JP2010095671A - Starch resin composition having good spinnability - Google Patents

Starch resin composition having good spinnability Download PDF

Info

Publication number
JP2010095671A
JP2010095671A JP2008269591A JP2008269591A JP2010095671A JP 2010095671 A JP2010095671 A JP 2010095671A JP 2008269591 A JP2008269591 A JP 2008269591A JP 2008269591 A JP2008269591 A JP 2008269591A JP 2010095671 A JP2010095671 A JP 2010095671A
Authority
JP
Japan
Prior art keywords
starch
acid
modified
resin composition
maleic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269591A
Other languages
Japanese (ja)
Other versions
JP5237751B2 (en
Inventor
Takashi Nakahara
隆 中原
Yasuhiro Kitahara
泰広 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2008269591A priority Critical patent/JP5237751B2/en
Publication of JP2010095671A publication Critical patent/JP2010095671A/en
Application granted granted Critical
Publication of JP5237751B2 publication Critical patent/JP5237751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a starch resin composition which has improved spinnability, for example, enhanced spinning speed. <P>SOLUTION: The starch resin composition includes: (a) 5-85 mass% of a modified starch; (b) 1-90 mass% of an acid-modified polyolefin which is obtained by graft-modifying a polyolefin with an unsaturated carboxylic acid or its derivative and has a weight-average molecular weight of 5,000-500,000 g/mol, and wherein the content of the unsaturated carboxylic acid or its derivative grafted to the polyolefin is 0.1-2 mass% and the content of the unreacted unsaturated carboxylic acid or its derivative is ≤1,000 ppm; and (c) 2-70 mass% of a plasticizer. It is preferable that the acid-modified polyolefin (b) satisfies the condition that the value of MFR is 50-300 g/10 min, as measured at 190°C with a load of 2.16 kg. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、不織布等の繊維の原料などとして用いることのできるデンプン樹脂組成物、より詳しくは従来よりも紡糸性が改善されたデンプン樹脂組成物に関する。   The present invention relates to a starch resin composition that can be used as a raw material for fibers such as non-woven fabrics, and more particularly to a starch resin composition having improved spinnability than before.

デンプン、熱可塑性樹脂、可塑剤等を含有する組成物(デンプン樹脂組成物、スターチポリマー組成物などともよばれる。)を紡糸して製造される繊維は生分解性を有し、使い捨て製品に用いられる不織布などの素材として好適である。しかしながら、かかる組成物の紡糸は容易ではなく、紡糸性の改善が求められていた。   Fibers produced by spinning a composition containing starch, thermoplastic resin, plasticizer, etc. (also called starch resin composition, starch polymer composition, etc.) are biodegradable and used for disposable products. It is suitable as a material such as a nonwoven fabric. However, spinning of such a composition is not easy, and improvement in spinnability has been demanded.

特表2004−532364号公報(特許文献1)には、変性デンプンと、熱可塑性ポリマーと、可塑剤とを含む溶融紡糸組成物およびこれから製造される高減衰繊維が開示されている。特表2004−530057号公報(特許文献2)には、鞘−芯構造等を有する環境分解性多成分繊維であって、その構成成分の一つに、非構造化デンプンと、500,000未満の分子量を有する生分解性熱可塑性ポリマーと、可塑剤とが含まれるものが開示されている。特表2004−530058号公報(特許文献3)には、鞘−芯構造等を有する多成分繊維であって、その構成成分の一つに、非構造化デンプンと、500,000未満の分子量を有する熱可塑性ポリマーと、可塑剤とが含まれるものが開示されている。   Japanese Patent Application Publication No. 2004-532364 (Patent Document 1) discloses a melt spinning composition containing a modified starch, a thermoplastic polymer, and a plasticizer, and a high damping fiber produced therefrom. JP-T-2004-530057 (Patent Document 2) describes an environmentally degradable multicomponent fiber having a sheath-core structure and the like, and one of its constituent components is unstructured starch and less than 500,000. A biodegradable thermoplastic polymer having a molecular weight of 5 and a plasticizer are disclosed. In Japanese translations of PCT publication No. 2004-530058 (patent document 3), it is a multi-component fiber having a sheath-core structure, etc., and one of its constituent components includes unstructured starch and a molecular weight of less than 500,000. The thing containing the thermoplastic polymer which has and a plasticizer is disclosed.

また、米国特許出願公開第2007/0082981号明細書(特許文献4)および米国特許出願公開第2007/0082573号明細書(特許文献7)には、非構造化デンプンと、ポリオールとエステル官能基を有するトリグリセリドのエステル交換反応による反応物とを含有し、さらにマレイン酸変性ポリプロピレン等の熱可塑性樹脂を含有していてもよい、耐水性の向上した熱可塑性樹脂組成物が開示されている。米国特許出願公開第2007/0082982号明細書(特許文献5)および米国特許出願公開第2007/0079945号明細書(特許文献6)にも同様に、非構造化デンプンと、ポリオールとカルボン酸等とのエステル反応物とを含有し、さらにマレイン酸変性ポリプロピレン等の熱可塑性樹脂を含有していてもよい、耐水性の向上した熱可塑性樹脂組成物が開示されている。これらの特許文献4〜7の実施例には、非構造化デンプン、グリセロール、マレイン酸変性ポリプロピレン等を含有する組成物が例示されており、これらの組成物は、特許文献4および5では単層フィルムに、特許文献6および7では鞘/芯構造を有する二成分繊維に加工されている。   US Patent Application Publication No. 2007/0082981 (Patent Document 4) and US Patent Application Publication No. 2007/0082573 (Patent Document 7) include unstructured starch, polyol and ester functional groups. A thermoplastic resin composition with improved water resistance, which contains a reaction product obtained by transesterification of triglyceride and further may contain a thermoplastic resin such as maleic acid-modified polypropylene, is disclosed. Similarly, US Patent Application Publication No. 2007/0082982 (Patent Document 5) and US Patent Application Publication No. 2007/0079945 (Patent Document 6) include unstructured starch, polyol, carboxylic acid, and the like. And a thermoplastic resin composition having improved water resistance, which may further contain a thermoplastic resin such as maleic acid-modified polypropylene. In Examples of these Patent Documents 4 to 7, compositions containing unstructured starch, glycerol, maleic acid-modified polypropylene and the like are exemplified, and these compositions are disclosed as single layers in Patent Documents 4 and 5. The film is processed into bicomponent fibers having a sheath / core structure in US Pat.

しかしながらこれらの特許文献1〜7のいずれにも、酸変性熱可塑性ポリマーをデンプン樹脂組成物の一成分として用いることにより紡糸性を改善できるという効果は、記載も示唆もされていない。特に、特許文献4〜7の実施例で用いられているマレイン酸変性ポリプロピレンの性状は、後述する比較例7および8の結果から分かるように、デンプン樹脂組成物の紡糸性を向上させる点において好ましいものとはいえない。
特表2004−532364号公報 特表2004−530057号公報 特表2004−530058号公報 米国特許出願公開第2007/0082981号明細書 米国特許出願公開第2007/0082982号明細書 米国特許出願公開第2007/0079945号明細書 米国特許出願公開第2007/0082573号明細書
However, none of these Patent Documents 1 to 7 describes or suggests the effect that the spinnability can be improved by using the acid-modified thermoplastic polymer as one component of the starch resin composition. In particular, the properties of maleic acid-modified polypropylene used in Examples of Patent Documents 4 to 7 are preferable in terms of improving the spinnability of the starch resin composition, as can be seen from the results of Comparative Examples 7 and 8 described later. Not a thing.
JP-T-2004-532364 Special table 2004-530057 gazette Special table 2004-530058 gazette US Patent Application Publication No. 2007/0082981 US Patent Application Publication No. 2007/0082982 US Patent Application Publication No. 2007/0079945 US Patent Application Publication No. 2007/0082573

本発明は、紡糸性(紡糸速度等)の向上したデンプン樹脂組成物を提供することを目的とする。   An object of the present invention is to provide a starch resin composition having improved spinnability (spinning speed and the like).

本発明者らは、酸変性熱可塑性ポリマーとして、重量平均分子量、不飽和カルボン酸等のポリオレフィンへのグラフト量、未反応の不飽和カルボン酸等の量、望ましくはさらにMFRについて、所定の条件を満たす酸変性ポリオレフィンを所定の割合で配合することにより、デンプン樹脂組成物の紡糸性を向上させることができることを見出し、本発明を完成させるに至った。   As the acid-modified thermoplastic polymer, the present inventors set the predetermined conditions for the weight average molecular weight, the graft amount to the polyolefin such as unsaturated carboxylic acid, the amount of unreacted unsaturated carboxylic acid, etc. It has been found that the spinnability of the starch resin composition can be improved by blending the acid-modified polyolefin to be filled at a predetermined ratio, and the present invention has been completed.

すなわち、本発明には以下の事項が含まれる。
[1] 下記成分(a)、(b)および(c)を含む樹脂組成物(下記含有量は成分(a)、(b)および(c)の合計を100重量%とする)。
(a)変性デンプン:5〜85質量%、
(b)ポリオレフィンを不飽和カルボン酸又はその誘導体によってグラフト変性して得られる酸変性ポリオレフィンであって、重量平均分子量が5,000〜500,000g/mol、当該酸変性ポリオレフィン中のポリオレフィンにグラフトされた不飽和カルボン酸又はその誘導体量が0.1〜2質量%、かつ当該酸変性ポリオレフィン中に含まれる未反応の不飽和カルボン酸又はその誘導体の量が1,000ppm以下である酸変性ポリオレフィン:1〜90質量%、
(c)可塑剤:2〜70質量%。
That is, the present invention includes the following matters.
[1] A resin composition containing the following components (a), (b) and (c) (the following content is 100% by weight of the total of components (a), (b) and (c)).
(A) Modified starch: 5 to 85% by mass,
(B) An acid-modified polyolefin obtained by graft-modifying a polyolefin with an unsaturated carboxylic acid or a derivative thereof, and having a weight average molecular weight of 5,000 to 500,000 g / mol, grafted to the polyolefin in the acid-modified polyolefin. An acid-modified polyolefin having an amount of unsaturated carboxylic acid or derivative thereof of 0.1 to 2% by mass and an amount of unreacted unsaturated carboxylic acid or derivative thereof contained in the acid-modified polyolefin of 1,000 ppm or less: 1 to 90% by mass,
(C) Plasticizer: 2 to 70% by mass.

[2] 前記酸変性ポリオレフィン(b)がさらに、190℃、2.16kg荷重で測定したMFRが50〜300g/10分であるとの条件を満たすことを特徴とする[1]に記載の樹脂組成物。   [2] The resin according to [1], wherein the acid-modified polyolefin (b) further satisfies a condition that an MFR measured at 190 ° C. and a load of 2.16 kg is 50 to 300 g / 10 minutes. Composition.

[3] 前記ポリオレフィンがポリプロピレンであることを特徴とする[1]または[2]記載の樹脂組成物。
[4] 前記不飽和カルボン酸又はその誘導体が無水マレイン酸であることを特徴とする[1]〜[3]のいずれか1項に記載の樹脂組成物。
[3] The resin composition according to [1] or [2], wherein the polyolefin is polypropylene.
[4] The resin composition according to any one of [1] to [3], wherein the unsaturated carboxylic acid or derivative thereof is maleic anhydride.

本発明により紡糸性の向上したデンプン樹脂組成物は、単成分繊維、二成分繊維、多成分繊維などの原料として好適であり、これらの繊維の生産性や品質の向上につながる。   The starch resin composition having improved spinnability according to the present invention is suitable as a raw material for monocomponent fibers, bicomponent fibers, multicomponent fibers and the like, and leads to improvements in productivity and quality of these fibers.

− デンプン樹脂組成物の成分 −
(a)変性デンプン
本発明のデンプン樹脂組成物に配合される変性デンプン(a)は、天然デンプンが酸、加熱、酵素等による加水分解で非構造化(destructurized)されたもの、すなわち天然デンプンの粒状構造に含まれるアミノペクチンおよびアミロースの構造が破壊されて低分子化されたものであり、従来のデンプン樹脂組成物に配合されているものと同様のものを用いることができる。粒状構造を有する天然デンプンは熱可塑性ポリマーと異なり流動性に乏しいため、溶融加工または紡糸する前に塊が残らない程度にまで充分に非構造化をし、繊維紡糸プロセスに影響を与えないようにしなければならない。
− Components of starch resin composition −
(A) Modified starch The modified starch (a) to be blended in the starch resin composition of the present invention is a product obtained by destructurizing natural starch by hydrolysis with acid, heat, enzyme or the like, that is, natural starch. A structure in which aminopectin and amylose contained in the granular structure are destroyed to lower the molecular weight, and those similar to those blended in conventional starch resin compositions can be used. Natural starch with a granular structure is poor in fluidity unlike thermoplastic polymers, so it should be sufficiently unstructured so that no lumps remain before melt processing or spinning so as not to affect the fiber spinning process. There must be.

変性デンプン(a)の原料となる天然デンプンは特に限定されるものではなく、トウモロコシ、ワクシーメイズ(ほぼ100%のアミロペクチンよりなるデンプンを有するトウモ
ロコシ変種)、ジャガイモ、サツマイモ、小麦、サゴヤシ、キャッサバ(タピオカ)、米、大豆、クズウコン、ワラビ、ハスなどから得られるデンプンを用いることができる。ここれらは1種単独で用いても2種以上組み合わせて用いてもよい。
The natural starch used as the raw material for the modified starch (a) is not particularly limited, and maize, waxy maize (a corn variety having starch composed of almost 100% amylopectin), potato, sweet potato, wheat, sago palm, cassava (tapioca) , Starch obtained from rice, soybean, kuzukon, bracken, lotus and the like can be used. These may be used alone or in combination of two or more.

デンプンの非構造化には種々の方法が用いられるが、典型的には天然デンプンに溶媒を作用させてゼラチン化する方法が挙げられる。たとえば、加圧条件下で加熱しながら天然デンプンと溶媒の混合物に剪断力を加えることにより、ゼラチン化を促進することができる。このような方法により得られる非構造化されたデンプンは、通常、非構造化されていないデンプンよりも粘度が高く、ゼラチン化した状態であるが、乾燥および/または徐冷すると結晶状態になる。   Various methods are used for destructuring starch, and a typical method is gelatinization by allowing a solvent to act on natural starch. For example, gelatinization can be promoted by applying a shear force to the mixture of natural starch and solvent while heating under pressurized conditions. The unstructured starch obtained by such a method is usually more viscous and gelatinized than non-unstructured starch, but becomes dry and / or slowly cooled to a crystalline state.

デンプンを非構造化するための溶媒としては、水の他、糖、糖アルコール、ポリオール(マンニトール、ソルビトール、グリセリン等)などの1つ以上の水酸基を有する化合物や、その他低分子量またはモノマー可塑剤などが挙げられる。このうち、糖、糖アルコール、ポリオールなどの溶媒は、本発明のデンプン樹脂組成物における可塑剤(c)としても作用する物質であるため、デンプンを非構造化した後に除去せず、変性デンプン(a)とともにデンプン樹脂組成物に添加するようにしてもよい。一方、可塑剤(c)としては作用しない物質であれば、紡糸される繊維中に残存しないように除去可能なものを溶媒として用いることが望ましい。   As a solvent for destructuring starch, in addition to water, a compound having one or more hydroxyl groups such as sugar, sugar alcohol, polyol (mannitol, sorbitol, glycerin, etc.), other low molecular weight or monomer plasticizers, etc. Is mentioned. Among these, solvents such as sugar, sugar alcohol, and polyol are substances that also act as a plasticizer (c) in the starch resin composition of the present invention. Therefore, the starch is not removed after destructuring, and modified starch ( You may make it add to a starch resin composition with a). On the other hand, if it is a substance that does not act as a plasticizer (c), it is desirable to use a solvent that can be removed so as not to remain in the spun fiber.

天然デンプンの重量平均分子量(Mw)は非常に大きいが(たとえば天然コーンスターチのMwは約60,000,000g/molである)、変性デンプン(a)のMwは、通常3,000〜2,000,000g/mol、好ましくは10,000〜1,000,000g/mol、より好ましくは20,000〜700,000g/molである。   Although the weight average molecular weight (Mw) of natural starch is very large (for example, Mw of natural corn starch is about 60,000,000 g / mol), the Mw of modified starch (a) is usually 3,000 to 2,000. 1,000 g / mol, preferably 10,000 to 1,000,000 g / mol, more preferably 20,000 to 700,000 g / mol.

また、変性デンプン(a)は、そこに含まれる水酸基の一部(たとえば1〜6%程度)がエーテル化、エステル化などにより修飾されたものであってもよい。たとえばエチレンオキシドとの反応により水酸基をエトキシ化(ヒドロキシエチル化)することにより、酸変性熱可塑性ポリマー(b)および可塑剤(c)との相溶性を高めることができる。   Further, the modified starch (a) may be one in which a part of hydroxyl groups contained therein (for example, about 1 to 6%) is modified by etherification or esterification. For example, compatibility with the acid-modified thermoplastic polymer (b) and the plasticizer (c) can be enhanced by ethoxylation (hydroxyethylation) of the hydroxyl group by reaction with ethylene oxide.

デンプン樹脂組成物を製造する際には、上記のようにして天然デンプンから変性デンプンを調製した後にそれを添加してもよいが、市販されている変性デンプンを用いてもよい。市販されている変性デンプンとしては、「Ethylex(登録商標)2005」(Tate&Lyle社
製、住友商事販売。ヒドロキシエチル化および低分子化されたコーンスターチ。)、「コーンアルファー」(アルファースターチ(加工澱粉)、三和澱粉工業(株)販売)、「タピオカアルファー」(アルファースターチ(加工澱粉)、三和澱粉工業(株)販売)および「タピコート」(タピオカ加工澱粉、三和澱粉工業(株)販売)などが挙げられる。
In producing a starch resin composition, a modified starch may be added after preparing a modified starch from natural starch as described above, or a commercially available modified starch may be used. Commercially available modified starches include “Ethylex (registered trademark) 2005” (manufactured by Tate & Lyle, sold by Sumitomo Corporation. Hydroxyethylated and low molecular weight corn starch.), “Corn Alpha” (alpha starch (modified starch) , Sanwa Starch Kogyo Co., Ltd.), Tapioca Alpha (alpha starch (modified starch), Sanwa Starch Co., Ltd.) and Tapi Coat (tapioca processed starch, Sanwa Starch Co., Ltd.) Etc.

変性デンプン(a)の配合量は、変性デンプン(a)、酸変性熱可塑性ポリマー(b)および可塑剤(c)の合計100重量%中、通常5〜85重量%、好ましくは20〜80重量%、より好ましくは30〜70重量%である。変性デンプン(a)の量を上記範囲内とすることにより、良好な生分解性を保持しつつ紡糸性の向上したデンプン樹脂組成物が得られる。   The blending amount of the modified starch (a) is usually 5 to 85% by weight, preferably 20 to 80% by weight in the total 100% by weight of the modified starch (a), the acid-modified thermoplastic polymer (b) and the plasticizer (c). %, More preferably 30 to 70% by weight. By setting the amount of the modified starch (a) within the above range, a starch resin composition having improved spinnability while maintaining good biodegradability can be obtained.

(b)酸変性ポリオレフィン
本発明のデンプン樹脂組成物に配合される酸変性ポリオレフィン(b)は、不飽和カルボン酸またはその誘導体でグラフト変性したポリオレフィンである。
(B) Acid-modified polyolefin The acid-modified polyolefin (b) blended in the starch resin composition of the present invention is a polyolefin graft-modified with an unsaturated carboxylic acid or a derivative thereof.

グラフト変性に用いられる(未変性の)ポリオレフィンとしては、たとえばポリエチレン、ポリプロピレン、エチレン・α−オレフィン共重合体(エチレン・プロピレン共重合
体)などが挙げられ、特にポリプロピレンが好ましい。
Examples of (unmodified) polyolefin used for graft modification include polyethylene, polypropylene, ethylene / α-olefin copolymer (ethylene / propylene copolymer), and polypropylene is particularly preferable.

また、グラフト変性に用いられる不飽和カルボン酸またはその誘導体としては、たとえば以下のような化合物が挙げられる;
アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸−sec−ブチル
、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸−2−オクチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸ヘキシル、アクリル酸イソヘキシル、アクリル酸フェニル、アクリル酸−2−クロロフェニル、アクリル酸ジエチルアミノエチル、アクリル酸−3−メトキシブチル、アクリル酸ジエチレングリコールエトキシレート、アクリル酸−2,2,2−トリフルオロエチルなどのアクリル酸エステル類;
メタクリル酸メチル、メタアクリル酸エチル、メタクリル酸ブチル、メタクリル酸−sec−ブチル、メタクリル酸イソブチル、メタクリル酸プロピル、メタクリル酸イソプロピ
ル、メタクリル酸−2−オクチル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸ステアリル、メタクリル酸ヘキシル、メタクリル酸デシル、メタクリル酸フェニル、メタクリル酸−2−クロロヘキシル、メタクリル酸ジエチルアミノエチル、メタクリル酸−2−ヘキシルエチル、メタクリル酸−2,2,2−トリフルオロエチル等のメタクリル酸エステル類;
マレイン酸エチル、マレイン酸プロピル、マレイン酸ブチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル等のマレイン酸エステル類;
フマル酸エチル、フマル酸ブチル、フマル酸ジブチル等のフマル酸エステル類;
マレイン酸、フマール酸、イタコン酸、クロトン酸、ナジック酸、メチルヘキサヒドロフタル酸等のジカルボン酸類;
無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水アリルコハク酸、無水グルタコン酸、無水ナジック酸などの無水物。
Examples of the unsaturated carboxylic acid or derivative thereof used for graft modification include the following compounds:
Methyl acrylate, ethyl acrylate, butyl acrylate, acrylate-sec-butyl, isobutyl acrylate, propyl acrylate, isopropyl acrylate, 2-octyl acrylate, dodecyl acrylate, stearyl acrylate, hexyl acrylate, Acrylic acid such as isohexyl acrylate, phenyl acrylate, 2-chlorophenyl acrylate, diethylaminoethyl acrylate, 3-methoxybutyl acrylate, diethylene glycol ethoxylate acrylate, and 2,2,2-trifluoroethyl acrylate Esters;
Methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylate-sec-butyl, isobutyl methacrylate, propyl methacrylate, isopropyl methacrylate, 2-octyl methacrylate, dodecyl methacrylate, stearyl methacrylate, stearyl methacrylate Methacrylic acid such as hexyl methacrylate, decyl methacrylate, phenyl methacrylate, 2-chlorohexyl methacrylate, diethylaminoethyl methacrylate, 2-hexylethyl methacrylate, -2,2,2-trifluoroethyl methacrylate Esters;
Maleate esters such as ethyl maleate, propyl maleate, butyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate;
Fumaric acid esters such as ethyl fumarate, butyl fumarate, dibutyl fumarate;
Dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, crotonic acid, nadic acid, methylhexahydrophthalic acid;
Anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, allyl succinic anhydride, glutaconic anhydride, and nadic anhydride.

これらの不飽和カルボン酸またはその誘導体のうち、本発明においては無水物を用いることが好ましく、特に無水マレイン酸を用いることが好ましい。
酸変性ポリオレフィン(b)の重量平均分子量(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算値)は、通常5,000〜500,000g/mol、好ましくは10,000〜400,000g/mol、より好ましくは40,000〜20,0000g/molである。
Of these unsaturated carboxylic acids or derivatives thereof, anhydrides are preferably used in the present invention, and maleic anhydride is particularly preferably used.
The weight average molecular weight (polystyrene conversion value by gel permeation chromatography (GPC)) of the acid-modified polyolefin (b) is usually 5,000 to 500,000 g / mol, preferably 10,000 to 400,000 g / mol. Preferably, it is 40,000 to 20,000 g / mol.

酸変性ポリオレフィン(b)の配合量は、変性デンプン(a)、変性熱ポリオレフィン(b)および可塑剤(c)の合計100重量%中、通常1〜90重量%、好ましくは3〜50重量%、より好ましくは5〜20重量%である。酸変性ポリオレフィン(b)の量を上記範囲内とすることにより、デンプン樹脂組成物の紡糸性を向上させることができる。   The compounding amount of the acid-modified polyolefin (b) is usually 1 to 90% by weight, preferably 3 to 50% by weight, in a total of 100% by weight of the modified starch (a), the modified heat polyolefin (b) and the plasticizer (c). More preferably, it is 5 to 20% by weight. By setting the amount of the acid-modified polyolefin (b) within the above range, the spinnability of the starch resin composition can be improved.

酸変性ポリオレフィン(b)中の、ポリオレフィンにグラフトされた不飽和カルボン酸又はその誘導体の量(以下「グラフト率」ともいう。)は、KOH滴定換算値として、好ましくは0.1〜2質量%、より好ましくは0.5〜1.5質量%である。   In the acid-modified polyolefin (b), the amount of the unsaturated carboxylic acid grafted on the polyolefin or a derivative thereof (hereinafter also referred to as “grafting ratio”) is preferably 0.1 to 2% by mass as a KOH titration conversion value. More preferably, it is 0.5-1.5 mass%.

酸変性ポリオレフィン(b)の190℃、2.16kg荷重で測定したメルトフローレート(MFR)は、好ましくは50〜300g/10分、より好ましくは70〜250g/10分である。   The melt flow rate (MFR) measured at 190 ° C. and a 2.16 kg load of the acid-modified polyolefin (b) is preferably 50 to 300 g / 10 minutes, more preferably 70 to 250 g / 10 minutes.

酸変性ポリオレフィン(b)中に含まれる未反応の不飽和カルボン酸又はその誘導体の量(以下「未反応物量」ともいう。)は、好ましくは1,000ppm以下、より好ましくは300ppm以下である。当該未反応の不飽和カルボン酸又はその誘導体の量は、酸変性ポリオレフィン(b)をキシレンなどの溶媒に溶解した後、水と混合し、水に抽出さ
れた不飽和カルボン酸またはその誘導体の量を液体クロマトグラフで定量することにより測定することができる。
The amount of unreacted unsaturated carboxylic acid or derivative thereof (hereinafter also referred to as “unreacted material amount”) contained in the acid-modified polyolefin (b) is preferably 1,000 ppm or less, more preferably 300 ppm or less. The amount of the unreacted unsaturated carboxylic acid or derivative thereof is determined by dissolving the acid-modified polyolefin (b) in a solvent such as xylene, mixing with water, and extracting the unsaturated carboxylic acid or derivative thereof into water. Can be measured by liquid chromatograph.

上記グラフト率および未反応物量の条件、好ましくはさらにMFRの条件を満たす酸変性ポリオレフィン(b)を用いることにより、デンプン樹脂組成物の紡糸性をより向上させやすくなる。   By using the acid-modified polyolefin (b) that satisfies the conditions of the graft ratio and the amount of unreacted substances, preferably the MFR conditions, the spinnability of the starch resin composition can be further improved.

酸変性ポリオレフィンの製造方法としては、たとえば(i)未変性ポリオレフィンと不飽和カルボン酸またはその誘導体とを、有機過酸化物などの重合開始剤の存在下に溶融混練するか、または(ii)未変性ポリオレフィンと不飽和カルボン酸またはその誘導体とを有機溶媒に溶解し、この溶液中で有機過酸化物などの重合開始剤の存在下に混練する方法などが知られている。このうち、上記の諸条件を満たす酸変性ポリオレフィン(b)の製造方法としては、未反応物量を少なくしやすいなどの観点から、後記実施例に示すような上記(ii)の方法が望ましい。   For example, (i) unmodified polyolefin and unsaturated carboxylic acid or a derivative thereof are melt-kneaded in the presence of a polymerization initiator such as an organic peroxide, or (ii) unmodified polyolefin is produced. A method is known in which a modified polyolefin and an unsaturated carboxylic acid or derivative thereof are dissolved in an organic solvent and kneaded in this solution in the presence of a polymerization initiator such as an organic peroxide. Among these, as a method for producing the acid-modified polyolefin (b) satisfying the above-mentioned various conditions, the method (ii) as shown in Examples below is desirable from the viewpoint of easily reducing the amount of unreacted substances.

上記所定の「重量平均分子量」、「グラフト率」、「未反応物量」、さらに望ましくは「MFR」を有する酸変性ポリオレフィン(b)は、後述の実施例に示したような方法に準じて製造することができる。なお、未反応物量が上記数値範囲を超える酸変性ポリオレフィンが得られた場合に、精製により当該未反応物量を減少させて上記条件を満たす熱変性ポリオレフィン(b)とすることも可能である。   The acid-modified polyolefin (b) having the predetermined “weight average molecular weight”, “graft ratio”, “unreacted substance amount”, and more preferably “MFR” is produced according to the method as described in the examples below. can do. In addition, when the acid-modified polyolefin in which the amount of unreacted substances exceeds the above numerical range is obtained, the amount of unreacted substances can be reduced by purification to obtain the heat-modified polyolefin (b) satisfying the above conditions.

(c)可塑剤
本発明のデンプン樹脂組成物に配合される可塑剤(c)は、変性デンプン(a)および酸変性熱可塑性ポリマー(b)のどちらとも親和性を有する、最終製品である繊維の可撓性を向上させるための成分であり、従来のデンプン樹脂組成物に配合されているものと同様のものを用いることができる。
(C) Plasticizer The plasticizer (c) blended in the starch resin composition of the present invention is a fiber as a final product having an affinity for both the modified starch (a) and the acid-modified thermoplastic polymer (b). It is a component for improving the flexibility of the resin, and the same ones as those blended in the conventional starch resin composition can be used.

可塑剤(c)としては、前述のように変性デンプン(a)の非構造化剤としても用いることのできる、水酸基を1つ以上有する化合物などが挙げられる。具体的には、グルコース、スクロース、フルクトース、ラフィノース、マルトデキストロース、ガラクトース、キシロース、マルトース、ラクトース、マンノースエリスロースおよびペンタエリスリトールなどの糖類;エリスリトール、キシリトール、マリトール、マンニトールおよびソルビトールなどの糖アルコール類;グリセリン、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコールおよびヘキサントリオールなどのポリオール類などが挙げられる。なかでも、グリセリン、マンニトールおよびソルビトールが好ましい。これらの可塑剤(c)がデンプンの非構造化剤として使用された場合、非構造化処理後に変性デンプン(a)中にそのまま残存させておいてもよいし、非構造化処理後に除去または濃縮して、デンプン樹脂組成物の調製時に新たな可塑剤(c)を加えてもよい。   Examples of the plasticizer (c) include compounds having one or more hydroxyl groups that can be used as a non-structuring agent for the modified starch (a) as described above. Specifically, sugars such as glucose, sucrose, fructose, raffinose, maltodextrose, galactose, xylose, maltose, lactose, mannose erythrose and pentaerythritol; sugar alcohols such as erythritol, xylitol, malitol, mannitol and sorbitol; glycerin And polyols such as ethylene glycol, propylene glycol, dipropylene glycol, butylene glycol and hexanetriol. Of these, glycerin, mannitol and sorbitol are preferable. When these plasticizers (c) are used as a non-structuring agent for starch, they may be left in the modified starch (a) after the non-structuring treatment, or removed or concentrated after the non-structuring processing. Then, a new plasticizer (c) may be added during the preparation of the starch resin composition.

その他、尿素およびその誘導体;糖アルコールの無水物(たとえばソルビトールの無水物であるソルビタン)や有機酸のエステル化合物(たとえば脂肪酸のモノ、ジまたはトリグリセリド)なども可塑剤(c)として挙げられる。   Other examples of the plasticizer (c) include urea and derivatives thereof; sugar alcohol anhydrides (for example, sorbitan which is an anhydride of sorbitol) and organic acid ester compounds (for example, fatty acid mono-, di- or triglycerides).

可塑剤(c)の配合量は、変性デンプン(a)および酸変性熱可塑性ポリマー(b)の分子量やそれらとの親和性に応じて調整することができるが、変性デンプン(a)、酸変性熱可塑性ポリマー(b)および可塑剤(c)の合計100重量%中、通常2〜70重量%、好ましくは5〜55重量%、より好ましくは10〜50重量%である。可塑剤(c)の量を上記範囲内とすることにより、可塑性に優れたデンプン樹脂組成物が得られる。   The compounding amount of the plasticizer (c) can be adjusted according to the molecular weight of the modified starch (a) and the acid-modified thermoplastic polymer (b) and the affinity with them. It is usually 2 to 70% by weight, preferably 5 to 55% by weight, more preferably 10 to 50% by weight in the total 100% by weight of the thermoplastic polymer (b) and the plasticizer (c). By setting the amount of the plasticizer (c) within the above range, a starch resin composition excellent in plasticity can be obtained.

(d)任意成分
本発明のデンプン樹脂組成物には上記成分(a)〜(c)以外にも、本発明の効果を阻害しない範囲で、従来のデンプン樹脂組成物に配合されてようなその他の成分を必要に応じて配合することができる。
(D) Optional component In addition to the above components (a) to (c), the starch resin composition of the present invention is not limited to the effects of the present invention, and other components such as those incorporated in conventional starch resin compositions. These components can be blended as necessary.

たとえば、デンプン樹脂組成物中の各成分の分散性を向上させる作用などを有する、ステアリン酸のナトリウム塩、マグネシウム塩、カルシウム塩その他の金属塩などの(金属)石けんを配合することが好ましい。   For example, it is preferable to blend (metal) soaps such as sodium salt, magnesium salt, calcium salt and other metal salts of stearic acid, which have the effect of improving the dispersibility of each component in the starch resin composition.

また、本発明のデンプン樹脂組成物には、熱可塑性ポリマーとして実質的に酸変性ポリオレフィン(b)のみを用いることが望ましいが、従来のデンプン樹脂組成物に配合されているその他の熱可塑性ポリマーを配合することもできる。   The starch resin composition of the present invention preferably uses only the acid-modified polyolefin (b) as the thermoplastic polymer, but other thermoplastic polymers blended in the conventional starch resin composition are used. It can also be blended.

その他、最終製品である繊維の物理的特性(弾性、引張強度、弾性率など)を向上させるための加工助剤、酸化防止剤、スリップ剤、無機フィラーなどを添加してもよい。
これらの任意成分の配合量は、本発明の効果を阻害しない範囲でその種類に応じて調整することができるが、変性デンプン(a)、酸変性ポリオレフィン(b)および可塑剤(c)の合計量に対して、通常50重量%未満、好ましくは0.1〜20重量%、より好ましくは0.1〜12重量%の範囲の量である。
In addition, processing aids, antioxidants, slip agents, inorganic fillers, and the like for improving the physical properties (elasticity, tensile strength, elastic modulus, etc.) of the final product fiber may be added.
The blending amount of these optional components can be adjusted according to the type as long as the effects of the present invention are not impaired, but the total of the modified starch (a), the acid-modified polyolefin (b) and the plasticizer (c). The amount is usually less than 50% by weight, preferably 0.1 to 20% by weight, more preferably 0.1 to 12% by weight.

− 製造方法 −
本発明のデンプン樹脂組成物は、従来のデンプン樹脂組成物と同様の手法により各成分を混合することにより製造することができる。たとえば、変性デンプン(a)および酸変性ポリオレフィン(b)をあらかじめ混合しておき、この混合物とグリセロール等の可塑剤(c)とを二軸押出機に投入し、適切な条件(たとえば温度条件であれば、酸変性ポリオレフィン(b)の融点よりも高く、かつ変性デンプン(a)が燃焼しない程度の温度)のもとで、均一になるまで十分に混練して押し出す方法が挙げられる。
− Manufacturing method −
The starch resin composition of this invention can be manufactured by mixing each component with the method similar to the conventional starch resin composition. For example, the modified starch (a) and the acid-modified polyolefin (b) are mixed in advance, and this mixture and a plasticizer (c) such as glycerol are put into a twin-screw extruder, and are subjected to appropriate conditions (for example, temperature conditions). If there is, there is a method of sufficiently kneading and extruding until uniform, under a temperature higher than the melting point of the acid-modified polyolefin (b) and at which the modified starch (a) does not burn.

− 用途 −
本発明のデンプン樹脂組成物は、従来のデンプン樹脂組成物と同様、単成分繊維、二成分繊維、多成分繊維などの原料として用いることができる。二成分繊維または多成分繊維の構造としては、並列、鞘−芯(シース−コア)、放射状、リボン、海島などが挙げられるが、本発明のデンプン樹脂組成物は、たとえば鞘−芯構造の二成分繊維における芯部分の原料として好適である。
− Application −
The starch resin composition of this invention can be used as raw materials, such as a single component fiber, a bicomponent fiber, and a multicomponent fiber similarly to the conventional starch resin composition. Examples of the structure of bicomponent fibers or multicomponent fibers include parallel, sheath-core (sheath-core), radial, ribbon, sea island, etc. The starch resin composition of the present invention has, for example, a sheath-core structure. It is suitable as a raw material for the core portion of component fibers.

また、上記の繊維の用途は特に制限されるものではないが、たとえば不織布に加工して用いることが好適である。不織布は、上記の繊維を冷却流体により冷却し、さらに延伸エアによって繊維に張力を加えて所定の繊度とし、そのまま捕集ベルト上に捕集して所定の厚さに堆積させた後、熱エンボス処理などの交絡処理することにより製造することができる。このようにして得られる不織布は、柔軟で表面の触感に優れ、かつ摩擦堅牢度も高いため、包装資材、衣料用素材、おむつ用素材などとして優れている。   The use of the above fiber is not particularly limited, but for example, it is preferable to process it into a nonwoven fabric. The non-woven fabric is prepared by cooling the above-described fibers with a cooling fluid, further applying tension to the fibers with stretched air to obtain a predetermined fineness, collecting the fibers as they are and depositing them to a predetermined thickness, followed by hot embossing. It can be manufactured by a confounding process such as a process. The nonwoven fabric obtained in this manner is flexible, excellent in surface tactile sensation, and has high friction fastness, and is therefore excellent as a packaging material, a clothing material, a diaper material, and the like.

以下の実施例において使用されるデンプンはTate & Lyle社製「エチレックス(Ethlex
)2005」または「エチレックス(Ethlex)2065」である。
(組成物の混練)
所定量の原材料(「エチレックス(Ethlex)2005」または「エチレックス(Ethlex)2065」、グリセリン、酸変性熱可塑性樹脂等)をあらかじめ混合し、二軸押出機にて175℃で押し出すことにより組成物を得た。
The starch used in the following examples was manufactured by Tate & Lyle “Ethlex”.
) 2005 "or" Ethlex 2065 ".
(Kneading of composition)
A predetermined amount of raw materials (“Ethlex 2005” or “Ethlex 2065”, glycerin, acid-modified thermoplastic resin, etc.) are mixed in advance and extruded at 175 ° C. with a twin screw extruder. Obtained.

(繊維成形性の評価)
組成物を165℃で6分間加熱して溶融し、直径2mm、長さ10mmの円筒状ノズルから250mm/分の速度で押し出し、押し出された溶融ストランドを引き取り遠心繊維化した。引き取り速度を上げていった時に溶融ストランドが破断する速度を「紡糸速度」として測定した。なお、以下の比較例において紡糸速度が0m/分とは、その樹脂組成物からは紡糸できなかったことを意味する。
(Evaluation of fiber formability)
The composition was melted by heating at 165 ° C. for 6 minutes, extruded from a cylindrical nozzle having a diameter of 2 mm and a length of 10 mm at a speed of 250 mm / min, and the extruded molten strand was taken out and formed into a centrifugal fiber. The speed at which the molten strand breaks when the take-up speed was increased was measured as “spinning speed”. In the following comparative examples, a spinning speed of 0 m / min means that spinning was not possible from the resin composition.

(実施例1)
無水マレイン酸変性ポリプロピレンの製造:10リットルの攪拌機付反応容器にトルエン5リットル、重量平均分子量290,000のポリプロピレン1000gと無水マレイン酸25gを投入し、攪拌しながら140℃に昇温して1時間保持した。これに5gのジクミルペルオキシド(DCPO)を溶解したトルエン0.5リットルを1時間かけて適下し、その後140℃で3時間反応させた。反応終了後、反応液を室温に冷却し、15リットルのエタノール中に投入した後、析出物を濾過した。この析出物をエタノールで洗浄した後、乾燥し、無水マレイン酸変性ポリプロピレン試作品(1)を得た。この無水マレイン
酸変性ポリプロピレン試作品(1)は重量平均分子量が140,000、190℃、2.16kgの荷重で測定したメルトフローレートが95g/10分、無水マレイン酸グラフト量が0.75質量%、未反応無水マレイン酸含量が200ppmであった。
Example 1
Production of maleic anhydride-modified polypropylene: 5 liters of toluene, 1000 g of polypropylene having a weight average molecular weight of 290,000 and 25 g of maleic anhydride are charged into a 10 liter reaction vessel equipped with a stirrer and heated to 140 ° C. with stirring for 1 hour. Retained. To this, 0.5 liter of toluene in which 5 g of dicumyl peroxide (DCPO) was dissolved was appropriately reduced over 1 hour, and then reacted at 140 ° C. for 3 hours. After completion of the reaction, the reaction solution was cooled to room temperature and poured into 15 liters of ethanol, and then the precipitate was filtered. This precipitate was washed with ethanol and then dried to obtain a maleic anhydride-modified polypropylene prototype (1). This maleic anhydride-modified polypropylene prototype (1) has a weight average molecular weight of 140,000, 190 ° C., a melt flow rate of 95 g / 10 minutes measured at a load of 2.16 kg, and a maleic anhydride graft amount of 0.75% by mass. The unreacted maleic anhydride content was 200 ppm.

樹脂組成物の製造:「エチレックス(Ethlex)2005」60部、グリセリン25部、無水マレイン酸変性ポリプロピレン試作品(1)(重量平均分子量が140,000、190℃、2.16kgの荷重で測定したメルトフローレートが95g/10分、無水マレイン酸グラフト量が0.75質量%、未反応無水マレイン酸含量が200ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(1)を得た。こ
の組成物(1)の紡糸速度を上記の繊維成形性評価法により測定した結果、20m/分であ
った。
Production of resin composition: 60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (1) (weight average molecular weight 140,000, 190 ° C., melt measured at 2.16 kg load) A flow rate of 95 g / 10 min, a maleic anhydride graft amount of 0.75 mass%, an unreacted maleic anhydride content of 200 ppm), 10 parts, and magnesium stearate 0.5 parts in a twin screw extruder under the above conditions. Extrusion gave composition (1). As a result of measuring the spinning speed of the composition (1) by the fiber moldability evaluation method, it was 20 m / min.

(実施例2)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(2)(重量平均分子量が55,0
00、190℃、2.16kgの荷重で測定したメルトフローレートが200g/10分、無水マ
レイン酸グラフト量が0.75質量%、未反応無水マレイン酸含量が220ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(2)を得た。この組成物(2)の紡糸速度を上記の繊維成形性評価法により測定した結果、27m/分であった。
(Example 2)
60 parts of "Ethlex 2005", 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (2) produced by the same method as in Example 1 (weight average molecular weight of 55.0)
00, 190 ° C., load of 2.16 kg, melt flow rate 200 g / 10 min, maleic anhydride graft amount 0.75 mass%, unreacted maleic anhydride content 220 ppm) 10 parts, magnesium stearate 0. Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (2). As a result of measuring the spinning speed of the composition (2) by the fiber moldability evaluation method, it was 27 m / min.

(実施例3)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(3)(重量平均分子量が110,
000、190℃、2.16kgの荷重で測定したメルトフローレートが150g/10分、無水
マレイン酸グラフト量が0.50質量%、未反応無水マレイン酸含量が190ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(3)を得た。この組成物(3)の紡糸速度を上記の繊維成形性評価法により測定した結果、48m/分であった。
(Example 3)
60 parts of "Ethlex 2005", 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (3) produced by the same method as in Example 1 (weight average molecular weight is 110,
000, 190 ° C., load of 2.16 kg, melt flow rate 150 g / 10 min, maleic anhydride graft amount 0.50 mass%, unreacted maleic anhydride content 190 ppm) 10 parts, magnesium stearate 0. 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (3). As a result of measuring the spinning speed of the composition (3) by the fiber moldability evaluation method, it was 48 m / min.

(実施例4)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(4)(重量平均分子量が50,0
00、190℃、2.16kgの荷重で測定したメルトフローレートが230g/10分、無水マ
レイン酸グラフト量が1.5質量%、未反応無水マレイン酸含量が200ppm)10部
、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(4)を得た。この組成物(4)の紡糸速度を上記の繊維成形性評価法により測定した結果、22m/分であった。
Example 4
60 parts of "Ethlex 2005", 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (4) produced by the same method as in Example 1 (weight average molecular weight of 50,0
The melt flow rate measured at 00, 190 ° C. and a load of 2.16 kg is 230 g / 10 minutes, the maleic anhydride grafting amount is 1.5 mass%, the unreacted maleic anhydride content is 200 ppm), 10 parts, magnesium stearate 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (4). As a result of measuring the spinning speed of the composition (4) by the fiber moldability evaluation method, it was 22 m / min.

(実施例5)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(5)(重量平均分子量が170,
000、190℃、2.16kgの荷重で測定したメルトフローレートが70g/10分、無水マ
レイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が180ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(5)を得た。この組成物(5)の紡糸速度を上記の繊維成形性評価法により測定した結果、20m/分であった。
(Example 5)
60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (5) produced by the same method as in Example 1 (weight average molecular weight is 170,
000, 190 ° C., load of 2.16 kg, melt flow rate 70 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 180 ppm) 10 parts, magnesium stearate 0. Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (5). As a result of measuring the spinning speed of the composition (5) by the fiber moldability evaluation method, it was 20 m / min.

(実施例6)
「エチレックス(Ethlex)2005」70部、グリセリン15部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(3)(重量平均分子量が110,
000、190℃、2.16kgの荷重で測定したメルトフローレートが150g/10分、無水
マレイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が190ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(6)を得た。この組成物(6)の紡糸速度を上記の繊維成形性評価法により測定した結果、21m/分であった。
(Example 6)
70 parts of “Ethlex 2005”, 15 parts of glycerin, maleic anhydride-modified polypropylene prototype (3) produced by the same method as in Example 1 (weight average molecular weight is 110,
000, 190 ° C, load of 2.16 kg, melt flow rate 150 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 190 ppm) 10 parts, magnesium stearate 0. 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (6). As a result of measuring the spinning speed of the composition (6) by the fiber moldability evaluation method, it was 21 m / min.

(実施例7)
「エチレックス(Ethlex)2065」40部、グリセリン50部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(3)(重量平均分子量が110,
000、190℃、2.16kgの荷重で測定したメルトフローレートが150g/10分、無水
マレイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が190ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(7)を得た。この組成物(7)の紡糸速度を上記の繊維成形性評価法により測定した結果、15m/分であった。
(Example 7)
40 parts of “Ethlex 2065”, 50 parts of glycerin, maleic anhydride-modified polypropylene prototype (3) produced by the same method as in Example 1 (weight average molecular weight 110,
000, 190 ° C, load of 2.16 kg, melt flow rate 150 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 190 ppm) 10 parts, magnesium stearate 0. Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (7). As a result of measuring the spinning speed of the composition (7) by the fiber moldability evaluation method, it was 15 m / min.

(実施例8)
「エチレックス(Ethlex)2005」60部、グリセリン30部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(3)(重量平均分子量が110,
000、190℃、2.16kgの荷重で測定したメルトフローレートが150g/10分、無水
マレイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が190ppm)5部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(8)を得た。この組成物(8)の紡糸速度を上記の繊維成形性評価法により測定した結果、23m/分であった。
(Example 8)
60 parts of "Ethlex 2005", 30 parts of glycerin, maleic anhydride-modified polypropylene prototype (3) produced by the same method as in Example 1 (weight average molecular weight 110,
000, 190 ° C., 2.16 kg load, melt flow rate 150 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 190 ppm) 5 parts, magnesium stearate 0. Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (8). The spinning speed of the composition (8) was measured by the above-described fiber moldability evaluation method. As a result, it was 23 m / min.

(実施例9)
「エチレックス(Ethlex)2005」55部、グリセリン20部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(3)(重量平均分子量が110,
000、190℃、2.16kgの荷重で測定したメルトフローレートが150g/10分、無水
マレイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が190ppm)20部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(9)を得た。この組成物(9)の紡糸速度を上記の繊維成形性評価法により測定した結果、60m/分であった。
Example 9
"Ethlex 2005" 55 parts, glycerin 20 parts, maleic anhydride modified polypropylene prototype (3) produced by the same method as in Example 1 (weight average molecular weight 110,
000, 190 ° C., load of 2.16 kg, melt flow rate 150 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 190 ppm) 20 parts, magnesium stearate 0. 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (9). As a result of measuring the spinning speed of the composition (9) by the above-described fiber moldability evaluation method, it was 60 m / min.

(比較例1)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(6)(重量平均分子量が3,00
0、190℃、2.16kgの荷重で測定したメルトフローレートが1500g/10分、無水マ
レイン酸グラフト量が3.0質量%、未反応無水マレイン酸含量が500ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(10)を得た。この組成物(10)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 1)
60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (6) produced in the same manner as in Example 1 (weight average molecular weight of 3,000
The melt flow rate measured at 0, 190 ° C. and a load of 2.16 kg is 1500 g / 10 min, the maleic anhydride graft amount is 3.0 mass%, the unreacted maleic anhydride content is 500 ppm), 10 parts, magnesium stearate Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (10). As a result of measuring the spinning speed of the composition (10) by the fiber moldability evaluation method, it was 0 m / min.

(比較例2)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(7)(重量平均分子量が190,
000、190℃、2.16kgの荷重で測定したメルトフローレートが40g/10分、無水マ
レイン酸グラフト量が0.5質量%、未反応無水マレイン酸含量が150ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(11)を得た。この組成物(11)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 2)
60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (7) produced in the same manner as in Example 1 (weight average molecular weight of 190,
000, 190 ° C., load of 2.16 kg, melt flow rate 40 g / 10 min, maleic anhydride graft amount 0.5 mass%, unreacted maleic anhydride content 150 ppm) 10 parts, magnesium stearate 0. 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (11). The spinning speed of the composition (11) was measured by the fiber moldability evaluation method, and found to be 0 m / min.

(比較例3)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(7)(重量平均分子量が165,
000、190℃、2.16kgの荷重で測定したメルトフローレートが41g/10分、無水マ
レイン酸グラフト量が0.3質量%、未反応無水マレイン酸含量が120ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(12)を得た。この組成物(12)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 3)
60 parts of "Ethlex 2005", 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (7) produced by the same method as in Example 1 (weight average molecular weight of 165,
000, 190 ° C., load of 2.16 kg, melt flow rate of 41 g / 10 min, maleic anhydride graft amount 0.3 mass%, unreacted maleic anhydride content 120 ppm) 10 parts, magnesium stearate 0. 5 parts were extruded with a twin screw extruder under the above conditions to obtain a composition (12). The spinning speed of the composition (12) was measured by the fiber moldability evaluation method, and found to be 0 m / min.

(比較例4)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(9)(重量平均分子量が200,
000、190℃、2.16kgの荷重で測定したメルトフローレートが35g/10分、無水マ
レイン酸グラフト量が0.15質量%、未反応無水マレイン酸含量が110ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(13)を得た。この組成物(13)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 4)
60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (9) produced by the same method as in Example 1 (weight average molecular weight 200,
000, 190 ° C., load of 2.16 kg, melt flow rate 35 g / 10 min, maleic anhydride graft amount 0.15 mass%, unreacted maleic anhydride content 110 ppm) 10 parts, magnesium stearate 0. Five parts were extruded by a twin screw extruder under the above conditions to obtain a composition (13). The spinning speed of the composition (13) was measured by the fiber moldability evaluation method, and found to be 0 m / min.

(比較例5)
無水マレイン酸変性ポリプロピレンの製造:重量平均分子量700,000のポリプロピレン10kgと無水マレイン酸80gおよびt−ブチルペルオキシべンゾエート80gをドライブレンドした後、二軸混練機で210℃で溶融混練し、無水マレイン酸変性ポリプロピレン試作品(10)を得た。この無水マレイン酸変性ポリプロピレン試作品(10)は重量平均分子量が220,000、190℃、2.16kgの荷重で測定したメルトフローレートが1
9g/10分、無水マレイン酸グラフト量が0.6質量%、未反応無水マレイン酸含量が500ppmであった。
(Comparative Example 5)
Production of maleic anhydride-modified polypropylene: 10 kg of polypropylene having a weight average molecular weight of 700,000, 80 g of maleic anhydride and 80 g of t-butylperoxybenzoate were dry blended, and then melt-kneaded at 210 ° C. with a twin-screw kneader to obtain maleic anhydride. An acid-modified polypropylene prototype (10) was obtained. This maleic anhydride modified polypropylene prototype (10) has a weight average molecular weight of 220,000, 190 ° C. and a melt flow rate of 1 measured at a load of 2.16 kg.
9 g / 10 minutes, the maleic anhydride graft amount was 0.6 mass%, and the unreacted maleic anhydride content was 500 ppm.

樹脂組成物の製造:「エチレックス(Ethlex)2005」60部、グリセリン25部、無水マレイン酸変性ポリプロピレン試作品(10)(重量平均分子量が220,000、190
℃、2.16kgの荷重で測定したメルトフローレートが19g/10分、無水マレイン酸グラフト量が0.6質量%、未反応無水マレイン酸含量が500ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(14)を得た。この組成物(14)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であっ
た。
Production of resin composition: 60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride modified polypropylene prototype (10) (weight average molecular weight 220,000, 190
The melt flow rate measured at a temperature of 2.16 kg at 19 ° C. was 10 g, the maleic anhydride graft amount was 0.6 mass%, the unreacted maleic anhydride content was 500 ppm), 10 parts, and magnesium stearate 0.5 parts The composition (14) was obtained by extrusion with a twin screw extruder under the above conditions. As a result of measuring the spinning speed of the composition (14) by the fiber moldability evaluation method, it was 0 m / min.

(比較例6)
「エチレックス(Ethlex)2005」60部、グリセリン25部、実施例1と同様な方法で製造した無水マレイン酸変性ポリプロピレン試作品(11)(重量平均分子量が350,000、190℃、2.16kgの荷重で測定したメルトフローレートが3g/10分、無水マレ
イン酸グラフト量が0.6質量%、未反応無水マレイン酸含量が100ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(15)を得た。この組成物(15)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 6)
60 parts of “Ethlex 2005”, 25 parts of glycerin, maleic anhydride-modified polypropylene prototype (11) produced by the same method as in Example 1 (weight average molecular weight 350,000, 190 ° C., 2.16 kg load) The melt flow rate measured in 1) was 3 g / 10 min, the maleic anhydride graft amount was 0.6 mass%, the unreacted maleic anhydride content was 100 ppm), 10 parts, and 0.5 parts of magnesium stearate were biaxially treated under the above conditions. The composition (15) was obtained by extrusion with an extruder. The spinning speed of the composition (15) was measured by the fiber moldability evaluation method, and found to be 0 m / min.

(比較例7)
「エチレックス(Ethlex)2005」60部、グリセリン25部、無水マレイン酸変性ポリプロピレン市販品Eastman社製「EpolenG3003」(重量平均分子量が100,000、190℃、2.16kgの荷重で測定したメルトフローレートが170g/10分、無水マレイン
酸グラフト量が0.95質量%、未反応無水マレイン酸含量が1900ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(16)を得た。この組成物(16)の紡糸速度を上記の繊維成形性評価法により測定した結果、10m/分であった。
(Comparative Example 7)
“Ethlex 2005” 60 parts, glycerin 25 parts, maleic anhydride modified polypropylene “Epolen G3003” manufactured by Eastman (weight average molecular weight 100,000, 190 ° C., measured at 2.16 kg load) 170 g / 10 min, maleic anhydride graft amount 0.95 mass%, unreacted maleic anhydride content 1900 ppm) 10 parts, magnesium stearate 0.5 parts was extruded in a twin screw extruder under the above conditions. Product (16) was obtained. As a result of measuring the spinning speed of the composition (16) by the fiber moldability evaluation method, it was 10 m / min.

(比較例8)
「エチレックス(Ethlex)2005」60部、グリセリン25部、ポリプロピレン試作品(12)(重量平均分子量が140,000、230℃、2.16kgの荷重で測定したメルトフロ
ーレートが35g/10分、無水マレイン酸グラフト量が0質量%、未反応無水マレイン酸含量が0ppm)10部、ステアリン酸マグネシウム0.5部を上記の条件で二軸押出機にて押し出して組成物(17)を得た。この組成物(17)の紡糸速度を上記の繊維成形性評価法により測定した結果、0m/分であった。
(Comparative Example 8)
"Ethlex 2005" 60 parts, glycerin 25 parts, polypropylene prototype (12) (weight average molecular weight 140,000, 230 ° C, melt flow rate measured at 2.16 kg load 35 g / 10 min, anhydrous maleic The composition (17) was obtained by extruding 10 parts of an acid graft amount of 0% by mass and an unreacted maleic anhydride content of 0 ppm) and 0.5 part of magnesium stearate with a twin screw extruder under the above conditions. The spinning speed of the composition (17) was measured by the fiber moldability evaluation method, and found to be 0 m / min.

Figure 2010095671
Figure 2010095671

Figure 2010095671
Figure 2010095671

Claims (4)

下記成分(a)、(b)および(c)を含む樹脂組成物(下記含有量は成分(a)、(b)および(c)の合計を100重量%とする)。
(a)変性デンプン:5〜85質量%、
(b)ポリオレフィンを不飽和カルボン酸又はその誘導体によってグラフト変性して得られる酸変性ポリオレフィンであって、重量平均分子量が5,000〜500,000g/mol、当該酸変性ポリオレフィン中のポリオレフィンにグラフトされた不飽和カルボン酸又はその誘導体量が0.1〜2質量%、かつ当該酸変性ポリオレフィン中に含まれる未反応の不飽和カルボン酸又はその誘導体の量が1,000ppm以下である酸変性ポリオレフィン:1〜90質量%、
(c)可塑剤:2〜70質量%。
A resin composition containing the following components (a), (b) and (c) (the following content is 100% by weight of the total of components (a), (b) and (c)).
(A) Modified starch: 5 to 85% by mass,
(B) An acid-modified polyolefin obtained by graft-modifying a polyolefin with an unsaturated carboxylic acid or a derivative thereof, and having a weight average molecular weight of 5,000 to 500,000 g / mol, grafted to the polyolefin in the acid-modified polyolefin. An acid-modified polyolefin having an amount of unsaturated carboxylic acid or derivative thereof of 0.1 to 2% by mass and an amount of unreacted unsaturated carboxylic acid or derivative thereof contained in the acid-modified polyolefin of 1,000 ppm or less: 1 to 90% by mass,
(C) Plasticizer: 2 to 70% by mass.
前記酸変性ポリオレフィン(b)がさらに、190℃、2.16kg荷重で測定したMFRが50〜300g/10分であるとの条件を満たすことを特徴とする請求項1に記載の樹脂組成物。   2. The resin composition according to claim 1, wherein the acid-modified polyolefin (b) further satisfies the condition that the MFR measured at 190 ° C. and a load of 2.16 kg is 50 to 300 g / 10 minutes. 前記ポリオレフィンがポリプロピレンであることを特徴とする請求項1または2に記載の樹脂組成物。   The resin composition according to claim 1, wherein the polyolefin is polypropylene. 前記不飽和カルボン酸又はその誘導体が無水マレイン酸であることを特徴とする請求項1〜3のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, wherein the unsaturated carboxylic acid or derivative thereof is maleic anhydride.
JP2008269591A 2008-10-20 2008-10-20 Starch resin composition with good spinnability Active JP5237751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269591A JP5237751B2 (en) 2008-10-20 2008-10-20 Starch resin composition with good spinnability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269591A JP5237751B2 (en) 2008-10-20 2008-10-20 Starch resin composition with good spinnability

Publications (2)

Publication Number Publication Date
JP2010095671A true JP2010095671A (en) 2010-04-30
JP5237751B2 JP5237751B2 (en) 2013-07-17

Family

ID=42257574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269591A Active JP5237751B2 (en) 2008-10-20 2008-10-20 Starch resin composition with good spinnability

Country Status (1)

Country Link
JP (1) JP5237751B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233444A (en) * 2013-05-31 2014-12-15 ユニ・チャーム株式会社 Absorbent product
WO2018111299A1 (en) * 2016-12-16 2018-06-21 Kimberly-Clark Worldwide, Inc. Wet-laid microfibers including polyolefin and thermoplastic starch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202202A (en) * 1990-11-29 1992-07-23 Showa Denko Kk Purification of modified polyolefin
JPH06340771A (en) * 1993-04-05 1994-12-13 Nobuo Shiraishi Polyolefin-starch-based molding composition
JPH07258488A (en) * 1992-02-07 1995-10-09 Solvay & Cie Starch-based composition
JP2004285227A (en) * 2003-03-24 2004-10-14 Nippon Paper Chemicals Co Ltd Water-based resin composition with good antiblocking property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202202A (en) * 1990-11-29 1992-07-23 Showa Denko Kk Purification of modified polyolefin
JPH07258488A (en) * 1992-02-07 1995-10-09 Solvay & Cie Starch-based composition
JPH06340771A (en) * 1993-04-05 1994-12-13 Nobuo Shiraishi Polyolefin-starch-based molding composition
JP2004285227A (en) * 2003-03-24 2004-10-14 Nippon Paper Chemicals Co Ltd Water-based resin composition with good antiblocking property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233444A (en) * 2013-05-31 2014-12-15 ユニ・チャーム株式会社 Absorbent product
WO2018111299A1 (en) * 2016-12-16 2018-06-21 Kimberly-Clark Worldwide, Inc. Wet-laid microfibers including polyolefin and thermoplastic starch

Also Published As

Publication number Publication date
JP5237751B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP3923094B2 (en) Melt-processable biodegradable composition and product thereof
JP4118879B2 (en) Compositions and methods for reducing the aqueous solubility of starch components in multicomponent fibers
EP1934389B1 (en) Water stable fibers and articles comprising starch, and methods of making the same
US7053151B2 (en) Grafted biodegradable polymer blend compositions
US6783854B2 (en) Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core
US6552124B2 (en) Method of making a polymer blend composition by reactive extrusion
TW495516B (en) Grafted polyethylene oxide compositions
JP5587194B2 (en) Polymer materials and methods for their production
KR101834283B1 (en) Blends of a polylactic acid and a water soluble polymer
US20020193517A1 (en) Water-responsive biodegradable polymer compositions and method of making same
JPH09500923A (en) Biodegradable reinforced polymer
JP2014520945A (en) Cellulose acetate composition
JP2006525136A (en) Molded or extruded articles comprising a polyhydroxyalkanoate copolymer and a thermoplastic polymer that is environmentally degradable
TW200831601A (en) Masterbatch and polymer composition
KR20160081998A (en) Algae-blended compositions for thermoplastic articles
JP2007530744A (en) Starch-polyester biodegradable graft copolymer and process for producing the same
MXPA02000389A (en) Modified biodegradable compositions and a reactive-extrusion process to make the same.
US6500897B2 (en) Modified biodegradable compositions and a reactive-extrusion process to make the same
US7012116B1 (en) Blend compositions of an unmodified poly vinyl alcohol and a thermoplastic elastomer
US6350518B1 (en) Methods of making blend compositions of an unmodified poly vinyl alcohol and a thermoplastic elastomer
JP5237751B2 (en) Starch resin composition with good spinnability
JP4098304B2 (en) Bicomponent fiber with thermoplastic polymer surrounding a starch-rich core
JP4100516B2 (en) High stretch multicomponent fiber containing starch and polymer
KR100257036B1 (en) A process of preparing for excellent reaction-property thermo elastic starch, its resin composite, its complex materials
JP4119431B2 (en) High elongation, splittable multicomponent fiber containing starch and polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250