generating device
Kruglov Design Methodology and Experimental Investigation of a Multiple-Inlet BIPV/T System in a Curtain Wall Facade Assembly and Roof Application
Aschehoug et al. BP SOLAR SKIN-a façade concept for a sustainable future
KR101641872B1 (en) The Attachment-Type Solar Module Frame for Outer Wall Construction of Building
JPH1162144A (en) Roof with solar cell
KR20130014757A (en) The wall and roof of water -conditioning or water-heating function
JP6415797B2 (en) Exterior structure using solar cells
JP2006274551A (en) Photovoltaic generation system
JP2563718B2 (en) Roof with solar cells
JP2002277062A (en) Hybrid solar energy device
JP3119817B2 (en) Solar cell panel mounting structure and solar cell panel mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150