JP2010095153A - Steering angle ratio variable control device - Google Patents

Steering angle ratio variable control device Download PDF

Info

Publication number
JP2010095153A
JP2010095153A JP2008267694A JP2008267694A JP2010095153A JP 2010095153 A JP2010095153 A JP 2010095153A JP 2008267694 A JP2008267694 A JP 2008267694A JP 2008267694 A JP2008267694 A JP 2008267694A JP 2010095153 A JP2010095153 A JP 2010095153A
Authority
JP
Japan
Prior art keywords
steering
ratio
steering angle
correction coefficient
vgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267694A
Other languages
Japanese (ja)
Other versions
JP5384905B2 (en
Inventor
Takuya Yamaguchi
卓也 山口
Yoshiyasu Akita
好恭 飽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008267694A priority Critical patent/JP5384905B2/en
Publication of JP2010095153A publication Critical patent/JP2010095153A/en
Application granted granted Critical
Publication of JP5384905B2 publication Critical patent/JP5384905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steering angle variable control device which does not apply a heavy steering burden on a driver even if the driver performs accelerator operation or braking operation during turning movement. <P>SOLUTION: A VGS (variable gear ratio steering) control device 10 performs the variable control of a VGS ratio n(V) between a steering angle θ<SB>s</SB>of a steering wheel and a target pinion angle θ<SB>p</SB>for steering front wheels according to vehicle speed V. In the VGS control device, a correction coefficient setting part 15 sets a correction coefficient k after setting a correction coefficient k<SB>1</SB>corresponding to longitudinal acceleration G in the case of holding the steering wheel at a constant angle during turning movement, and a correction coefficient k<SB>2</SB>corresponding to the longitudinal acceleration G in the case of transiently steering the steering wheel during turning movement. A VGS ratio correction part 13 multiplies the VGS ratio n(V) set by a VGS ratio setting part 11 by the correction coefficient k, thereby preventing the change of a yaw rate caused by the longitudinal acceleration G. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ステアリングホイールの操舵角と操舵車輪の転舵角との比を車速に応じて可変制御する舵角比可変制御装置に係り、詳しくは、車両の加減速時におけるプッシュアンダー/タックインを抑制して旋回挙動の安定性を高める技術に関する。   The present invention relates to a steering angle ratio variable control device that variably controls a ratio between a steering angle of a steering wheel and a steering angle of a steering wheel in accordance with a vehicle speed, and more specifically, push under / tuck-in at the time of acceleration / deceleration of a vehicle. The present invention relates to a technology that suppresses and improves the stability of turning behavior.

近年、ステアリングホイールの操舵角と操舵車輪の転舵角との比を変化させることのできる舵角比可変装置(例えば、特許文献1参照)や、ステアリング系と操舵車輪とを機械的に分離させ、ステアリングホイールの操舵角に応じてアクチュエータ等で前輪を転舵する、いわゆるステアバイワイヤ装置(例えば、特許文献2参照)が種々開発されており、これらを搭載された車両も市販されるに至っている。   In recent years, a steering angle ratio variable device that can change the ratio of the steering angle of the steering wheel and the steering angle of the steering wheel (see, for example, Patent Document 1), or mechanically separating the steering system and the steering wheel. A variety of so-called steer-by-wire devices (see, for example, Patent Document 2) that steer front wheels with an actuator or the like according to the steering angle of the steering wheel have been developed, and vehicles equipped with these have been put on the market. .

このようなステアリングホイールの操舵角と操舵車輪の転舵角との比を可変制御する舵角比可変制御装置では、一般に、車速に応じてその比が設定され、例えば、高速走行時にはステアリングホイールの操舵角に対して操舵車輪の転舵角が比較的小さく設定されることにより、安定した旋回挙動が確保され、低速走行時にはステアリングホイールの操舵角に対して操舵車輪の転舵角が比較的大きく設定されることにより、俊敏な旋回挙動が確保されるようになっている。   In such a steering angle ratio variable control device that variably controls the ratio between the steering angle of the steering wheel and the steering angle of the steering wheel, the ratio is generally set according to the vehicle speed. The turning angle of the steering wheel is set to be relatively small with respect to the steering angle, so that stable turning behavior is ensured, and the steering wheel turning angle is relatively large with respect to the steering angle of the steering wheel during low-speed driving. By setting, agile turning behavior is ensured.

一方、ステアリングホイールの操舵角に対する操舵車輪の転舵角を車両のヨーレイトゲイン(ヨーレイト/操舵角)がほぼ一定となるように可変制御するとともに、操舵車輪の転舵により車体の横加速度が限界を超えるときに、ステアリングホイールの操舵反力を増加させる車両用操舵制御装置なども提案されている(特許文献3参照)。
特開平06−227422号公報 特開2003−165460号公報 特開平10−315998号公報
On the other hand, the steering angle of the steering wheel with respect to the steering angle of the steering wheel is variably controlled so that the yaw rate gain (yaw rate / steering angle) of the vehicle is substantially constant, and the lateral acceleration of the vehicle body is limited by the steering wheel turning. A vehicle steering control device or the like that increases the steering reaction force of the steering wheel when exceeding is proposed (see Patent Document 3).
Japanese Patent Laid-Open No. 06-227422 JP 2003-165460 A JP-A-10-315998

ところで、旋回走行時に運転者がアクセル操作やブレーキ操作を行うと、前輪と後輪との荷重変化に伴ってタイヤのコーナリングフォースが変化することに起因して、例えステアリングホイールを一定の操舵角に保持していたとしても、加速時には車両軌跡が旋回外側に膨らむ現象(プッシュアンダー/パワーアンダー)が生じ、減速時には車両軌跡が旋回内側に巻き込む現象(タックイン)が生じることが知られている。これらの現象はFF車に特に顕著である。   By the way, when the driver performs an accelerator operation or a brake operation during turning, the cornering force of the tire changes with the load change between the front wheels and the rear wheels. Even if it is held, it is known that a phenomenon that the vehicle trajectory swells outside the turn (push under / power under) occurs during acceleration, and a phenomenon that the vehicle trajectory wraps inside the turn (tuck-in) occurs during deceleration. These phenomena are particularly prominent in FF vehicles.

しかしながら、従来の舵角比可変制御装置は、このような現象の発生を防止することができず、旋回走行中にアクセル操作やブレーキ操作を行うと、運転者は所望の走行軌跡(例えば、定速旋回中の旋回半径)を維持するためにステアリング操舵の微調整を行わなければならず、運転者にかかる操舵負担が大きかった。   However, the conventional variable steering angle ratio control device cannot prevent the occurrence of such a phenomenon, and if the accelerator operation or the brake operation is performed during turning, the driver can perform a desired travel locus (for example, a constant travel path). In order to maintain the turning radius during a fast turn, the steering steering must be finely adjusted, and the steering burden on the driver is heavy.

本発明は、このような背景に鑑みなされたもので、旋回走行中にアクセル操作やブレーキ操作を行っても運転者に過大な操舵負担のかからない舵角可変制御装置を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a variable steering angle control device that does not place an excessive steering burden on a driver even if an accelerator operation or a brake operation is performed during turning. .

上記課題を解決するために本発明は、ステアリングホイールの操舵角と操舵車輪の転舵角との比を車速に応じて可変制御する舵角比可変制御装置において、車両の前後加速度に応じて補正値を設定し、当該補正値を用いて前記比を補正するように構成する。   In order to solve the above-described problems, the present invention provides a steering angle ratio variable control device that variably controls the ratio of the steering angle of the steering wheel and the steering angle of the steering wheel according to the vehicle speed, and corrects it according to the longitudinal acceleration of the vehicle. A value is set, and the ratio is corrected using the correction value.

上記構成の舵角比可変制御装置においては、前記操舵角の変化速度が第1の所定値より小さい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第1の補正値を設定し、当該第1の補正値を用いて前記比を補正する構成とするとよい。   In the steering angle ratio variable control device having the above configuration, when the change speed of the steering angle is smaller than a first predetermined value, the first correction value is set so that the yaw rate change due to the change in the longitudinal acceleration does not occur, The ratio may be corrected using the first correction value.

また、上記構成の舵角比可変制御装置においては、前記操舵角の変化速度が第2の所定値より大きい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第2の補正値を設定し、当該第2の補正値を用いて前記比を補正する構成とするとよい。   In the steering angle ratio variable control device having the above-described configuration, when the change speed of the steering angle is larger than a second predetermined value, the second correction value is set so that the yaw rate change due to the change in the longitudinal acceleration does not occur. In addition, the ratio may be corrected using the second correction value.

さらに、上記構成の舵角比可変制御装置においては、前記操舵角の変化速度が第1の所定値より小さい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第1の補正値を設定し、前記操舵角の変化速度が第2の所定値より大きい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第2の補正値を設定し、前記操舵角の変化速度が前記第1の所定値と前記第2の所定値との間にある場合、前記第1の補正値と前記第2の補正値とに対し、当該操舵角の変化速度に基づいて重みづけを行って求めた補正値を用いて前記比を補正する構成とするとよい。   Furthermore, in the steering angle ratio variable control device having the above configuration, when the change speed of the steering angle is smaller than a first predetermined value, the first correction value is set so that the yaw rate change due to the change in the longitudinal acceleration does not occur. When the change speed of the steering angle is larger than a second predetermined value, a second correction value is set so that the yaw rate change due to the change of the longitudinal acceleration does not occur, and the change speed of the steering angle is the first change speed. When the value is between the predetermined value and the second predetermined value, the first correction value and the second correction value are weighted based on the change speed of the steering angle. The ratio may be corrected using a correction value.

本発明によれば、車両の前後加速度に応じて操舵角と転舵角との比が補正されることにより、旋回走行中にアクセル操作やブレーキ操作を行っても運転者にかかる操舵負担を軽減することができる。   According to the present invention, the ratio of the steering angle to the turning angle is corrected according to the longitudinal acceleration of the vehicle, so that the steering burden on the driver can be reduced even if the accelerator operation or the brake operation is performed during turning. can do.

また、操舵角の変化速度が第1の所定値よりも小さい場合、すなわち、ステアリングホイールが殆ど操舵されない場合などに、前後加速度の変化によるヨーレイト変化が生じないように操舵角と転舵角との比が補正されることにより、旋回走行中にアクセル操作やブレーキ操作を行ってもプッシュアンダーやタックインなどが抑制され、運転者にかかる操舵負担を効果的に軽減することができる。   Further, when the change speed of the steering angle is smaller than the first predetermined value, that is, when the steering wheel is hardly steered, the steering angle and the turning angle are set so that the yaw rate change due to the change in the longitudinal acceleration does not occur. By correcting the ratio, even if an accelerator operation or a brake operation is performed during turning, push-under or tack-in is suppressed, and the steering burden on the driver can be effectively reduced.

また、操舵角の変化速度が第2の所定値よりも大きい場合、すなわち、ステアリングホイールが素早く操舵された場合などに、ステアリング操舵に起因する以外に、前後加速度の変化によるヨーレイト変化が生じないように操舵角と転舵角との比が補正されることにより、上記同様にプッシュアンダーやタックインなどが抑制され、運転者にかかる操舵負担を効果的に軽減することができる。   In addition, when the change speed of the steering angle is larger than the second predetermined value, that is, when the steering wheel is steered quickly, the yaw rate change due to the change in the longitudinal acceleration is not caused except for the steering operation. Further, by correcting the ratio between the steering angle and the turning angle, push-under and tuck-in are suppressed as described above, and the steering burden on the driver can be effectively reduced.

さらに、操舵角の変化速度が第1の所定値と第2の所定値との間にある場合、第1の補正値と第2の補正値とに対し、操舵角の変化速度に基づいて重みづけを行って求めた補正値を用いて比を補正することにより、操舵角の変化速度に拘わらず、旋回走行中におけるプッシュアンダーやタックインなどが更に効果的に抑制され、運転者にかかる操舵負担をより一層軽減することができる。   Further, when the change speed of the steering angle is between the first predetermined value and the second predetermined value, the first correction value and the second correction value are weighted based on the change speed of the steering angle. By correcting the ratio using the correction value obtained by performing the adjustment, push-under and tuck-in during turning are suppressed more effectively regardless of the change speed of the steering angle, and the steering burden on the driver is reduced. Can be further reduced.

≪第1実施形態≫
以下、図面を参照して、本発明に係る可変ギヤレシオステアリング(以下、VGS(Variable Gear ratio Steering)と記す)のギヤレシオを可変制御するVGS制御装置10(舵角比可変制御装置)の第1実施形態について詳細に説明する。図1は第1実施形態に係るVGS制御装置10の概略構成を示すブロック図である。なお、実施形態に係るVGSは、FF方式の4輪自動車に搭載され、ステアリングシャフトに設置された舵角比可変手段をモータ駆動することにより、ステアリングホイールに連結される入力軸と前輪(操舵車輪)を転舵するピニオンを備えた出力軸との間の舵角比を可変制御する装置である。なお、舵角比可変手段は周知技術であるので、ここではその機械系の構成についての説明は割愛する。
<< First Embodiment >>
Hereinafter, a first embodiment of a VGS control device 10 (variable steering angle ratio control device) that variably controls a gear ratio of a variable gear ratio steering (hereinafter referred to as VGS (Variable Gear ratio Steering)) according to the present invention will be described with reference to the drawings. A form is demonstrated in detail. FIG. 1 is a block diagram showing a schematic configuration of a VGS control device 10 according to the first embodiment. Note that the VGS according to the embodiment is mounted on an FF four-wheeled vehicle, and by driving a rudder angle ratio variable means installed on a steering shaft by a motor, an input shaft coupled to the steering wheel and a front wheel (steering wheel) ) Is a device that variably controls the rudder angle ratio with the output shaft provided with a pinion that steers. Since the steering angle ratio varying means is a well-known technique, a description of the configuration of the mechanical system is omitted here.

VGS制御装置10は、車速Vに応じたVGSレシオn(V)(ステアリングホイールの操舵角θと目標ピニオン角(操舵車輪の転舵角)θとの比θ/θ)を設定するVGSレシオ設定部11と、車速Vおよび車体に作用する前後加速度Gに応じてVGSレシオn(V)に対する補正係数kを設定する補正係数設定部12と、VGSレシオn(V)に補正係数kを乗算して前後加速度Gに応じたVGSレシオn’(V)を算出するVGSレシオ補正部13と、前後加速度Gに応じたVGSレシオn’(V)に対して操舵角θを除算して目標ピニオン角θを算出する目標ピニオン角算出部14とを備えている。 The VGS control device 10 sets a VGS ratio n (V) (ratio θ s / θ p ) between the steering angle θ s of the steering wheel and the target pinion angle (steering wheel turning angle) θ p according to the vehicle speed V. and VGS ratio setting unit 11, a correction coefficient setting unit 12 for setting a correction coefficient k 1 for VGS ratio n (V) in accordance with the longitudinal acceleration G acting on the vehicle speed V and the vehicle body, the correction to the VGS ratio n (V) A VGS ratio correction unit 13 that calculates a VGS ratio n ′ (V) corresponding to the longitudinal acceleration G by multiplying the coefficient k 1 , and a steering angle θ s with respect to the VGS ratio n ′ (V) corresponding to the longitudinal acceleration G. and a target pinion angle calculating section 14 for calculating a target pinion angle theta p by dividing.

VGSレシオ設定部11は、車速Vをアドレスとする最適なギヤレシオが予め設定された図2に示すマップを参照することにより、車速Vに応じたVGSレシオn(V)を設定する。VGSレシオn(V)は、低車速域において1以下の値となるクイックレシオ、すなわち、操舵角θに対してピニオン角θが大きくなる比に設定され、高車速域において1以上の値となるスローレシオ、すなわち、操舵角θに対してピニオン角θが小さくなる比に設定されている。 The VGS ratio setting unit 11 sets the VGS ratio n (V) corresponding to the vehicle speed V by referring to the map shown in FIG. 2 in which the optimum gear ratio having the vehicle speed V as an address is set in advance. VGS ratio n (V), the quick ratio to be 1 or less in the low vehicle speed range, i.e., it is set to the ratio of the pinion angle theta p increases with respect to the steering angle theta s, 1 or more values in the high vehicle speed range become throw ratio, i.e., pinion angle theta p is set to be smaller ratio to the steering angle theta s.

図3は補正係数設定部12の概略構成を示すブロック図である。補正係数設定部12は、予め計測あるいは計算されたデータに基づく所定のマップを参照することにより、車速Vに応じた前輪タイヤコーナリングパワーKfおよび後輪タイヤコーナリングパワーKrを設定するコーナリングパワーK設定部21と、前輪タイヤコーナリングパワーKfおよび後輪タイヤコーナリングパワーKrに基づいて、車速Vに応じたスタビリティファクタAを算出するスタビリティファクタA算出部22と、予め計測あるいは計算されたデータに基づく所定のマップを参照することにより、車速Vおよび前後加速度Gに応じた前輪タイヤコーナリングパワーK’fおよび後輪タイヤコーナリングパワーK’rを設定するコーナリングパワーK’設定部23と、前輪タイヤコーナリングパワーK’fおよび後輪タイヤコーナリングパワーK’rに基づいて、前後加速度Gに応じたスタビリティファクタA’を算出するスタビリティファクタA’算出部24と、車速Vおよび、スタビリティファクタA,A’に基づいて補正係数kを算出する補正係数算出部25とから構成されている。 FIG. 3 is a block diagram showing a schematic configuration of the correction coefficient setting unit 12. The correction coefficient setting unit 12 refers to a predetermined map based on data measured or calculated in advance, and sets a front wheel tire cornering power Kf and a rear wheel tire cornering power Kr corresponding to the vehicle speed V. 21, a stability factor A calculation unit 22 that calculates a stability factor A according to the vehicle speed V based on the front wheel tire cornering power Kf and the rear wheel tire cornering power Kr, and a predetermined value based on data measured or calculated in advance. The cornering power K ′ setting unit 23 for setting the front wheel tire cornering power K′f and the rear tire cornering power K′r according to the vehicle speed V and the longitudinal acceleration G, and the front wheel tire cornering power K are referred to. 'f and rear wheel tire corner A stability factor A ′ calculating unit 24 that calculates a stability factor A ′ corresponding to the longitudinal acceleration G based on the driving power K′r, and a correction coefficient k 1 based on the vehicle speed V and the stability factors A and A ′. It is comprised from the correction coefficient calculation part 25 which calculates.

車速Vに応じたスタビリティファクタAは下式に基づいて算出される。

Figure 2010095153
但し、A:スタビリティファクタ、m:車体質量、l:ホイールベース、l:車体重心−前軸間距離、l:車体重心−後軸間距離、K:前輪タイヤコーナリングパワー、K:後輪タイヤコーナリングパワー、である。 The stability factor A corresponding to the vehicle speed V is calculated based on the following equation.
Figure 2010095153
However, A: Stability factor, m: Body mass, l: Wheel base, l f : Distance between vehicle body center of gravity and front axle, l r : Distance between vehicle body center of gravity and rear axle, K f : Front wheel tire cornering power, K r : Rear wheel tire cornering power.

また、前後加速度Gに応じたスタビリティファクタA’は、上式(1)において、車速Vに応じた前輪タイヤコーナリングパワーKfおよび後輪タイヤコーナリングパワーKrの代わりに、これらKf,Krの値に対して前後加速度Gに応じた調整係数をそれぞれに乗じて求めた前輪タイヤコーナリングパワーK’fおよび後輪タイヤコーナリングパワーK’rを用いて算出される。   Further, the stability factor A ′ according to the longitudinal acceleration G is the value of Kf and Kr in the above equation (1), instead of the front tire cornering power Kf and the rear tire cornering power Kr according to the vehicle speed V. On the other hand, it is calculated by using the front wheel tire cornering power K′f and the rear wheel tire cornering power K′r obtained by multiplying each by an adjustment coefficient corresponding to the longitudinal acceleration G.

また、補正係数kは下式に基づいて算出される。

Figure 2010095153
但し、V:車体速度、である。 Further, the correction coefficient k 1 is calculated based on the following equation.
Figure 2010095153
Where V: vehicle body speed.

ここで、上式(2)の算出根拠について説明する。定常円旋回時、すなわち、半径が一定の円周上を一定車速で旋回した時の車体ヨーレイトと前輪舵角との関係は下式で与えられる。

Figure 2010095153
ここで、
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
で表される。
但し、γ(s):車体ヨーレイト、δ(s):前輪舵角、ζ:減衰比、ω:固有振動数、n(V):VGSレシオ、I:車体ヨー慣性モーメント、n:前輪舵角δとピニオン角θとの比、である。 Here, the calculation basis of the above equation (2) will be described. The relationship between the vehicle body yaw rate and the front wheel rudder angle during steady circle turning, that is, when turning at a constant vehicle speed on a circumference with a constant radius is given by the following equation.
Figure 2010095153
here,
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
Figure 2010095153
It is represented by
Where γ (s): vehicle body yaw rate, δ (s): front wheel steering angle, ζ: damping ratio, ω n : natural frequency, n (V): VGS ratio, I: vehicle body yaw moment of inertia, n p : front wheel steering angle δ and the ratio between the pinion angle theta p, a.

ここで、旋回走行中にステアリングホイールを一定角度に保舵する場合(操舵角速度が第1所定値(例えば、2deg/sec)以下の場合など)のVGSレシオの補正原理について検討すると、定常円旋回時のヨーレイト−前輪舵角伝達関数は、上式(3)で与えられる。一方、前後加速度G発生時の過渡的なヨーレイト−前輪舵角伝達関数は、下式で与えられる。なお、式中の「’」は前後加速度G発生時の値を示すものである。

Figure 2010095153
したがって、式(3)、式(10)より、下式が求められる。
Figure 2010095153
ここで、コーナー旋回時は操舵周波数ωが低いため、近似的に
Figure 2010095153
とすると、式(11)は下式のように整理される。
Figure 2010095153
このとき、前後加速度Gによって車両にヨーレイト変化が生じないように、γ’(s)=γ(s)、すなわち、左辺が1となるようにしたいので、前後加速度G発生時のVGSレシオn’(V)は下式のようになる。
Figure 2010095153
したがって、VGSレシオn(V)に前後加速度Gに応動する補正係数k((1+A’V)/(1+AV))を掛ければ、前後加速度G発生時のVGSレシオn’(V)が求められることになる。 Here, when the principle of correcting the VGS ratio when the steering wheel is held at a constant angle during turning (when the steering angular velocity is a first predetermined value (for example, 2 deg / sec) or less) is studied, steady circular turning The time yaw rate-front wheel rudder angle transfer function is given by the above equation (3). On the other hand, the transient yaw rate-front wheel steering angle transfer function when the longitudinal acceleration G is generated is given by the following equation. Note that “′” in the expression indicates a value when the longitudinal acceleration G is generated.
Figure 2010095153
Therefore, the following expression is obtained from Expression (3) and Expression (10).
Figure 2010095153
Here, since the steering frequency ω is low during corner turning,
Figure 2010095153
Then, Formula (11) is rearranged as the following formula.
Figure 2010095153
At this time, in order to prevent the yaw rate from changing due to the longitudinal acceleration G, γ ′ (s) = γ (s), that is, the left side is set to 1, so the VGS ratio n ′ when the longitudinal acceleration G is generated. (V) is as shown below.
Figure 2010095153
Therefore, by multiplying the VGS ratio n (V) by the correction coefficient k 1 ((1 + A′V 2 ) / (1 + AV 2 )) that responds to the longitudinal acceleration G, the VGS ratio n ′ (V) when the longitudinal acceleration G is generated is obtained. It will be required.

<変形実施形態1>
次に、第1実施形態における変形実施形態1について説明する。図4は変形実施形態1に係る補正係数設定部12の概略構成を示すブロック図である。なお、第1実施形態と同一の処理を行う要素については同一の符号を使用し、重複する説明は省略する。図4に示すように、補正係数設定部12は、図3のコーナリングパワーK’設定部23の代わりに、調整係数設定部31と、コーナリングパワーK’設定部32とを備えている。
<Modified Embodiment 1>
Next, a modified embodiment 1 of the first embodiment will be described. FIG. 4 is a block diagram showing a schematic configuration of the correction coefficient setting unit 12 according to the first modified embodiment. In addition, about the element which performs the same process as 1st Embodiment, the same code | symbol is used and the overlapping description is abbreviate | omitted. As shown in FIG. 4, the correction coefficient setting unit 12 includes an adjustment coefficient setting unit 31 and a cornering power K ′ setting unit 32 instead of the cornering power K ′ setting unit 23 of FIG. 3.

調整係数設定部31は、車速Vおよび前後加速度Gに基づいて、前後加速度Gに応じた前輪タイヤコーナリングパワーK’fおよび後輪タイヤコーナリングパワーK’r用の調整係数を設定する。前後加速度Gに応じた調整係数は、事前に計測データあるいは計算によって求めたマップ化されたデータを参照することにより求められる。コーナリングパワーK’設定部32は、コーナリングパワーK設定部21によって設定された前輪タイヤコーナリングパワーKfおよび後輪タイヤコーナリングパワーKrに対し、調整係数をそれぞれ乗算することにより、前後加速度Gに応じた前輪タイヤコーナリングパワーK’fおよび後輪タイヤコーナリングパワーK’rを設定する。なお、スタビリティファクタA算出部22、スタビリティファクタA’算出部24および、補正係数算出部25は、上記第1実施形態と同様の処理を行う。   The adjustment coefficient setting unit 31 sets an adjustment coefficient for the front wheel tire cornering power K′f and the rear wheel tire cornering power K′r according to the longitudinal acceleration G based on the vehicle speed V and the longitudinal acceleration G. The adjustment coefficient corresponding to the longitudinal acceleration G is obtained by referring to measurement data or mapped data obtained by calculation in advance. The cornering power K ′ setting unit 32 multiplies the front wheel tire cornering power Kf and the rear wheel tire cornering power Kr set by the cornering power K setting unit 21 by an adjustment coefficient, respectively. A tire cornering power K′f and a rear wheel tire cornering power K′r are set. The stability factor A calculation unit 22, the stability factor A 'calculation unit 24, and the correction coefficient calculation unit 25 perform the same processing as in the first embodiment.

<変形実施形態2>
次に、第1実施形態における変形実施形態2について説明する。図5は変形実施形態2に係る補正係数設定部12の概略構成を示すブロック図である。補正係数設定部12はマップ補正係数設定部33からなる。マップ補正係数設定部33は、車速Vおよび前後加速度Gに基づいて、図6に示すマップを参照することにより補正係数kを直接的に設定する。図6のマップは、実車テストによって実際の車両挙動を確認しながら車速Vおよび前後加速度Gに基づく補正係数マップとして設定される。
<Modified Embodiment 2>
Next, a modified embodiment 2 of the first embodiment will be described. FIG. 5 is a block diagram illustrating a schematic configuration of the correction coefficient setting unit 12 according to the second embodiment. The correction coefficient setting unit 12 includes a map correction coefficient setting unit 33. Map correction coefficient setting unit 33, based on the vehicle speed V and the longitudinal acceleration G, directly setting the correction coefficient k 1 by referring to the map shown in FIG. The map shown in FIG. 6 is set as a correction coefficient map based on the vehicle speed V and the longitudinal acceleration G while confirming actual vehicle behavior by an actual vehicle test.

≪第2実施形態≫
次に、上記した旋回走行中にステアリングホイールを一定角度に保舵する場合のVGSレシオの補正に加え、旋回走行中にステアリングホイールを過渡的に操舵する場合(操舵角速度が第2の所定値(例えば、90deg/sec)以上の場合など)のVGSレシオの補正を行う第2実施形態について説明する。なお、図1と処理内容の異なる補正係数設定部15以外の要素には同じ符号を用い、これらによる処理や、旋回走行中にステアリングホイールを一定角度に保舵する場合のVGSレシオの補正については説明を省略する。
<< Second Embodiment >>
Next, in addition to the correction of the VGS ratio in the case where the steering wheel is steered at a certain angle during the turning, the steering wheel is transiently steered during the turning (the steering angular velocity is a second predetermined value ( For example, a second embodiment for correcting the VGS ratio in the case of 90 deg / sec or higher will be described. The same reference numerals are used for elements other than the correction coefficient setting unit 15 having different processing contents from those in FIG. 1, and the processing by these elements and the correction of the VGS ratio when the steering wheel is held at a constant angle during turning is described. Description is omitted.

図7は第2実施形態に係るVGS制御装置10の概略構成を示すブロック図である。VGS制御装置10は、図1の補正係数設定部12の代わりに、操舵角速度、前後加速度Gおよび、車速Vに基づいてVGSレシオに対する補正係数kを設定する補正係数設定部15を備えている。   FIG. 7 is a block diagram showing a schematic configuration of the VGS control device 10 according to the second embodiment. The VGS control device 10 includes a correction coefficient setting unit 15 that sets a correction coefficient k for the VGS ratio based on the steering angular velocity, the longitudinal acceleration G, and the vehicle speed V, instead of the correction coefficient setting unit 12 of FIG.

図8は補正係数設定部15の概略構成を示すブロック図である。補正係数設定部15は、車速Vおよび前後加速度Gに基づいて、定常操舵用の補正係数kを算出する定常操舵用の補正係数設定部12(図3に示す補正係数設定部12と同一)と、同じく車速Vおよび前後加速度Gに基づいて、過渡操舵用の補正係数kを算出する過渡操舵用の補正係数算出部16と、定常操舵用の補正係数k、過渡操舵用の補正係数kおよび、操舵角速度(操舵角の変化速度)に基づいて、補正係数kを算出する補正係数調整部17とから構成されている。補正係数kは下式に基づいて算出される。

Figure 2010095153
FIG. 8 is a block diagram showing a schematic configuration of the correction coefficient setting unit 15. Correction coefficient setting unit 15, based on the vehicle speed V and the longitudinal acceleration G, the correction for the stationary steering to calculate a correction coefficient k 1 for steady steering coefficient setting unit 12 (the same as the correction coefficient setting unit 12 shown in FIG. 3) Similarly, based on the vehicle speed V and the longitudinal acceleration G, a transient steering correction coefficient calculation unit 16 that calculates a transient steering correction coefficient k 2 , a steady steering correction coefficient k 1 , and a transient steering correction coefficient k 2 and, based on the steering angular velocity (rate of change of the steering angle), and a correction coefficient adjusting unit 17 for calculating a correction coefficient k. Correction coefficient k 2 is calculated based on the following equation.
Figure 2010095153

ここで、上式(15)の算出根拠について説明する。旋回走行中にステアリングホイールを過渡的に操舵する場合のVGSレシオの補正原理にも、上式(3),(10)から求めた上式(11)を用いることができる。そして、コーナー旋回中にステアリング操舵を積極的に行う場合、s=jωの値が大きくなる為、式(11)は下式のように整理される。

Figure 2010095153
このとき、前後加速度Gの変化によって車両のヨーレイトが変化しないように、γ’(s)=γ(s)、すなわち、左辺が1となるようにしたいので、前後加速度G発生時のVGSレシオn’(V)は下式のようになる。
Figure 2010095153
したがって、VGSレシオn(V)に前後加速度Gに応動する補正係数k(K/K’)を掛ければ、前後加速度G発生時のVGSレシオn’(V)が求められることになる。 Here, the calculation basis of the above equation (15) will be described. The above formula (11) obtained from the above formulas (3) and (10) can also be used as the correction principle of the VGS ratio when the steering wheel is steered transiently during turning. When steering is actively performed during corner turning, since the value of s = jω increases, the equation (11) is arranged as the following equation.
Figure 2010095153
At this time, γ ′ (s) = γ (s), that is, the left side is set to 1 so that the yaw rate of the vehicle does not change due to the change in the longitudinal acceleration G. Therefore, the VGS ratio n when the longitudinal acceleration G is generated. '(V) is as follows.
Figure 2010095153
Therefore, by multiplying the VGS ratio n (V) by the correction coefficient k 2 (K f / K ′ f ) that responds to the longitudinal acceleration G, the VGS ratio n ′ (V) when the longitudinal acceleration G is generated can be obtained. .

補正係数調整部17は、操舵角速度に基づいて、定常操舵用の補正係数k、過渡操舵用の補正係数kに重みづけを行った下式により補正係数kを算出する。
k=(1−w)×k+w×k ・・・(18)
但し、w:重み係数、である。
Based on the steering angular velocity, the correction coefficient adjustment unit 17 calculates the correction coefficient k by the following equation that weights the correction coefficient k 1 for steady steering and the correction coefficient k 2 for transient steering.
k = (1-w) × k 1 + w × k 2 (18)
Where w is a weighting factor.

重み係数wは、補正係数調整部17に予め格納された図9に示すマップを参照することにより求められる。このマップでは、予め行った実車テストにおける車両挙動に基づいて操舵角速度の絶対値をアドレスとして重み係数wが設定されている。重み係数wは、操舵角速度が小さいときに小さな値となり、操舵角速度が大きいときに大きな値となるように設定される。これにより、補正係数kは、操舵角の変化速度が小さいときには定常操舵用の補正係数kの重みが大きくなるように、一方、操舵角の変化速度が大きいときには過渡操舵用の補正係数kの重みが大きくなるように設定され、操舵角の変化速度に拘わらず、旋回走行中におけるプッシュアンダーやタックインなどが効果的に抑制される。 The weighting coefficient w is obtained by referring to the map shown in FIG. 9 stored in advance in the correction coefficient adjusting unit 17. In this map, a weighting factor w is set with the absolute value of the steering angular velocity as an address based on the vehicle behavior in the actual vehicle test performed in advance. The weighting coefficient w is set to a small value when the steering angular velocity is small and to a large value when the steering angular velocity is large. Thus, the correction coefficient k, so that the weighting of the correction coefficient k 1 for steady steering becomes large when the change rate of steering angle is small, whereas, the correction coefficient for the transient steering when the change rate of steering angle is large k 2 The weight is set so as to increase, and push-under and tuck-in during turning are effectively suppressed regardless of the change speed of the steering angle.

このように、旋回走行中にステアリングホイールを一定角度に保舵する場合および、旋回走行中にステアリングホイールを過渡的に操舵する場合に、前後加速度Gの変化によって車両のヨーレイトが変化しないようにVGSレシオを過渡的に調整することにより、旋回走行中にアクセル操作やブレーキ操作を行っても、運転者は所望の走行軌跡を維持するために操舵角の微調整を行う必要がなく、運転者にかかる操舵負担が軽減される。   Thus, when the steering wheel is steered at a constant angle during turning, and when the steering wheel is transiently steered during turning, the vehicle yaw rate is not changed by the change in the longitudinal acceleration G. By adjusting the ratio transiently, the driver does not need to make fine adjustments to the steering angle in order to maintain the desired travel trajectory even when the accelerator or brake is operated during turning. Such a steering burden is reduced.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態では、舵角比可変制御装置として、VGSのギヤレシオを可変制御するVGS制御装置10を採用しているが、ステアバイワイヤ装置のギヤレシオを可変制御する形態とすることも当然に可能である。また、上記実施形態では、VGS制御装置10はFF方式の自動車に適用されているが、FR方式の自動車にも適用してもよい。さらに、VGSレシオの具体的補正手法や装置の具体的構成など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。   Although the description of the specific embodiment is finished as above, the present invention is not limited to the above embodiment and can be widely modified. For example, in the above embodiment, the VGS control device 10 that variably controls the gear ratio of the VGS is employed as the steering angle ratio variable control device, but it is naturally possible to adopt a mode in which the gear ratio of the steer-by-wire device is variably controlled. It is. In the above embodiment, the VGS control device 10 is applied to an FF vehicle, but may be applied to an FR vehicle. Furthermore, the specific correction method of the VGS ratio and the specific configuration of the apparatus can be changed as long as they do not depart from the spirit of the present invention.

第1実施形態に係るVGS制御装置の概略構成を示すブロック図The block diagram which shows schematic structure of the VGS control apparatus which concerns on 1st Embodiment. 第1実施形態に係る車速−VGSレシオの関係を示すマップThe map which shows the relationship of the vehicle speed-VGS ratio which concerns on 1st Embodiment 第1実施形態に係る補正係数設定部の概略構成を示すブロック図The block diagram which shows schematic structure of the correction coefficient setting part which concerns on 1st Embodiment. 変形実施形態1に係る補正係数設定部の概略構成を示すブロック図The block diagram which shows schematic structure of the correction coefficient setting part which concerns on deformation | transformation Embodiment 1. FIG. 変形実施形態2に係る補正係数設定部の概略構成を示すブロック図The block diagram which shows schematic structure of the correction coefficient setting part which concerns on deformation | transformation Embodiment 2. FIG. 変形実施形態2に係る車速および前後加速度に基づく補正係数マップCorrection coefficient map based on vehicle speed and longitudinal acceleration according to modified embodiment 2 第2実施形態に係るVGS制御装置の概略構成を示すブロック図The block diagram which shows schematic structure of the VGS control apparatus which concerns on 2nd Embodiment. 第2実施形態に係る補正係数設定部の概略構成を示すブロック図The block diagram which shows schematic structure of the correction coefficient setting part which concerns on 2nd Embodiment. 第2実施形態に係る操舵角速度に基づく重み係数マップWeighting coefficient map based on steering angular velocity according to the second embodiment

符号の説明Explanation of symbols

10 VGS制御装置
11 VGSレシオ設定部
12、15 補正係数設定部(定常操舵用)
13 VGSレシオ補正部
14 目標ピニオン角算出部
17 補正係数調整部
26 補正係数算出部(過渡操舵用)
21 コーナリングパワーK設定部
22 スタビリティファクタA算出部
23、32 コーナリングパワーK’設定部
31 調整係数設定部
33 補正係数設定部
10 VGS control device 11 VGS ratio setting unit 12, 15 Correction coefficient setting unit (for steady steering)
13 VGS ratio correction unit 14 Target pinion angle calculation unit 17 Correction coefficient adjustment unit 26 Correction coefficient calculation unit (for transient steering)
21 Cornering power K setting unit 22 Stability factor A calculation unit 23, 32 Cornering power K ′ setting unit 31 Adjustment coefficient setting unit 33 Correction coefficient setting unit

Claims (4)

ステアリングホイールの操舵角と操舵車輪の転舵角との比を車速に応じて可変制御する舵角比可変制御装置であって、
車両の前後加速度に応じて補正値を設定し、当該補正値を用いて前記比を補正することを特徴とする舵角比可変制御装置。
A steering angle ratio variable control device that variably controls the ratio of the steering angle of the steering wheel and the steering angle of the steering wheel according to the vehicle speed,
A steering angle ratio variable control device, wherein a correction value is set according to a longitudinal acceleration of a vehicle, and the ratio is corrected using the correction value.
前記操舵角の変化速度が第1の所定値より小さい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第1の補正値を設定し、当該第1の補正値を用いて前記比を補正することを特徴とする、請求項1に記載の舵角比可変制御装置。   When the change speed of the steering angle is smaller than a first predetermined value, a first correction value is set so that a yaw rate change due to a change in the longitudinal acceleration does not occur, and the ratio is calculated using the first correction value. The rudder angle ratio variable control device according to claim 1, wherein correction is performed. 前記操舵角の変化速度が第2の所定値より大きい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第2の補正値を設定し、当該第2の補正値を用いて前記比を補正することを特徴とする、請求項1に記載の舵角比可変制御装置。   When the change speed of the steering angle is greater than a second predetermined value, a second correction value is set so that a yaw rate change due to a change in the longitudinal acceleration does not occur, and the ratio is calculated using the second correction value. The rudder angle ratio variable control device according to claim 1, wherein correction is performed. 前記操舵角の変化速度が第1の所定値より小さい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第1の補正値を設定し、
前記操舵角の変化速度が第2の所定値より大きい場合、前記前後加速度の変化によるヨーレイト変化が生じないように第2の補正値を設定し、
前記操舵角の変化速度が前記第1の所定値と前記第2の所定値との間にある場合、前記第1の補正値と前記第2の補正値とに対し、当該操舵角の変化速度に基づいて重みづけを行って求めた補正値を用いて前記比を補正することを特徴とする、請求項1に記載の舵角比可変制御装置。
When the change speed of the steering angle is smaller than a first predetermined value, a first correction value is set so that a yaw rate change due to a change in the longitudinal acceleration does not occur,
When the change speed of the steering angle is greater than a second predetermined value, a second correction value is set so that a yaw rate change due to a change in the longitudinal acceleration does not occur,
When the change speed of the steering angle is between the first predetermined value and the second predetermined value, the change speed of the steering angle with respect to the first correction value and the second correction value. The steering angle ratio variable control device according to claim 1, wherein the ratio is corrected using a correction value obtained by performing weighting based on the control.
JP2008267694A 2008-10-16 2008-10-16 Steering angle ratio variable control device Expired - Fee Related JP5384905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267694A JP5384905B2 (en) 2008-10-16 2008-10-16 Steering angle ratio variable control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267694A JP5384905B2 (en) 2008-10-16 2008-10-16 Steering angle ratio variable control device

Publications (2)

Publication Number Publication Date
JP2010095153A true JP2010095153A (en) 2010-04-30
JP5384905B2 JP5384905B2 (en) 2014-01-08

Family

ID=42257138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267694A Expired - Fee Related JP5384905B2 (en) 2008-10-16 2008-10-16 Steering angle ratio variable control device

Country Status (1)

Country Link
JP (1) JP5384905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073180A1 (en) * 2012-11-07 2014-05-15 日産自動車株式会社 Steering control device
CN108394458A (en) * 2017-02-07 2018-08-14 福特全球技术公司 steering wheel feedback mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231987A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Arrangement of tire with small variation in steering characteristics in drive braking
JPH0656048A (en) * 1992-08-05 1994-03-01 Honda Motor Co Ltd Variable steering angle ratio steering device
JPH11334627A (en) * 1998-05-28 1999-12-07 Toyota Motor Corp Steering control unit for vehicle
JP2004098732A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Device for controlling steering response characteristic of vehicle
JP2004168166A (en) * 2002-11-20 2004-06-17 Honda Motor Co Ltd Rudder angle ratio variable-type steering device
JP2005075288A (en) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp Vehicular steering gear
JP2006240386A (en) * 2005-03-01 2006-09-14 Toyota Motor Corp Vehicle behavior control device
WO2008047481A1 (en) * 2006-10-20 2008-04-24 Honda Motor Co., Ltd. Vehicle rear wheel steered angle controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231987A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Arrangement of tire with small variation in steering characteristics in drive braking
JPH0656048A (en) * 1992-08-05 1994-03-01 Honda Motor Co Ltd Variable steering angle ratio steering device
JPH11334627A (en) * 1998-05-28 1999-12-07 Toyota Motor Corp Steering control unit for vehicle
JP2004098732A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Device for controlling steering response characteristic of vehicle
JP2004168166A (en) * 2002-11-20 2004-06-17 Honda Motor Co Ltd Rudder angle ratio variable-type steering device
JP2005075288A (en) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp Vehicular steering gear
JP2006240386A (en) * 2005-03-01 2006-09-14 Toyota Motor Corp Vehicle behavior control device
WO2008047481A1 (en) * 2006-10-20 2008-04-24 Honda Motor Co., Ltd. Vehicle rear wheel steered angle controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073180A1 (en) * 2012-11-07 2014-05-15 日産自動車株式会社 Steering control device
JP5900643B2 (en) * 2012-11-07 2016-04-06 日産自動車株式会社 Steering control device
JPWO2014073180A1 (en) * 2012-11-07 2016-09-08 日産自動車株式会社 Steering control device
US9567003B2 (en) 2012-11-07 2017-02-14 Nissan Motor Co., Ltd. Steering control device
CN108394458A (en) * 2017-02-07 2018-08-14 福特全球技术公司 steering wheel feedback mechanism

Also Published As

Publication number Publication date
JP5384905B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
EP3444157B1 (en) Vehicle control device and method
US10144446B2 (en) Vehicle and method for controlling vehicle
JP5261962B2 (en) Turning behavior control device, automobile, and turning behavior control method
US7931113B2 (en) Steering control system for vehicle
JP6305218B2 (en) Vehicle travel control device
JP5233624B2 (en) Vehicle steering control apparatus and method
JP4835189B2 (en) Turning behavior control device, automobile, and turning behavior control method
JP2006347286A (en) Steering device for vehicle
JP2009040194A (en) Electric power steering device
EP3789271B1 (en) Control device and steering device
US11603131B2 (en) Control device and turning device
JP2010132205A (en) Vehicular steering device
JP2013126874A (en) Rolling behavior control device for vehicle
JP5384905B2 (en) Steering angle ratio variable control device
JP2010052525A (en) Vehicular electric power steering device
CN115151475B (en) Steering control device
KR101427941B1 (en) Behavior control system for vehicle and method thereof
JP2006175980A (en) Steering device for vehicle
JP5347499B2 (en) Vehicle control apparatus and vehicle control method
JP2007196833A (en) Steering control device for vehicle
JP2010158963A (en) Device and method for controlling vehicle
JP2006282066A (en) Steering device for vehicle
JP6237105B2 (en) Vehicle control device
JP5617499B2 (en) Steering angle control device for vehicle
JP2013198174A (en) Driving force control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5384905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees