JP2010095389A - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP2010095389A
JP2010095389A JP2008259782A JP2008259782A JP2010095389A JP 2010095389 A JP2010095389 A JP 2010095389A JP 2008259782 A JP2008259782 A JP 2008259782A JP 2008259782 A JP2008259782 A JP 2008259782A JP 2010095389 A JP2010095389 A JP 2010095389A
Authority
JP
Japan
Prior art keywords
hydraulic
slurry
hydraulic composition
mass
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008259782A
Other languages
Japanese (ja)
Other versions
JP5169701B2 (en
Inventor
Keisuke Takahashi
恵輔 高橋
Yukihiko Okada
由紀彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008259782A priority Critical patent/JP5169701B2/en
Publication of JP2010095389A publication Critical patent/JP2010095389A/en
Application granted granted Critical
Publication of JP5169701B2 publication Critical patent/JP5169701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/142Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements
    • C04B28/144Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements the synthetic calcium sulfate being a flue gas desulfurization product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic composition which ensures excellent flowing property adoptable in a large-scale grout construction in civil engineering and construction fields and which allows efficient and stable production of a hydraulic mortar (slurry) having good material separation resistance, excellent in crack resistance in a curing process, and further, stably supplied to a distant construction site through a slurry hose over a long distance under pressure by a slurry pump, and placed and applied. <P>SOLUTION: The hydraulic composition includes a hydraulic component, fine aggregate having a specified particle size constitution, a polyether-based shrinkage-reducing agent, a polycarboxylic acid-based or naphthalene sulfonic acid-based fluidizing agent, a defoaming agent, and an inorganic expansive agent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、土木建築工事に使用されるグラウト用の水硬性組成物であって、水との混練操作によって速やかに良好なスラリー状態が得られ、流動特性に優れ、良好な材料分離抵抗性を有し、硬化過程でのひび割れ抵抗性に優れる水硬性モルタル(スラリー)が得られる水硬性組成物に関する。
さらに、本発明は、前記水硬性組成物と水とを混練して調製した水硬性モルタル(スラリー)および水硬性モルタル(スラリー)硬化体に関する。
The present invention is a hydraulic composition for grout used in civil engineering construction work, which can quickly obtain a good slurry state by kneading with water, has excellent flow characteristics, and has good material separation resistance. The present invention relates to a hydraulic composition having a hydraulic mortar (slurry) having excellent crack resistance in the curing process.
Furthermore, the present invention relates to a hydraulic mortar (slurry) and a cured hydraulic mortar (slurry) prepared by kneading the hydraulic composition and water.

グラウト組成物と水とを連続混練又は連続混練機を用いて混練して安定した流動性を有するスラリーが得られるグラウト組成物を提供することを目的として、特許文献1には、ポルトランドセメントを含む水硬性無機結合材と流動化剤と膨張剤とを含むグラウト組成物が開示され、さらに前記グラウト組成物を用い、連続混練機を使用して連続混練して得られたスラリーをポンプを用いて施工部に連続して供給するグラウトスラリーの施工方法が開示されている。
特開2006−298662号公報
Patent Document 1 includes Portland cement for the purpose of providing a grout composition in which a grout composition and water are kneaded continuously or using a continuous kneader to obtain a slurry having stable fluidity. A grout composition comprising a hydraulic inorganic binder, a fluidizing agent, and an expanding agent is disclosed, and further using the pump, a slurry obtained by continuously kneading using the grout composition and using a continuous kneader. The construction method of the grout slurry supplied continuously to a construction part is disclosed.
JP 2006-298862 A

本発明は、土木建築分野の大規模なグラウト工事でも採用可能な、優れた流動特性が得られると共に、良好な材料分離抵抗性を有し、硬化過程でのひび割れ抵抗性に優れる水硬性モルタル(スラリー)を効率的かつ安定的に製造でき、さらにスラリーポンプを用いて長い距離をスラリーホースを介して安定的にポンプ圧送し、離れた施工箇所へ水硬性モルタル(スラリー)を供給して打設・施工できる水硬性組成物を提供することを目的とした。   The present invention is a hydraulic mortar that has excellent flow characteristics that can be employed in large-scale grout construction in the civil engineering and construction field, has good material separation resistance, and is excellent in crack resistance during curing. Slurry) can be produced efficiently and stably. Furthermore, a slurry pump is used to stably pump a long distance through a slurry hose, and hydraulic mortar (slurry) is supplied to a remote construction site for placement. -It aimed at providing the hydraulic composition which can be constructed.

本発明者らは、特定の構成要素を持つ水硬性成分と、特定の粒度構成を持つ細骨材と、ポリエーテル系収縮低減剤と、ポリカルボン酸系流動化剤またはナフタレンスルフォン酸系減水剤と、消泡剤と、無機系膨張材とを含む水硬性組成物は、水と混練した際に優れた流動特性が得られると共に、良好な材料分離抵抗性を有し、調製した水硬性モルタル(スラリー)は硬化過程でのひび割れ抵抗性に優れることを見出した。
また、前記水硬性組成物と水とを連続的に混練して調製したスラリーは、ポンプを用いて離れた施工場所に連続的に供給した際にも材料分離を生じることなく安定して長距離圧送が可能であり、施工する際に優れた充填性を有することを見出して本発明を完成させた。
The present inventors include a hydraulic component having a specific component, a fine aggregate having a specific particle size configuration, a polyether-based shrinkage reducing agent, a polycarboxylic acid-based fluidizing agent or a naphthalene sulfonic acid-based water reducing agent. A hydraulic composition comprising an antifoaming agent and an inorganic expansive material has excellent flow characteristics when kneaded with water and has good material separation resistance. (Slurry) was found to be excellent in crack resistance during the curing process.
In addition, the slurry prepared by continuously kneading the hydraulic composition and water is stable and long distance without causing material separation even when continuously supplied to a remote construction site using a pump. The present invention has been completed by finding that it can be pumped and has excellent filling properties during construction.

即ち、本発明の第一は、水硬性成分と、細骨材と、ポリエーテル系収縮低減剤と、ポリカルボン酸系流動化剤又はナフタレンスルフォン酸系流動化剤、消泡剤と、無機系膨張材とを含む水硬性組成物であって、水硬性組成物は水硬性組成物100質量%中に、水硬性成分を34.0〜38.0質量%含み、ポリエーテル系収縮低減剤を0.10〜0.50質量%含み、ポリカルボン酸系流動化剤を0.050〜0.075質量%またはナフタレンスルフォン酸系流動化剤を0.350〜0.480質量%含み、消泡剤を0.001〜0.039質量%含み、無機系膨張材を0.3〜4.0質量%含み、さらに、水硬性成分は、水硬性成分100質量%中に早強ポルトランドセメントを55.0〜65.0質量%含み、普通ポルトランドセメントを35.0〜45.0質量%含むことを特徴とし、細骨材は、細骨材100質量%中に、粒子径が30μm以上〜300μm未満の粒子を10.0〜20.0質量%含み、粒子径が300μm以上〜600μm未満の粒子を10.0〜25.0質量%含み、粒子径が600μm以上〜1180μm未満の粒子を35.0〜75.0質量%含み、粒子径が1180μm以上〜2000μm未満の粒子を1.0〜35.0質量%含むことを特徴とする水硬性組成物である。
本発明の第ニは、本発明の第一の水硬性組成物と水とを混練して得られる水硬性モルタル(スラリー)である。
本発明の第三は、本発明の第一の水硬性組成物と水とを混練して得られる水硬性モルタル(スラリー)を硬化させて得られる水硬性モルタル(スラリー)硬化体である。
That is, the first of the present invention is a hydraulic component, fine aggregate, polyether-based shrinkage reducing agent, polycarboxylic acid-based fluidizing agent or naphthalene sulfonic acid-based fluidizing agent, antifoaming agent, inorganic system A hydraulic composition containing an expansion material, the hydraulic composition containing 34.0 to 38.0% by mass of a hydraulic component in 100% by mass of the hydraulic composition, and comprising a polyether-based shrinkage reducing agent. 0.10 to 0.50% by mass, polycarboxylic acid type fluidizing agent 0.050 to 0.075% by mass or naphthalene sulfonic acid type fluidizing agent 0.350 to 0.480% by mass, defoaming 0.001 to 0.039% by mass of the agent, 0.3 to 4.0% by mass of the inorganic expansive material, and the hydraulic component includes 55 early-strength Portland cement in 100% by mass of the hydraulic component. 0.0 to 65.0% by mass, 3 ordinary Portland cement The fine aggregate contains 10.0 to 20.0% by mass of particles having a particle diameter of 30 μm or more and less than 300 μm in 100% by mass of the fine aggregate. , Including particles having a particle diameter of 300 μm or more and less than 600 μm in an amount of 10.0 to 25.0 mass%, particles having a particle diameter of 600 μm or more and less than 1180 μm in 35.0 to 75.0 mass%, and a particle diameter of 1180 μm or more. It is a hydraulic composition characterized by containing 1.0 to 35.0% by mass of particles less than ˜2000 μm.
The second of the present invention is a hydraulic mortar (slurry) obtained by kneading the first hydraulic composition of the present invention and water.
A third aspect of the present invention is a cured hydraulic mortar (slurry) obtained by curing a hydraulic mortar (slurry) obtained by kneading the first hydraulic composition of the present invention and water.

本発明で用いる水硬性組成物の好ましい態様を以下に示す。
1)水硬性組成物と水とを混練して得られる水硬性モルタルは、ブリーディング率が0.3%以下であり、エア量が4.5%以下であること。
2)水硬性組成物と水とを混練して得られる水硬性モルタルを硬化させて得られる水硬性モルタルの硬化体は、材齢28日の圧縮強度が40N/m以上であり、材齢7日の長さ変化率が−22×10−4以上であること。
3)水硬性組成物と水とを混練して得られる水硬性モルタルを硬化させて得られる水硬性モルタルの硬化体は、簡易断熱養生温度の最高温度が87℃以下であること。
4)水硬性組成物は、水硬性組成物を貯蔵するタンクを備えた水硬性モルタル調製・施工用トラックに搭載したミキサーを用いて、水硬性組成物と水とを連続的に混練して水硬性モルタルを調製し、前記トラックに搭載されたスラリーポンプによりスラリーホースを介して水硬性モルタルを施工箇所へ連続的に供給・打設して硬化させるグラウト施工方法に用いられること。
The preferable aspect of the hydraulic composition used by this invention is shown below.
1) The hydraulic mortar obtained by kneading the hydraulic composition and water has a bleeding rate of 0.3% or less and an air amount of 4.5% or less.
2) A cured product of a hydraulic mortar obtained by curing a hydraulic mortar obtained by kneading a hydraulic composition and water has a compressive strength of 28 N days or more of 40 N / m 2 or more. 7 day length change rate should be -22 × 10 −4 or more.
3) The hardened body of the hydraulic mortar obtained by curing the hydraulic mortar obtained by kneading the hydraulic composition and water has a maximum temperature of simple adiabatic curing temperature of 87 ° C or lower.
4) The hydraulic composition is prepared by continuously kneading the hydraulic composition and water using a mixer mounted on a truck for preparing and constructing a hydraulic mortar equipped with a tank for storing the hydraulic composition. It is used in a grout construction method in which a hard mortar is prepared, and the hydraulic mortar is continuously supplied and placed through a slurry hose by a slurry pump mounted on the truck to be hardened.

本発明の水硬性組成物は、特定の構成要素を持つ水硬性成分と、特定の粒度構成を持つ細骨材と、ポリエーテル系収縮低減剤と、ポリカルボン酸系流動化剤またはナフタレンスルフォン酸系減水剤と、消泡剤と、無機系膨張材とを含むことによって、水と混練した際に優れた流動特性が得られると共に、良好な材料分離抵抗性を有する水硬性モルタル(スラリー)を得ることができる。その結果、流動特性が良好で且つ安定した水硬性モルタル(スラリー)製造することができる。
また、本発明の水硬性組成物を用いて調製した水硬性モルタル(スラリー)は、良好な材料分離抵抗性を有していることから、ポンプを使用して長距離圧送することができ、効率的にかつ安定性状の水硬性モルタル(スラリー)を離れた施工場所へ充填することが可能となり、品質の安定した構造物の構築に優れた効果を発揮することができる。
さらに、本発明の水硬性組成物を用いて調製した水硬性モルタル(スラリー)の硬化体は、硬化過程での寸法変化率や断熱温度上昇が小さく、ひび割れ抵抗性に優れるため、高耐久な構造体を得ることができる。
The hydraulic composition of the present invention includes a hydraulic component having a specific component, a fine aggregate having a specific particle size configuration, a polyether-based shrinkage reducing agent, a polycarboxylic acid-based fluidizing agent or naphthalene sulfonic acid. A hydraulic mortar (slurry) having excellent material separation resistance as well as excellent flow characteristics when kneaded with water is obtained by including a water reducing agent, an antifoaming agent, and an inorganic expansion agent. Obtainable. As a result, it is possible to produce a hydraulic mortar (slurry) with good flow characteristics and stability.
Moreover, since the hydraulic mortar (slurry) prepared using the hydraulic composition of the present invention has good material separation resistance, it can be pumped over a long distance using a pump, and the efficiency In addition, it is possible to fill a stable construction site hydraulic mortar (slurry) at a remote construction site, and to exhibit an excellent effect in the construction of a structure with stable quality.
Furthermore, the cured body of the hydraulic mortar (slurry) prepared using the hydraulic composition of the present invention has a small dimensional change rate and adiabatic temperature rise during the curing process, and is excellent in crack resistance. You can get a body.

本発明の水硬性組成物は、水硬性成分と細骨材と収縮低減剤と流動化剤と消泡剤と無機系膨張材とを必須成分とする、土木建築工事に使用されるグラウト用の水硬性組成物であって、水と混練することによって優れた流動特性が得られると共に、良好な材料分離抵抗性を有し、硬化過程での寸法変化率や断熱温度上昇が小さく、ひび割れ抵抗性に優れる水硬性モルタル(スラリー)を安定して調製することができる。 The hydraulic composition of the present invention is used for a grout used in civil engineering and construction work, comprising a hydraulic component, a fine aggregate, a shrinkage reducing agent, a fluidizing agent, an antifoaming agent, and an inorganic expansion material as essential components. It is a hydraulic composition that has excellent flow characteristics when kneaded with water, has good material separation resistance, has a small dimensional change rate and adiabatic temperature rise during the curing process, and is resistant to cracking. Can be stably prepared.

水硬性組成物の水硬性成分は、
早強ポルトランドセメントと普通ポルトランドセメントとを含む水硬性成分であり、早強ポルトランドセメントは、水硬性成分100質量%中に、好ましくは55.0〜65.0質量%、さらに好ましくは55.5〜64.7質量%、特に好ましくは56.5〜64.0質量%であることが好ましく、普通ポルトランドセメントは、水硬性成分100質量%中に、好ましくは35.0〜45.0質量%、さらに好ましくは35.3〜44.5質量%、特に好ましくは36.0〜43.5質量%であることが好ましい。
水硬性成分の構成要素が前記の範囲にない場合には、水硬性モルタル(スラリー)が優れた流動特性や材料分離抵抗性を安定して得られ難くなり、さらに断熱温度の上昇による硬化過程でのひび割れ、圧縮強度の低下およびブリーディングなど硬化物性の不良を生じることがあるため好ましくない。
The hydraulic component of the hydraulic composition is
It is a hydraulic component containing early-strength Portland cement and ordinary Portland cement. The early-strength Portland cement is preferably 55.0 to 65.0 mass%, more preferably 55.5 in 100 mass% of the hydraulic component. -64.7% by mass, particularly preferably 56.5-64.0% by mass, and ordinary Portland cement is preferably 35.0-45.0% by mass in 100% by mass of the hydraulic component. More preferably, it is 35.3 to 44.5% by mass, particularly preferably 36.0 to 43.5% by mass.
If the component of the hydraulic component is not within the above range, the hydraulic mortar (slurry) becomes difficult to stably obtain excellent flow characteristics and material separation resistance, and further in the curing process due to an increase in the adiabatic temperature. It is not preferable because it may cause defects in cured properties such as cracking of the resin, reduction in compressive strength, and bleeding.

また、本発明で用いる水硬性成分は、水硬性組成物100質量%中に、好ましくは34.0〜38.0質量%、さらに好ましくは34.5〜37.5質量%、より好ましくは34.7〜37.2質量%、特に好ましくは35.0〜37.0質量%であることが好ましい。
水硬性成分量が前記の範囲より多い場合には、流動特性が悪化する傾向が強くなり、さらに断熱温度が上昇して硬化過程でのひび割れを生じる確率が高まり、前記の範囲より少ない場合には、圧縮強度が低下する傾向が強くなり、さらにブリーディングを生じ易くなることから好ましくない。
The hydraulic component used in the present invention is preferably 34.0 to 38.0% by mass, more preferably 34.5 to 37.5% by mass, and more preferably 34% in 100% by mass of the hydraulic composition. It is preferable that it is 0.7-37.2 mass%, Most preferably, it is 35.0-37.0 mass%.
When the amount of hydraulic component is larger than the above range, the tendency to deteriorate the flow characteristics becomes stronger, and further, the adiabatic temperature rises and the probability of causing cracks in the curing process increases. , The tendency for the compressive strength to decrease is increased, and bleeding is likely to occur.

さらに、本発明の水硬性成分は、早強ポルトランドセメントと普通ポルトランドセメントの他に、必要に応じて本発明の特性を損なわない範囲で石膏、アルミナセメント等の速硬性セメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント等のポルトランドセメントを含むことができ、一種又は二種以上を混合して使用することができる。 Furthermore, the hydraulic component of the present invention includes, in addition to early-strength Portland cement and ordinary Portland cement, quick-hardening cement such as gypsum and alumina cement, ultra-high-strength Portland cement, as long as the characteristics of the present invention are not impaired. Portland cement such as moderately heated Portland cement can be included, and one or two or more can be used in combination.

石膏としては、無水、半水等の石膏がその種類を問わず、一種又は二種以上の混合物として使用できる。   As the gypsum, gypsum such as anhydrous or semi-water can be used as one kind or a mixture of two or more kinds regardless of the kind.

アルミナセメントとしては、鉱物組成の異なるものが数種知られ市販されているが、何れも主成分はモノカルシウムアルミネート(CA)であり、市販品はその種類によらず使用することができる。   Several types of alumina cement having different mineral compositions are known and commercially available, but the main component is monocalcium aluminate (CA), and commercially available products can be used regardless of the type.

本発明の水硬性組成物では、水と混練することにより優れた流動特性が得られると共に、硬化過程でのひび割れ抵抗性に優れる水硬性モルタル(スラリー)が得られることから、収縮低減剤と流動化剤とを使用する。   In the hydraulic composition of the present invention, excellent flow characteristics can be obtained by kneading with water, and a hydraulic mortar (slurry) having excellent resistance to cracking in the curing process can be obtained. And using an agent.

本発明で用いる収縮低減剤としては、ポリエーテル系の収縮低減剤を用いることが好ましい。市販品では竹本油脂社製ヒビダン等を好適に使用できる。 As the shrinkage reducing agent used in the present invention, it is preferable to use a polyether shrinkage reducing agent. Commercially available products such as Takedan Yushi Co., Ltd. can be used suitably.

ポリエーテル系収縮低減剤は、水硬性組成物100質量%中に、好ましくは0.10〜0.50質量%、さらに好ましくは0.15〜0.45質量%、特に好ましくは0.20〜0.40質量%であることが好ましい。
添加量が前記の範囲より少ないと寸法変化率が大きく、硬化過程でひび割れを生じる傾向が高くなり、また前記の範囲より多すぎても添加量に見合った効果は期待できず単に不経済であるだけでなく、ブリーディングを生じる傾向が高まることから好ましくない。
The polyether-based shrinkage reducing agent is preferably 0.10 to 0.50% by mass, more preferably 0.15 to 0.45% by mass, and particularly preferably 0.20 to 100% by mass of the hydraulic composition. It is preferable that it is 0.40 mass%.
If the addition amount is less than the above range, the dimensional change rate is large, the tendency to crack in the curing process is high, and if it is more than the above range, an effect commensurate with the addition amount cannot be expected and it is simply uneconomical. In addition, the tendency to cause bleeding increases, which is not preferable.

また、本発明で用いる流動化剤としては、ポリカルボン酸系の流動化剤またはナフタレンスルフォン酸系の流動化剤から選ばれるいずれか1種を用いることが好ましい。
市販品では花王社製マイティ100等を好適に使用できる。
In addition, as the fluidizing agent used in the present invention, it is preferable to use any one selected from a polycarboxylic acid based fluidizing agent or a naphthalene sulfonic acid based fluidizing agent.
As a commercial product, Mighty 100 manufactured by Kao Corporation can be suitably used.

ポリカルボン酸系流動化剤は、水硬性組成物100質量%中に、好ましくは0.050〜0.075質量%、さらに好ましくは0.052〜0.074質量%、特に好ましくは0.054〜0.073質量%であることが好ましい。
また、ナフタレンスルフォン酸系流動化剤は、水硬性組成物100質量%中に、好ましくは0.350〜0.480質量%、さらに好ましくは0.360〜0.475質量%、
特に好ましくは0.380〜0.470質量%であることが好ましい。
流動化剤の添加量が、それぞれの好ましい範囲より少ないと、水硬性成分を速やかに分散させる効果が乏しくなって充分な効果(良好な流動性状、優れた材料分離抵抗性)が発現せず、また好ましい範囲より多すぎても添加量に見合った効果は期待できず単に不経済であるだけでなく、ブリーディングを生じる傾向が高まることから好ましくない。
The polycarboxylic acid-based fluidizing agent is preferably 0.050 to 0.075% by mass, more preferably 0.052 to 0.074% by mass, and particularly preferably 0.054% in 100% by mass of the hydraulic composition. It is preferable that it is -0.073 mass%.
The naphthalene sulfonic acid-based fluidizing agent is preferably 0.350 to 0.480% by mass, more preferably 0.360 to 0.475% by mass, in 100% by mass of the hydraulic composition.
Especially preferably, it is 0.380-0.470 mass%.
If the addition amount of the fluidizing agent is less than the respective preferable ranges, the effect of quickly dispersing the hydraulic component is poor, and sufficient effects (good fluidity, excellent material separation resistance) are not exhibited, On the other hand, if it is more than the preferred range, an effect commensurate with the amount added cannot be expected, and this is not only uneconomical but also unfavorable because it tends to cause bleeding.

本発明の水硬性組成物では、水と混練することにより速やかに良好な流動性状を有する水硬性モルタル(スラリー)を得ることができ、さらに優れた材料分離抵抗性を有する水硬性モルタル(スラリー)を安定して得るために、最大粒径が2mm(2000μm)未満で、最小粒径が30μm以上の特定の粒度構成を有する細骨材を選択して使用する。前記細骨材を用いることによって、良好で安定した流動性状の水硬性モルタル(スラリー)を得られると共に、長距離をポンプ圧送した際にも、材料分離に伴うスラリーホースの閉塞を回避することができる。 In the hydraulic composition of the present invention, a hydraulic mortar (slurry) having good fluidity can be obtained quickly by kneading with water, and further a hydraulic mortar (slurry) having excellent material separation resistance. In order to stably obtain the above, a fine aggregate having a specific particle size configuration having a maximum particle size of less than 2 mm (2000 μm) and a minimum particle size of 30 μm or more is selected and used. By using the fine aggregate, it is possible to obtain a hydraulic mortar (slurry) having a good and stable fluidity, and avoiding clogging of the slurry hose accompanying material separation even when pumping a long distance. it can.

細骨材としては、珪砂、川砂、海砂、山砂、砕砂などの砂類、シリカ粉、粘土鉱物、廃FCC触媒などの無機質材、ウレタン砕、EVAフォーム、発砲樹脂などの樹脂粉砕物、アルミナセメントクリンカー骨材などを用いることができる。
細骨材ついては、珪砂、川砂、海砂、山砂、砕砂などの砂類、石英粉末、廃FCC触媒などを用いることが特に好ましい。
Fine aggregates include silica sand, river sand, sea sand, mountain sand, crushed sand, etc., silica powder, clay minerals, inorganic materials such as waste FCC catalyst, urethane crushed, EVA foam, resin pulverized products such as foamed resin, An alumina cement clinker aggregate or the like can be used.
As for the fine aggregate, it is particularly preferable to use sand such as quartz sand, river sand, sea sand, mountain sand, crushed sand, quartz powder, waste FCC catalyst and the like.

本発明で使用する細骨材は、細骨材100質量%中に好ましくは、30μm以上〜300μm未満の粒子を10.0〜20.0質量%含み、300μm以上〜600μm未満の粒子を10.0〜25.0質量%含み、600μm以上〜1180μm未満の粒子を35.0〜75.0質量%含み、1180μm以上〜2000μm未満の粒子を1.0〜35.0質量%含むものを好適に使用でき、さらに好ましくは、30μm以上〜300μm未満の粒子を11.0〜18.0質量%含み、300μm以上〜600μm未満の粒子を11.0〜23.0質量%含み、600μm以上〜1180μm未満の粒子を40.0〜72.0質量%含み、1180μm以上〜2000μm未満の粒子を1.5〜20.0質量%含むものを好適に使用でき、特に好ましくは、30μm以上〜300μm未満の粒子を12.0〜17.0質量%含み、300μm以上〜600μm未満の粒子を12.0〜22.0質量%含み、600μm以上〜1180μm未満の粒子を42.0〜70.0質量%含み、1180μm以上〜2000μm未満の粒子を2.0〜10.0質量%含むものを好適に使用できる。
細骨材の粒度構成が前記の範囲にない場合には、水硬性モルタル(スラリー)が優れた流動特性や材料分離抵抗性を安定して得られ難くなり、また水硬性モルタル(スラリー)をスラリーポンプを用いて長距離(100m)圧送した際に、水硬性モルタル(スラリー)中の細骨材が材料分離を生じてスラリーホースを閉塞させることがあるため好ましくない。
The fine aggregate used in the present invention preferably contains 10.0 to 20.0% by mass of particles of 30 μm or more to less than 300 μm in 100% by mass of the fine aggregate, and 10 particles of particles of 300 μm or more to less than 600 μm. Preferred are those containing 0 to 25.0 mass%, 35.0 to 75.0 mass% of particles of 600 μm to less than 1180 μm, and 1.0 to 35.0 mass% of particles of 1180 μm to less than 2000 μm. More preferably, it contains 11.0 to 18.0% by mass of particles of 30 μm to less than 300 μm, 11.0 to 23.0% by mass of particles of 300 μm to less than 600 μm, and 600 μm to less than 1180 μm 40.0-72.0% by mass of particles containing 1180 μm or more and less than 2000 μm of particles can be suitably used, and particularly preferred. Contains 12.0 to 17.0% by mass of particles of 30 μm or more to less than 300 μm, 12.0 to 22.0% by mass of particles of 300 μm or more to less than 600 μm, and 42.42% of particles of 600 μm or more to less than 1180 μm. One containing 0 to 70.0% by mass and containing 2.0 to 10.0% by mass of particles of 1180 μm or more and less than 2000 μm can be suitably used.
When the particle size composition of the fine aggregate is not within the above range, the hydraulic mortar (slurry) becomes difficult to stably obtain excellent flow characteristics and material separation resistance, and the hydraulic mortar (slurry) is slurried. When pumping a long distance (100 m), the fine aggregate in the hydraulic mortar (slurry) may cause material separation and block the slurry hose, which is not preferable.

細骨材の使用量は、水硬性組成物100質量%中に、好ましくは20〜90質量%、さらに好ましくは40〜80質量%、特に好ましくは50〜70質量%の範囲にすることにより、優れた良好な流動性、材料分離抵抗性、ポンプ圧送性、及び、良好な硬化体強度発現性が得られることから好ましい。   The amount of fine aggregate used is preferably 20 to 90% by mass, more preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass in 100% by mass of the hydraulic composition. It is preferable because excellent fluidity, material separation resistance, pumpability, and good cured body strength can be obtained.

本発明の水硬性組成物では、硬化過程での寸法変化率が小さく、ひび割れ抵抗性に優れる水硬性モルタル(スラリー)が得られることから、無機系膨張材を使用する。 In the hydraulic composition of the present invention, an inorganic expansion material is used because a hydraulic mortar (slurry) having a small dimensional change rate in the curing process and excellent crack resistance can be obtained.

無機系膨張材としては、カルシウムサルフォアルミネート系ではアウイン、石灰系では生石灰、生石灰−石膏系、仮焼ドロマイト等が挙げられ、これらから選ばれた少なくとも1種を使用できる。石灰系膨張材としては、生石灰、生石灰−石膏系が好ましく、特に生石灰−石膏系が好ましい。
無機系膨張材としては、例えば遊離生石灰を膨張成分として含むものや、カルシウムサルホアルミネート等のエトリンガイト形成物質を膨張成分とする市販品を使用することができる。好ましくは、収縮補償効果とともに反応時の水和発熱によって低温環境下の強度増強効果を有する生石灰を有効成分として含む膨張材が特に好ましく、この場合膨張材中の生石灰含有量は特に限定されないが、生石灰含有量が高いもの(100重量%を含む)では水和反応が急激に進行することがあるので80重量%以下の含有量が好ましい。
Examples of the inorganic expansive material include Auin for calcium sulfoaluminate type, quick lime, quick lime-gypsum type, calcined dolomite and the like for lime type, and at least one selected from these can be used. As the lime-based expansion material, quick lime and quick lime-gypsum are preferable, and quick lime-gypsum is particularly preferable.
As the inorganic expansion material, for example, a material containing free quick lime as an expansion component or a commercial product having an ettringite-forming substance such as calcium sulfoaluminate as an expansion component can be used. Preferably, an expansion material containing, as an active ingredient, quick lime having an effect of enhancing strength under a low temperature environment by a hydration exotherm during reaction as well as a shrinkage compensation effect, in this case the quick lime content in the expansion material is not particularly limited, In the case where the quicklime content is high (including 100% by weight), the hydration reaction may proceed abruptly, so the content is preferably 80% by weight or less.

無機系膨張材の添加量は、水硬性組成物100質量%に対して、好ましくは0.3〜4.0質量%、さらに好ましくは0.5〜3.5質量%、特に好ましくは1.0〜3.0質量%の範囲で用いることが好ましい。
添加量が少ないと寸法変化率も大きく、充分な膨張効果を発現せず、また多すぎても硬化過程で膨張過多によるひび割れを生じることから好ましくない。
The addition amount of the inorganic expansion material is preferably 0.3 to 4.0% by mass, more preferably 0.5 to 3.5% by mass, and particularly preferably 1.% by mass with respect to 100% by mass of the hydraulic composition. It is preferable to use in the range of 0 to 3.0% by mass.
If the addition amount is small, the rate of dimensional change is large, a sufficient expansion effect is not exhibited, and if it is too large, cracks due to excessive expansion occur in the curing process, which is not preferable.

本発明では水硬性組成物の必須成分として消泡剤を使用する。
本発明で使用する消泡剤としては、シリコン系、アルコール系、ポリエーテル系などの合成物質又は植物由来の天然物質などを用いることができる。特にポリエーテル系の消泡剤を好適に用いることができる。
消泡剤の添加量は、水硬性組成物100質量%に対して、好ましくは0.001〜0.039質量%、さらに好ましくは0.003〜0.038質量%、特に好ましくは0.005〜0.037質量%の範囲で用いることが好ましい。
添加量が好ましい範囲より少ないと充分な消泡効果を発現せず、型枠などに充填した際にエア溜りを生じやすく、構造物との一体性が損なわれることがあり、また添加量が好ましい範囲より多すぎても流動特性が悪化したり、ブリーディングを生じ易くなることから好ましくない。
In the present invention, an antifoaming agent is used as an essential component of the hydraulic composition.
As the antifoaming agent used in the present invention, synthetic materials such as silicon-based, alcohol-based, and polyether-based materials or plant-derived natural materials can be used. In particular, a polyether-based antifoaming agent can be preferably used.
The addition amount of the antifoaming agent is preferably 0.001 to 0.039% by mass, more preferably 0.003 to 0.038% by mass, and particularly preferably 0.005% with respect to 100% by mass of the hydraulic composition. It is preferable to use in the range of -0.037 mass%.
If the amount added is less than the preferred range, sufficient defoaming effect will not be exhibited, air stagnation tends to occur when filling a mold or the like, and the integrity with the structure may be impaired, and the amount added is preferred. If the amount is more than the range, the flow characteristics are deteriorated and bleeding tends to occur, which is not preferable.

本発明の水硬性組成物は、水硬性成分、細骨材、収縮低減剤、流動化剤、無機系膨張材及び消泡剤の他に、必要に応じて本発明の特性を失わない範囲で金属系膨張材、凝結調整剤、樹脂粉末、増粘剤及び無機質微粉末などの成分を少なくとも1種以上含むことができる。   The hydraulic composition of the present invention is not limited to the characteristics of the present invention, if necessary, in addition to the hydraulic component, fine aggregate, shrinkage reducing agent, fluidizing agent, inorganic expansion agent and antifoaming agent. At least one or more components such as a metal-based expansion material, a setting regulator, a resin powder, a thickener, and an inorganic fine powder can be included.

金属系膨張材は、本発明の特性を損なわない範囲で添加することができ、無機系膨張材と併用して用いることが好ましい。
金属系膨張材としては、アルミニウム粉、鉄粉などの金属粉を使用することができるが、中でも比重の面から、アルミニウム粉の使用が特に好ましい。アルミニウム粉は、JIS・K−5906「塗装用アルミニウム粉」の第2種に準ずるものが好適に使用できる。
The metal-based expansion material can be added within a range that does not impair the characteristics of the present invention, and is preferably used in combination with an inorganic expansion material.
As the metal-based expansion material, metal powder such as aluminum powder and iron powder can be used, and among these, the use of aluminum powder is particularly preferable in terms of specific gravity. As the aluminum powder, those conforming to the second type of JIS K-5906 “Aluminum powder for coating” can be preferably used.

凝結調整剤は、用いる水硬性成分に応じて、特性を損なわない範囲で適宜添加することができ、凝結促進剤及び凝結遅延剤の成分、添加量及び混合比率を適宜選択して、流動性、可使時間、硬化性状などを調整することができる。   The setting modifier can be appropriately added within a range that does not impair the characteristics, depending on the hydraulic component to be used, and the components, addition amount, and mixing ratio of the setting accelerator and setting retarder are appropriately selected to improve the fluidity, The pot life, curing properties, etc. can be adjusted.

樹脂粉末としては、エチレン・酢酸ビニル共重合体、アクリル系重合体などの乳化重合した高分子エマルジョンを噴霧乾燥して調製した樹脂粉末などを用いることができる。 As the resin powder, a resin powder prepared by spray-drying a polymer emulsion obtained by emulsion polymerization such as an ethylene / vinyl acetate copolymer and an acrylic polymer can be used.

増粘剤は、セルロース系、蛋白質系、ラテックス系、変性アクリルアミド系及び水溶性ポリマー系などを用いることができ、特に変性アクリルアミド系やセルロース系などを用いることが出来る。増粘剤の添加量は、本発明の特性を損なわない範囲で添加することができる。
また、増粘剤及び消泡剤を併用して用いることは、水硬性成分や細骨材などの骨材分離の抑制、気泡発生の抑制、硬化体表面の改善に好ましい効果を与え、グラウト用途の水硬性モルタル(スラリー)としての特性を向上させるために好ましい。
As the thickener, cellulose-based, protein-based, latex-based, modified acrylamide-based, water-soluble polymer-based, and the like can be used, and in particular, modified acrylamide-based and cellulose-based materials can be used. The addition amount of the thickener can be added as long as the characteristics of the present invention are not impaired.
In addition, using a thickener and an antifoaming agent together has a favorable effect on suppressing separation of aggregates such as hydraulic components and fine aggregates, suppressing generation of bubbles, and improving the surface of the cured body, and is used for grout. In order to improve the characteristics as a hydraulic mortar (slurry).

無機質微粉末としては、必要に応じて本発明の特性を損なわない範囲で、高炉スラグ、フライアッシュ、炭酸カルシウム、ミクロシリカ、溶融スラグなどを用いることができる。 As the inorganic fine powder, blast furnace slag, fly ash, calcium carbonate, microsilica, molten slag and the like can be used as long as they do not impair the characteristics of the present invention.

本発明で用いる水硬性組成物を構成する場合に、好適な成分構成は、特定の構成要素を持つ水硬性成分と特定の粒度構成を持つ細骨材とポリエーテル系収縮低減剤とポリカルボン酸系流動化剤またはナフタレンスルフォン酸系減水剤と、消泡剤と、無機系膨張材とを含む水硬性組成物である。 When constituting the hydraulic composition used in the present invention, the preferred component constitution is a hydraulic component having a specific component, a fine aggregate having a specific particle size constitution, a polyether shrinkage reducing agent, and a polycarboxylic acid. It is a hydraulic composition containing a system fluidizing agent or a naphthalene sulfonic acid-based water reducing agent, an antifoaming agent, and an inorganic expansion material.

本発明で用いる水硬性組成物を構成する場合に、特に好適な成分構成は、特定の構成要素を持つ水硬性成分と特定の粒度構成を持つ細骨材とポリエーテル系収縮低減剤とポリカルボン酸系流動化剤またはナフタレンスルフォン酸系減水剤と、消泡剤と、無機系膨張材とを含む水硬性組成物であって、さらに金属系膨張材及び増粘剤を含むものである。 In the case of constituting the hydraulic composition used in the present invention, particularly suitable component constitutions are a hydraulic component having a specific constituent, a fine aggregate having a specific particle size constitution, a polyether shrinkage reducing agent, and a polycarboxylic acid. A hydraulic composition containing an acid-based fluidizing agent or naphthalene sulfonic acid-based water reducing agent, an antifoaming agent, and an inorganic expansion material, and further includes a metal-based expansion material and a thickening agent.

本発明では、水硬性成分、細骨材、収縮低減剤及び流動化剤と、無機系膨張材及び消泡剤と、必要に応じて、金属系膨張材、凝結調整剤、粉末樹脂、樹脂粉末、増粘剤及び無機質微粉末などから選択される成分を1種以上添加し、混合機で混合して水硬性組成物のプレミックス粉体を得ることができる。   In the present invention, hydraulic component, fine aggregate, shrinkage reducing agent and fluidizing agent, inorganic expansion agent and antifoaming agent, if necessary, metallic expansion agent, setting agent, powder resin, resin powder One or more components selected from thickeners, inorganic fine powders and the like can be added and mixed with a mixer to obtain a premix powder of a hydraulic composition.

本発明の水硬性組成物は、混練装置を用いて、又は、混練機構を有するミキサー設備を用いて、水と混練することにより、安定して良好な流動性を有する水硬性モルタル(スラリー)を製造することができる。   The hydraulic composition of the present invention is obtained by stably kneading a hydraulic mortar (slurry) having good fluidity by kneading with water using a kneading apparatus or a mixer facility having a kneading mechanism. Can be manufactured.

また、本発明の水硬性組成物は水と共に、定量的かつ連続的に混練機構を有するミキサー設備に供給されることにより、速やかに混練されて安定した流動性状を有するスラリーが得られることから、図1に示すように、水硬性スラリータンク(リザーバータンク)に螺旋形状の撹拌羽根を備えた連続混練装置を好ましく用いることができる。螺旋形状の撹拌羽根としては、図2に示すような形状および寸法を有するものを好ましく使用でき、水硬性スラリータンク(リザーバータンク)中の水硬性モルタル(スラリー)の均一性をより高めて、水硬性モルタル(スラリー)の流動性状や材料分離特性などを安定化することができる。   In addition, since the hydraulic composition of the present invention is supplied to a mixer facility having a kneading mechanism quantitatively and continuously together with water, a slurry having a stable fluidity can be obtained by kneading quickly. As shown in FIG. 1, a continuous kneading apparatus provided with a helical stirring blade in a hydraulic slurry tank (reservoir tank) can be preferably used. As the spiral stirring blade, one having a shape and dimensions as shown in FIG. 2 can be preferably used, and the uniformity of the hydraulic mortar (slurry) in the hydraulic slurry tank (reservoir tank) can be further increased. The fluidity and material separation characteristics of the hard mortar (slurry) can be stabilized.

さらに、大規模な現場で大量の水硬性モルタル(スラリー)を限られた期間内に施工する場合には、特に、水硬性モルタル(スラリー)を連続的に製造し、離れた施工場所へ供給・施工できる図3に示すような水硬性組成物を貯蔵するタンクを備えた水硬性モルタル(スラリー)調製・施工用トラックを使用し、該トラックに搭載した連続混練ミキサー(図1)を用いて、水硬性組成物と水とを連続的に混練して水硬性モルタル(スラリー)を連続的に調製し、該トラックに搭載されたスラリーポンプによりスラリーホースを介して水硬性モルタル(スラリー)を施工箇所へ連続的に供給・打設する水硬性モルタル(スラリー)施工方法が、施工効率および施工品質において極めて有効である。
本発明の水硬性組成物は、所定量の水と速やかに混練され、安定して優れた流動性状と良好な材料分離抵抗性とを有するスラリーが得られることから、前記の水硬性組成物を貯蔵するタンクを備えた水硬性モルタル(スラリー)調製・施工用トラックを使用した施工方法に好適に用いることができ、調製した水硬性モルタル(スラリー)を好ましくは50m〜150m、さらに好ましくは75m〜135m、特に好ましくは100〜120mポンプ圧送して施工箇所へ供給することができる。
Furthermore, when a large amount of hydraulic mortar (slurry) is to be constructed within a limited period of time on a large-scale site, hydraulic mortar (slurry) is manufactured continuously and supplied to remote construction sites. Using a hydraulic mortar (slurry) preparation / construction truck equipped with a tank for storing a hydraulic composition as shown in FIG. 3, and using a continuous kneading mixer (FIG. 1) mounted on the truck, The hydraulic mortar (slurry) is continuously prepared by kneading the hydraulic composition and water continuously, and the hydraulic mortar (slurry) is applied through the slurry hose by the slurry pump mounted on the truck. The hydraulic mortar (slurry) construction method that supplies and casts continuously is extremely effective in construction efficiency and construction quality.
The hydraulic composition of the present invention is rapidly kneaded with a predetermined amount of water, and a slurry having excellent fluidity and good material separation resistance can be obtained stably. The hydraulic mortar (slurry) having a tank for storage can be suitably used in a construction method using a truck for preparation and construction, and the prepared hydraulic mortar (slurry) is preferably 50 m to 150 m, more preferably 75 m to 135 m, particularly preferably 100 to 120 m can be pumped and supplied to the construction site.

本発明の水硬性組成物は、所定量の水と混練することによって速やかに良好な流動特性を有し、材料分離抵抗性に優れた水硬性モルタル(スラリー)を調製することができる。本発明では、混練条件Aの条件で水硬性組成物と水とを混練し、混練操作によって得られる水硬性モルタル(スラリー)の流動特性をJ14ロート流下値によって評価する。
混練条件Aとは、温度20℃、湿度65%の恒温室において、恒温室と同温度に養生した水硬性組成物と水を用い、2Lポリ容器に表1から表6に示す所定水比の水を入れ、図4に示す形状のタービン羽根を取り付けた0.15KW攪拌機を使用し、300rpmで攪拌しながら水硬性組成物1500gを全量投入後、780rpmで2分間混練して、水硬性モルタル(スラリー)を調製するものである。
The hydraulic composition of the present invention can quickly prepare a hydraulic mortar (slurry) having good flow characteristics and excellent material separation resistance by kneading with a predetermined amount of water. In the present invention, the hydraulic composition and water are kneaded under the condition of kneading condition A, and the flow characteristics of the hydraulic mortar (slurry) obtained by the kneading operation are evaluated by the J14 funnel flow-down value.
The kneading condition A is a temperature-controlled room with a temperature of 20 ° C. and a humidity of 65%, using a hydraulic composition and water cured at the same temperature as the temperature-controlled room, and having a predetermined water ratio shown in Tables 1 to 6 in a 2 L plastic container. Water was added, and using a 0.15 KW stirrer equipped with a turbine blade having the shape shown in FIG. 4, 1500 g of the hydraulic composition was added while stirring at 300 rpm, and then kneaded at 780 rpm for 2 minutes. Slurry).

本発明の水硬性組成物を混練条件Aの条件で混練して調製し、同恒温室にて測定した水硬性モルタル(スラリー)のJ14ロート流下値は、好ましくは4.0〜10.1秒の範囲、さらに好ましくは5.0〜10.05秒の範囲、特に好ましくは6.0〜10.0秒の範囲であることが速やかに優れた流動性を安定して確保でき、優れた材料分離抵抗性を有する水硬性モルタル(スラリー)を安定して得られることから好ましい。 The hydraulic composition of the present invention was prepared by kneading under the conditions of kneading condition A, and the J14 funnel flow down value of the hydraulic mortar (slurry) measured in the same temperature chamber is preferably 4.0 to 10.1 seconds. In the range of 5.0 to 10.05 seconds, more preferably in the range of 6.0 to 10.0 seconds, and excellent fluidity can be quickly and stably secured. It is preferable because a hydraulic mortar (slurry) having separation resistance can be obtained stably.

本発明の水硬性組成物は、水の添加量を調整することにより、水硬性モルタル(スラリー)の流動性、材料分離抵抗性などを、さらに硬化して得られる硬化体の強度などを調整することができる。
水の添加量は、用いる水硬性成分や水硬性組成物に応じて、適宜選択して用いることができる。水硬性組成物と水との質量比率である水比(水/水硬性組成物)は、好ましくは0.080〜0.500、さらに好ましくは0.090〜0.400、特に好ましくは0.110〜0.200の範囲であることが好ましい。なお、水比は水の添加量を水硬性組成物の質量で除した値を用いる。
The hydraulic composition of the present invention adjusts the fluidity of the hydraulic mortar (slurry), the material separation resistance, and the strength of the cured product obtained by further curing by adjusting the amount of water added. be able to.
The amount of water added can be appropriately selected and used depending on the hydraulic component or hydraulic composition used. The water ratio (water / hydraulic composition), which is the mass ratio of the hydraulic composition to water, is preferably 0.080 to 0.500, more preferably 0.090 to 0.400, and particularly preferably 0.00. A range of 110 to 0.200 is preferable. In addition, the water ratio uses the value which remove | divided the addition amount of water by the mass of the hydraulic composition.

水硬性モルタル(スラリー)は、以下の特性を有することが好ましい。
1)ブリーディング率が、好ましくは0.3%以下、より好ましくは0.2%以下、特に好ましくは0.1%以下である。
2)エア量が、好ましくは4.5%以下、より好ましくは4.0%以下、特に好ましくは3.5%以下である。
The hydraulic mortar (slurry) preferably has the following characteristics.
1) The bleeding rate is preferably 0.3% or less, more preferably 0.2% or less, and particularly preferably 0.1% or less.
2) The amount of air is preferably 4.5% or less, more preferably 4.0% or less, and particularly preferably 3.5% or less.

水硬性モルタル(スラリー)の硬化体は、以下の特性を有することが好ましい。
1)圧縮強度(材齢28日)が、好ましくは40N/mm以上、より好ましくは45N/mm以上、特に好ましくは50N/mm以上である。
2)長さ変化率(材齢7日)が、好ましくは−22×10−4以上、より好ましくは−21×10−4以上、特に好ましくは−20×10−4以上である。
3)簡易断熱養生温度の最高温度が、好ましくは87℃以下、より好ましくは86℃以下、特に好ましくは85℃以下である。
4)ひび割れ確認(目視)が、○:ひび割れ無しである。
The cured body of hydraulic mortar (slurry) preferably has the following characteristics.
1) Compressive strength (material age 28 days) is preferably 40 N / mm 2 or more, more preferably 45 N / mm 2 or more, and particularly preferably 50 N / mm 2 or more.
2) The rate of change in length (material age 7 days) is preferably −22 × 10 −4 or more, more preferably −21 × 10 −4 or more, and particularly preferably −20 × 10 −4 or more.
3) The maximum temperature of the simple adiabatic curing temperature is preferably 87 ° C or lower, more preferably 86 ° C or lower, and particularly preferably 85 ° C or lower.
4) Confirmation of cracking (visual observation): ○: No cracking.

本発明の水硬性モルタル(スラリー)は、トンネルやシールドの裏込め、ダムの継ぎ目、橋梁のシュウ、構造物の補修や補強、鉄筋継手、機械基礎の固定、下水道の補修等、土木・建築分野の各種グラウト工事において、高流動性、無収縮性及び高強度といった性能を有することからその利用価値は大きい。
特に、大規模な現場で大量のグラウチングを行うような場合に、連続的に水硬性モルタル(スラリー)を調製して、連続的に施工箇所へ供給・打設施工する場合にその性能を発揮するものである。
The hydraulic mortar (slurry) of the present invention is used in the field of civil engineering and construction, such as tunnel and shield backfilling, dam seams, bridge shu, structural repair and reinforcement, reinforcing joints, fixing machine foundations, sewer repairs, etc. In the various grout constructions, the utility value is great because it has performance such as high fluidity, non-shrinkage and high strength.
In particular, when large-scale grouting is performed at a large-scale site, hydraulic mortar (slurry) is continuously prepared, and its performance is demonstrated when it is continuously supplied to the construction site and placed. Is.

以下、本発明を実施例に基づき、さらに詳細に説明する。但し、本発明は下記実施例により制限されるものでない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples.

(特性の評価方法)
1)J14ロート流下値(秒):
土木学会充てんモルタル試験方法(案)(JSCE・F542−1993)に準拠して、水硬性モルタル(スラリー)のJ14ロート法による流下値を示す。
2)ブリーディング率(%)
NEXCO規格の「無収縮モルタル品質規格試験方法」(JHS312−1999)に準拠して、水硬性モルタル(スラリー)の練り混ぜ2時間後のブリーディング率を示す。
3)圧縮強度(N/mm):
温度20℃、湿度65%の条件で混練した水硬性モルタル(スラリー)を用い、温度20℃、湿度95%の条件で硬化させ、翌日脱型後、20℃の水中で28日間養生した試験体φ5×10cmを用い、JIS・A−1108に準拠して評価を行う。
4)膨張収縮率(%):
NEXCO規格の「無収縮モルタル品質規格試験方法」(JHS312−1999)に準拠して、材令7日の膨張収縮率を示す。
5)ポンプ圧送性:
ミキサー装置の排出ポンプ出口に、内径32cmで長さ25m、50m又は100mのスラリーホースを接続して評価を行う。
ポンプは、モーノポンプ、型番:2NM50(兵神装備社製)を用いて行う。
水硬性モルタル(スラリー)の圧送性の評価指標は、○:閉塞無し、×:閉塞ありとする。
6)長さ変化率:
長さ変化率の測定は、図5に示す装置を用いる。長さ変化率の測定は、混練直後の水硬性モルタル(スラリー)を型内部の型枠の高さまで打設し、打設直後より長さ変化の測定を開始し、測定間隔は10分毎で行い、材齢7日まで測定する。測定条件は、20℃、RH65%の気中で行う。
水硬性モルタル(スラリー)の硬化時の長さ変化率は、図5(a)に示す変位センサーの端部と、変位センサーの端部と隣接するSUS製円盤との間隔の変化量(mm)を、水硬性モルタル(スラリー)の硬化体の内部に位置する2枚のSUS製円盤の間隔(b=480mm)で除した値とする。
7)簡易断熱養生温度(℃):
簡易断熱養生温度の測定は、図6に示す装置を用いる。簡易断熱養生温度の測定は、混練直後の水硬性モルタル(スラリー)を断熱材中の型枠に打設し、打設直後より簡易断熱養生温度の測定を開始し、測定間隔は5分毎で行う。測定条件は、20℃、RH65%の恒温室内で行う。
8)ひび割れ確認(目視):
温度20℃、湿度65%の条件で混練した水硬性モルタル(スラリー)を用い、縦20cm×横12cm×高さ2cmのプラスティック容器に流し込み、温度35℃、湿度60%の条件で硬化させ、打ち込み7日後のひび割れ有無を目視にて確認する。評価指標は、○:ひび割れ無し、×:ひび割れ有りとする。
9)エア量(%):
温度20℃、湿度65%の条件で混練した水硬性モルタル(スラリー)を用い、JISA1128「フレッシュコンクリートの空気量の圧力による試験方法」に準拠して、エア量を示す。
10)混練条件A:
温度20℃、湿度65%の恒温室において、恒温室と同温度に養生した水硬性組成物と水を用い、2Lポリ容器に表1から表6に示す所定水比の水を入れ、図4に示すタービン羽根を取り付けた0.15KW攪拌機(新東科学社製、品番:スリーワンモータBL600)を使用し、300rpmで攪拌しながら水硬性組成物1500gを全量投入後、780rpmで2分間混練して、水硬性モルタル(スラリー)を調製することを混練条件Aとする。
(Characteristic evaluation method)
1) J 14 funnel flow down (seconds):
In conformity with JSCE Filling Mortar test method (draft) (JSCE · F542-1993), showing the falling value by J 14 funnel method hydraulic mortar (slurry).
2) Bleeding rate (%)
The bleeding rate after 2 hours of kneading of hydraulic mortar (slurry) is shown in accordance with “Non-Shrinkage Mortar Quality Standard Test Method” (JHS 312-1999) of NEXCO standard.
3) Compressive strength (N / mm 2 ):
A test specimen cured using hydraulic mortar (slurry) kneaded at a temperature of 20 ° C. and a humidity of 65%, cured at a temperature of 20 ° C. and a humidity of 95%, demolded the next day, and then cured in water at 20 ° C. for 28 days. Evaluation is performed according to JIS A-1108 using φ5 × 10 cm.
4) Expansion / contraction rate (%):
The expansion / shrinkage ratio on the 7th day of the age is shown in accordance with the “Non-shrinkage mortar quality standard test method” (JHS 312-1999) of NEXCO standard.
5) Pump pumpability:
Evaluation is performed by connecting a slurry hose having an inner diameter of 32 cm and a length of 25 m, 50 m or 100 m to the outlet of the discharge pump of the mixer apparatus.
The pump is a MONO pump, model number: 2NM50 (Hyojin Equipment Co., Ltd.).
The evaluation indexes of the pumpability of the hydraulic mortar (slurry) are: ○: no blockage, x: blockage.
6) Length change rate:
The length change rate is measured using the apparatus shown in FIG. The length change rate is measured by placing hydraulic mortar (slurry) immediately after kneading to the height of the mold inside the mold, and measuring the length change immediately after casting, with a measurement interval of every 10 minutes. And measure up to 7 days of age. The measurement conditions are 20 ° C. and RH 65%.
The rate of change in length of the hydraulic mortar (slurry) when cured is the amount of change (mm) in the distance between the end of the displacement sensor shown in FIG. 5A and the SUS disk adjacent to the end of the displacement sensor. Is a value obtained by dividing by a distance (b = 480 mm) between two SUS disks located inside a cured body of hydraulic mortar (slurry).
7) Simple insulation curing temperature (℃):
The apparatus shown in FIG. 6 is used for the measurement of the simple adiabatic curing temperature. The simple adiabatic curing temperature is measured by placing hydraulic mortar (slurry) immediately after kneading into the mold in the heat insulating material, and starting the measurement of the simple adiabatic curing temperature immediately after placing, with a measurement interval of every 5 minutes. Do. The measurement conditions are 20 ° C. and RH 65% in a constant temperature room.
8) Confirmation of crack (visual):
Using hydraulic mortar (slurry) kneaded at a temperature of 20 ° C and a humidity of 65%, it is poured into a plastic container of 20cm in length x 12cm in width and 2cm in height, cured at a temperature of 35 ° C and a humidity of 60%, and driven in. Visually check for cracks after 7 days. The evaluation index is as follows: ○: no crack, ×: crack.
9) Air volume (%):
Using a hydraulic mortar (slurry) kneaded under the conditions of a temperature of 20 ° C. and a humidity of 65%, the air amount is shown in accordance with JIS A 1128 “Testing Method for Fresh Concrete with Air Pressure”.
10) Kneading condition A:
In a temperature-controlled room at a temperature of 20 ° C. and a humidity of 65%, using a hydraulic composition and water cured at the same temperature as the temperature-controlled room, water having a predetermined water ratio shown in Tables 1 to 6 is placed in a 2 L plastic container. Using a 0.15 KW stirrer (manufactured by Shinto Kagaku Co., product number: Three-One Motor BL600) equipped with the turbine blades shown in FIG. 1, 1500 g of the hydraulic composition was added while stirring at 300 rpm, and then kneaded at 780 rpm for 2 minutes. Preparation of hydraulic mortar (slurry) is referred to as kneading condition A.

原料は以下のものを使用した。
1)水硬性成分:
・早強ポルトランドセメント(宇部早強セメント、ブレーン比表面積4500cm/g)。
・普通ポルトランドセメント(宇部普通セメント、ブレーン比表面積3300cm/g)。
比表面積の評価法は、JIS・R−5201に規定されているブレーン空気透過装置を用いて測定されたものである。
2)細骨材:
・珪砂A : N30、瓢屋社製。
・珪砂B : S4、JFEミネラル社製。
・珪砂C : N50、瓢屋社製。
・珪砂D : N70、瓢屋社製。
・珪砂E : N40、瓢屋社製。
3)膨張材:
・無機系膨張材:太平洋ハイパーエクスパン構造用(太平洋マテリアル社製)。
・金属系膨張材:アルミニウム粉(粒度44μm以下60%以上、大和金属粉工業社製)。
4)流動化剤:
・流動化剤a:ポリカルボン酸系流動化剤、メルフラクスAP101F(BASFポゾリス社製)。
・流動化剤b:ナフタレンスルフォン酸系流動化剤、マイティ100(花王社製)。
5)収縮低減剤:ポリエーテル系収縮低減剤、ヒビダン(竹本油脂社製)
6)消泡剤:ポリエーテル系消泡剤、B107F(ADEKA社製)
7)ミクロシリカ:ブレーン比表面積19000cm/g、SKWイーストアジア社製
8)増粘剤A:セルロース系増粘剤、ハイユーローズ(宇部興産社製)。
9)増粘剤B:変性アクリルアミド系増粘剤、スタービス4302F(BASFポゾリス社製)。
The following materials were used.
1) Hydraulic component:
-Early strong Portland cement (Ube early strong cement, Blaine specific surface area 4500 cm 2 / g).
-Ordinary Portland cement (Ube ordinary cement, Blaine specific surface area 3300 cm 2 / g).
The evaluation method of the specific surface area is measured using a brain air permeation device defined in JIS R-5201.
2) Fine aggregate:
-Silica sand A: N30, made by Ashiya company.
Silica sand B: S4, manufactured by JFE Minerals.
Silica sand C: N50, manufactured by Ashiya Company.
Silica sand D: N70, manufactured by Ashiya Company.
-Silica sand E: N40, made by Ashiya company.
3) Expansion material:
・ Inorganic expansive material: for Pacific Hyperexpan structure (manufactured by Taiheiyo Materials).
Metal expandable material: aluminum powder (particle size 44 μm or less, 60% or more, manufactured by Daiwa Metal Powder Industry Co., Ltd.).
4) Fluidizer:
Fluidizing agent a: polycarboxylic acid-based fluidizing agent, Melflax AP101F (manufactured by BASF Pozzolith).
Fluidizer b: Naphthalene sulfonic acid-based fluidizer, Mighty 100 (manufactured by Kao Corporation).
5) Shrinkage reducing agent: polyether-based shrinkage reducing agent, Hibidan (manufactured by Takemoto Yushi Co., Ltd.)
6) Antifoaming agent: polyether antifoaming agent, B107F (made by ADEKA)
7) Microsilica: Blaine specific surface area 19000 cm 2 / g, manufactured by SKW East Asia 8) Thickener A: Cellulosic thickener, Hyeurose (manufactured by Ube Industries).
9) Thickener B: Modified acrylamide type thickener, Starvis 4302F (manufactured by BASF Pozzolith).

(比較例1、実施例1〜5)
表1に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)を、温度35℃、湿度60%の恒温室にてひび割れ確認(目視)を測定した。測定結果を表1に示す。また、同水硬性モルタル(スラリー)を用いて長さ変化率を測定した結果を図7に示す。
(Comparative example 1, Examples 1-5)
Table hydraulic composition in the proportions shown in 1 and the water is kneaded according kneading conditions A to prepare a hydraulic mortar (slurry), J 14 funnel flow value at the same constant temperature chamber (s), the temperature 35 Crack confirmation (visual observation) was measured in a thermostatic chamber at 60 ° C. and a humidity of 60%. The measurement results are shown in Table 1. Moreover, the result of having measured the length change rate using the hydraulic mortar (slurry) is shown in FIG.

(比較例2〜5、実施例1、2、5)
表2に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)、ブリーディング率(%)を測定した。さらに温度35℃、湿度60%の恒温室にてひび割れ確認(目視)を測定した。水硬性組成物を混練条件Aで混練して調整したスラリーを硬化させた水硬性モルタル(スラリー)硬化体について28日圧縮強度を測定した。測定結果を表2に示す。また、実施例1、2、5、比較例2、5の水硬性モルタル(スラリー)を用いて長さ変化率を測定した結果を図8に、実施例1、2、5、比較例2〜5の水硬性モルタル(スラリー)を用いて簡易断熱養生温度(℃)を測定した結果を図9に示す。
(Comparative Examples 2-5, Examples 1, 2, 5)
A hydraulic mortar (slurry) was prepared by kneading the hydraulic composition and water at the blending ratio shown in Table 2 according to the kneading condition A, and the J 14 funnel flow-down value (seconds), bleeding rate ( %). Furthermore, crack confirmation (visual observation) was measured in a temperature-controlled room at a temperature of 35 ° C. and a humidity of 60%. The compressive strength was measured for 28 days on a cured hydraulic mortar (slurry) obtained by curing a slurry prepared by kneading the hydraulic composition under kneading conditions A. The measurement results are shown in Table 2. Moreover, the result of having measured the length change rate using the hydraulic mortar (slurry) of Examples 1, 2, 5 and Comparative Examples 2 and 5 is shown in FIG. The result of having measured the simple heat insulation curing temperature (degreeC) using 5 hydraulic mortar (slurry) is shown in FIG.

(比較例6〜7、実施例1、2、5、6)
表3に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)およびブリーディング率(%)を測定した。水硬性組成物を混練条件Aで混練して調整したスラリーを硬化させた水硬性モルタル(スラリー)硬化体について28日圧縮強度を測定した。また、使用した細骨材の粒度構成を表3に示す。測定結果を表3に示す。
(Comparative Examples 6-7, Examples 1, 2, 5, 6)
A hydraulic mortar (slurry) was prepared by kneading the hydraulic composition and water at the blending ratio shown in Table 3 according to kneading condition A, and the J 14 funnel flow-down value (seconds) and bleeding rate ( %). The compressive strength was measured for 28 days on a cured hydraulic mortar (slurry) obtained by curing a slurry prepared by kneading the hydraulic composition under kneading conditions A. Table 3 shows the particle size composition of the fine aggregate used. Table 3 shows the measurement results.

(比較例8〜11、実施例1、5〜9)
表4に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)、ブリーディング率(%)を測定した。測定結果を表4に示す。
(Comparative Examples 8-11, Examples 1, 5-9)
The hydraulic composition and water were kneaded according to the kneading conditions A at the blending ratio shown in Table 4 to prepare a hydraulic mortar (slurry), and the J 14 funnel flow down value (seconds), bleeding rate ( %). Table 4 shows the measurement results.

(比較例12〜13、実施例1、2、5,10)
表5に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)、膨張収縮率(%)およびブリーディング率(%)を測定した。さらに温度35℃、湿度60%の恒温室にてひび割れ確認(目視)を測定した。測定結果を表5に示す。また、同水硬性モルタル(スラリー)を用いて長さ変化率を測定した結果を図10に示す。
(Comparative Examples 12-13, Examples 1, 2, 5, 10)
The hydraulic composition and water were kneaded according to the kneading condition A at the blending ratio shown in Table 5 to prepare a hydraulic mortar (slurry), and the J 14 funnel flow-down value (seconds), expansion / contraction rate in the same constant temperature room (%) And bleeding rate (%) were measured. Furthermore, crack confirmation (visual observation) was measured in a temperature-controlled room at a temperature of 35 ° C. and a humidity of 60%. Table 5 shows the measurement results. Moreover, the result of having measured the length change rate using the hydraulic mortar (slurry) is shown in FIG.

(比較例14〜15、実施例1、2、5、11)
表6に示す配合割合で水硬性組成物と水とを混練条件Aにしたがって混練して水硬性モルタル(スラリー)を調製し、同恒温室にてJ14ロート流下値(秒)、ブリーディング率(%)およびエア量(%)を測定した。水硬性組成物を混練条件Aで混練して調整したスラリーを硬化させた水硬性モルタル(スラリー)硬化体について28日圧縮強度を測定した。測定結果を表6に示す。
(Comparative Examples 14-15, Examples 1, 2, 5, 11)
A hydraulic mortar (slurry) was prepared by kneading the hydraulic composition and water at the blending ratio shown in Table 6 according to kneading condition A, and the J 14 funnel flow-down value (seconds), bleeding rate ( %) And air amount (%). The compressive strength was measured for 28 days on a cured hydraulic mortar (slurry) obtained by curing a slurry prepared by kneading the hydraulic composition under kneading conditions A. Table 6 shows the measurement results.

(実施例11)
実施例11の水硬性組成物を用いて、水硬性組成物と所定量の水とをミキサー装置を備えたスラリー製造・供給装置(図1)に供給して連続的に混練し、水硬性モルタル(スラリー)を連続製造してスラリーを一旦リザーバータンクに収容した。
水硬性モルタル(スラリー)は、リザーバータンク中で約2分間、多重螺旋状攪拌板とパドル型攪拌板とを配置した複合攪拌羽根を有する攪拌機によって強制攪拌条件下に保持した後、スラリー製造設備の吐出ポンプ(スラリーポンプ)を用いて吐出した。
スラリー製造設備の吐出ポンプ(スラリーポンプ)から吐出した水硬性モルタル(スラリー)は、ポンプから吐出直後を0mとし、ポンプに接続した内径が32mmで長さが25m、50m、75m及び100mのスラリーホースの筒先より吐出させてポンプ圧送性を評価した。また、連続製造してリザーバータンクに収容したスラリーと、吐出ポンプ(スラリーポンプ)を用いて、ポンプからの吐出直後を0mとし、25m、50m、75m及び100mのスラリーホースの筒先より吐出させてスラリーについて、J14ロート流下値、ブリーディング率、ひび割れ(目視)及び28日圧縮強度を測定した。
スラリー中に含まれる水比は、リザーバに収容したスラリーを一部取り出して電子レンジ法により測定した。
ポンプ圧送性、J14ロート流下値、ブリーディング率、ひび割れ(目視)及び28日圧縮強度の測定結果を表7に示す。
(Example 11)
Using the hydraulic composition of Example 11, the hydraulic composition and a predetermined amount of water are supplied to a slurry production / supply device (FIG. 1) equipped with a mixer device and continuously kneaded, and hydraulic mortar. (Slurry) was continuously produced, and the slurry was once stored in a reservoir tank.
The hydraulic mortar (slurry) is held in a reservoir tank for about 2 minutes under a forced stirring condition by a stirrer having a composite stirring blade in which a multi-helical stirring plate and a paddle type stirring plate are arranged. It discharged using the discharge pump (slurry pump).
The hydraulic mortar (slurry) discharged from the discharge pump (slurry pump) of the slurry production facility is 0 m immediately after discharge from the pump, the inner diameter connected to the pump is 32 mm, the length is 25 m, 50 m, 75 m and 100 m. The pumping ability was evaluated by discharging from the tube tip. Also, slurry manufactured continuously and accommodated in a reservoir tank, and a discharge pump (slurry pump), immediately discharged from the pump is set to 0 m, and discharged from the tube tip of a 25 m, 50 m, 75 m and 100 m slurry hose. for, J 14 funnel flow value, bleeding rate was measured crack (visual) and 28 days compressive strength.
The ratio of water contained in the slurry was measured by a microwave method with a part of the slurry contained in the reservoir taken out.
Pumpability, J 14 funnel flow value, bleeding rate, the measurement results of crack (visual) and 28 days compressive strength shown in Table 7.

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

Figure 2010095389
Figure 2010095389

所定量のポリエーテル系収縮低減剤を用いた実施例1〜5の場合、図7に示すように混練条件Aで混練したスラリーの長さ変化率はポリエーテル系収縮低減剤を用いない比較例1よりも優れる。また、表1に示すように実施例1〜5のスラリーはひび割れ確認(目視)においても良好なひび割れ抵抗性が得られている。
特定の構成要素を持つ水硬性成分を用いた実施例1、2、5の場合、図9に示すように混練条件Aで混練したスラリーは簡易断熱養生した際の最高温度が比較例5のスラリーと比較して低く、発熱が抑制されている。さらに図8および表2に示すように実施例1、2、5のスラリーは比較例5のスラリーと比較して長さ変化率が小さく、ひび割れ確認(目視)においても良好なひび割れ抵抗性が得られている。また表2に示すように、実施例1、2、5のスラリーは比較例2よりも材料分離抵抗性に優れる。特定の構成要素を持つ水硬性成分を用いた場合でも所定量よりも少ない比較例3のスラリーは、表2より実施例1、2、5のスラリーと比較して材料分離抵抗性が劣り、図8及び表2より比所定量よりも多い比較例4のスラリーは、実施例1、2、5のスラリーと比較してひび割れ抵抗性が劣る。
特定の粒度構成を持つ細骨材を用いた実施例1、2、5、6の水硬性組成物を混練条件Aで混練したスラリーは、表3に示すように比較例6と比較してJ14ロート流下値が良好で、比較例7よりも材料分離抵抗性に優れるため、優れたポンプ圧送性が得られている。
所定量のポリカルボン酸系流動化剤またはナフタレンスルフォン酸系流動化剤を用いた実施例1、5、7〜9の水硬性組成物を混練条件Aで混練したスラリーは、表4に示すようにJ14ロート流下値が良好で、材料分離抵抗性に優れるため、優れたポンプ圧送性が得られている。所定量よりも少ない比較例9、10の水硬性組成物を混練条件Aで混練したスラリーは、J14ロート流下値が悪化し、所定量よりも多い比較例8、11の水硬性組成物を混練条件Aで混練したスラリーは、材料分離を生じるため優れたポンプ圧送性は得られない。
所定量の膨張材を用いた実施例1〜2、5、10の水硬性組成物を混練条件Aで混練したスラリーは、図10に示すように適度な長さ変化率が得られており、表5に示すひび割れ確認(目視)においても良好なひび割れ抵抗性および材料分離抵抗性が得られている。
所定量の消泡剤を用いた実施例1〜2、5、11の水硬性組成物を混練条件Aで混練したスラリーは、表6に示すようにJ14ロート流下値が良好で、材料分離抵抗性に優れている。また同スラリーは比較例14の水硬性組成物を混練条件Aで混練したスラリーと比較してエア量が少ないため、スラリーを充填した際にエア溜りを生じにくく、一体性の高い構造物を作製できる。
In Examples 1 to 5 using a predetermined amount of the polyether-based shrinkage reducing agent, the length change rate of the slurry kneaded under the kneading condition A as shown in FIG. 7 is a comparative example in which the polyether-based shrinkage reducing agent is not used. Better than 1. Moreover, as shown in Table 1, the slurries of Examples 1 to 5 have good crack resistance even in crack confirmation (visual observation).
In Examples 1, 2, and 5 using hydraulic components having specific components, the slurry kneaded under kneading conditions A as shown in FIG. The heat generation is suppressed. Further, as shown in FIG. 8 and Table 2, the slurries of Examples 1, 2, and 5 have a smaller rate of change in length than the slurry of Comparative Example 5, and good crack resistance is obtained even in crack confirmation (visual observation). It has been. Further, as shown in Table 2, the slurries of Examples 1, 2, and 5 are more excellent in material separation resistance than Comparative Example 2. Even when a hydraulic component having a specific component is used, the slurry of Comparative Example 3, which is less than a predetermined amount, is inferior in material separation resistance as compared with the slurry of Examples 1, 2, and 5 from Table 2. 8 and Table 2, the slurry of Comparative Example 4, which is larger than the specific predetermined amount, is inferior in crack resistance as compared with the slurry of Examples 1, 2, and 5.
The slurry obtained by kneading the hydraulic compositions of Examples 1, 2, 5, and 6 using the fine aggregate having a specific particle size configuration under the kneading condition A was compared with the comparative example 6 as shown in Table 3, J14 Since the funnel flow value is good and the material separation resistance is superior to that of Comparative Example 7, excellent pumpability is obtained.
Table 4 shows slurries obtained by kneading the hydraulic compositions of Examples 1, 5, and 7-9 using a predetermined amount of polycarboxylic acid-based fluidizing agent or naphthalene sulfonic acid-based fluidizing agent under kneading conditions A. In addition, since the J14 funnel flow-down value is good and the material separation resistance is excellent, excellent pumpability is obtained. The slurry obtained by kneading the hydraulic compositions of Comparative Examples 9 and 10 under the kneading condition A less than the predetermined amount deteriorates the J14 funnel flow-down value, and kneads the hydraulic compositions of Comparative Examples 8 and 11 larger than the predetermined amount. Since the slurry kneaded under the condition A causes material separation, excellent pumpability cannot be obtained.
The slurry obtained by kneading the hydraulic compositions of Examples 1, 2, 5, and 10 using a predetermined amount of the expanding material under the kneading condition A has an appropriate length change rate as shown in FIG. In the crack confirmation (visual observation) shown in Table 5, good crack resistance and material separation resistance are also obtained.
The slurry obtained by kneading the hydraulic compositions of Examples 1, 2, 5, and 11 using a predetermined amount of antifoaming agent under the kneading condition A has a good J14 funnel flow-down value as shown in Table 6 and material separation resistance. Excellent in properties. Moreover, since the amount of air is smaller than that of the slurry obtained by kneading the hydraulic composition of Comparative Example 14 under the kneading condition A, the slurry is less likely to cause air accumulation when filled with the slurry, thereby producing a highly integrated structure. it can.

実施例11に示す水硬性組成物を用いて調製したスラリーをポンプ圧送し、25m、50m、100mのスラリーホースを介してポンプ圧送実験を実施したところ骨材のアーチング現象や材料分離に起因するホース内閉塞現象は見られず、良好なポンプ圧送性が得られた。また同ポンプ圧送試験において、25m、50m、100mのスラリーホース先スラリーはJ14ロート流下値が良好で、優れた材料分離抵抗性が得られ、さらにひび割れ抵抗性にも優れているため、高耐久な硬化体を得ることができる。 A slurry prepared using the hydraulic composition shown in Example 11 was pumped and a pumping experiment was conducted through slurry hoses of 25 m, 50 m, and 100 m. A hose resulting from an arching phenomenon of aggregate or material separation No internal occlusion was observed, and good pumpability was obtained. In the same pumping test, the slurry hose tip slurry of 25 m, 50 m, and 100 m has a good J14 funnel flow down value, excellent material separation resistance, and excellent crack resistance. A cured product can be obtained.

本発明で用いるスラリー製造・供給装置の構成の一例を説明するための模式断面図である。It is a schematic cross section for demonstrating an example of a structure of the slurry manufacture and supply apparatus used by this invention. 本発明で用いる多重螺旋状攪拌板とパドル型攪拌板とを配置した複合攪拌羽根の全体構成を示す図である。It is a figure which shows the whole structure of the composite stirring blade which has arrange | positioned the multiple helical stirring board and paddle type stirring board which are used by this invention. 水硬性組成物を貯蔵するタンク及びスラリー製造・供給装置を搭載した水硬性モルタル(スラリー)調製・施工用トラックの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the truck for hydraulic mortar (slurry) preparation and construction which mounts the tank which stores a hydraulic composition, and a slurry manufacture and supply apparatus. 混練条件Aで水硬性モルタル(スラリー)を調製する場合に使用するタービン羽根を示す模式図である。It is a schematic diagram which shows the turbine blade used when preparing hydraulic mortar (slurry) on the kneading conditions A. 長さ変化率を測定する測定器の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the measuring device which measures a length change rate. 簡易断熱養生温度を測定する測定器の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the measuring device which measures simple heat insulation curing temperature. 実施例1〜5、比較例1の水硬性組成物を用いたモルタル(スラリー)硬化体の長さ変化率を示す図である。It is a figure which shows the length change rate of the mortar (slurry) hardening body using Examples 1-5 and the hydraulic composition of the comparative example 1. FIG. 実施例1、2、5、比較例2、5の水硬性組成物を用いたモルタル(スラリー)硬化体の長さ変化率を示す図である。It is a figure which shows the length change rate of the mortar (slurry) hardening body using the hydraulic composition of Example 1, 2, 5 and the comparative examples 2 and 5. FIG. 実施例1、2、5、比較例2〜5の水硬性組成物を用いたモルタル(スラリー)硬化体の断熱温度上昇を示す図である。It is a figure which shows the heat insulation temperature rise of the mortar (slurry) hardening body using the hydraulic composition of Examples 1, 2, 5 and Comparative Examples 2-5. 実施例1、2、5、10、比較例12、13の水硬性組成物を用いたモルタル(スラリー)硬化体の長さ変化率を示す図である。It is a figure which shows the length change rate of the mortar (slurry) hardening body using the hydraulic composition of Examples 1, 2, 5, 10, and Comparative Examples 12 and 13. FIG.

符号の説明Explanation of symbols

10 : 混練スクリュー
11 : スラリー製造・供給装置
12 : 水硬性組成物
13 : ホッパー
14 : ホッパースクリュー
15 : 給水口
16 : 混練装置(ミキサー)
17 : 水
18 : モルタル(スラリー)排出口
19 : 水硬性モルタル(スラリー)
20 : リザーバータンク
21 : 水硬性モルタル(スラリー)
22 : スターラースクリュー(多重螺旋状攪拌板とパドル型攪拌板とを配置した複合攪拌羽根)
23 : 移送スクリュー
24 : スネークポンプ(スラリーポンプ)
25 : 水硬性モルタル(スラリー)
26、27 : モーター
28 : 動力伝達ベルト
31 : 水硬性モルタル・スラリー調製・施工用トラック
32 : 水硬性組成物の供給口
33 : 水硬性組成物タンク
34 : 水硬性スラリー
35 : 混練装置(ミキサー)
36 : ホッパー
37 : 水硬性組成物
38 : スクリューフィーダー
39 : 水タンク
40 : 水供給ポンプ
41 : 水供給パイプ
42 : 多重螺旋状攪拌板とパドル型攪拌板とを配置した複合攪拌羽根
43 : 水硬性スラリータンク(リザーバータンク)
44 : スラリーポンプ
45 : スラリーホース
DESCRIPTION OF SYMBOLS 10: Kneading screw 11: Slurry manufacturing and supply apparatus 12: Hydraulic composition 13: Hopper 14: Hopper screw 15: Water supply port 16: Kneading apparatus (mixer)
17: Water 18: Mortar (slurry) outlet 19: Hydraulic mortar (slurry)
20: Reservoir tank 21: Hydraulic mortar (slurry)
22: Stirrer screw (composite stirring blade with multiple spiral stirring plates and paddle type stirring plates)
23: Transfer screw 24: Snake pump (slurry pump)
25: Hydraulic mortar (slurry)
26, 27: Motor 28: Power transmission belt 31: Hydraulic mortar / slurry preparation / construction truck 32: Hydraulic composition supply port 33: Hydraulic composition tank 34: Hydraulic slurry 35: Kneading device (mixer)
36: Hopper 37: Hydraulic composition 38: Screw feeder 39: Water tank 40: Water supply pump 41: Water supply pipe 42: Composite stirring blade 43 provided with multiple spiral stirring plates and paddle type stirring plates 43: Hydraulic Slurry tank (reservoir tank)
44: Slurry pump 45: Slurry hose

Claims (7)

水硬性成分と、細骨材と、ポリエーテル系収縮低減剤と、ポリカルボン酸系流動化剤又はナフタレンスルフォン酸系流動化剤と、消泡剤と、無機系膨張材とを含む水硬性組成物であって、水硬性組成物は水硬性組成物100質量%中に、水硬性成分を34.0〜38.0質量%含み、ポリエーテル系収縮低減剤を0.10〜0.50質量%含み、ポリカルボン酸系流動化剤を0.050〜0.075質量%またはナフタレンスルフォン酸系流動化剤を0.350〜0.480質量%含み、消泡剤を0.001〜0.039質量%含み、無機系膨張材を0.3〜4.0質量%含み、さらに、水硬性成分は、水硬性成分100質量%中に早強ポルトランドセメントを55.0〜65.0質量%含み、普通ポルトランドセメントを35.0〜45.0質量%含むことを特徴とし、細骨材は、細骨材100質量%中に、粒子径が30μm以上〜300μm未満の粒子を10.0〜20.0質量%含み、粒子径が300μm以上〜600μm未満の粒子を10.0〜25.0質量%含み、粒子径が600μm以上〜1180μm未満の粒子を35.0〜75.0質量%含み、粒子径が1180μm以上〜2000μm未満の粒子を1.0〜35.0質量%含むことを特徴とする水硬性組成物。 Hydraulic composition comprising a hydraulic component, fine aggregate, polyether-based shrinkage reducing agent, polycarboxylic acid-based fluidizing agent or naphthalene sulfonic acid-based fluidizing agent, antifoaming agent, and inorganic expansion material The hydraulic composition contains 34.0 to 38.0% by mass of a hydraulic component in 100% by mass of the hydraulic composition, and 0.10 to 0.50% by mass of the polyether-based shrinkage reducing agent. %, Polycarboxylic acid type fluidizing agent 0.050-0.075% by mass or naphthalene sulfonic acid type fluidizing agent 0.350-0.480% by mass, and antifoaming agent 0.001-0. 039% by weight, 0.3 to 4.0% by weight of an inorganic expansive material, and the hydraulic component is 55.0 to 55.0% by weight of early strong Portland cement in 100% by weight of the hydraulic component. Contains 35.0-45.0% by weight of ordinary Portland cement The fine aggregate contains 10.0 to 20.0 mass% of particles having a particle diameter of 30 μm or more to less than 300 μm in 100 mass% of fine aggregate, and the particle diameter is 300 μm or more to less than 600 μm. And particles having a particle diameter of 600 μm or more and less than 1180 μm, 35.0 to 75.0 mass%, and particles having a particle diameter of 1180 μm or more and less than 2000 μm are 1.0. A hydraulic composition containing ˜35.0 mass%. 水硬性組成物と水とを混練して得られる水硬性モルタルは、ブリーディング率が0.3%以下であり、エア量が4.5%以下であることを特徴とする請求項1に記載の水硬性組成物。 The hydraulic mortar obtained by kneading the hydraulic composition and water has a bleeding rate of 0.3% or less and an air amount of 4.5% or less. Hydraulic composition. 水硬性組成物と水とを混練して得られる水硬性モルタルを硬化させて得られる水硬性モルタルの硬化体は、材齢28日の圧縮強度が40N/m以上であり、材齢7日の長さ変化率が−22×10−4以上であることを特徴とする請求項1又は請求項2に記載の水硬性組成物。 A cured product of a hydraulic mortar obtained by curing a hydraulic mortar obtained by kneading a hydraulic composition and water has a compressive strength of 40 N / m 2 or more at a material age of 28 and a material age of 7 days. The hydraulic composition according to claim 1, wherein a rate of change in length of the resin is −22 × 10 −4 or more. 水硬性組成物と水とを混練して得られる水硬性モルタルを硬化させて得られる水硬性モルタルの硬化体は、簡易断熱養生温度の最高温度が87℃以下であることを特徴とする請求項1〜3のいずれか1項に記載の水硬性組成物。 The hardened body of a hydraulic mortar obtained by curing a hydraulic mortar obtained by kneading a hydraulic composition and water has a maximum temperature of a simple adiabatic curing temperature of 87 ° C or lower. The hydraulic composition of any one of 1-3. 水硬性組成物は、水硬性組成物を貯蔵するタンクを備えた水硬性モルタル調製・施工用トラックに搭載したミキサーを用いて、水硬性組成物と水とを連続的に混練して水硬性モルタルを調製し、前記トラックに搭載されたスラリーポンプによりスラリーホースを介して水硬性モルタルを施工箇所へ連続的に供給・打設して硬化させるグラウト施工方法に用いられることを特徴とする請求項1〜4のいずれか1項に記載の水硬性組成物。 The hydraulic composition is prepared by continuously kneading the hydraulic composition and water using a mixer mounted on a truck for preparing and constructing a hydraulic mortar equipped with a tank for storing the hydraulic composition. 2. A grouting method in which a hydraulic mortar is continuously supplied to a construction site through a slurry hose by a slurry pump mounted on the truck, and is hardened by setting. The hydraulic composition of any one of -4. 請求項1〜5のいずれか1項に記載の水硬性組成物と水とを混練して得られる水硬性モルタル。 A hydraulic mortar obtained by kneading the hydraulic composition according to any one of claims 1 to 5 and water. 請求項1〜6のいずれか1項に記載の水硬性組成物と水とを混練して得られる水硬性モルタルを硬化させて得られる水硬性モルタルの硬化体。 The hardening body of the hydraulic mortar obtained by hardening the hydraulic mortar obtained by knead | mixing the hydraulic composition and water of any one of Claims 1-6.
JP2008259782A 2008-09-19 2008-10-06 Hydraulic composition Expired - Fee Related JP5169701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259782A JP5169701B2 (en) 2008-09-19 2008-10-06 Hydraulic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008240254 2008-09-19
JP2008240254 2008-09-19
JP2008259782A JP5169701B2 (en) 2008-09-19 2008-10-06 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2010095389A true JP2010095389A (en) 2010-04-30
JP5169701B2 JP5169701B2 (en) 2013-03-27

Family

ID=42257353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259782A Expired - Fee Related JP5169701B2 (en) 2008-09-19 2008-10-06 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP5169701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745965A (en) * 2012-07-18 2012-10-24 济南大学 Method for preparing high-seepage-resistance calcium sulfoaluminate concrete
JP2016121039A (en) * 2014-12-25 2016-07-07 太平洋マテリアル株式会社 Underwater non-dispersible mortar composition
CN105778111A (en) * 2016-03-08 2016-07-20 苏州珍展科技材料有限公司 Preparation method and application of novel laminar composite
CN112358266A (en) * 2020-10-10 2021-02-12 上海友品环境服务有限公司 Formula and process for comprehensive resource utilization of desulfurized gypsum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206485A (en) * 1994-01-24 1995-08-08 Mitsubishi Materials Corp Grouting material
JP2005082416A (en) * 2003-09-05 2005-03-31 Denki Kagaku Kogyo Kk Polymer cement composition, polymer cement grout mortar and repairing material using the same
JP2006298662A (en) * 2005-04-15 2006-11-02 Ube Ind Ltd Grout composition and working method of grout slurry
JP2007153725A (en) * 2005-03-30 2007-06-21 Ube Ind Ltd Hydraulic composition, and mortar and hardened body thereof
JP2007261845A (en) * 2006-03-28 2007-10-11 Ube Ind Ltd Hydraulic composition
JP2007284308A (en) * 2006-04-19 2007-11-01 Ube Ind Ltd Hydraulic composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206485A (en) * 1994-01-24 1995-08-08 Mitsubishi Materials Corp Grouting material
JP2005082416A (en) * 2003-09-05 2005-03-31 Denki Kagaku Kogyo Kk Polymer cement composition, polymer cement grout mortar and repairing material using the same
JP2007153725A (en) * 2005-03-30 2007-06-21 Ube Ind Ltd Hydraulic composition, and mortar and hardened body thereof
JP2006298662A (en) * 2005-04-15 2006-11-02 Ube Ind Ltd Grout composition and working method of grout slurry
JP2007261845A (en) * 2006-03-28 2007-10-11 Ube Ind Ltd Hydraulic composition
JP2007284308A (en) * 2006-04-19 2007-11-01 Ube Ind Ltd Hydraulic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745965A (en) * 2012-07-18 2012-10-24 济南大学 Method for preparing high-seepage-resistance calcium sulfoaluminate concrete
JP2016121039A (en) * 2014-12-25 2016-07-07 太平洋マテリアル株式会社 Underwater non-dispersible mortar composition
CN105778111A (en) * 2016-03-08 2016-07-20 苏州珍展科技材料有限公司 Preparation method and application of novel laminar composite
CN112358266A (en) * 2020-10-10 2021-02-12 上海友品环境服务有限公司 Formula and process for comprehensive resource utilization of desulfurized gypsum

Also Published As

Publication number Publication date
JP5169701B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5131082B2 (en) Construction method of hydraulic mortar (slurry)
JP5163013B2 (en) Hydraulic composition
JP4985233B2 (en) Construction method of hydraulic mortar (slurry)
JP5589258B2 (en) Hydraulic composition and cured body thereof
JP2009096039A (en) Construction method of hydraulic mortar and its structure
CN109311770A (en) The On-line Control of the rheological characteristic of construction material for 3D printing
JP2006298662A (en) Grout composition and working method of grout slurry
JP5387463B2 (en) Hydraulic composition
JP5544980B2 (en) Hydraulic composition and cured body thereof
JP5169701B2 (en) Hydraulic composition
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP5959096B2 (en) Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
JP5895625B2 (en) Mortar construction method
JP5471723B2 (en) Construction method of concrete structure
JP2009096040A (en) Continuous construction method using hydraulic mortar, and its structure
JP2014125389A (en) Powder type dust reducing agent, spray concrete and spray method using the same
JP2013173636A (en) Method of applying grout composition
JP5407986B2 (en) Self-leveling hydraulic composition
JP5741113B2 (en) Construction method for housing foundation structure and housing foundation structure constructed using the same
JP2011195402A (en) Hydraulic composition
JP2006224651A (en) Application method of grout slurry
JP5531714B2 (en) Hydraulic composition
JP2001199754A (en) Mortar composition
JP2007217212A (en) Quick-hardening cement concrete and its construction method
JP2007076944A (en) Method for producing self-compactable concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees