JP2010096431A - Combustion control method and combustion control device of fine powder-like fuel - Google Patents

Combustion control method and combustion control device of fine powder-like fuel Download PDF

Info

Publication number
JP2010096431A
JP2010096431A JP2008267746A JP2008267746A JP2010096431A JP 2010096431 A JP2010096431 A JP 2010096431A JP 2008267746 A JP2008267746 A JP 2008267746A JP 2008267746 A JP2008267746 A JP 2008267746A JP 2010096431 A JP2010096431 A JP 2010096431A
Authority
JP
Japan
Prior art keywords
nox
fuel
concentration
fuel ratio
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267746A
Other languages
Japanese (ja)
Other versions
JP5255980B2 (en
Inventor
Umihiro Boku
海洋 朴
Katsuya Akiyama
勝哉 秋山
Toshiya Tada
俊哉 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008267746A priority Critical patent/JP5255980B2/en
Publication of JP2010096431A publication Critical patent/JP2010096431A/en
Application granted granted Critical
Publication of JP5255980B2 publication Critical patent/JP5255980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control device of fine powder-like fuel capable of achieving low NOx combustion while effectively utilizing solid fuel other than bituminous coal which has not been satisfactorily used from a practical point of view, in a boiler which mixes and burns the fine powder-like fuel formed of a plurality of kinds of solid fuel. <P>SOLUTION: The combustion control device includes a computing unit 8 and coal supply amount adjusting devices 3, 3. The computing unit collects data of a past fuel ratio of fine powder coal C formed of two kinds of mixed/crushed coals A, B, and a past NOx concentration in exhaust gas D to obtain NOx a peak concentration and a NOx peak fuel ratio, sets a NOx acceptable concentration beforehand based on the NOx peak concentration, compares a present NOx concentration measured by a gas analyzer 7 with the NOx acceptable concentration, and when the present NOx concentration exceeds the NOx acceptable concentration, issues a command of changing the combination rate of the coals A, B so as to lower the NOx concentration in the exhaust gas D to be the same as or lower than the NOx acceptable concentration by adjusting the fuel ratio of the fine powder coal C to be farther from the NOx peak fuel ratio. The coal supply amount adjusting devices change supply amounts of the coals A, B based on the command. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微粉炭などの微粉状燃料を燃料とするボイラにおける燃焼制御技術に関する。   The present invention relates to a combustion control technique in a boiler using pulverized fuel such as pulverized coal as fuel.

石炭は、その燃料比の高いほうからから順に、無煙炭、瀝青炭、亜瀝青炭、褐炭に大きく分類されるが、現状の微粉炭燃焼ボイラでは、主に瀝青炭など燃料比が1.0〜1.5の範囲にある高品位の石炭が利用されている。ここで、石炭の評価指数である燃料比は、固定炭素/揮発分(質量比)で定義される値であり、低品位と呼ばれる褐炭になるほど燃料比は小さくなる。   Coal is roughly classified into anthracite, bituminous coal, subbituminous coal, and lignite in descending order of the fuel ratio. However, in the present pulverized coal combustion boiler, the fuel ratio of mainly bituminous coal is 1.0 to 1.5. High-grade coal in the range is used. Here, the fuel ratio, which is an evaluation index of coal, is a value defined by fixed carbon / volatile matter (mass ratio), and the fuel ratio becomes smaller as the lignite is called low grade.

微粉炭の燃焼において問題となるのはNOxやSOxの発生であるが、特に低NOx化は最も重要な課題の一つであり、従来から種々の対策が行われてきた。   The problem in combustion of pulverized coal is the generation of NOx and SOx. Particularly, the reduction of NOx is one of the most important issues, and various countermeasures have been conventionally taken.

例えば、特許文献1、2で提案されるように、微粉炭燃焼バーナ部の構造を工夫することにより低NOx化が実現されてきた。   For example, as proposed in Patent Documents 1 and 2, low NOx has been realized by devising the structure of the pulverized coal combustion burner part.

一方、将来における高品位資源の枯渇や供給コストの上昇の観点から、瀝青炭以外の石炭をもボイラで使用することが要請されている。   On the other hand, from the viewpoint of depleting high-grade resources and increasing supply costs in the future, it is required to use coal other than bituminous coal in the boiler.

しかしながら、燃料比の高い石炭を燃焼する場合には、揮発分に比べて固定炭素分の割合が高いことから、着火性や燃焼性が劣る問題がある。そこで、特許文献3には、固定炭素分の多い高燃料比炭と固定炭素分の低い低燃料比炭を混焼する燃焼方法において、高燃料比炭の粒径を低燃料比炭の粒径よりも細かくして燃焼を促進させる方法が提案されているが、粉砕に要するエネルギが増大し、コストが上昇する課題が残っている。   However, when burning coal with a high fuel ratio, there is a problem that the ignitability and combustibility are inferior because the ratio of the fixed carbon content is higher than the volatile content. Therefore, in Patent Document 3, in the combustion method of co-firing high fuel specific coal with a high fixed carbon content and low fuel specific coal with a low fixed carbon content, the particle size of the high fuel specific coal is set to be smaller than the particle size of the low fuel specific coal. Although a method for promoting combustion in a finer manner has been proposed, there remains a problem that the energy required for pulverization increases and the cost increases.

他方、燃料比の低い石炭の種類には褐炭が含まれるが、褐炭はその水分含有量の高さから実用に至っていないのが現状である。しかしながら、例えば特許文献4に開示された油中脱水技術を用いれば、褐炭から上記高含有水分を除去して、低水分含有量で低燃料比の燃料に改質することができ、このような改質褐炭の利用技術が検討されている。   On the other hand, lignite is included in the types of coal with a low fuel ratio, but lignite is not in practical use due to its high water content. However, for example, if the dehydration technique in oil disclosed in Patent Document 4 is used, the high moisture content can be removed from lignite and reformed into a fuel with a low moisture content and a low fuel ratio. Technology for using modified lignite is being studied.

また、特許文献5には、多種類の石炭を混焼させる燃焼炉において、石炭の燃料比や燃料中N分を制御回路にインプットし、排ガス中のO濃度、灰分の未燃分、NH注入量の因子から二段燃焼用空気量を制御することで、NOxを制御する方法が開示されている。しかしながら、この技術は決められた燃料配合条件の下で二段燃焼用空気量を制御することでNOxを制御するものであり、本発明のように燃料配合条件そのものを制御手段とするものではなく、両者の技術思想は全く異なるものである。
特開2001−82706号公報 特開平6−272810号公報 特公平5−17445号公報 特開平7−233383号公報 特開昭63−207894号公報
Further, in Patent Document 5, in a combustion furnace in which many types of coal are co-fired, the coal fuel ratio and the N content in the fuel are input to the control circuit, and the O 2 concentration in the exhaust gas, the unburned ash content, NH 3 A method of controlling NOx by controlling the amount of air for two-stage combustion from an injection amount factor is disclosed. However, this technique controls NOx by controlling the amount of air for two-stage combustion under a predetermined fuel blending condition, and does not use the fuel blending condition itself as a control means as in the present invention. Both technical ideas are completely different.
JP 2001-82706 A JP-A-6-272810 Japanese Patent Publication No. 5-17445 JP 7-233383 A JP-A 63-207894

そこで本発明の目的は、複数種類の固体燃料からなる微粉状燃料を混焼するボイラにおいて、実用上、従来十分に利用されて来なかった、瀝青炭以外の固体燃料を有効に活用しつつ、低NOx燃焼を実現しうる微粉状燃料の燃焼制御方法および燃焼制御装置を提供することにある。   Accordingly, an object of the present invention is to effectively use a solid fuel other than bituminous coal, which has not been sufficiently used in practice, in a boiler for co-firing finely pulverized fuels composed of a plurality of types of solid fuels. An object of the present invention is to provide a combustion control method and a combustion control device for finely pulverized fuel capable of realizing combustion.

発明者らは、上記課題を解決すべく、先ず、微粉炭燃焼試験炉(炉内径400mm、炉内有効高さ3650mm)にて、固体燃料の投入熱量は600kW一定の条件下で、一次空気および300℃に予熱した二次空気を用いて、基準燃料としての瀝青炭Aに、これと燃料比の異なる4種類の固体燃料(B、C、D、E)を、それぞれ配合割合を順次変更して混焼する試験を実施し、炉出口において採取した排ガス中のNOx濃度の変化を調査した。   In order to solve the above problems, the inventors firstly, in a pulverized coal combustion test furnace (furnace inner diameter 400 mm, furnace effective height 3650 mm), the amount of heat input to the solid fuel is 600 kW, and the primary air and Using secondary air preheated to 300 ° C, bituminous coal A as the reference fuel, and four types of solid fuels (B, C, D, E) with different fuel ratios were changed in order, respectively. A test for co-firing was conducted, and changes in the NOx concentration in the exhaust gas collected at the furnace outlet were investigated.

下記表1に、燃焼試験に用いた各固体燃料の燃料比と燃料中N分とを示す。

Figure 2010096431
Table 1 below shows the fuel ratio of each solid fuel used in the combustion test and the N content in the fuel.
Figure 2010096431

燃焼試験の結果を図2および図3に示す。図2は、混合後の微粉状燃料の燃料比と排ガス中のNOx濃度との関係を示すものであり、図3は、混合後の微粉状燃料の燃料中N分と排ガス中のNOx濃度との関係を示すものである。ここに、混合後の微粉状燃料の燃料比および燃料中N分は、配合された各固体燃料の燃料比および燃料中N分をそれぞれ加重平均して求めた値である。また、排ガス中のNOx濃度(O:6容量%換算)は、排ガス中の実測のNOx濃度とO濃度より下記式(1)を用いて換算したものである。 The results of the combustion test are shown in FIGS. FIG. 2 shows the relationship between the fuel ratio of the pulverized fuel after mixing and the NOx concentration in the exhaust gas, and FIG. 3 shows the N content in the fuel and the NOx concentration in the exhaust gas after mixing. This shows the relationship. Here, the fuel ratio of the pulverized fuel after mixing and the N content in the fuel are values obtained by weighted averaging of the fuel ratio of each blended solid fuel and the N content in the fuel, respectively. Further, the NOx concentration in the exhaust gas (O 2 : 6 volume% conversion) is converted from the measured NOx concentration and O 2 concentration in the exhaust gas using the following formula (1).

[NOx濃度(O:6容量%換算)(ppm)]=[実測NOx濃度(ppm)]×(21−6)/(21−[実測O濃度(容量%)]) …式(1) [NOx concentration (O 2 : 6 vol% conversion) (ppm)] = [actual NOx concentration (ppm)] × (21−6) / (21− [actual O 2 concentration (capacity%)]) Equation (1 )

図2に示すように、微粉状燃料の燃料比と排ガス中のNOx濃度とは、混焼する燃料の種類に拠らず、ほぼ一定の関係にあることが認められる。そして、排ガス中のNOx濃度は、微粉状燃料の燃料比が1.0〜1.5の間(本例では約1.2)でピーク値を示し、燃料比がピーク値を示す燃料比から遠ざかるほど(燃料比の低い側、高い側とも)NOx濃度が低下することがわかった。   As shown in FIG. 2, it is recognized that the fuel ratio of the pulverized fuel and the NOx concentration in the exhaust gas are in a substantially constant relationship regardless of the type of fuel to be co-fired. The NOx concentration in the exhaust gas shows a peak value when the fuel ratio of the pulverized fuel is between 1.0 and 1.5 (about 1.2 in this example), and the fuel ratio shows the peak value. It has been found that the NOx concentration decreases as the distance increases (both on the low and high fuel ratio sides).

一方、図3に示すように、排ガス中のNOx濃度は、微粉状燃料の燃料中N分にほとんど影響されないことがわかる。   On the other hand, as shown in FIG. 3, it can be seen that the NOx concentration in the exhaust gas is hardly influenced by the N content in the fuel of the finely divided fuel.

上記図2および図3に示す結果を総合的に考察すると、N分の少ない改質褐炭C、Dの配合割合を増加させた場合に排ガス中のNOx濃度が低下するのは、単に混合後の微粉状燃料の燃料中N分が減少したことによるものではなく、混合後の微粉状燃料の燃料比が低下することに起因するものと判断できる。   Considering the results shown in FIG. 2 and FIG. 3 comprehensively, the NOx concentration in the exhaust gas decreases when the blending ratio of the modified lignites C and D with a small N content is simply increased after mixing. It can be determined that this is not due to a decrease in the N content in the fuel of the pulverized fuel but to a decrease in the fuel ratio of the pulverized fuel after mixing.

一方、混合後の微粉状燃料の燃料比が、NOx濃度がピーク値を示す燃料比よりも高くなる側でもNOx濃度が低下しているが、この試験結果は、微粉炭(微粉状燃料)の燃料比が高くなるほど排ガス中のNOx濃度が上昇するという従来の技術常識(例えば、上記特許文献5の第7図、上記特許文献3の第2頁左欄20〜28行参照)とは逆の傾向になっている。このように従来の技術常識と異なる試験結果が得られた理由は、以下のように想定される。   On the other hand, although the fuel ratio of the pulverized fuel after mixing is higher on the side where the NOx concentration becomes higher than the fuel ratio at which the peak value is reached, this test result shows that pulverized coal (pulverized fuel) Contrary to the conventional technical common sense that the NOx concentration in the exhaust gas increases as the fuel ratio increases (for example, refer to FIG. 7 of Patent Document 5 and page 2, left column 20-28 of Patent Document 3). It has become a trend. The reason why the test result different from the conventional technical common sense is obtained is assumed as follows.

すなわち、上記特許文献3および5の当時には、ボイラのバーナ部において、微粉炭を1段の空気吹込みで完全燃焼させるようにしていたため、微粉炭の燃料比が高くなると揮発分が少なくなり雰囲気の還元性が低下してNOx生成が増加する傾向を示していた(上記特許文献3の第2頁左欄20〜28行参照)。   That is, at the time of the above-mentioned Patent Documents 3 and 5, since the pulverized coal was completely burned by blowing one stage of air in the burner part of the boiler, the volatile matter decreased when the fuel ratio of the pulverized coal increased, and the atmosphere The reduction property of NOx decreased and NOx production increased (see the second column, left column, lines 20 to 28 of Patent Document 3).

これに対し、近年では、NOxの生成を抑制するため、バーナ部において空気を多段(通常2段または3段)に分けて吹き込むことが行われている(例えば、上記特許文献1参照)。これにより、1段目の空気吹込み部で微粉炭を不完全燃焼させて雰囲気をより還元性にすることでNOxの生成を抑制している。そして、このような条件下で操業されているボイラにて高燃料比微粉炭を混焼すると、1段目の空気吹込み部で発生したNOxと燃焼し切れなかった高燃料比微粉炭由来の未燃チャーとが、2段目以降の空気吹込み部に持ち込まれ、該未燃チャーを還元材としてNOxが還元される(2NOx+xC→N+xCO)ため、排ガス中のNOx濃度が低下するものと考えられる。 On the other hand, in recent years, in order to suppress the generation of NOx, air is blown into multiple stages (usually two stages or three stages) in the burner section (see, for example, Patent Document 1). Thereby, the generation of NOx is suppressed by making the atmosphere more reducible by incompletely burning the pulverized coal in the first stage air blowing section. When high-fuel ratio pulverized coal is co-fired in a boiler operating under such conditions, NOx generated in the first stage air blowing section and unburned high-fuel ratio pulverized coal derived Combustion char is brought into the air blowing section after the second stage, and NOx is reduced using the unburned char as a reducing material (2NOx + xC → N 2 + xCO), so that the NOx concentration in the exhaust gas decreases. Conceivable.

上記知見に基づき、さらに検討を進めた結果、以下の発明を完成させるに至った。   As a result of further investigation based on the above findings, the following invention has been completed.

請求項1に記載の発明は、複数種類の固体燃料からなる微粉状燃料を混焼するボイラにおける燃焼制御方法であって、過去の操業結果から得られた、前記微粉状燃料の燃料比と前記ボイラの排ガス中のNOx濃度との関係より、該NOx濃度のピーク値(以下、「NOxピーク濃度」という。)と、該NOxピーク値を示す燃料比(以下、「NOxピーク燃料比」という。)とを求め、前記NOxピーク値に基づいて前記NOx濃度の許容値(以下、「NOx許容濃度」という。)を予め設定しておき、現状の操業にて測定された前記排ガス中のNOx濃度が前記NOx許容濃度を超えたときには、前記複数種類の固体燃料の配合割合を変更して前記微粉状燃料の燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより前記排ガス中のNOx濃度を前記NOx許容濃度以下に低下させることを特徴とする微粉状燃料の燃焼制御方法である。   The invention according to claim 1 is a combustion control method in a boiler that co-fires fine powder fuel composed of a plurality of types of solid fuel, and the fuel ratio of the fine powder fuel and the boiler obtained from past operation results. The NOx concentration peak value (hereinafter referred to as “NOx peak concentration”) and the fuel ratio indicating the NOx peak value (hereinafter referred to as “NOx peak fuel ratio”). Based on the NOx peak value, an allowable value of the NOx concentration (hereinafter referred to as “NOx allowable concentration”) is set in advance, and the NOx concentration in the exhaust gas measured in the current operation is determined. When the NOx allowable concentration is exceeded, the blending ratio of the plurality of types of solid fuels is changed to adjust the fuel ratio of the pulverized fuel in a direction away from the NOx peak fuel ratio. A combustion control method pulverulent fuel, characterized in that to reduce the NOx concentration in the gas below the NOx allowable concentration.

請求項2に記載の発明は、前記微粉状燃料が、燃料比1.0〜1.5の主燃料と、燃料比1.0未満の副燃料とからなり、前記微粉状燃料の燃料比の調整を、前記副燃料の配合割合を高めることにより行う請求項1に記載の微粉状燃料の燃焼制御方法である。   According to a second aspect of the present invention, the pulverized fuel is composed of a main fuel having a fuel ratio of 1.0 to 1.5 and an auxiliary fuel having a fuel ratio of less than 1.0. 2. The method for controlling combustion of fine powder fuel according to claim 1, wherein the adjustment is performed by increasing the blending ratio of the auxiliary fuel.

請求項3に記載の発明は、前記微粉状燃料が、燃料比1.0〜1.5の主燃料と、燃料比1.5超の副燃料とからなり、前記微粉状燃料の燃料比の調整を、前記副燃料の配合割合を高めることにより行う請求項1に記載の微粉状燃料の燃焼制御方法である。   According to a third aspect of the present invention, the pulverized fuel is composed of a main fuel having a fuel ratio of 1.0 to 1.5 and a secondary fuel having a fuel ratio of more than 1.5. 2. The method for controlling combustion of fine powder fuel according to claim 1, wherein the adjustment is performed by increasing the blending ratio of the auxiliary fuel.

請求項4に記載の発明は、複数種類の固体燃料からなる微粉状燃料を混焼するボイラにおける燃焼制御装置であって、前記ボイラの排ガス中のNOx濃度を測定するガス分析手段と、過去の操業における、前記微粉状燃料の燃料比(以下、「過去燃料比」という。)と、前記ガス分析手段で測定された排ガス中のNOx濃度(以下、「過去NOx濃度」という。)とをデータとして集積し、該過去燃料比と該過去NOx濃度との関係より該過去NOx濃度のピーク値(以下、「NOxピーク濃度」という。)と、該NOxピーク濃度を示す燃料比(以下、「NOxピーク燃料比」という。)とを求め、前記NOxピーク濃度に基づいて前記排ガス中のNOx濃度の許容値(以下、「NOx許容濃度」という。)を予め設定するとともに、現在の操業にて前記ガス分析手段で測定されたNOx濃度(以下、「現在NOx濃度」という。)と、前記NOx許容濃度とを比較し、該現在NOx濃度が前記NOx許容濃度を超えたときには、前記微粉状燃料の燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより前記排ガス中のNOx濃度を前記NOx許容濃度以下に低下させるように前記複数種類の固体燃料の配合割合を変更する指令を発する演算手段と、該指令に基づいて、前記複数種類の固体燃料の供給量を変更する燃料供給量調節手段と、を備えたことを特徴とする微粉状燃料の燃焼制御装置である。   The invention according to claim 4 is a combustion control device in a boiler that co-fires finely pulverized fuel composed of a plurality of types of solid fuel, the gas analyzing means for measuring the NOx concentration in the exhaust gas of the boiler, and the past operation The fuel ratio of the pulverized fuel (hereinafter referred to as “past fuel ratio”) and the NOx concentration in the exhaust gas (hereinafter referred to as “past NOx concentration”) measured by the gas analyzer are used as data. Based on the relationship between the past fuel ratio and the past NOx concentration, the past NOx concentration peak value (hereinafter referred to as “NOx peak concentration”) and the fuel ratio indicating the NOx peak concentration (hereinafter referred to as “NOx peak”). Fuel ratio ”)), and a preset allowable value of NOx concentration in the exhaust gas (hereinafter referred to as“ NOx allowable concentration ”) based on the NOx peak concentration, The NOx concentration (hereinafter referred to as “current NOx concentration”) measured by the gas analyzing means in operation is compared with the NOx allowable concentration. When the current NOx concentration exceeds the NOx allowable concentration, A command to change the blending ratio of the plurality of types of solid fuels so as to lower the NOx concentration in the exhaust gas below the allowable NOx concentration by adjusting the fuel ratio of the pulverized fuel away from the NOx peak fuel ratio. And a fuel supply amount adjusting means for changing supply amounts of the plurality of types of solid fuel based on the command.

本発明によれば、複数種類の固体燃料の配合割合を変更して微粉状燃料の燃料比を調整することにより排ガス中のNOx濃度のピーク値から遠ざけるように制御することで、多様な固体燃料を有効に活用しつつ、より確実に低NOx燃焼を実現できる。   According to the present invention, various solid fuels can be controlled by changing the blending ratio of a plurality of types of solid fuels and adjusting the fuel ratio of the finely divided fuel to keep away from the peak value of the NOx concentration in the exhaust gas. Low NOx combustion can be realized more reliably while effectively utilizing the.

以下、本発明の実施形態について図1を参照しつつ詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

図1は、本発明に係る微粉状燃料燃焼装置の一実施形態を示す概略フロー図である。   FIG. 1 is a schematic flow diagram showing an embodiment of a pulverized fuel combustion apparatus according to the present invention.

符号1,2は、燃料比の異なる2種類の石炭A,Bをそれぞれ保持する石炭ホッパ、符号3,3は、石炭ホッパ1,2からの石炭A,Bの切り出し量を調整する石炭供給量調節装置(燃料供給量調節手段)、符号4は切り出された2種類の石炭A,Bを混合する混合機、符号5は、混合後の石炭を粉砕して微粉炭Cとする粉砕機、符号6は、空気とともに吹き込まれた微粉炭Cを燃焼するボイラ、符号7は、ボイラ7からの排ガスD中のNOx濃度を測定するガス分析器(ガス分析手段)である。   Reference numerals 1 and 2 are coal hoppers respectively holding two types of coals A and B having different fuel ratios, and reference numerals 3 and 3 are coal supply amounts for adjusting the cut-out amounts of the coals A and B from the coal hoppers 1 and 2. Adjusting device (fuel supply amount adjusting means), reference numeral 4 is a mixer for mixing the two types of cut coals A and B, reference numeral 5 is a pulverizer for pulverizing the mixed coal into pulverized coal C, reference numeral Reference numeral 6 denotes a boiler that burns pulverized coal C blown together with air, and reference numeral 7 denotes a gas analyzer (gas analysis means) that measures the NOx concentration in the exhaust gas D from the boiler 7.

また、符号8は演算器(演算手段)であって、過去の操業における、微粉炭Cの燃料比(以下、「過去燃料比」という。)と、ガス分析器7で測定された排ガスD中のNOx濃度(以下、「過去NOx濃度」という。)とをデータとして集積し、該過去燃料比と該過去NOx濃度との関係より得られた、該NOx濃度のピーク値(以下、「NOxピーク濃度」という。)と、該ピーク値を示す燃料比(以下、「NOxピーク燃料比」という。)とを求め、前記NOxピーク濃度に基づいて排ガスD中のNOx濃度の許容値(以下、「NOx許容濃度」という。)を設定するとともに、現在の操業にてガス分析器7で測定されたNOx濃度(以下、「現在NOx濃度」という。)と、前記NOx許容濃度とを比較し、該現在NOx濃度が前記NOx許容値を超えたときには、微粉炭Cの燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより排ガスD中のNOx濃度を前記NOx許容濃度以下に低下させるように石炭A,Bの配合割合を変更する指令を石炭供給量調節装置3,3に発する演算器(演算手段)である。   Reference numeral 8 denotes a computing unit (calculating means), which is the fuel ratio of pulverized coal C (hereinafter referred to as “past fuel ratio”) in the past operation, and the exhaust gas D measured by the gas analyzer 7. NOx concentration (hereinafter referred to as “past NOx concentration”) is accumulated as data, and the peak value of the NOx concentration (hereinafter referred to as “NOx peak”) obtained from the relationship between the past fuel ratio and the past NOx concentration. And a fuel ratio indicating the peak value (hereinafter referred to as “NOx peak fuel ratio”), and an allowable value of the NOx concentration in the exhaust gas D (hereinafter referred to as “NOx peak fuel ratio”). The NOx concentration measured by the gas analyzer 7 in the current operation (hereinafter referred to as “current NOx concentration”) and the NOx allowable concentration are compared. The current NOx concentration is N When the x allowable value is exceeded, the fuel ratio of the pulverized coal C is adjusted in a direction away from the NOx peak fuel ratio so that the NOx concentration in the exhaust gas D is reduced to be equal to or less than the NOx allowable concentration. It is a calculator (calculation means) which issues a command to change the blending ratio to the coal supply amount adjusting devices 3 and 3.

例えば、石炭ホッパ1には、主燃料として燃料比が1.0〜1.5の瀝青炭Aを保持し、石炭ホッパ2には、副燃料として燃料比1.0未満の改質褐炭Bを保持しておく。そして、石炭ホッパ1,2から主燃料Aと副燃料Bとを、石炭供給量調節装置3,3にて配合割合を調整して切り出し、混合機4で混合した後、粉砕機5で所定の粒度に粉砕し微粉炭Cとする。微粉炭Cは空気とともにボイラ6内に吹き込まれ燃焼する。   For example, the coal hopper 1 holds bituminous coal A having a fuel ratio of 1.0 to 1.5 as a main fuel, and the coal hopper 2 holds reformed lignite B having a fuel ratio of less than 1.0 as a secondary fuel. Keep it. Then, the main fuel A and the auxiliary fuel B are cut out from the coal hoppers 1 and 2 by adjusting the blending ratio by the coal supply amount adjusting devices 3 and 3, mixed by the mixer 4, and then predetermined by the grinder 5. Crush to particle size to make pulverized coal C. The pulverized coal C is blown into the boiler 6 together with air and burned.

燃焼後の排ガスDは、ガス分析器7によりNOx濃度(現在NOx濃度)が測定される。   The exhaust gas D after combustion is measured for NOx concentration (current NOx concentration) by the gas analyzer 7.

ここで、演算器8には、過去の操業における、微粉炭Cの燃料比(過去燃料比)と、ガス分析器7で測定された排ガスD中のNOx濃度(過去NOx濃度)とがデータとして集積されており、該過去燃料比と該過去NOx濃度との関係より該過去NOx濃度のピーク値(NOxピーク濃度)と、該ピーク値を示す燃料比(NOxピーク燃料比)が求められ(図4の模式図参照)、該NOxピーク濃度に基づいて排ガスD中のNOx濃度の許容値(NOx許容濃度)が予め設定されている。   Here, in the calculator 8, the fuel ratio (past fuel ratio) of the pulverized coal C in the past operation and the NOx concentration (past NOx concentration) in the exhaust gas D measured by the gas analyzer 7 are used as data. From the relationship between the past fuel ratio and the past NOx concentration, a peak value of the past NOx concentration (NOx peak concentration) and a fuel ratio indicating the peak value (NOx peak fuel ratio) are obtained (FIG. 4), an allowable value of NOx concentration (NOx allowable concentration) in the exhaust gas D is set in advance based on the NOx peak concentration.

該NOx許容濃度は、当該微粉状燃料燃焼装置の設置場所における環境規制値等を考慮して適宜設定すればよいが、該NOxピーク濃度の一定割合(例えば80%)に設定してもよいし、該NOxピーク濃度から一定濃度を差し引いた値に設定してもよい。また、図4の模式図に示すように、過去燃料比と過去NOx濃度との関係は、使用する固体燃料の種類の組合せ等により多少変動し一定の幅を持つので、該NOx許容濃度は、NOxピーク燃料比における、最大NOx濃度(NOxピーク濃度に一致)と最小NOx濃度の範囲内に入るように設定してもよい。   The allowable NOx concentration may be set as appropriate in consideration of the environmental regulation value or the like at the installation location of the pulverized fuel combustion device, but may be set to a certain ratio (for example, 80%) of the NOx peak concentration. The NOx peak concentration may be set to a value obtained by subtracting a constant concentration. In addition, as shown in the schematic diagram of FIG. 4, the relationship between the past fuel ratio and the past NOx concentration varies somewhat depending on the combination of the types of solid fuels used and has a certain range. The NOx peak fuel ratio may be set so as to fall within the range of the maximum NOx concentration (matching the NOx peak concentration) and the minimum NOx concentration.

そして、さらに演算器8は、現在の操業にてガス分析器7で測定されたNOx濃度(現在NOx濃度)と、前記NOx許容濃度とを比較し、該現在NOx濃度が前記NOx許容濃度を超えたときには、微粉炭Cの燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより排ガスD中のNOx濃度を前記NOx許容濃度以下に低下させるように石炭A,Bの配合割合を変更する指令を発する。   Further, the computing unit 8 compares the NOx concentration (current NOx concentration) measured by the gas analyzer 7 in the current operation with the NOx allowable concentration, and the current NOx concentration exceeds the NOx allowable concentration. When changing the fuel ratio of pulverized coal C in a direction away from the NOx peak fuel ratio, the blending ratio of coals A and B is changed so that the NOx concentration in the exhaust gas D is reduced below the allowable NOx concentration. Issue a command.

演算器8からの指令を受けた石炭供給量調節装置3,3は、該指令に基づいて石炭A,Bの切り出し量を調整する。   The coal supply amount adjusting devices 3 and 3 that have received a command from the computing unit 8 adjust the cutout amounts of the coals A and B based on the command.

以上の結果、排ガスD中のNOx濃度は常に前記NOx許容濃度以下に維持されるように制御されるので、瀝青炭以外の固体燃料をも有効に活用しつつ、より確実に低NOx燃焼を実現できる。   As a result, since the NOx concentration in the exhaust gas D is always controlled to be kept below the allowable NOx concentration, low NOx combustion can be realized more reliably while effectively using solid fuel other than bituminous coal. .

(変形例)
上記実施形態では、副燃料として、燃料比が1.0未満の石炭(本例では改質褐炭)を例示したが、これに代えて燃料比が1.5超の瀝青炭や無煙炭を使用することもできる。
(Modification)
In the above embodiment, coal having a fuel ratio of less than 1.0 (modified lignite in this example) is exemplified as the auxiliary fuel. Instead, bituminous coal or anthracite having a fuel ratio of more than 1.5 should be used. You can also.

また、上記実施形態では、固体燃料として、瀝青炭と改質褐炭を例示したが、これらに限定されるものではなく、炭化水素を含有する固体状の燃料であればいずれも使用することができ、例えば木材チップ、バイオマス、廃プラスチック、廃棄物等も使用することができる。   In the above embodiment, bituminous coal and modified lignite are exemplified as the solid fuel, but are not limited to these, and any solid fuel containing hydrocarbons can be used. For example, wood chips, biomass, waste plastic, waste, etc. can be used.

また、上記実施形態では、2種類の固体燃料を混焼する場合を例示したが、3種類以上を混焼する場合にも適用できる。例えば3種類の固体燃料を混焼する場合には、このうちの2種類の配合比率を一定にしてこれらを主燃料とし、残りの1種類を副燃料として、上記実施形態と同様の制御を行えばよい。   Moreover, in the said embodiment, although the case where two types of solid fuels were mixed-fired was illustrated, it is applicable also when three or more types are mixed-fired. For example, when three types of solid fuels are co-fired, if the same control as in the above embodiment is performed with the mixing ratio of the two types being constant and these being used as the main fuel and the remaining one as the sub fuel, Good.

また、上記実施形態では、2種類の固体燃料を混合した後に粉砕する例を示したが、例えば2種類の固体燃料のうち1種類がもともと微粉状である場合には、他の1種類だけを粉砕した後に混合すればよいし、例えば2種類とも微粉状である場合には、粉砕を省略して混合だけすればよい。   Moreover, although the example which grind | pulverizes after mixing two types of solid fuel was shown in the said embodiment, for example, when one type is originally a fine powder form among two types of solid fuel, only one other type is used. What is necessary is just to mix after grind | pulverizing, for example, when two types are fine powder forms, what is necessary is just to mix by omitting a grind | pulverization.

本発明に係る微粉状燃料燃焼装置の一実施形態を示す概略フロー図である。It is a schematic flowchart which shows one Embodiment of the pulverized fuel combustion apparatus which concerns on this invention. 微粉状燃料の燃料比と排ガス中のNOx濃度との関係を示すグラフ図である。It is a graph which shows the relationship between the fuel ratio of a pulverized fuel, and the NOx density | concentration in waste gas. 微粉状燃料の燃料中N分と排ガス中のNOx濃度との関係を示すグラフ図である。It is a graph which shows the relationship between N content in the fuel of a pulverized fuel, and the NOx density | concentration in waste gas. 微粉状燃料の過去燃料比と排ガス中の過去NOx濃度との関係より、NOxピーク濃度およびNOxピーク燃料比を求める方法を模式的に示すグラフ図である。It is a graph which shows typically the method of calculating | requiring NOx peak concentration and NOx peak fuel ratio from the relationship between the past fuel ratio of pulverized fuel, and the past NOx density | concentration in waste gas.

符号の説明Explanation of symbols

1,2:石炭ホッパ
3:石炭供給量調節装置(燃料供給量調節手段)
4:混合機
5:粉砕機
6:ボイラ
7:ガス分析器(ガス分析手段)
8:演算器(演算手段)
A,B:石炭(固体燃料)
C:微粉炭(微粉状燃料)
D:排ガス
1, 2: Coal hopper 3: Coal supply amount adjusting device (fuel supply amount adjusting means)
4: Mixer 5: Crusher 6: Boiler 7: Gas analyzer (gas analysis means)
8: Calculator (calculation means)
A, B: Coal (solid fuel)
C: Pulverized coal (pulverized fuel)
D: exhaust gas

Claims (4)

複数種類の固体燃料からなる微粉状燃料を混焼するボイラにおける燃焼制御方法であって、
過去の操業結果から得られた、前記微粉状燃料の燃料比と前記ボイラの排ガス中のNOx濃度との関係より、該NOx濃度のピーク値(以下、「NOxピーク濃度」という。)と、該NOxピーク濃度を示す燃料比(以下、「NOxピーク燃料比」という。)とを求め、前記NOxピーク濃度に基づいて前記NOx濃度の許容値(以下、「NOx許容濃度」という。)を予め設定しておき、
現状の操業にて測定された前記排ガス中のNOx濃度が前記NOx許容濃度を超えたときには、前記複数種類の固体燃料の配合割合を変更して前記微粉状燃料の燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより前記排ガス中のNOx濃度を前記NOx許容濃度以下に低下させることを特徴とする微粉状燃料の燃焼制御方法。
A combustion control method in a boiler that co-fires finely pulverized fuel composed of multiple types of solid fuel,
From the relationship between the fuel ratio of the pulverized fuel and the NOx concentration in the exhaust gas of the boiler obtained from the past operation results, the peak value of the NOx concentration (hereinafter referred to as “NOx peak concentration”) and the A fuel ratio indicating the NOx peak concentration (hereinafter referred to as “NOx peak fuel ratio”) is obtained, and an allowable value of the NOx concentration (hereinafter referred to as “NOx allowable concentration”) is preset based on the NOx peak concentration. Aside,
When the NOx concentration in the exhaust gas measured in the current operation exceeds the NOx allowable concentration, the blending ratio of the plurality of types of solid fuels is changed to change the fuel ratio of the pulverized fuel to the NOx peak fuel ratio. A combustion control method for pulverized fuel, characterized in that the NOx concentration in the exhaust gas is reduced below the allowable NOx concentration by adjusting in a direction away from the NOx.
前記微粉状燃料が、燃料比1.0〜1.5の主燃料と、燃料比1.0未満の副燃料とからなり、前記微粉状燃料の燃料比の調整を、前記副燃料の配合割合を高めることにより行う請求項1に記載の微粉状燃料の燃焼制御方法。   The pulverized fuel is composed of a main fuel having a fuel ratio of 1.0 to 1.5 and an auxiliary fuel having a fuel ratio of less than 1.0, and the adjustment of the fuel ratio of the pulverized fuel is performed by adjusting the mixing ratio of the auxiliary fuel. The method for controlling the combustion of a pulverized fuel according to claim 1, wherein the combustion control method is performed by raising 前記微粉状燃料が、燃料比1.0〜1.5の主燃料と、燃料比1.5超の副燃料とからなり、前記微粉状燃料の燃料比の調整を、前記副燃料の配合割合を高めることにより行う請求項1に記載の微粉状燃料の燃焼制御方法。   The pulverized fuel is composed of a main fuel having a fuel ratio of 1.0 to 1.5 and an auxiliary fuel having a fuel ratio of more than 1.5, and the adjustment of the fuel ratio of the pulverized fuel is performed by adjusting the mixing ratio of the auxiliary fuel. The method for controlling the combustion of a pulverized fuel according to claim 1, wherein the combustion control method is performed by raising 複数種類の固体燃料からなる微粉状燃料を混焼するボイラにおける燃焼制御装置であって、
前記ボイラの排ガス中のNOx濃度を測定するガス分析手段と、
過去の操業における、前記微粉状燃料の燃料比(以下、「過去燃料比」という。)と、前記ガス分析手段で測定された排ガス中のNOx濃度(以下、「過去NOx濃度」という。)とをデータとして集積し、該過去燃料比と該過去NOx濃度との関係より該過去NOx濃度のピーク値(以下、「NOxピーク濃度」という。)と、該NOxピーク濃度を示す燃料比(以下、「NOxピーク燃料比」という。)とを求め、前記NOxピーク濃度に基づいて前記排ガス中のNOx濃度の許容値(以下、「NOx許容濃度」という。)を予め設定するとともに、現在の操業にて前記ガス分析手段で測定されたNOx濃度(以下、「現在NOx濃度」という。)と、前記NOx許容濃度とを比較し、該現在NOx濃度が前記NOx許容濃度を超えたときには、前記微粉状燃料の燃料比を前記NOxピーク燃料比から遠ざける方向に調整することにより前記排ガス中のNOx濃度を前記NOx許容濃度以下に低下させるように前記複数種類の固体燃料の配合割合を変更する指令を発する演算手段と、
該指令に基づいて、前記複数種類の固体燃料の供給量を変更する燃料供給量調節手段と、
を備えたことを特徴とする微粉状燃料の燃焼制御装置。
A combustion control device for a boiler that co-fires finely pulverized fuel composed of multiple types of solid fuel,
Gas analysis means for measuring the NOx concentration in the exhaust gas of the boiler;
The fuel ratio of the pulverized fuel in the past operation (hereinafter referred to as “past fuel ratio”) and the NOx concentration in the exhaust gas measured by the gas analysis means (hereinafter referred to as “past NOx concentration”). From the relationship between the past fuel ratio and the past NOx concentration, the peak value of the past NOx concentration (hereinafter referred to as “NOx peak concentration”), and the fuel ratio indicating the NOx peak concentration (hereinafter referred to as “NOx peak concentration”). "NOx peak fuel ratio") is determined, and an allowable value of NOx concentration in the exhaust gas (hereinafter referred to as "NOx allowable concentration") is set in advance based on the NOx peak concentration, and the current operation is performed. The NOx concentration measured by the gas analyzer (hereinafter referred to as “current NOx concentration”) is compared with the allowable NOx concentration, and the current NOx concentration exceeds the allowable NOx concentration. The blending ratio of the plurality of types of solid fuels so as to lower the NOx concentration in the exhaust gas below the allowable NOx concentration by adjusting the fuel ratio of the pulverized fuel away from the NOx peak fuel ratio. Computing means for issuing a command to change
Fuel supply amount adjusting means for changing the supply amounts of the plurality of types of solid fuels based on the command;
A combustion control apparatus for finely pulverized fuel, comprising:
JP2008267746A 2008-10-16 2008-10-16 Combustion control method and combustion control apparatus for pulverized fuel Expired - Fee Related JP5255980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267746A JP5255980B2 (en) 2008-10-16 2008-10-16 Combustion control method and combustion control apparatus for pulverized fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267746A JP5255980B2 (en) 2008-10-16 2008-10-16 Combustion control method and combustion control apparatus for pulverized fuel

Publications (2)

Publication Number Publication Date
JP2010096431A true JP2010096431A (en) 2010-04-30
JP5255980B2 JP5255980B2 (en) 2013-08-07

Family

ID=42258245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267746A Expired - Fee Related JP5255980B2 (en) 2008-10-16 2008-10-16 Combustion control method and combustion control apparatus for pulverized fuel

Country Status (1)

Country Link
JP (1) JP5255980B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112595A (en) * 2010-11-25 2012-06-14 Mitsubishi Heavy Ind Ltd Biomass and coal co-combustion system, and method of biomass and coal co-combustion
JP4985857B1 (en) * 2011-02-25 2012-07-25 三菱マテリアル株式会社 Control method of NOx concentration in exhaust gas in combustion equipment using pulverized coal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812050B1 (en) 2017-06-27 2018-01-25 한국발전기술(주) Automatic control system of boiler for steam power generation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191805A (en) * 1983-04-14 1984-10-31 Babcock Hitachi Kk Denitrating combustion of pulverized coal
JPS6241290A (en) * 1985-08-15 1987-02-23 Kawasaki Heavy Ind Ltd Production and feed unit of high-concentration coal-water slurry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191805A (en) * 1983-04-14 1984-10-31 Babcock Hitachi Kk Denitrating combustion of pulverized coal
JPS6241290A (en) * 1985-08-15 1987-02-23 Kawasaki Heavy Ind Ltd Production and feed unit of high-concentration coal-water slurry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112595A (en) * 2010-11-25 2012-06-14 Mitsubishi Heavy Ind Ltd Biomass and coal co-combustion system, and method of biomass and coal co-combustion
JP4985857B1 (en) * 2011-02-25 2012-07-25 三菱マテリアル株式会社 Control method of NOx concentration in exhaust gas in combustion equipment using pulverized coal
WO2012114645A1 (en) * 2011-02-25 2012-08-30 三菱マテリアル株式会社 Method for controlling nox concentration of discharge gas in combustion equipment using dust coal
US9551485B2 (en) 2011-02-25 2017-01-24 Mitsubishi Materials Corporation Method for controlling NOx concentration in exhaust gas in combustion facility using pulverized coal
US9714196B2 (en) 2011-02-25 2017-07-25 Mitsubishi Materials Corporation Method for controlling NOx concentration in exhaust gas in combustion facility using pulverized coal
KR101834032B1 (en) * 2011-02-25 2018-03-02 미츠비시 마테리알 가부시키가이샤 METHOD FOR CONTROLLING NOx CONCENTRATION OF DISCHARGE GAS IN COMBUSTION EQUIPMENT USING DUST COAL

Also Published As

Publication number Publication date
JP5255980B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
Li et al. NOx emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging
Arias et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion
JP5357714B2 (en) Boiler equipment
Savolainen Co-firing of biomass in coal-fired utility boilers
EP2267367B1 (en) Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
US20070295590A1 (en) Methods and systems for enhancing solid fuel properties
US10309647B2 (en) Biomass combustion burner, biomass-mixed fired boiler, and biomass fuel combustion method
WO2011052795A1 (en) Method for operating blast furnace
JP5255980B2 (en) Combustion control method and combustion control apparatus for pulverized fuel
CN203258673U (en) Cross-coal type separate grinding blending combustion device of W-shaped flame boiler
Chernyavsky et al. Scientific bases, experience of production and combustion of coal mixtures at thermal power plants of Ukraine
JP2006152434A (en) Method for operating blast furnace
Hower et al. Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel
Yoon et al. Operational optimization of air staging and flue gas recirculation for NOx reduction in biomass circulating fluidized bed combustion
JP2012177485A (en) Operation method of coal boiler and boiler facility
Ma et al. Pollutant emission and attrition performance of low calorific blended coals during co-combustion in fluidized bed
JP5442564B2 (en) Pulverized coal combustion method and pulverized coal combustion apparatus
Kobyłecki Unburned carbon in the circulating fluidised bed boiler fly ash
Park et al. Characteristics of co-combustion of strongly caking and non-caking coals in a pilot circulating fluidized bed combustor (CFBC)
CN113154372A (en) Method for safely and efficiently co-burning bituminous coal in lignite boiler
JP4318259B2 (en) Biomass fuel pulverization method and apparatus, and biomass fuel combustion method and apparatus
JP5862515B2 (en) Blast furnace operation method using oil palm core shell coal.
KR101901827B1 (en) Pulverized Power Plant Boiler for design coal having improved anthracite mixing combustion characteristics
CN217653882U (en) Combustion system of coal-fired and biomass mixed pulverized coal boiler
Morgan et al. Semi-industrial scale investigations into NOx emissions control using coal-over-coal reburn techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees