JP2010095743A - Oxygen pump and method for manufacturing the same - Google Patents

Oxygen pump and method for manufacturing the same Download PDF

Info

Publication number
JP2010095743A
JP2010095743A JP2008266005A JP2008266005A JP2010095743A JP 2010095743 A JP2010095743 A JP 2010095743A JP 2008266005 A JP2008266005 A JP 2008266005A JP 2008266005 A JP2008266005 A JP 2008266005A JP 2010095743 A JP2010095743 A JP 2010095743A
Authority
JP
Japan
Prior art keywords
oxygen
negative electrode
oxygen pump
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008266005A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nukina
康之 貫名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008266005A priority Critical patent/JP2010095743A/en
Priority to PCT/JP2009/005097 priority patent/WO2010041396A1/en
Publication of JP2010095743A publication Critical patent/JP2010095743A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/366

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen pump which works at normal temperatures and normal pressures, can easily output a high oxygen-carrying capacity, and is free from cares about the leakage of an electrolyte or the like. <P>SOLUTION: The oxygen pump includes: a porous separator 1 which is impregnated with a neutral to acidic solution containing an oxidizable type of an electrolyte which is active on a negative electrode and is auto-oxidized by oxygen and is sandwiched between a porous gas-exchangeable negative electrode 3 and a porous gas-exchangeable positive electrode 2; supplying an electric power to both electrodes 2 and 3 from an external direct-current power source through a current collection structure; and moving oxygen from a negative electrode side of gas phases in both electrode sides, which are separated from each other, to the positive electrode side. The oxygen pump is free from the cares about the electrolyte leakage or the like because of using a water-based solvent which works at normal temperatures and normal pressures, and making the porous separator impregnated with and retaining an extremely small amount of the electrolyte; also has a thin and soft structure; and can increase the oxygen-carrying capacity by increasing the area. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素ポンプに関するものである。   The present invention relates to an oxygen pump.

酸素ポンプは、1対のガス交換電極の間に電解質を挟んだ電気化学的セルを構成し、両極間に直流通電することにより、ガス交換電極の負極側気相から酸素を電気化学的セル内に取り込み、ガス交換極の正極側気相に酸素を放出する酸素移送手段である。   An oxygen pump forms an electrochemical cell in which an electrolyte is sandwiched between a pair of gas exchange electrodes, and directs current between both electrodes to allow oxygen to flow into the electrochemical cell from the gas phase on the negative electrode side of the gas exchange electrode. And oxygen transfer means for releasing oxygen into the gas phase on the positive electrode side of the gas exchange electrode.

従来この分野には、水系電解質を用いるものと、セラミックの固体電解質を用いるものが存在する。例えば、特許文献1には、水系電解質を用いた酸素ポンプが開示されている。一般に、水系電解質を用いる酸素ポンプは、常温常圧で動作する点で優れるが、多量の酸性溶液、またはアルカリ性溶液を電気化学的セル内に保持しており、破損時にこれらか流出する危険性を有する。さらにアルカリ性溶液では、酸素の原料大気中の二酸化炭素が溶け込み、炭酸塩が析出するために、大気を原料酸素とする用法が無い。酸性溶液を用いようとすると、酸素はかなり電極不活性な物質であって、負極反応が遅く、白金などの電極触媒が必要となる。さらに、この触媒反応は酸素の水素還元と呼ばれる、酸素水素燃料電池などに使われる反応と同じものであるが、酸性条件下では酸素は水まで還元されずに過酸化水素を生成し効率が悪いのが実情である。   Conventionally, in this field, there are those using an aqueous electrolyte and those using a ceramic solid electrolyte. For example, Patent Document 1 discloses an oxygen pump using an aqueous electrolyte. In general, an oxygen pump using an aqueous electrolyte is excellent in that it operates at room temperature and normal pressure. However, a large amount of acidic solution or alkaline solution is held in an electrochemical cell, and there is a risk of leakage of these when it is damaged. Have. Further, in the alkaline solution, carbon dioxide in the oxygen raw material atmosphere dissolves and the carbonate precipitates, so that there is no method of using the air as the raw material oxygen. If an acidic solution is to be used, oxygen is a rather electrode-inactive substance, the negative electrode reaction is slow, and an electrode catalyst such as platinum is required. Furthermore, this catalytic reaction is the same as the reaction used for oxyhydrogen fuel cells, which is called oxygen hydrogen reduction, but under acidic conditions, oxygen is not reduced to water and produces hydrogen peroxide, which is inefficient. Is the actual situation.

一方のセラミック系電解質を用いる例として、特許文献2がある。一般にセラッミック系の固体電解質を用いるものは、電解質の漏出などの事故は無いものの、動作温度が高く、また電解質自体が薄く硬く脆い為に、大面積にして酸素運搬能力を大きくすることに向いていない。
特公昭59−5673号公報 特開2003−107043号公報
There exists patent document 2 as an example using one ceramic type | system | group electrolyte. In general, those using ceramic solid electrolytes do not cause accidents such as electrolyte leakage, but they are suitable for increasing the oxygen carrying capacity by increasing the area because the operating temperature is high and the electrolyte itself is thin, hard and brittle. Absent.
Japanese Patent Publication No.59-5673 JP 2003-107043 A

しかしながら上記各酸素ポンプはそれぞれ一長一短があり、常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出などの恐れがない酸素ポンプは見られなかった。   However, each of the above oxygen pumps has advantages and disadvantages, and an oxygen pump that operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and has no fear of leakage of electrolytes has not been found.

本発明はこのような点に鑑みてなしたもので、常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出など事故の問題が無い、酸素ポンプを提供するものである。   The present invention has been made in view of the above points, and provides an oxygen pump that operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and has no problem of accidents such as electrolyte leakage. .

本発明の酸素ポンプは、多孔質のガス交換性の負極と多孔質のガス交換性の正極との間に、負極活性でかつ酸素自動酸化を受ける電解質の酸化型の中性から酸性の溶液を含浸させた多孔質セパレータを挟み、集電構造を介して外部直流電源より両電極に給電して、互いに隔離された気相の負極側から正極側に酸素の移動を行うものである。   The oxygen pump of the present invention provides a neutral to acidic solution of an electrolytic oxide type that is active in the negative electrode and undergoes oxygen auto-oxidation between the porous gas-exchangeable negative electrode and the porous gas-exchangeable positive electrode. The impregnated porous separator is sandwiched, and both electrodes are supplied with power from an external DC power source via a current collecting structure, and oxygen is transferred from the negative electrode side of the vapor phase isolated from the positive electrode side.

本発明は、以上のようにすることにより、常温常圧で動作し、面積を大きく取って大きな酸素運搬能力を容易に出しえ、電解質の漏出などの恐れが無い、酸素ポンプができる。   By doing as described above, the present invention can provide an oxygen pump that operates at room temperature and normal pressure, can easily take out a large area and easily provide a large oxygen carrying capacity, and has no fear of electrolyte leakage.

本発明の請求項1記載の酸素ポンプは、多孔質のガス交換性の負極と多孔質のガス交換性の正極との間に、負極活性でかつ酸素自動酸化を受ける電解質の酸化型の中性から酸性の溶液を含浸させた多孔質セパレータを挟み、集電構造を介して外部直流電源より両電極に給電して、互いに隔離された気相の負極側から正極側に酸素の移動を行うものであり、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の漏出などの恐れが無い。また、構造的に薄くやわらかく、大面積にして酸素運搬能力を大きくすることが可能である。   The oxygen pump according to claim 1 of the present invention is a neutral oxide of an electrolyte that is active in the negative electrode and undergoes oxygen auto-oxidation between the porous gas-exchangeable negative electrode and the porous gas-exchangeable positive electrode. A porous separator impregnated with an acidic solution is sandwiched between two electrodes, and both electrodes are supplied from an external DC power source through a current collecting structure, and oxygen is transferred from the negative electrode side to the positive electrode side of the gas phase isolated from each other Since a very small amount of electrolyte is impregnated and held using an aqueous solvent that operates at normal temperature and pressure, there is no risk of leakage of the electrolyte. Moreover, it is structurally thin and soft, and it is possible to increase the oxygen carrying capacity by increasing the area.

本発明の請求項2記載の酸素ポンプは、負極活性でかつ酸素自動酸化を受ける電解質の酸化型の中性から酸性の溶液を三価鉄塩溶液としたものであり、安価な電解液を提供する。   The oxygen pump according to claim 2 of the present invention is a trivalent iron salt solution obtained by converting a neutral to acidic solution of a negative electrode active and subject to oxygen auto-oxidation into a trivalent iron salt solution, and provides an inexpensive electrolytic solution To do.

本発明の請求項3記載の酸素ポンプは、三価鉄塩溶液に塩化物塩を添加したものであり、負極反応を促進し、性能向上を図る。   The oxygen pump according to claim 3 of the present invention is obtained by adding a chloride salt to a trivalent iron salt solution, and promotes a negative electrode reaction to improve performance.

本発明の請求項4記載の酸素ポンプは、正極負極に炭素微粉末を用いたものであり、セパレータに薄く塗布し、セパレータと電極との密着性がよくなる。   The oxygen pump according to claim 4 of the present invention uses carbon fine powder for the positive electrode and the negative electrode, and is applied thinly to the separator to improve the adhesion between the separator and the electrode.

本発明の請求項5記載の酸素ポンプは、集電構造にカーボンクロスを用いたものであり、カーボンクロスのやわらかさの大きな面積の酸素ポンプを作ることが可能で、酸素運搬能力を大きくできる。さらにカーボン繊維クロスの繊維を引き出すことにより、外部電源回路との接続が容易になる。   The oxygen pump according to claim 5 of the present invention uses a carbon cloth for the current collecting structure, and can produce an oxygen pump having a large area of the carbon cloth and can increase the oxygen carrying capacity. Furthermore, by pulling out the fibers of the carbon fiber cloth, connection with an external power supply circuit becomes easy.

本発明の請求項6記載の酸素ポンプは、積層した膜状のセパレータ、両電極、集電構造の周囲末端を接着剤でモールドしたものであり、面方向への気体の逃げと、正極負極間の気体の回りこみを規制する。   The oxygen pump according to claim 6 of the present invention is obtained by molding the laminated film-like separator, both electrodes, and the peripheral ends of the current collecting structure with an adhesive, and the escape of gas in the surface direction between the positive electrode and the negative electrode Restricts the entrainment of gas.

本発明の請求項7記載の酸素ポンプは、負極活性でかつ酸素自動酸化を受ける電解質の中性から酸性の溶液を含浸させて多孔質セパレータを形成し、この多孔質セパレータを乾燥した後、当該多孔質セパレータに電極、集電構造を付加し、酸素ポンプ構造を組み立てた後、水蒸気による吸水で電解質溶液を再生する製造方法であり、乾燥状態で酸素ポンプ構造を組み立てることができ、製法が容易となる。   The oxygen pump according to claim 7 of the present invention is formed by impregnating a neutral to acidic solution of an electrolyte that is negative electrode active and undergoes oxygen auto-oxidation to form a porous separator, and after drying the porous separator, This is a manufacturing method in which an electrode and a current collecting structure are added to a porous separator, and the oxygen pump structure is assembled, and then the electrolyte solution is regenerated by absorbing water with water vapor. It becomes.

以下、本発明の実施の形態を説明する。なお、この説明によって本発明が限定されるものではない。   Embodiments of the present invention will be described below. In addition, this invention is not limited by this description.

(実施の形態1)
図1は酸素ポンプの断面図を示し、電解質溶液を含浸したセパレータ1の両面に、炭素微粉末を塗布して構成した正極2と負極3を配置し、その外部にカーボンクロスを密着設置して正極側集電電極4と正極側集電電極5とすることにより、積層された構造を形作り、面方向の終端部に接着剤を含浸・肉盛りしてモールド8として各構造を接続一体化する。外部に対する正極側電極取り出し部6と負極側電極取り出し部7は、そのカーボンクロスのカーボン繊維をモールド8より引き出し、外部直流電源(図示せず)に接続する。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of an oxygen pump, in which a positive electrode 2 and a negative electrode 3 configured by applying fine carbon powder are arranged on both sides of a separator 1 impregnated with an electrolyte solution, and a carbon cloth is closely attached to the outside. By forming the positive-side current collecting electrode 4 and the positive-side current collecting electrode 5, a laminated structure is formed, and an adhesive is impregnated and built up at the end portion in the surface direction to connect and integrate the structures as a mold 8. . The positive electrode side electrode takeout part 6 and the negative electrode side electrode takeout part 7 to the outside draw the carbon fiber of the carbon cloth from the mold 8 and connect it to an external DC power source (not shown).

上記セパレータ1に願審査セル電解液は塩化第二鉄、塩化カルシウムの水溶液を用いる。配合割合はモル比で塩化カルシウム無水物あたり、塩化第二鉄無水相当0.2から2、水4から15である。セパレータ1に塗布後、乾燥させて、両電極、両終電電極と積層し、面方向の終端部に接着剤を含浸・肉盛りしてモールド8を作り一体化する。なお、乾燥していない、濡れたセパレータでは、モールドを作ることが困難である。   The separator 1 uses an aqueous solution of ferric chloride and calcium chloride as the application screening cell electrolyte. The mixing ratio is 0.2 to 2 equivalent to anhydrous ferric chloride and 4 to 15 water per calcium chloride anhydride. After being applied to the separator 1, it is dried and laminated with both electrodes and both final electrodes, and a mold 8 is formed and integrated by impregnating and building up an adhesive at the end portion in the surface direction. In addition, it is difficult to make a mold with a wet separator that is not dried.

上記構成において、セパレータ上の塩化第二鉄と塩化カルシウムの混合物は強い潮解性をもち、大気から水蒸気を吸収して、水のモル比4から15に収まり、元の湿潤状態に戻る。この範囲で電解液は不揮発性溶液として振る舞い、乾固することが無い。また、セパレータのほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持するので、液垂れし漏れ出して、逸失したり周囲を汚すことが無い。   In the above configuration, the mixture of ferric chloride and calcium chloride on the separator has strong deliquescence, absorbs water vapor from the atmosphere, falls within a water molar ratio of 4 to 15, and returns to its original wet state. Within this range, the electrolyte behaves as a non-volatile solution and does not dry out. In addition to the separator, the surrounding carbon fine powder or carbon cloth holds the aqueous solution, so that it does not spill and leak, and is not lost or soiled.

酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられ、正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータ1に含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達し、再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体としては閉回路ができる。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出されて、酸素ポンプとしての酸素移動の機能が発揮される。   In a steady state operation of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode side electrode take-out unit 6 to the positive electrode 2 through the positive electrode side collecting electrode 4, Oxygen is generated by exchanging electric charge with the electrolyte solution on the powder surface, and then transmitted through the electrolytic solution impregnated in the separator 1 by ionic conduction to reach the surface of the carbon fine powder of the negative electrode 3, and the electric charge is exchanged again to perform electrolysis. Oxygen is taken into the liquid, and further returns to the external DC power source via the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out part 7, so that a closed circuit can be formed as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. Then, it is discharged into the positive electrode side gas phase 9 and the function of oxygen transfer as an oxygen pump is exhibited.

さらに詳述すると、通電に従って、負極表面で塩化第二鉄の三価の鉄イオンは、負極から電子を受け取って還元され、二価鉄イオンとなる。   More specifically, in accordance with energization, trivalent iron ions of ferric chloride on the negative electrode surface receive electrons from the negative electrode and are reduced to divalent iron ions.

Fe + e → Fe
続いて、二価鉄イオンは酸素で自動酸化されて三価鉄イオンに戻ると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。
Fe 3 + + e → Fe 2 +
Subsequently, the divalent iron ions are auto-oxidized with oxygen to return to trivalent iron ions, and water is generated from the hydrogen ions in the solution, and oxygen is taken into the electrolyte.

4Fe + O + 4H → 4Fe + 2H
従って、負極の全反応では酸素と水素イオンが負極から電子を受け取って、水が生成したことになる。
4Fe 2 + + O 2 + 4H + → 4Fe 3 + + 2H 2 O
Therefore, in the entire reaction of the negative electrode, oxygen and hydrogen ions receive electrons from the negative electrode, and water is generated.

+ 4H + 4e → 2H
この負極の全反応を、自動酸化される二価鉄イオンなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極と反応しない。白金などの触媒を負極に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if this entire reaction of the negative electrode is carried out without the auto-oxidized divalent iron ions, oxygen is quite inactive and hardly reacts with the negative electrode. When a catalyst such as platinum is supported on the negative electrode, it reacts. In this case, hydrogen peroxide is first generated.

+ 2H + 2e → H
次に過酸化水素と水素イオンが負極から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode to produce water.

+ 2H + 2e → 2H
しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。本発明では、自動酸化する二価鉄イオンを持ち込むことにより効率的な酸素の取り込みが出来る。鉄イオンは電極活性であり、電極との電荷の収受は容易である。また三価鉄イオンは、自動酸化する二価鉄イオンの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In the present invention, oxygen can be efficiently taken in by introducing divalent iron ions to be auto-oxidized. Since iron ions are electrode active, it is easy to receive charges from the electrodes. Trivalent iron ions are an oxidized form of divalent iron ions that are auto-oxidized.

もう一方の正極表面では、水が電子を正極に与えて、酸素と水素イオンを生成する。   On the other positive electrode surface, water gives electrons to the positive electrode to generate oxygen and hydrogen ions.

2HO → O+ 4H + 4e
ここで、直接酸素運搬に関与しない塩化カルシウムも幾つかの機能をもつ。第一に塩素イオンは二価鉄イオンの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。本実施例では、鉄イオンも塩化物の形態で供給されているが、塩化カルシウムを追加することでさらに二価鉄イオンの酸素自動酸化が速くなる。第二に大量のカルシウムイオンがあることで、負極からの水素ガスの発生が抑えられる。カルシウムイオンが負極表面に電気的吸着し、カルシウムイオンのpHバッファラクションのために電極表面がアル
カリ側に維持され、水素発生の平衡電位が低下して水素ガスが出にくくなる。第三に反応に関与する鉄の溶解度を高くとることができる。溶解しない鉄塩をセパレータに含浸することはできないので、鉄塩を高濃度に仕込もうとすると、溶解度を上げるしかない。塩化カルシウムは塩化第一鉄と共溶して、塩化第一鉄の溶解を助ける。第四に塩化カルシウムは、塩素イオンの供給源である。三価の鉄イオンは不溶性の水酸化物を生じやすく、水酸化物は不可逆的に酸化鉄(二三酸化鉄)に変化していくが、高濃度の塩素イオンが存在すると、塩素イオンが鉄イオンに配位して水酸イオンに競合するので、不可逆的な酸化鉄生成を阻止することができる。
2H 2 O → O 2 + 4H + + 4e
Here, calcium chloride not directly involved in oxygen transport also has several functions. First, chlorine ions act to promote oxygen auto-oxidation of divalent iron ions, and oxygen uptake at the negative electrode 3 is accelerated. In this embodiment, iron ions are also supplied in the form of chloride. However, by adding calcium chloride, oxygen autooxidation of divalent iron ions is further accelerated. Secondly, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode. Calcium ions are electrically adsorbed on the surface of the negative electrode, and the pH of the calcium ions keeps the electrode surface on the alkali side, so that the hydrogen generation equilibrium potential is lowered and hydrogen gas is hardly emitted. Third, the solubility of iron involved in the reaction can be increased. Since it is impossible to impregnate the separator with an iron salt that does not dissolve, if the iron salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with ferrous chloride and helps dissolve ferrous chloride. Fourth, calcium chloride is a source of chloride ions. Trivalent iron ions tend to form insoluble hydroxides, which irreversibly change to iron oxide (iron trioxide), but when high concentrations of chlorine ions are present, the chloride ions become iron. Since it coordinates with ions and competes with hydroxide ions, irreversible iron oxide production can be prevented.

セパレータ1には、電池セパレータ、電解隔壁、限外濾過膜、ろ紙、不織布など多くの名称、材質、製法の表裏貫通した間隙を有する多孔質膜が存在し、これらが利用可能である。しかしながら、本発明のセパレータ1は、両電極間の電子伝導の絶縁のほか、負極側正極側の気相の連通を遮断して、ガス分離を行う機能を担っており、このためにセパレータ内部の間隙は電解質溶液で満たされ、ガスの通過ができないものでなければならない。このためには、材質が撥水性で電解液をはじくものは不可であり、ポリエチレン製、ポリテトラフルオロカーボン製などの撥水性のものは、親水化処理がなされないと使用できない。また、目開きが大きいものは、親水的材質であっても液切れして気相が連通するので、目開きの小さなものが望ましい。ほぼ目開き3マイクロメートル以下の膜であれば、目的が達せられる。   The separator 1 includes a porous membrane having gaps penetrating the front and back of many names, materials, and manufacturing methods such as a battery separator, an electrolytic partition, an ultrafiltration membrane, a filter paper, and a nonwoven fabric, and these can be used. However, the separator 1 of the present invention has a function of performing gas separation by blocking the gas phase communication on the negative electrode side and the positive electrode side, in addition to insulating the electron conduction between both electrodes. The gap must be filled with electrolyte solution and not allow gas to pass through. For this purpose, a material that is water-repellent and does not repel the electrolyte is not acceptable, and a water-repellent material such as polyethylene or polytetrafluorocarbon cannot be used unless it is hydrophilized. In addition, a material having a large opening is desirable even if it is a hydrophilic material, since the liquid runs out and the gas phase communicates. The purpose can be achieved if the film has an opening of about 3 micrometers or less.

正極2、負極3の電極材料の炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。カーボンブラックのアセチレンブラックは安価に安定した微粒子状のものが入手でき、良好である。炭素の微粒子間は導電性がよく、セパレータと密着した電極が容易に作成される。   Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder of the electrode material of the positive electrode 2 and the negative electrode 3. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less. Carbon black acetylene black is favorable because it is available in stable and fine particulate form. The carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.

カーボンクロスは、通常カーボン繊維の束を平織りにした布である。カーボン繊維には原料別の分類としてPAN系、ピッチ系、レーヨン系などがあり、弾性率などの機械的特性も種種のものがあるが、集電電極ためには特に原料・機械的特性を問わない。カーボンクロスはやわらかく、強度があり、大きな面積の酸素ポンプを作ることができ、酸素運搬能力を大きくできる。さらにカーボンクロスのカーボン繊維束を引き出し、圧着端子などで結束して、端子取り出し、外部電源回路との接続が容易になる。   Carbon cloth is usually a fabric in which a bundle of carbon fibers is plain woven. Carbon fibers are classified into raw materials by PAN, pitch, rayon, etc., and there are various mechanical properties such as elastic modulus. Absent. Carbon cloth is soft and strong, can make a large area oxygen pump, and can increase oxygen carrying capacity. Further, the carbon fiber bundle of the carbon cloth is pulled out and bound with a crimp terminal or the like, and the terminal is taken out and can be easily connected to an external power supply circuit.

本発明の酸素ポンプでは、積層した膜状のセパレータ1、両電極2,3、集電構造の周囲末端を接着剤でモールドして、面方向への気体の逃げと、正極負極間の気体の回りこみを規制する。このために使える糊剤には、溶剤にネオプレンなどのゴムを溶解したゴム糊、シリコーンシーリング剤などが使え、電解液の水に耐性のものであればよい。モールドは面方向への気体の逃げと、正極負極間の気体の回りこみを規制する。   In the oxygen pump of the present invention, the laminated film-like separator 1, the two electrodes 2 and 3, and the peripheral ends of the current collecting structure are molded with an adhesive, and the escape of gas in the surface direction and the gas between the positive and negative electrodes Regulate wraparound. As the paste used for this purpose, rubber paste in which rubber such as neoprene is dissolved in a solvent, silicone sealing agent, etc. can be used as long as it is resistant to the water of the electrolytic solution. The mold regulates escape of gas in the surface direction and gas sneaking between the positive and negative electrodes.

このようにこの実施の形態の酸素ポンプは、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の漏出など事故の問題が無い。構造的に薄くやわらかく、大面積にして酸素運搬能力を大きくすることが可能である。   As described above, the oxygen pump of this embodiment uses an aqueous solvent that operates at normal temperature and pressure, and an extremely small amount of electrolyte is impregnated and held, so that there is no problem of accident such as leakage of the electrolyte. Structurally thin and soft, it is possible to increase the oxygen carrying capacity by increasing the area.

以下、実験例を説明する。   Hereinafter, experimental examples will be described.

実験に用いた酸素ポンプは、図2の構成を持ち、ポリエチレン製親水化セパレータ1は厚み0.38ミリメートル(日本板硝子社製)、両電極2,3はアセチレンブラック(和光純薬社製)、カーボンクロス(三菱レイヨン社製)、モールド8はシリコーンシーラント(信越化学社製)で、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした
。室温(約25℃)で実験を行い、2.1Vを印加して、1.4アンペアの電流が流れ、正極から0.044ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。
The oxygen pump used in the experiment has the configuration shown in FIG. 2, the polyethylene hydrophilized separator 1 has a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.), the electrodes 2 and 3 are acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.), Carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.), mold 8 is a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.), has a circular effective diameter of 30 mm (effective area of 7.0 square centimeters), and a thin film micro flow meter is connected to the gas outlet 12. The flow rate can be observed. The experiment was conducted at room temperature (about 25 ° C), 2.1 V was applied, 1.4 ampere of current flowed, 0.044 ml / s of gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.

以上のように、本発明の酸素ポンプは、常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出など事故の問題が無いので、酸素製造分野、富酸素条件を必要とする燃焼、養魚、医療などの分野、低酸素条件を必要とする食料、食品保存の分野に応用できる。   As described above, the oxygen pump of the present invention operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and has no problem of accidents such as electrolyte leakage. It can be applied to fields such as combustion, fish farming, and medicine, foods that require low oxygen conditions, and food storage.

本発明の実施の形態1における酸素ポンプの構成例を示す断面図Sectional drawing which shows the structural example of the oxygen pump in Embodiment 1 of this invention. 同酸素ポンプの実験例を示す断面図Sectional view showing an experimental example of the oxygen pump

符号の説明Explanation of symbols

1 セパレータ
2 正極
3 負極
4 正極側集電電極
5 負極側集電電極
6 正極側電極取り出し部
7 負極側電極取り出し部
8 モールド
9 正極側気相
10 負極側気相
11 正極側ケース
12 ガス出口
DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode 3 Negative electrode 4 Positive electrode side current collection electrode 5 Negative electrode side current collection electrode 6 Positive electrode side electrode extraction part 7 Negative electrode side electrode extraction part 8 Mold 9 Positive electrode side gas phase 10 Negative electrode side gas phase 11 Positive electrode side case 12 Gas outlet

Claims (7)

多孔質のガス交換性の負極と多孔質のガス交換性の正極との間に、負極活性でかつ酸素自動酸化を受ける電解質の酸化型の中性から酸性の溶液を含浸させた多孔質セパレータを挟み、集電構造を介して外部直流電源より両電極に給電して、互いに隔離された気相の負極側から正極側に酸素の移動を行う酸素ポンプ。 Between the porous gas-exchangeable negative electrode and the porous gas-exchangeable positive electrode, a porous separator impregnated with a neutral to acidic solution of the oxide oxidation type that is active in the negative electrode and undergoes oxygen auto-oxidation An oxygen pump that sandwiches and feeds both electrodes from an external DC power source via a current collecting structure, and moves oxygen from the negative electrode side to the positive electrode side of the vapor phase isolated from each other. 負極活性でかつ酸素自動酸化を受ける電解質の酸化型の中性から酸性の溶液が、三価鉄塩溶液である請求項1記載の酸素ポンプ。 2. The oxygen pump according to claim 1, wherein the neutral to acidic solution of the electrolyte that is active in the negative electrode and undergoes oxygen auto-oxidation is a trivalent iron salt solution. 三価鉄塩溶液に塩化物塩を混合添加した請求項2記載の酸素ポンプ。 The oxygen pump according to claim 2, wherein a chloride salt is mixed and added to the trivalent iron salt solution. 正極負極が炭素微粉末である請求項1記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the positive electrode and the negative electrode are fine carbon powder. 集電構造がカーボンクロスである請求項1記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the current collecting structure is a carbon cloth. 積層した膜状のセパレータ、両電極、集電構造の周囲末端を接着剤でモールドした請求項1記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the peripheral ends of the laminated film separator, both electrodes, and the current collecting structure are molded with an adhesive. 多孔質セパレータは、負極活性でかつ酸素自動酸化を受ける電解質の中性から酸性の溶液を含浸させて多孔質セパレータを形成し、この多孔質セパレータを乾燥した後、当該多孔質セパレータに電極、集電構造を付加し、酸素ポンプ構造を組み立てた後、水蒸気による吸水で電解質溶液を再生した酸素ポンプの製造方法。 The porous separator is impregnated with a neutral to acidic solution of an electrolyte that is active in the negative electrode and subjected to oxygen auto-oxidation to form a porous separator. After the porous separator is dried, the electrode is collected on the porous separator. A method for producing an oxygen pump in which an electric structure is added and an oxygen pump structure is assembled, and then an electrolyte solution is regenerated by absorbing water with water vapor.
JP2008266005A 2008-10-06 2008-10-15 Oxygen pump and method for manufacturing the same Pending JP2010095743A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008266005A JP2010095743A (en) 2008-10-15 2008-10-15 Oxygen pump and method for manufacturing the same
PCT/JP2009/005097 WO2010041396A1 (en) 2008-10-06 2009-10-02 Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266005A JP2010095743A (en) 2008-10-15 2008-10-15 Oxygen pump and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010095743A true JP2010095743A (en) 2010-04-30

Family

ID=42257628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266005A Pending JP2010095743A (en) 2008-10-06 2008-10-15 Oxygen pump and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010095743A (en)

Similar Documents

Publication Publication Date Title
RU2236067C2 (en) Catalytic air cathode for air-metal battery
US5545492A (en) Electrochemical apparatus for power delivery utilizing an air electrode
US9680192B2 (en) Air battery and air battery stack
JP4843908B2 (en) Secondary battery and power generation method
WO2009104570A1 (en) Air electrode
JPS6356675B2 (en)
EA013282B1 (en) Bifunctional air electrode
TWI514643B (en) Flexible transparent air-metal batteries
JP2015060665A (en) Air cell, negative electrode for air cell, and air cell unit
JP2014183021A (en) Metal-air battery
Lianos A brief review on solar charging of Zn–air batteries
CN104425856B (en) Lithium-air battery and positive electrode
JP5690353B2 (en) Non-aqueous secondary battery
JP2010095743A (en) Oxygen pump and method for manufacturing the same
JP2010209442A (en) Oxygen pump and method for manufacturing the same
JP2010208916A (en) Oxygen pump and method for manufacturing the same
JP2010089975A (en) Oxygen pump and method for manufacturing the same
JP2010090004A (en) Oxygen pump and method for manufacturing the same
JP3758615B2 (en) Fuel cell
JP2010248534A (en) Oxygen pump and method for producing the same
JP2010248533A (en) Oxygen pump and method for producing the same
JP2010248555A (en) Oxygen pump and method for producing the same
WO2022203011A1 (en) Electrochemical cell
JP2010255072A (en) Oxygen pump
JP2004146387A (en) Fuel cell and its using method