JP2010095761A - Copper electroplating method using insoluble anode - Google Patents

Copper electroplating method using insoluble anode Download PDF

Info

Publication number
JP2010095761A
JP2010095761A JP2008267695A JP2008267695A JP2010095761A JP 2010095761 A JP2010095761 A JP 2010095761A JP 2008267695 A JP2008267695 A JP 2008267695A JP 2008267695 A JP2008267695 A JP 2008267695A JP 2010095761 A JP2010095761 A JP 2010095761A
Authority
JP
Japan
Prior art keywords
copper
dissolved oxygen
plating solution
added
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008267695A
Other languages
Japanese (ja)
Inventor
Kazue Ban
和恵 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2008267695A priority Critical patent/JP2010095761A/en
Publication of JP2010095761A publication Critical patent/JP2010095761A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper electroplating method using an insoluble anode which suppresses the increase in the concentration of dissolved oxygen so as to suppress the decomposition of an additive. <P>SOLUTION: The copper electroplating method using an insoluble anode is characterized in that, when a copper sulfate plating liquid is replenished with copper oxide as a copper source, a carbonate compound is added to the plating liquid, so as to generate carbon dioxide, and dissolved oxygen is exhausted from the plating liquid by the carbon dioxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、めっき液中の溶存酸素の増加を抑制しうる不溶解性陽極を用いる電解銅めっき方法に関する。   The present invention relates to an electrolytic copper plating method using an insoluble anode capable of suppressing an increase in dissolved oxygen in a plating solution.

電解銅めっきは、配線基板の銅配線をめっきによって形成する場合などに広く用いられている。電解銅めっきの場合、陽極に溶解性陽極を用いる場合が主流であったが、液管理が容易なため不溶解性陽極を用いる場合も増えてきている。
不溶解性陽極を用いる場合、陽極から銅の溶解がないので液中の銅濃度が減少してくる。そのため、酸化銅(2)等の銅成分を補給してやる必要がある。
Electrolytic copper plating is widely used when copper wiring of a wiring board is formed by plating. In the case of electrolytic copper plating, the case where a soluble anode is used as the anode has been the mainstream, but since the liquid management is easy, the case where an insoluble anode is used is also increasing.
When an insoluble anode is used, the copper concentration in the liquid decreases because there is no copper dissolution from the anode. Therefore, it is necessary to replenish copper components such as copper oxide (2).

ところで、電解銅めっきの場合、電極反応によって陽極で酸素が発生し、これがめっき液中に溶け込むことで溶存酸素が増加してくる。銅めっき液中の溶存酸素が増加すると種々の悪影響がある(特開2007−169700号公報)。
上記のように銅めっき液中に溶存酸素が増加してくると種々の悪影響があるので、特許文献1ではめっき液を空気攪拌または不活性ガスによる攪拌によって、電解銅めっき液中の溶存酸素量を30mg/L以下に維持するようにしている。
特開2007−169700号公報
By the way, in the case of electrolytic copper plating, oxygen is generated at the anode by the electrode reaction, and dissolved oxygen increases as this dissolves in the plating solution. When the dissolved oxygen in the copper plating solution increases, there are various adverse effects (Japanese Patent Laid-Open No. 2007-169700).
As dissolved oxygen increases in the copper plating solution as described above, there are various adverse effects. Therefore, in Patent Document 1, the amount of dissolved oxygen in the electrolytic copper plating solution is obtained by stirring the plating solution with air or stirring with an inert gas. Is maintained at 30 mg / L or less.
JP 2007-169700 A

ところで、不溶解性陽極を用いる硫酸銅めっきの場合には、銅成分として酸化銅を補給する際、酸化銅とめっき液中の硫酸とが反応して硫酸銅と水とを生成するが、その際にもめっき液中の溶存酸素が増加する。銅めっき液に酸化銅を添加すると、めっき液中に添加されている光沢剤等の添加剤が分解する。溶存酸素の増加はこれら添加剤の分解を促進してしまう。これにより添加剤のバランスが崩れ、めっき不良が発生するという課題があった。
そこで、本発明は上記課題を解決すべくなされ、その目的とするところは、硫酸銅めっきにおいて、溶存酸素濃度の上昇を抑えて、添加剤の分解を抑えることができる不溶解性陽極を用いる電解銅めっき方法を提供するにある。
By the way, in the case of copper sulfate plating using an insoluble anode, when copper oxide is replenished as a copper component, copper oxide and sulfuric acid in the plating solution react to produce copper sulfate and water. In some cases, the dissolved oxygen in the plating solution increases. When copper oxide is added to the copper plating solution, additives such as brighteners added to the plating solution are decomposed. An increase in dissolved oxygen accelerates the decomposition of these additives. As a result, the balance of the additives is lost, and there is a problem that defective plating occurs.
Therefore, the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to perform an electrolysis using an insoluble anode capable of suppressing an increase in dissolved oxygen concentration and suppressing decomposition of an additive in copper sulfate plating. To provide a copper plating method.

本発明に係る不溶解性陽極を用いる電解銅めっき方法は、硫酸銅めっき液に対して銅源として酸化銅を補給する際、該めっき液に炭酸化合物を添加して炭酸ガスを発生させ、炭酸ガスによって溶存酸素をめっき液から排出することを特徴とする。
また、硫酸銅めっき液が収容されている電解槽と連通する調整槽内で、めっき液に酸化銅と炭酸化合物を添加し、循環させて電解槽内に供給するようにするとよい。
炭酸化合物としては、炭酸銅、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の、電解銅めっき液に添加した際に炭酸ガスを発生するものを用いる。これら炭酸化合物中では、銅を同時に補給しうる炭酸銅が好適であった。
なお、銅の補給源として炭酸銅単独では、炭酸銅が不純物が多いことから好ましくなく、純度が高い酸化銅と併用して添加するようにする。
炭酸化合物の添加量は、酸化銅に対して、少なくとも1mol%とするのが好ましい。
In the electrolytic copper plating method using the insoluble anode according to the present invention, when copper oxide is replenished as a copper source to the copper sulfate plating solution, a carbonic acid compound is added to the plating solution to generate carbon dioxide gas. Dissolved oxygen is discharged from the plating solution by a gas.
Moreover, it is good to add a copper oxide and a carbonic acid compound to a plating solution, to make it circulate, and to supply in an electrolytic vessel in the adjustment tank connected with the electrolytic vessel in which the copper sulfate plating solution is accommodated.
As the carbonic acid compound, one that generates carbon dioxide gas when added to an electrolytic copper plating solution, such as copper carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like is used. Among these carbonate compounds, copper carbonate capable of replenishing copper at the same time was suitable.
Note that copper carbonate alone as a copper supply source is not preferable because copper carbonate has many impurities, and is added in combination with copper oxide having high purity.
The addition amount of the carbonic acid compound is preferably at least 1 mol% with respect to the copper oxide.

本発明にかかる不溶解性陽極を用いる電解銅めっき方法によれば、硫酸銅めっきにおいて、銅源として酸化銅を補給する際、溶存酸素濃度の上昇を抑えて、添加剤の分解を抑制できるという効果を奏する。   According to the electrolytic copper plating method using the insoluble anode according to the present invention, when copper oxide is replenished as a copper source in copper sulfate plating, an increase in dissolved oxygen concentration can be suppressed and decomposition of the additive can be suppressed. There is an effect.

以下本発明の好適な実施の形態を添付図面を参照しつつ詳細に説明する。
上記のように、硫酸銅めっき液に、銅源の補給として酸化銅(2)のみを添加すると、CuOはめっき液中の遊離硫酸と反応し、硫酸銅と水になる。
CuO + HSO → CuSO + HO
この溶解反応時に、溶存酸素が上昇する。めっき液中の添加剤成分がこの酸素と反応し酸化され、本来の機能を失ってしまう。これにより添加剤のバランスが崩れめっき工程に不具合が生じる。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
As described above, when only copper oxide (2) is added to the copper sulfate plating solution as a copper source supplement, CuO reacts with free sulfuric acid in the plating solution to become copper sulfate and water.
CuO + H 2 SO 4 → CuSO 4 + H 2 O
During this dissolution reaction, dissolved oxygen rises. The additive component in the plating solution reacts with this oxygen and is oxidized, losing its original function. As a result, the balance of the additives is lost and a defect occurs in the plating process.

本実施の形態では、酸化銅(2)補給時に、めっき液中で炭酸ガスを発生する化合物を微量一緒に加える。発生した炭酸ガスが、酸化銅(2)の溶解によって発生した酸素をめっき液から排出し、添加剤の分解を抑える。   In this embodiment, when copper oxide (2) is replenished, a small amount of a compound that generates carbon dioxide in the plating solution is added together. The generated carbon dioxide gas discharges oxygen generated by dissolution of copper oxide (2) from the plating solution and suppresses decomposition of the additive.

硫酸銅めっき液の組成例を以下に示す。
硫酸銅 50〜300g/L
硫酸 10〜200g/L
塩化物イオン 5〜60ppm
その他添加剤
その他添加剤としては、電析作用を促進するブライトナー、凸部の電析作用を抑制するレベラー、非イオン界面活性剤からなるポリマーなどがある。銅めっき液中の溶存酸素が増加すると、これらの添加剤が分解され、本来の機能が低下する。
A composition example of the copper sulfate plating solution is shown below.
Copper sulfate 50 ~ 300g / L
Sulfuric acid 10 ~ 200g / L
Chloride ion 5-60ppm
Other Additives As other additives, there are brighteners that promote the electrodeposition effect, levelers that suppress the electrodeposition effect of the convex portions, and polymers composed of nonionic surfactants. When the dissolved oxygen in the copper plating solution increases, these additives are decomposed and the original function is lowered.

酸化銅とともに添加して炭酸ガスを発生する炭酸化合物は、例えば
・炭酸銅
・炭酸ナトリウム
・炭酸カリウム
・炭酸水素ナトリウム
・炭酸水素カリウム
などが挙げられる。
これらのうち、銅イオンの補給も行えるので、炭酸銅補給がより望ましい。
なお、炭酸化合物の添加は、酸化銅との添加と同時であっても、酸化銅の添加の前後であってもよい。
Examples of the carbonic acid compound that is added together with copper oxide to generate carbon dioxide include copper carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and the like.
Of these, copper carbonate can be supplied, so copper carbonate supply is more desirable.
The carbonic acid compound may be added simultaneously with the addition of copper oxide or before and after the addition of copper oxide.

炭酸銅(CuCO)は硫酸と反応して炭酸ガスを発生する。
CuCO + HSO → CuSO + CO + HO
酸化銅(2)補給時に炭酸銅を一緒に(同時あるいは酸化銅添加の前後)加えると、炭酸ガス発生により酸化銅から発生する酸素をめっき液から排出する。
これにより、添加剤の消耗を抑えることができる。
炭酸銅の添加量は、加える酸化銅(2)の1mol%以上が好ましい。
Copper carbonate (CuCO 3 ) reacts with sulfuric acid to generate carbon dioxide gas.
CuCO 3 + H 2 SO 4 → CuSO 4 + CO 2 + H 2 O
When copper carbonate is added together (at the same time or before and after addition of copper oxide) when copper oxide (2) is replenished, oxygen generated from the copper oxide is discharged from the plating solution by the generation of carbon dioxide gas.
Thereby, consumption of the additive can be suppressed.
The amount of copper carbonate added is preferably 1 mol% or more of the added copper oxide (2).

炭酸ナトリウム(NaCO)は硫酸と反応して炭酸ガスを発生する。
NaCO + HSO → NaSO + CO + HO
酸化銅(2)補給時に炭酸ナトリウムを一緒に(同時あるいは酸化銅添加の前後)加えると、炭酸ガス発生により酸化銅から発生する酸素をめっき液から排出する。
これにより、添加剤の消耗を抑えることができる。
炭酸ナトリウムの添加量は、加える酸化銅の1mol%以上が好ましい。
Sodium carbonate (Na 2 CO 3 ) reacts with sulfuric acid to generate carbon dioxide gas.
Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + CO 2 + H 2 O
When sodium carbonate is added together with copper oxide (2) at the same time (at the same time or before and after addition of copper oxide), oxygen generated from the copper oxide is discharged from the plating solution by the generation of carbon dioxide gas.
Thereby, consumption of the additive can be suppressed.
The amount of sodium carbonate added is preferably 1 mol% or more of the added copper oxide.

炭酸水素カリウム(KHCO)は硫酸と反応して炭酸ガスを発生する(炭酸水素ナトリウムも同様)。
KHCO + HSO → KSO + HO+ CO (気体)
酸化銅(2)補給時に炭酸水素カリウムを一緒に(同時あるいは酸化銅添加の前後)加えると、炭酸ガス発生により酸化銅から発生する酸素をめっき液から排出する。
これにより、添加剤の消耗を抑えることができる。
炭酸水素カリウムの添加量は、加える酸化銅の1mol%以上が好ましい。
Potassium bicarbonate (KHCO 3 ) reacts with sulfuric acid to generate carbon dioxide (so is sodium bicarbonate).
KHCO 3 + H 2 SO 4 → K 2 SO 4 + H 2 O + CO 2 (gas)
When potassium hydrogen carbonate is added together (at the same time or before and after addition of copper oxide) at the time of copper oxide (2) replenishment, oxygen generated from the copper oxide is discharged from the plating solution by the generation of carbon dioxide gas.
Thereby, consumption of the additive can be suppressed.
The amount of potassium bicarbonate added is preferably 1 mol% or more of the added copper oxide.

<比較例>
1)硫酸銅めっき液の代わりに、1.2mol/Lの硫酸水溶液を調整した。この硫酸水溶液中の溶存酸素を測定したところ8mg/Lの溶存酸素が検出された。
2)約5min後に0.6mol酸化銅(2)を加えた
その結果、酸化銅(2)の溶解とともに溶存酸素が上昇した(図1)。
添加剤成分の消耗が確認された。
<Comparative example>
1) A 1.2 mol / L sulfuric acid aqueous solution was prepared instead of the copper sulfate plating solution. When dissolved oxygen in this sulfuric acid aqueous solution was measured, 8 mg / L of dissolved oxygen was detected.
2) After about 5 minutes, 0.6 mol copper oxide (2) was added. As a result, dissolved oxygen increased with the dissolution of copper oxide (2) (FIG. 1).
Consumption of the additive component was confirmed.

<実施例1>
1)硫酸銅めっき液の代わりに、1.2mol/Lの硫酸水溶液を調整した。この硫酸水溶液中の溶存酸素を測定したところ8mg/Lの溶存酸素が検出された。
2)約5min後に0.6mol酸化銅(2)と0.03mol炭酸銅を加えた。
その結果、酸化銅(2)溶解時の溶存酸素の上昇を抑えることができた(図2)。
<Example 1>
1) A 1.2 mol / L sulfuric acid aqueous solution was prepared instead of the copper sulfate plating solution. When dissolved oxygen in this sulfuric acid aqueous solution was measured, 8 mg / L of dissolved oxygen was detected.
2) After about 5 minutes, 0.6 mol copper oxide (2) and 0.03 mol copper carbonate were added.
As a result, an increase in dissolved oxygen during dissolution of copper oxide (2) could be suppressed (FIG. 2).

<実施例2>
1)硫酸銅めっき液の代わりに、1.2mol/Lの硫酸水溶液を調整した。この硫酸水溶液中の溶存酸素を測定したところ8mg/Lの溶存酸素が検出された。
2)約5min後に0.6mol酸化銅(2)と0.03mol炭酸ナトリウムを加えた
その結果、酸化銅(2)の溶解時、溶存酸素の上昇を抑えることができた(図3)。
<Example 2>
1) A 1.2 mol / L sulfuric acid aqueous solution was prepared instead of the copper sulfate plating solution. When dissolved oxygen in this sulfuric acid aqueous solution was measured, 8 mg / L of dissolved oxygen was detected.
2) After about 5 minutes, 0.6 mol copper oxide (2) and 0.03 mol sodium carbonate were added. As a result, when copper oxide (2) was dissolved, an increase in dissolved oxygen could be suppressed (FIG. 3).

<実施例3>
1)硫酸銅めっき液の代わりに、1.2mol/Lの硫酸水溶液を調整した。この硫酸水溶液中の溶存酸素を測定したところ8mg/Lの溶存酸素が検出された。
2)約5min後に0.6mol酸化銅(2)と0.03mol炭酸水素カリウムを加えた
その結果、酸化銅(2)の溶解時、溶存酸素の上昇を抑えることができた(図4)。
<Example 3>
1) A 1.2 mol / L sulfuric acid aqueous solution was prepared instead of the copper sulfate plating solution. When dissolved oxygen in this sulfuric acid aqueous solution was measured, 8 mg / L of dissolved oxygen was detected.
2) After about 5 minutes, 0.6 mol copper oxide (2) and 0.03 mol potassium hydrogen carbonate were added. As a result, when copper oxide (2) was dissolved, an increase in dissolved oxygen could be suppressed (FIG. 4).

比較例における溶存酸素濃度変化を示すグラフである。It is a graph which shows the dissolved oxygen concentration change in a comparative example. 実施例1における溶存酸素濃度変化を示すグラフである。2 is a graph showing changes in dissolved oxygen concentration in Example 1. 実施例2における溶存酸素濃度変化を示すグラフである。6 is a graph showing changes in dissolved oxygen concentration in Example 2. 実施例3における溶存酸素濃度変化を示すグラフである。6 is a graph showing changes in dissolved oxygen concentration in Example 3.

Claims (2)

不溶解性陽極を用いる電解銅めっき方法において、
硫酸銅めっき液に対して銅源として酸化銅を補給する際、該めっき液に炭酸化合物を添加して炭酸ガスを発生させ、炭酸ガスによって溶存酸素をめっき液から排出することを特徴とする不溶解性陽極を用いる電解銅めっき方法。
In the electrolytic copper plating method using an insoluble anode,
When copper oxide is replenished as a copper source to a copper sulfate plating solution, a carbonic acid compound is added to the plating solution to generate carbon dioxide, and dissolved oxygen is discharged from the plating solution by the carbon dioxide gas. Electrolytic copper plating method using a soluble anode.
炭酸化合物として炭酸銅を添加することを特徴とする請求項1記載の不溶解性陽極を用いる電解銅めっき方法。   2. The electrolytic copper plating method using an insoluble anode according to claim 1, wherein copper carbonate is added as a carbonate compound.
JP2008267695A 2008-10-16 2008-10-16 Copper electroplating method using insoluble anode Pending JP2010095761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267695A JP2010095761A (en) 2008-10-16 2008-10-16 Copper electroplating method using insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267695A JP2010095761A (en) 2008-10-16 2008-10-16 Copper electroplating method using insoluble anode

Publications (1)

Publication Number Publication Date
JP2010095761A true JP2010095761A (en) 2010-04-30

Family

ID=42257645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267695A Pending JP2010095761A (en) 2008-10-16 2008-10-16 Copper electroplating method using insoluble anode

Country Status (1)

Country Link
JP (1) JP2010095761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111811A (en) * 2012-12-05 2014-06-19 Sumitomo Metal Mining Co Ltd Copper plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111811A (en) * 2012-12-05 2014-06-19 Sumitomo Metal Mining Co Ltd Copper plating method

Similar Documents

Publication Publication Date Title
JP5293276B2 (en) Continuous electrolytic copper plating method
JP4651906B2 (en) Plating bath and method for depositing a metal layer on a substrate
TWI268966B (en) Electrolytic copper plating method
US6902626B2 (en) Method for roughening copper surface
ES2726013T3 (en) High purity sulfonic acid electrolytic solutions
JP2003147572A (en) Plating bath and method for depositing metallic layer on substrate
JP2003113490A (en) Plating bath and method for depositing metal layer on substrate
JP2003129270A (en) Plating bath and method for building up metallic layer on substrate
JP5255280B2 (en) Method for preparing acidic copper sulfate electrolyte
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
JPWO2011102276A1 (en) High purity copper sulfonate aqueous solution and method for producing the same
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
TW561808B (en) Method of copper plating small hole
US9301399B2 (en) Method of treating wiring substrate and wiring substrate manufactured by the same
JP2010095761A (en) Copper electroplating method using insoluble anode
JP2014074205A (en) Electrolytic copper plating solution, and method of electrolytic copper plating
JP2010138429A (en) Electrolytic copper plating method using insoluble anode
TWI512149B (en) Electrolytic copper plating solution and method of electrolytic copper plating
US20070227894A1 (en) Substrate plating method and apparatus
US20140069805A1 (en) Electro-copper plating apparatus
JP2006283169A (en) Acidic solution for electrolytic copper plating, and electrolytic copper-plating method with little consumption of sulfur-containing organic compound due to electrolysis
WO2022158291A1 (en) Electrolytic silver plating bath and electrolytic silver plating method using same
JP2003293197A (en) Method for controlling plating bath
KR102028357B1 (en) Copper electroplating solution and method of copper electroplating
JP2005194608A (en) Additive for electrolytic copper plating, and electrolytic copper plating bath