JP2010094938A - Stereolithography apparatus - Google Patents

Stereolithography apparatus Download PDF

Info

Publication number
JP2010094938A
JP2010094938A JP2008269623A JP2008269623A JP2010094938A JP 2010094938 A JP2010094938 A JP 2010094938A JP 2008269623 A JP2008269623 A JP 2008269623A JP 2008269623 A JP2008269623 A JP 2008269623A JP 2010094938 A JP2010094938 A JP 2010094938A
Authority
JP
Japan
Prior art keywords
resin
smoothing
curing
smoothing device
bow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008269623A
Other languages
Japanese (ja)
Inventor
Takahide Nonaka
孝英 野中
Akio Hamaoka
昭夫 浜岡
Masahiko Ozawa
雅彦 小澤
Akihide Miyazaki
昭英 宮崎
Katsuyuki Kawakami
克幸 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008269623A priority Critical patent/JP2010094938A/en
Publication of JP2010094938A publication Critical patent/JP2010094938A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stereolithography apparatus which quickly hardens a curable resin in forming a three-dimensional resin model and does not cause damages on the model being in the forming process. <P>SOLUTION: The stereolithography apparatus produces the three-dimensional model by repeating to form an uncured resin layer with a specific thickness by coating a resin on a photocured layer and to photocure the uncured resin layer so as to stack cured layers one after another. The stereolithography apparatus has: a sweeping device which is provided with a sweeper 23 which is arranged to be movable in parallel with the liquid surface of a photocurable resin, and moves on the liquid surface of the photocurable resin by the sweeper 23; and a bow 25 which forms a shape of an isosceles triangle protruding toward the moving direction; an edge 26 which protrudes toward the moving direction of the sweeping device and is formed at the bottom edge of the bow and second edge 27 which is smaller than the edge and arranged at the edge on the opposite side of the edge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザ照射により光硬化性樹脂を硬化させて立体樹脂モデルを造形する光造形装置に係り、特に、形成されるモデルの破損を抑制し、かつ、寸法精度に優れた、高速高精度の造形が可能な光造形装置に関する。   The present invention relates to an optical modeling apparatus that molds a three-dimensional resin model by curing a photocurable resin by laser irradiation, and in particular, suppresses damage to a model to be formed and has high dimensional accuracy and high speed and high accuracy. The present invention relates to an optical modeling apparatus capable of modeling.

従来、3次元CADデータから形状モデルを短期間で製作する技術として、例えば、以下の特許文献などにより、所謂、光造形技術が既に知られている。即ち、これらの文献にも示されているように、CADの形状データを輪切りにして変換された等高線データに従って、光硬化性樹脂にレーザ光を照射し、もって、一層毎に、硬化積層を繰り返すことにより、所望の立体モデルを製作するものである。   Conventionally, as a technique for producing a shape model from three-dimensional CAD data in a short period of time, a so-called stereolithography technique is already known from the following patent documents, for example. In other words, as shown in these documents, the photocurable resin is irradiated with laser light in accordance with the contour line data converted by cutting the CAD shape data, and the layering is repeated for each layer. Thus, a desired three-dimensional model is produced.

特公平6−69724号公報Japanese Examined Patent Publication No. 6-69724 特公平6−69726号公報Japanese Patent Publication No. 6-69726 特開昭56−144478号公報JP 56-144478 A

上述したように、光造形においては、所定のピッチで、レーザ光を照射することにより光硬化性樹脂を硬化する。そして、この所定ピッチ分の硬化層を順次積層するために、一層を硬化させる毎に、当該硬化した層の上に、未硬化樹脂を一定厚さで塗布する必要性がある。そのため、一般的には、一旦、未硬化樹脂を当該硬化層上に厚く塗布し、その後、平滑装置により余剰分をかき取る動作が必要となる。   As described above, in optical modeling, the photocurable resin is cured by irradiating laser light at a predetermined pitch. And in order to laminate | stack the hardened layer for this predetermined pitch one by one, it is necessary to apply | coat uncured resin by fixed thickness on the said hardened layer, whenever it hardens | cures one layer. Therefore, generally, it is necessary to apply an uncured resin thickly on the cured layer once and then scrape off the surplus with a smoothing device.

しかしながら、かかる平滑装置による平滑動作によれば、特に、高粘度の樹脂においては、塗布後の樹脂拡散時間が遅いために、樹脂のかき取り量が多くなる。その結果、液面変動量が増大し、液面が静定までに要する時間が長くなり、即ち、造形時間の増加を招くこととなる。   However, according to the smoothing operation by such a smoothing device, especially in a high viscosity resin, the resin diffusion time after coating is slow, so that the scraping amount of the resin increases. As a result, the liquid level fluctuation amount increases, and the time required for the liquid level to settle becomes long, that is, the modeling time increases.

また、特に、桶形状のような液溜り部を有するモデルの形成に際しては、当該液溜り部に樹脂が留まり、そのため、モデル外に抜けにくい(留まった)樹脂の表面張力により、その液面が盛り上がってしまい、その(盛り上がった)部位をレーザ硬化させると、主には、モデルの淵(端)部が所望の厚さよりも厚く(高く)硬化して平滑手段であるナイフが衝突してしまい、形成されるモデルの表面精度の悪化や、最悪の場合にはモデル破損にも繋がる「ボリュームドトラップ」と呼ばれる不具合が発生してしまうという不具合があった。なお、従来、このボリュームドトラップを回避する手段としては、例えば、平滑装置動作回数を増やす方法や、平滑手段であるナイフの動作スピードをアップすることなどが考えられるが、しかしながら、前者では造形時間が増大し、後者でも、やはり、樹脂表面のかき取り過ぎによる造形不具合を引き起こす問題があった。   In particular, when forming a model having a liquid reservoir portion having a bowl shape, the resin stays in the liquid reservoir portion. Therefore, the surface of the liquid is not easily removed from the model. When the part is raised and laser-cured at the (swelled) part, the ridge (end) part of the model is hardened (higher) than the desired thickness, and the knife as a smoothing means collides with it. However, there is a problem that a defect called “volumed trap” that leads to deterioration of the surface accuracy of the model to be formed or damage to the model in the worst case occurs. Conventionally, as means for avoiding this volumed trap, for example, a method of increasing the number of times of operation of the smoothing device or an increase in the operating speed of the knife as the smoothing means can be considered. Even in the latter case, there was still a problem that caused molding defects due to excessive scraping of the resin surface.

そこで、本発明では、上述した従来技術にいける問題点に鑑みてなされたものであり、その目的は、特に、比較的短時間で未硬化樹脂を硬化層上に一定厚さで塗布することを可能とし、もって、造形時間の短縮、即ち、高速高精度の造形が可能な光造形装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems in the prior art, and its purpose is to apply an uncured resin on the cured layer at a constant thickness in a relatively short time. Therefore, an object of the present invention is to provide an optical modeling apparatus capable of reducing modeling time, that is, capable of modeling with high speed and high accuracy.

上記の目的は、本発明によれば、まず、光硬化樹脂を内部に留める容器と、当該光硬化樹脂を露光硬化するための光を照射する光照射手段と、当該光照射手段からの光を、前記容器内の光硬化樹脂の液面に導き、形成すべき立体モデルの形状データに従って照射し、露光硬化する手段と、前記容器内において、前記露光硬化手段により露光硬化された立体モデルをその上面に搭載すると共に、当該容器内の光硬化樹脂の液面に対して垂直方向に昇降移動可能な搭載手段と、少なくとも、前記露光硬化手段による立体モデルの形状データに従う光の照射を制御すると共に、前記搭載手段の液面に対する垂直方向位置を制御する制御手段と、そして、前記容器内において、前記搭載手段上に搭載された立体モデルの露光硬化部分を含む液面を平滑化するための平滑装置を備え、もって、前記露光硬化により形成した層の上に所定厚さの未硬化樹脂層を塗布形成し、当該未硬化層を露光硬化させることを繰り返すことにより硬化層を逐次積層して前記立体モデルを製作する光造形装置であって、当該光造形装置における前記平滑装置は、前記光硬化樹脂の液面に平行に移動可能に設けられた平滑部本体と、前記平滑部本体により前記光硬化樹脂の液面を移動し、その進行方向に向かって突出した二等辺三角形状を成す船首部と、そして、前記船首部の下端部において、前記平滑装置の進行方向に向かって突出して形成したエッジ部とを備えている光造形装置が提供される。   According to the present invention, according to the present invention, first, a container that holds a photocurable resin inside, a light irradiation unit that irradiates light for exposing and curing the photocurable resin, and light from the light irradiation unit. , A means for irradiating and curing according to the shape data of the three-dimensional model to be formed, guided to the liquid surface of the photocurable resin in the container, and a three-dimensional model exposed and cured by the exposure and hardening means in the container A mounting means mounted on the upper surface and capable of moving up and down in a direction perpendicular to the liquid surface of the photo-curing resin in the container, and at least controlling light irradiation according to the shape data of the three-dimensional model by the exposure curing means A control means for controlling the vertical position of the mounting means with respect to the liquid surface, and a liquid surface including an exposure-hardened portion of the three-dimensional model mounted on the mounting means in the container. A smoothing device for applying a non-cured resin layer having a predetermined thickness on the layer formed by exposure and curing, and repeatedly curing the uncured layer by exposing and curing the uncured layer. A stereolithography apparatus that stacks and manufactures the three-dimensional model, wherein the smoothing device in the stereolithography apparatus is provided with a smoothing section main body that is movable in parallel to the liquid surface of the photocurable resin, and the smoothing section. Moving the liquid level of the photo-curing resin by the main body, and forming the isosceles triangle shape protruding toward the traveling direction, and the lower end portion of the bow portion toward the traveling direction of the smoothing device There is provided an optical modeling apparatus including an edge portion formed to protrude.

また、本発明によれば、前記に記載した光造形装置において、前記平滑装置は、前記船首部と前記エッジ部とを、前記平滑装置の移動方向の前後に備えていることが好ましく、更には、前記平滑装置を構成する前記船首部と前記エッジ部とを、それぞれ異なる平滑部品により、一体に形成し、かつ、当該前記船首部の下端部には、前記エッジ部とは反対側の端部に、当該エッジ部より小さい第2のエッジ部を形成することが好ましい。   According to the present invention, in the optical modeling apparatus described above, it is preferable that the smoothing device includes the bow portion and the edge portion before and after the moving direction of the smoothing device. The bow part and the edge part constituting the smoothing device are integrally formed by different smooth parts, and the lower end part of the bow part is an end part opposite to the edge part. In addition, it is preferable to form a second edge portion smaller than the edge portion.

加えて、本発明によれば、前記に記載した光造形装置において、前記平滑装置を構成する前記船首部と前記エッジ部とを、前記容器の内部に留める異なる光硬化樹脂に対応する角度で、複数形成し、もって、異なる光硬化樹脂に対して当該平滑装置の前記船首部と前記エッジ部とを取替え可能とすることが好ましい。   In addition, according to the present invention, in the optical modeling apparatus described above, the bow portion and the edge portion constituting the smoothing device are at angles corresponding to different photo-curing resins that are held inside the container. It is preferable to form a plurality, so that the bow portion and the edge portion of the smoothing device can be replaced with different photo-curing resins.

即ち、本発明では、上述した課題は、造形用容器に光硬化性樹脂を溜め、該光硬化性樹脂の液面を形状データに従って露光硬化し、該硬化層の上に未硬化の光硬化性樹脂を層状に塗布し、平滑装置によって平滑化、液面静定時間経過後、該未硬化樹脂を露光硬化させることを繰り返し、立体モデルを造形する光造形装置において、平滑化装置に複数の平滑部を設け、移動方向に対し前後部にあたる平滑部を船首形状とし、更には該船首形状先端突部と液面に対し任意の角度を設けることにより解決される。   That is, in the present invention, the above-described problem is that a photocurable resin is accumulated in a modeling container, the liquid surface of the photocurable resin is exposed and cured according to shape data, and an uncured photocurable property is formed on the cured layer. The resin is applied in layers, smoothed by a smoothing device, and after the liquid surface stabilization time has elapsed, the uncured resin is repeatedly exposed and cured to form a three-dimensional model. This is solved by providing a portion, making the smooth portion corresponding to the front and rear portions in the moving direction into a bow shape, and further providing an arbitrary angle with respect to the bow-shaped tip protrusion and the liquid surface.

上述した本発明によれば、露光硬化した層の上に未硬化樹脂を所望の厚さで平滑塗布する場合、船首形状を設けた平滑装置の移動と共に、樹脂が液面全体に拡散され、液面変動量を低減させることが可能となる。また、複数の平滑部の先端に樹脂液面に対して設けた角度により液溜り部の樹脂かき取り量を増大させ船首形状を利用して液溜り部の外へのかき出しを促進することにより、表面張力による盛り上がりを抑制しボリュームドトラップ不具合を回避することができ、従来ボリュームドトラップ不良の回避策として複数回必要であった平滑化動作をより少ない回数(例えば、1回)の動作で実現できる。これにより、造形時間短縮および高精度造形を実現することが可能となる。   According to the present invention described above, when an uncured resin is applied smoothly to the exposure-cured layer at a desired thickness, the resin is diffused over the entire liquid surface along with the movement of the smoothing device provided with the bow shape. It is possible to reduce the surface fluctuation amount. In addition, by increasing the amount of resin scraping of the liquid reservoir portion by the angle provided with respect to the resin liquid level at the tip of the plurality of smooth portions, by using the bow shape to promote the scraping out of the liquid reservoir portion, Swelling due to surface tension can be suppressed and volumed trap failures can be avoided, and smoothing operations previously required multiple times as a workaround for volumed trap failures can be realized with fewer operations (for example, once). it can. Thereby, it becomes possible to realize modeling time reduction and high precision modeling.

以下、本発明の実施の形態になる光造形装置について、添付の図面を参照しながら、詳細に説明する。   Hereinafter, an optical modeling apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、添付の図1は、本発明の一実施の形態になる光造形装置の全体構成を示しており、この図において、符号1は光硬化性樹脂(本例では、紫外線硬化性樹脂)であり、符号2は、その内部に光硬化性樹脂1を注入してあるタンクの断面を示している。   First, attached FIG. 1 shows the overall configuration of an optical modeling apparatus according to an embodiment of the present invention. In this figure, reference numeral 1 denotes a photocurable resin (in this example, an ultraviolet curable resin). Yes, reference numeral 2 indicates a cross section of a tank into which the photocurable resin 1 is injected.

加えて、図中の符号3は、タンク2内の光硬化性樹脂液面と平行に取り付けられたテーブルであり、当該テーブル3は、造形モデル16をその上に保持すると共に、エレベータ装置4により、タンク2内部で、その平行を維持しつつ、垂直方向に移動制御される。また、図中の符号5は、液面創生時にモデル16上へ光硬化性樹脂を供給するための樹脂供給装置の本体であり、液面と平行に取り付けられたスライドレール6上に配置されている。そして、樹脂供給装置本体5の下端には、樹脂供給部7が設けられており、当該樹脂供給部7は、モータやシリンダ(図示せず)等、上下方向へ昇降動作可能な機構が設けられている。なお、当該樹脂供給部7は、待機時には光硬化性樹脂1中に沈み、供給時には上昇する。そして、この樹脂供給部7は、上昇することにより、光硬化性樹脂1を汲み上げた後、樹脂供給部本体5がスライドレール6上を移動すると共に移動し、往復動作が可能な構成となっており、かつ、樹脂供給部7の下部に設けられた隙間(図示せず)からモデル16上に樹脂を供給する手段を持っている。   In addition, reference numeral 3 in the drawing is a table attached in parallel with the photocurable resin liquid surface in the tank 2, and the table 3 holds the modeling model 16 on the table 3 and also by the elevator device 4. In the tank 2, the movement is controlled in the vertical direction while maintaining the parallelism. Reference numeral 5 in the figure denotes a main body of a resin supply device for supplying a photocurable resin onto the model 16 at the time of liquid level creation, which is arranged on a slide rail 6 attached in parallel to the liquid level. ing. And the resin supply part 7 is provided in the lower end of the resin supply apparatus main body 5, and the said resin supply part 7 is provided with the mechanism which can be moved up and down, such as a motor and a cylinder (not shown). ing. In addition, the said resin supply part 7 sinks in the photocurable resin 1 at the time of standby, and raises at the time of supply. And this resin supply part 7 becomes a structure which, after pumping up the photocurable resin 1 by raising, the resin supply part main body 5 moves while moving on the slide rail 6, and can reciprocate. And a means for supplying resin onto the model 16 from a gap (not shown) provided in the lower part of the resin supply unit 7.

次に、図中の符号8は、上記樹脂供給装置本体5によりモデル16上に供給された未硬化樹脂を平滑化するための平滑装置であり、光硬化性樹脂1の液面に対し水平に取り付けられると共に、樹脂供給装置本体5とは異なるスライドレール9上に配置されており、もって、上記樹脂供給装置本体5又は樹脂供給部7と干渉することなく、タンク2の端から端までの往復動作が可能な構造を備えている。更に、図中の符号10は光硬化性樹脂を硬化するために用いるレーザの発振装置であり、当該発振装置から発振されたレーザは、符号11で示すガルバノミラーを介して、タンク2内の光硬化性樹脂の表面へ照射される。このとき、ガルバノミラー11は、図に符号12で示すガルバノミラー制御装置により制御され、即ち、図中に示すX,Y方向に対し、レーザの走査方向を自由(自在)に可変することが可能である。また、図中の符号14はモデルを3次元描画可能な周知のCADシステムであり、符号15はCADシステム14から得た3次元モデルを光造形に必要な等高線データ等へ変換する機能と共に、上記エレベータ装置4、ガルバノミラー制御装置12、更には、樹脂供給部本体5、樹脂供給部7、平滑装置8の動作をも制御する機能を有するメインコンピュータである。   Next, reference numeral 8 in the figure is a smoothing device for smoothing the uncured resin supplied onto the model 16 by the resin supply device body 5, and is horizontal to the liquid level of the photocurable resin 1. At the same time, it is disposed on a slide rail 9 different from the resin supply device main body 5, so that it does not interfere with the resin supply device main body 5 or the resin supply unit 7 and reciprocates from end to end of the tank 2. It has a structure that can operate. Further, reference numeral 10 in the figure is a laser oscillation device used for curing the photo-curable resin, and the laser oscillated from the oscillation device transmits light in the tank 2 via a galvano mirror indicated by reference numeral 11. Irradiates the surface of the curable resin. At this time, the galvanometer mirror 11 is controlled by a galvanometer mirror control device indicated by reference numeral 12 in the figure, that is, the laser scanning direction can be freely changed with respect to the X and Y directions shown in the figure. It is. Reference numeral 14 in the figure is a well-known CAD system capable of drawing a model three-dimensionally, and reference numeral 15 is a function of converting the three-dimensional model obtained from the CAD system 14 into contour line data necessary for stereolithography, etc. This is a main computer having a function of controlling operations of the elevator device 4, the galvanomirror control device 12, and further the resin supply unit body 5, the resin supply unit 7, and the smoothing device 8.

続いて、上記にその詳細構造を述べた光造形装置の動作について、添付の図2乃至図5を参照しながら、以下に説明する。   Next, the operation of the optical modeling apparatus whose detailed structure has been described above will be described below with reference to FIGS.

上述した光造形装置は、形成すべきモデルの一層分のレーザ走査、即ち、モデルの一層分の硬化が完了すると(本例では、第6番目の層)、図2に示すように、メインコンピュータ15が次層の等高線データを参照し、図2乃至図5に示すように、上述したエレベータ装置4を介して、テーブル3を積層ピッチ「P」だけ、光硬化性樹脂1の液面より深く沈める。   When the laser scanning of the model to be formed is completed, that is, when the hardening of the model is completed (the sixth layer in this example), the stereolithography apparatus described above, as shown in FIG. 15 refers to the contour data of the next layer, and as shown in FIGS. 2 to 5, the table 3 is deeper than the liquid surface of the photocurable resin 1 by the stacking pitch “P” via the elevator device 4 described above. Sink.

その後、図3にも示すように、既硬化層(本例では、モデルの上記第6番目の層)の上に、上述した樹脂供給装置7により、新たに未硬化の光硬化性樹脂1の層を塗布(より具体的には、樹脂供給部7の下部に設けられた隙間から樹脂を供給)する。   Thereafter, as shown in FIG. 3, the uncured photo-curing resin 1 is newly formed on the already-cured layer (in this example, the sixth layer of the model) by the resin supply device 7 described above. The layer is applied (more specifically, the resin is supplied from a gap provided in the lower portion of the resin supply unit 7).

更に、図4にも示すように、平滑装置8を動作させる(タンク2内を移動させる)ことにより、上記図3で示したようにして既硬化層(モデルの上記第6番目の層)の上に供給された樹脂のうち、所定の液面(具体的には、積層ピッチ「P」)よりも厚く塗布された光硬化性樹脂をかき取り、所定の積層ピッチPの厚さの平坦な層を形成する。この液面平滑の後、光硬化性樹脂の液面静定を待つ。   Further, as shown in FIG. 4, by operating the smoothing device 8 (moving in the tank 2), the hardened layer (the sixth layer of the model) of the hardened layer as shown in FIG. Of the resin supplied above, the photocurable resin applied thicker than the predetermined liquid surface (specifically, the stacking pitch “P”) is scraped off, and the thickness of the predetermined stacking pitch P is flat. Form a layer. After the liquid level is smoothed, the liquid level of the photocurable resin is awaited.

その後、図5に示すように、再び、レーザ13を光硬化性樹脂1へ照射し、もって、等高線データに従って走査を行い、所望の断面形状を硬化させる。   Thereafter, as shown in FIG. 5, the laser 13 is again irradiated with the laser 13, and scanning is performed according to the contour line data to cure a desired cross-sectional shape.

続いて、添付の図6は、本発明の特徴である上記光造形装置の平滑装置8の詳細構造を示す分解斜視図である。この図6からも明らかなように、平滑装置8は、光造形装置への取り付け部を有する平滑部本体23と、当該平滑部本体23の下端部に沿って、その移動方向の前後に取り付けられる一対の平滑部品24、24から構成されている。更に、これら一対の平滑部品24、24は、それぞれ、当該平滑部本体23の移動方向、特に、その進行方向に向かって中央部を突出させ、上面からは二等辺三角形状を成す船首部25を有すると共に、その下端部には、当該平滑部本体23の進行方向に向かって突出して形成したエッジ部26を備えている。また、各平滑部品24は、その進行方向とは反対側の下端部にも、上記エッジ部26と比較すると小さいが、やはり、当該平滑部本体23の進行方向に向かって突出して形成した第2のエッジ部27を備えている。   Subsequently, FIG. 6 attached is an exploded perspective view showing a detailed structure of the smoothing device 8 of the optical modeling apparatus, which is a feature of the present invention. As is apparent from FIG. 6, the smoothing device 8 is attached to the front and rear in the moving direction along the smoothing portion main body 23 having an attachment portion to the optical modeling apparatus and the lower end portion of the smoothing portion main body 23. It consists of a pair of smooth parts 24, 24. Further, each of the pair of smoothing parts 24, 24 has a bow portion 25 having an isosceles triangle shape protruding from the upper surface with the central portion protruding in the moving direction of the smoothing portion main body 23, particularly in the traveling direction thereof. At the lower end thereof, an edge portion 26 is formed so as to protrude in the traveling direction of the smooth portion main body 23. In addition, each smooth component 24 is smaller at the lower end portion on the side opposite to its traveling direction as compared with the edge portion 26, but the second smooth portion 24 is formed so as to protrude toward the traveling direction of the smooth portion main body 23. The edge portion 27 is provided.

また、図7には、特に、上記平滑部本体23の船首部25と、その下端部に突出して形成したエッジ部26とが、拡大されて示されており、そして、船首部25を構成する二等辺三角形状の頂角と、エッジ部26の角度(液面に対する角度)とが、それぞれ、θ25及びθ26で示されている。   Further, in FIG. 7, in particular, the bow portion 25 of the smooth portion main body 23 and the edge portion 26 formed to protrude from the lower end portion thereof are shown in an enlarged manner, and constitute the bow portion 25. The apex angle of the isosceles triangle shape and the angle of the edge portion 26 (angle with respect to the liquid surface) are indicated by θ25 and θ26, respectively.

なお、上述した船首部25とエッジ部26とは、図8(A)及び(B)にも示すように、船首部25を構成する二等辺三角形状の頂角(θ25)と、エッジ部26の角度(θ26)は、使用される光硬化性樹脂の粘度を含めた要因によって設定されるものである。本実施例では、予め、その角度(θ25、θ26)の異なる平滑部品24を用意しておき、そして、必要に応じて適切な角度(θ25、θ26)を備えた一対の平滑部品24を選択して上記平滑部本体23の下端部に取り付け、もって、適切な角度(θ25、θ26)を備えた平滑部本体23を得るようになっている。   As shown in FIGS. 8A and 8B, the bow portion 25 and the edge portion 26 described above include an isosceles triangular apex angle (θ25) constituting the bow portion 25, and the edge portion 26. This angle (θ26) is set by factors including the viscosity of the photo-curing resin used. In this embodiment, smooth parts 24 having different angles (θ25, θ26) are prepared in advance, and a pair of smooth parts 24 having appropriate angles (θ25, θ26) are selected as necessary. By attaching to the lower end of the smoothing part main body 23, the smoothing part main body 23 having appropriate angles (θ25, θ26) is obtained.

なお、上記図8(A)に示す平滑部品24は、船首部25の頂角(θ25)とエッジ部26の角度(液面に対する角度)とが比較的大きく、そのため、比較的粘度の低い光硬化性樹脂の場合に用いられる平滑部品24の一例を示しており、他方、上記図8(B)は、船首部25の頂角(θ25)とエッジ部26の角度(液面に対する角度)とが比較的小さく、そのため、比較的粘度の高い光硬化性樹脂の場合に用いられる平滑部品24の一例を示している。なお、図には示さないが、各平滑部品24の反進行方向側の下端部に突出した形成されたエッジ部27も、上記エッジ部26の角度(θ26)と同様の角度で形成されている。   8A has a relatively large apex angle (θ25) of the bow portion 25 and an angle of the edge portion 26 (an angle with respect to the liquid surface), and therefore light having a relatively low viscosity. FIG. 8B shows an example of the smooth part 24 used in the case of a curable resin, while FIG. 8B shows the apex angle (θ25) of the bow part 25 and the angle of the edge part 26 (angle with respect to the liquid level). Is an example of the smooth component 24 used in the case of a photocurable resin having a relatively small viscosity. Although not shown in the drawing, the edge portion 27 formed to protrude from the lower end portion of each smoothing component 24 on the opposite side is also formed at an angle similar to the angle (θ26) of the edge portion 26. .

そして、添付の図9の斜視図には、上述した平滑部本体23の下端部に前記一対の平滑部品24、24を取り付けた状態の平滑装置8の外観が示されており、当該平滑装置8の本体部23を上記光造形装置の一部(具体的には、図1に示すスライドレール9)に取り付けられ、図の矢印方向に往復移動することにより、既硬化層の上に供給された樹脂のうち、所定の液面よりも厚く塗布された光硬化性樹脂をかき取り、所定の積層ピッチPの厚さの平坦な層を形成する。   The attached perspective view of FIG. 9 shows the appearance of the smoothing device 8 in a state where the pair of smoothing parts 24, 24 are attached to the lower end portion of the smoothing portion main body 23 described above. The main body 23 is attached to a part of the stereolithography apparatus (specifically, the slide rail 9 shown in FIG. 1) and reciprocated in the direction of the arrow in the figure to be supplied onto the already cured layer. Of the resin, a photocurable resin applied thicker than a predetermined liquid surface is scraped off to form a flat layer having a predetermined lamination pitch P thickness.

また、添付の図10には、平滑部本体23の下端部に前記一対の平滑部品24、24を取り付けた上記平滑装置8の四面図(上面図、正面図、下面図、側面図)が示されている。   In addition, FIG. 10 attached shows four views (a top view, a front view, a bottom view, and a side view) of the smoothing device 8 in which the pair of smoothing parts 24, 24 are attached to the lower end portion of the smoothing portion main body 23. Has been.

続いて、上記にその詳細な構造を説明した平滑装置8の動作について説明する。なお、ここでは、まず参考のため、その下端が尖った平板状の平滑装置40を用いた場合の光硬化性樹脂1の液面変動状態を、添付の図11及び図12により示す。なお、図12は、平滑装置40の移動方向に垂直な側面方向から見た場合の断面図を示す。   Next, the operation of the smoothing device 8 whose detailed structure has been described above will be described. Here, for reference, the liquid level fluctuation state of the photocurable resin 1 when using a flat plate-like smoothing device 40 with a sharpened lower end is shown in FIGS. 11 and 12 attached hereto. 12 shows a cross-sectional view when viewed from the side surface direction perpendicular to the moving direction of the smoothing device 40. FIG.

即ち、図11にも示すように、特に、粘度の高い樹脂で大型モデルを造形する場合においては、樹脂供給装置7により供給された樹脂の拡散時間は低粘度のそれと比較すると遅いため、同じタイミング(往復速度)で平滑装置40を動作した場合のモデル上への樹脂残留量は多くなる。この残留樹脂は、平板状の平滑装置40によってかき取られ、図に矢印で示すように、上方に向かって回転する乱流を生み出しながら移動と共に、その量を増大する。そして、この大量にかき取られた樹脂は一方向(即ち、平滑装置40の移動方向)に移動し、これにより、タンクの両端(即ち、平滑装置40の移動方向の前後)における液面の高さに差が生じる結果となる。換言すれば、平板状の平滑装置40を使用した場合、タンク2内における樹脂は、その液面の変動量が増大する傾向を示すこととなり、その結果、液面静定待ち時間が増加し、造形時間を長くする要因となっていた。   That is, as shown in FIG. 11, in particular, in the case of modeling a large model with a resin having a high viscosity, the diffusion time of the resin supplied by the resin supply device 7 is slower than that of a low viscosity, and therefore the same timing. When the smoothing device 40 is operated at (reciprocating speed), the amount of residual resin on the model increases. The residual resin is scraped off by the flat plate-like smoothing device 40 and, as indicated by an arrow in the figure, the amount of resin increases as it moves while generating a turbulent flow that rotates upward. The resin scraped off in a large amount moves in one direction (that is, the moving direction of the smoothing device 40), and thereby the liquid level at both ends of the tank (that is, before and after the moving direction of the smoothing device 40). This results in a difference. In other words, when the flat smoothing device 40 is used, the resin in the tank 2 tends to increase the amount of fluctuation of the liquid level, and as a result, the liquid surface stabilization waiting time increases, It was a factor to lengthen the modeling time.

また、図12にも示すように、下端が尖った平板状の平滑装置40を、その内部に光硬化性樹脂1を充填したタンク2内を、その液面に沿って矢印方向に移動させた場合、平滑装置40の通過後の液面は、表面の樹脂がかき取られ、平板の前方に溜まり、平滑装置40の移動と共に移動する。この時、当該平板の前方にかき取られて滞留した樹脂の重量により、樹脂は下降方向の力(図12に破線の矢印で示す)が加わり、その結果、平滑装置40の通過後の液面は、平滑部品40の移動方向に対して徐々に上昇する傾向を示すこととなる。   Also, as shown in FIG. 12, a flat plate-like smoothing device 40 with a sharp lower end is moved in the direction of the arrow along the liquid level in the tank 2 filled with the photocurable resin 1 therein. In this case, the liquid level after passing through the smoothing device 40 is scraped off from the resin on the surface, accumulates in front of the flat plate, and moves with the movement of the smoothing device 40. At this time, due to the weight of the resin scraped and retained in front of the flat plate, a downward force (indicated by a broken arrow in FIG. 12) is applied to the resin, and as a result, the liquid level after passing through the smoothing device 40 Will show a tendency to gradually rise with respect to the moving direction of the smooth component 40.

それに対し、本発明になる光造形装置のように、上記にその詳細な構造を説明した平滑装置8を利用した場合の光硬化性樹脂1の液面平滑動作について、図13及び図14を参照しながら説明する。   On the other hand, for the liquid level smoothing operation of the photocurable resin 1 when the smoothing device 8 whose detailed structure has been described above is used like the stereolithography apparatus according to the present invention, see FIGS. 13 and 14. While explaining.

即ち、図13からも明らかなように、上述した進行方向に向かって中央部を突出した二等辺三角形状の船首部25によれば、平滑装置8の移動(図中の矢印を参照)に伴い、樹脂をかき取りながらその周囲(進行方向の両側)に拡散することとなる。その結果、上述した平板状の平滑装置40を使用した場合に比較し、かき取った樹脂を、平滑装置40の進行方向の前後だけではなく、その両側にも移動することとなることから、樹脂の移動量を軽減することとなる。これにより、タンク2内での光硬化性樹脂1の液面変動量及び液面静定待ち時間を低減することが可能となり、もって、造形時間の短縮を実現することができる。   That is, as is clear from FIG. 13, according to the isosceles triangular bow portion 25 protruding from the central portion in the traveling direction, the smoothing device 8 is moved (see the arrow in the figure). , While scraping off the resin, it diffuses around it (on both sides in the direction of travel). As a result, compared to the case where the flat plate-like smoothing device 40 described above is used, the scraped resin moves not only before and after the direction of travel of the smoothing device 40 but also to both sides thereof. The amount of movement will be reduced. Thereby, it is possible to reduce the liquid level fluctuation amount and the liquid surface stabilization waiting time of the photocurable resin 1 in the tank 2, and it is possible to reduce the modeling time.

加えて、図14からも明らかなように、上述した平滑装置8によれば、その移動に伴い、進行方向に向かって突出して形成したエッジ部26により光硬化性樹脂1の表面がかき取られ、その多くは上述したように、上記船首部25の働きにより進行方向の両側に拡散され、しかし、その一部はその前方に溜まることとなるが、しかしながら、この時、当その前方にかき取られた樹脂は、上記エッジ部26の上面に滞留することから、たとえその量が増大しても、その重量がその下方の光硬化性樹脂1に加わることはない。その結果、平滑装置40の通過後の液面は平坦に保たれ、上述した下端が尖った平板状を用いた場合のように、平滑部品40の移動方向に対して徐々に上昇する傾向を生じることはない。   In addition, as apparent from FIG. 14, according to the smoothing device 8 described above, the surface of the photocurable resin 1 is scraped off by the edge portion 26 formed so as to protrude in the traveling direction along with the movement. As mentioned above, many of them are diffused to both sides of the traveling direction by the action of the bow 25, but some of them are accumulated in the front, however, at this time, the scrapes are scraped forward. Since the obtained resin stays on the upper surface of the edge portion 26, even if the amount thereof increases, the weight does not add to the photocurable resin 1 below. As a result, the liquid surface after passing through the smoothing device 40 is kept flat and tends to gradually rise with respect to the moving direction of the smoothing component 40 as in the case of using the flat plate shape with the sharpened lower end described above. There is nothing.

即ち、上記にその詳細な構造を説明した平滑装置8を備えた本発明になる光造形装置によれば、タンク2内における樹脂の平滑動作後の、特に、液面の変動量の増大や液面静定待ち時間の増大を低減(軽減)し、もって、装置による造形時間をより短くすることが可能となる。   That is, according to the optical modeling apparatus according to the present invention provided with the smoothing device 8 whose detailed structure has been described above, particularly after the smoothing operation of the resin in the tank 2, the increase in the liquid level fluctuation amount and the liquid It is possible to reduce (reduce) the increase in the waiting time for surface stabilization, thereby further shortening the modeling time by the apparatus.

更に、以下の図15〜図17には、特に、モデル16の液溜まり部17において、樹脂の表面張力により、その表面が盛り上がる現象に対する、本発明になる平滑装置8の効果を示す。なお、これらの図は、タンク2内における光硬化性樹脂1の液面変動状態を、平滑装置8の移動方向に垂直な側面方向から見た断面図を示すものである。   Further, FIGS. 15 to 17 below show the effect of the smoothing device 8 according to the present invention on the phenomenon that the surface of the liquid reservoir 17 of the model 16 rises due to the surface tension of the resin. In addition, these figures show sectional views of the liquid level fluctuation state of the photocurable resin 1 in the tank 2 as seen from the side surface direction perpendicular to the moving direction of the smoothing device 8.

まず、図15は、モデル16の液溜まり部17における樹脂1の表面張力による、表面の盛り上がり現象を示す。即ち、図の符号31は、表面張力により樹脂が盛り上がった部分を示している。この表面張力により盛り上がった部分にレーザを照射すると、主には、モデル淵部が高く硬化してしまい、その結果、所望の硬化厚さが得られずに表面精度が悪化することとなる。更には、この硬化部分に平滑装置が衝突してモデルを破損してしまし、つまりは、ボリュームドトラップと呼ばれる不具合の要因となる。   First, FIG. 15 shows a phenomenon of surface swell due to the surface tension of the resin 1 in the liquid reservoir 17 of the model 16. In other words, reference numeral 31 in the figure indicates a portion where the resin has risen due to surface tension. When the laser is applied to the raised portion due to the surface tension, the model collar portion is hardened mainly, and as a result, the desired cured thickness cannot be obtained and the surface accuracy is deteriorated. Furthermore, the smoothing device collides with the hardened portion and damages the model. In other words, it becomes a cause of a problem called a volumed trap.

上述した下端が尖った平板状の平滑装置40を使用した場合には、図16にも示すように、かき取ったはずの樹脂は、少なくともその一部が平滑部の先端より下側に回り込むため(図の矢印を参照)、液溜まり部17内の樹脂が抜け難い。そのため、平滑装置40を移動することによるかき取り動作を、複数回行うこと、又は、その動作スピードを上げ、もって、平滑部の先端を回り込む樹脂量を低減して当該樹脂の盛り上り部分31を回避することが行われていた。   When the flat smoothing device 40 having a sharp lower end is used, as shown in FIG. 16, at least a part of the resin that should have been scraped wraps downward from the tip of the smooth portion. (Refer to the arrows in the figure) The resin in the liquid reservoir 17 is difficult to come off. Therefore, the scraping operation by moving the smoothing device 40 is performed a plurality of times, or the operation speed is increased, thereby reducing the amount of resin that wraps around the tip of the smoothing portion, and the rising portion 31 of the resin There was a work around.

しかしながら、上述したように複数回の平滑動作は造形時間の増加に繋がり、また、平滑装置40の移動スピードを上げると、樹脂1内の気泡の発生や樹脂のかき取り過ぎを生じてしまい、モデル造形不良に繋がる恐れがあり、良好な対策とは言えなかった。   However, as described above, a plurality of smoothing operations lead to an increase in modeling time, and if the moving speed of the smoothing device 40 is increased, bubbles are generated in the resin 1 or the resin is scraped off too much. There was a risk that it would lead to poor modeling, and it was not a good measure.

これに対し、上述した本発明の平滑装置8によれば、図17にも示すように、進行方向に向かって突出して形成したエッジ部26により光硬化性樹脂1の表面がかき取られ、上述したように、上記船首部25の働きにより進行方向の両側に拡散される(図の矢印を参照)。また、その一部は溜まることとなるが、やはり上述したように、上記エッジ部26の上面に滞留することから、その重量がその下方の光硬化性樹脂1に加わることはなく、より少ない平滑装置の移動で、かつ、その動作スピードを上昇する必要もなく、液面を平坦にすることが可能となる。   On the other hand, according to the smoothing device 8 of the present invention described above, as shown in FIG. 17, the surface of the photocurable resin 1 is scraped off by the edge portion 26 that protrudes in the traveling direction. As described above, it is diffused to both sides in the traveling direction by the action of the bow portion 25 (see arrows in the figure). In addition, a part of the water will accumulate, but as described above, it stays on the upper surface of the edge portion 26, so that the weight is not added to the photo-curing resin 1 below and less smooth. The liquid level can be flattened by moving the apparatus and without increasing the operating speed.

即ち、上述した本発明の平滑装置8は、モデル16の液溜まり部17における樹脂1の表面の盛り上がり現象に対しても、優れた対策となり、これを光造形装置に採用することにより、造形時間の短縮を実現すると共に、ボリュームドトラップと呼ばれる不具合の少ない、優れた装置を提供することが可能となる。   That is, the above-described smoothing device 8 of the present invention is an excellent measure against the phenomenon of the surface of the resin 1 in the liquid pool portion 17 of the model 16, and by adopting this in the stereolithography apparatus, the modeling time can be increased. In addition, it is possible to provide an excellent apparatus with less inconveniences called volume traps.

なお、上記にも述べたが、上記平滑部品24に設けた船首部25の頂角(θ25)とエッジ部26の角度(θ26)は、樹脂の粘度等の特性に応じて任意の角度を選択することにより、図17に示すように、樹脂をかき上げると共に、当該樹脂の回りこみを防止することが出来ることは、当業者であれば明らかであろう。なお、かき上げられた樹脂は、上述した船首部25の働きにより、モデル液溜り部17より外へ送り出されることも明らかであろう。   As described above, the apex angle (θ25) of the bow portion 25 provided on the smoothing part 24 and the angle (θ26) of the edge portion 26 are selected according to characteristics such as the viscosity of the resin. It will be apparent to those skilled in the art that, as shown in FIG. 17, it is possible to scoop up the resin and prevent the resin from wrapping around. It will be apparent that the resin pumped up is sent out of the model liquid reservoir 17 by the action of the bow 25 described above.

また、以上に説明した実施の形態では、平滑部本体23の下端部には、一対の平滑部品24、24が取り付けられるものとして説明したが、しかしながら、本発明はかかる構造に限定されるものでなく、これに代え、例えば、これら一対の平滑部品24、24を一体に形成してもよく、更には、これら平滑部本体23と一対の平滑部品24、24とを一体に形成してもよく、その場合にも、上記と同様な効果が得られることは、当業者であれば明らかであろう。なお、その場合にも、上記船首部25の頂角(θ25)とエッジ部26の角度(θ26)を、樹脂の粘度等の特性に応じて、任意の角度で形成して用意しておき、これらを選択的に使用すればよいことも、やはり、当業者であれば明らかであろう。   In the embodiment described above, the pair of smoothing parts 24, 24 are described as being attached to the lower end of the smoothing part main body 23. However, the present invention is not limited to such a structure. Instead, for example, the pair of smoothing parts 24 and 24 may be integrally formed, and further, the smoothing body 23 and the pair of smoothing parts 24 and 24 may be integrally formed. In this case, it will be apparent to those skilled in the art that the same effect as described above can be obtained. Even in this case, the apex angle (θ25) of the bow portion 25 and the angle (θ26) of the edge portion 26 are prepared at an arbitrary angle according to characteristics such as the viscosity of the resin, and prepared. It will be apparent to those skilled in the art that these may be used selectively.

しかしながら、特に、上述した実施の形態のように、平滑部本体23の下端部に一対の平滑部品24、24を取り付ける構造では、特に、各平滑部品24の進行方向とは反対側の下端部に設けられた、小さな第2のエッジ部27であって、特に、平滑装置8の進行方向の後方に位置する平滑部品24のエッジ部27によっても、上記エッジ部26と同様の効果が得られることから、特に、好適な構造である。   However, in particular, in the structure in which the pair of smoothing parts 24, 24 are attached to the lower end of the smoothing part main body 23 as in the above-described embodiment, particularly at the lower end on the side opposite to the traveling direction of each smoothing part 24. The effect similar to that of the edge portion 26 can be obtained also by the provided small second edge portion 27, in particular, by the edge portion 27 of the smoothing component 24 located behind the smoothing device 8 in the traveling direction. Therefore, the structure is particularly suitable.

即ち、本発明によれば、未硬化樹脂を所望の厚さで平滑塗布しようとした場合に、船首形状を設けた平滑装置の移動とともに樹脂が液面全体に拡散され、液面変動量を低減させることが可能となる。また、複数の平滑部先端に樹脂液面に対して設けた角度により液溜り部の樹脂かき取り量を増大させ船首形状を利用して液溜り部の外へのかき出しを促進することにより、表面張力による盛り上がりを抑制しボリュームドトラップ不具合を回避することができる。これにより従来ボリュームドトラップ不良の回避策として複数回必要であった平滑化動作を1回動作とすることができる。以上より、造形時間短縮および高精度造形を実現することが可能となる。   That is, according to the present invention, when an uncured resin is to be applied smoothly with a desired thickness, the resin is diffused over the entire liquid level as the bow-shaped smoothing device moves, reducing the amount of liquid level fluctuation. It becomes possible to make it. In addition, by increasing the amount of resin scraped in the liquid reservoir by the angle provided with respect to the resin liquid level at the tips of the plurality of smooth portions, and using the bow shape to promote scraping out of the liquid reservoir, Swelling due to tension can be suppressed to prevent volumetric trap problems. As a result, the smoothing operation, which has been conventionally required a plurality of times as a measure for avoiding the defective volume trapping, can be made a single operation. From the above, it is possible to realize modeling time reduction and high-precision modeling.

本発明の一実施の形態になる光造形装置の全体構成を示す図である。It is a figure which shows the whole structure of the optical modeling apparatus which becomes one embodiment of this invention. 上記光造形装置による造形原理、特に、エレベータ装置の動作を説明する図面である。It is drawing explaining the modeling principle by the said optical modeling apparatus, especially operation | movement of an elevator apparatus. 上記光造形装置による造形原理、特に、樹脂供給装置の動作を説明する図面である。It is drawing explaining the modeling principle by the said optical modeling apparatus, especially operation | movement of a resin supply apparatus. 上記光造形装置による造形原理、特に、平滑装置の動作を説明する図面である。It is drawing explaining the modeling principle by the said optical modeling apparatus, especially operation | movement of a smoothing apparatus. 上記光造形装置による造形原理、特に、レーザの照射を説明する図面である。It is drawing explaining the modeling principle by the said optical modeling apparatus, especially the irradiation of a laser. 本発明の特徴となる上記光造形装置の平滑装置の詳細構造を示す分解斜視図である。It is a disassembled perspective view which shows the detailed structure of the smoothing apparatus of the said optical modeling apparatus used as the characteristic of this invention. 上記光造形装置の平滑装置、特に、その船首部とエッジ部とを示す一部拡大斜視図である。It is a partially expanded perspective view which shows the smoothing apparatus of the said optical modeling apparatus, especially the bow part and edge part. 上記光造形装置の平滑装置の船首部とエッジ部の角度の一例を示す図である。It is a figure which shows an example of the angle of the bow part and edge part of the smoothing apparatus of the said optical modeling apparatus. 上記平滑部本体に一対の平滑部品を取り付けた状態の平滑装置の全体外観を示す斜視図である。It is a perspective view which shows the whole external appearance of the smoothing apparatus of a state which attached a pair of smoothing components to the said smooth part main body. 上記平滑装置の詳細を示す四面図(上面図、正面図、下面図、側面図)である。It is a four-plane figure (top view, front view, bottom view, side view) showing details of the smoothing device. 平滑装置の動作を説明するため、参考として、平板状の平滑装置を用いた場合の液面変動状態を示す斜視図である。In order to demonstrate operation | movement of a smoothing apparatus, it is a perspective view which shows the liquid level fluctuation | variation state at the time of using a flat smoothing apparatus as a reference. 上記平滑装置の動作を説明するため、参考として、平滑装置を、その移動方向に垂直な側面方向から見た場合の断面図である。For explaining the operation of the smoothing device, as a reference, the smoothing device is a cross-sectional view when viewed from the side surface direction perpendicular to the moving direction. 本発明の特徴となる上記平滑装置の動作を説明するため、本発明になる平板状の平滑装置を用いた場合の液面変動状態を示す斜視図である。It is a perspective view which shows the liquid level fluctuation | variation state at the time of using the flat smoothing apparatus which becomes this invention in order to demonstrate operation | movement of the said smoothing apparatus which is the characteristics of this invention. 上記本発明になる平滑装置の動作を説明するため、本発明の平滑装置を、その移動方向に垂直な側面方向から見た場合の断面図である。In order to explain the operation of the smoothing device according to the present invention, it is a cross-sectional view of the smoothing device of the present invention as viewed from the side surface direction perpendicular to the moving direction. 平滑装置の動作を説明するため、樹脂表面の盛り上がり部を示す断面図である。It is sectional drawing which shows the swelling part of the resin surface in order to demonstrate operation | movement of a smoothing apparatus. 平滑装置の動作を説明するため、参考として、平板状の平滑装置を用いた場合の樹脂表面の盛り上がり部の平滑動作を示す断面図である。In order to demonstrate operation | movement of a smoothing apparatus, it is sectional drawing which shows the smoothing operation of the swelling part of the resin surface at the time of using a flat smoothing apparatus as a reference. 本発明の上記平滑装置の動作を説明するため、本発明の平板状の平滑装置を用いた場合の樹脂表面の盛り上がり部の平滑動作を示す断面図である。In order to demonstrate operation | movement of the said smoothing apparatus of this invention, it is sectional drawing which shows the smoothing operation | movement of the swelling part of the resin surface at the time of using the flat smoothing apparatus of this invention.

符号の説明Explanation of symbols

1…光硬化性樹脂、2…タンク、3…テーブル、4…エレベータ装置、5…樹脂供給装置本体、6…スライドレール、7…樹脂供給部、8…平滑装置、9…スライドレール、10…レーザ発振装置、11…ガルバノミラー、12…ガルバノミラー制御装置、13…レーザ光、14…次元CADシステム、15…メインコンピュータ、16…モデル、17…液溜り部、23…平滑部本体、24…平滑部品、25…船首部、26…エッジ部、27…第2のエッジ部。 DESCRIPTION OF SYMBOLS 1 ... Photocurable resin, 2 ... Tank, 3 ... Table, 4 ... Elevator apparatus, 5 ... Resin supply apparatus main body, 6 ... Slide rail, 7 ... Resin supply part, 8 ... Smoothing apparatus, 9 ... Slide rail, 10 ... Laser oscillator, 11 ... Galvano mirror, 12 ... Galvano mirror control device, 13 ... Laser beam, 14 ... Dimensional CAD system, 15 ... Main computer, 16 ... Model, 17 ... Liquid reservoir, 23 ... Smoothing body, 24 ... Smooth parts, 25 ... bow, 26 ... edge, 27 ... second edge.

Claims (4)

光硬化樹脂を内部に留める容器と、
当該光硬化樹脂を露光硬化するための光を照射する光照射手段と、
当該光照射手段からの光を、前記容器内の光硬化樹脂の液面に導き、形成すべき立体モデルの形状データに従って照射し、露光硬化する手段と、
前記容器内において、前記露光硬化手段により露光硬化された立体モデルをその上面に搭載すると共に、当該容器内の光硬化樹脂の液面に対して垂直方向に昇降移動可能な搭載手段と、
少なくとも、前記露光硬化手段による立体モデルの形状データに従う光の照射を制御すると共に、前記搭載手段の液面に対する垂直方向位置を制御する制御手段と、そして、
前記容器内において、前記搭載手段上に搭載された立体モデルの露光硬化部分を含む液面を平滑化するための平滑装置を備え、もって、前記露光硬化により形成した層の上に所定厚さの未硬化樹脂層を塗布形成し、当該該未硬化層を露光硬化させることを繰り返すことにより硬化層を逐次積層して前記立体モデルを製作する光造形装置であって、
当該光造形装置における前記平滑装置は、
前記光硬化樹脂の液面に平行に移動可能に設けられた平滑部本体と、
前記平滑部本体により前記光硬化樹脂の液面を移動し、その進行方向に向かって突出した二等辺三角形状を成す船首部と、そして、
前記船首部の下端部において、前記平滑装置の進行方向に向かって突出して形成したエッジ部とを備えていることを特徴とする光造形装置。
A container that holds the photo-curing resin inside;
A light irradiation means for irradiating light for exposing and curing the photocurable resin;
Means for guiding the light from the light irradiation means to the liquid surface of the photocurable resin in the container, irradiating according to the shape data of the three-dimensional model to be formed, and exposing and curing;
In the container, the mounting model is mounted on the upper surface of the three-dimensional model exposed and cured by the exposure curing unit, and can be moved up and down in a direction perpendicular to the liquid level of the photocurable resin in the container;
At least control means for controlling light irradiation according to the shape data of the three-dimensional model by the exposure curing means, and controlling a vertical position of the mounting means with respect to the liquid surface; and
In the container, a smoothing device for smoothing the liquid surface including the exposure cured portion of the three-dimensional model mounted on the mounting means is provided, and has a predetermined thickness on the layer formed by the exposure curing. An optical modeling apparatus for manufacturing the three-dimensional model by sequentially laminating a cured layer by repeatedly applying and forming an uncured resin layer and exposing and curing the uncured layer,
The smoothing device in the stereolithography apparatus is
A smooth body provided to be movable in parallel with the liquid surface of the photocurable resin;
A bow part that forms an isosceles triangle shape that moves in the liquid surface of the photo-curing resin by the smooth part main body and protrudes toward the traveling direction; and
An optical modeling apparatus, comprising: an edge portion formed to protrude toward a traveling direction of the smoothing device at a lower end portion of the bow portion.
前記請求項1に記載した光造形装置において、前記平滑装置は、前記船首部と前記エッジ部とを、前記平滑装置の移動方向の前後に備えていることを特徴とする光造形装置。   The optical modeling apparatus according to claim 1, wherein the smoothing device includes the bow portion and the edge portion before and after the smoothing device in the moving direction. 前記請求項2に記載した光造形装置において、前記平滑装置を構成する前記船首部と前記エッジ部とを、それぞれ異なる平滑部品により、一体に形成し、かつ、当該前記船首部の下端部には、前記エッジ部とは反対側の端部に、当該エッジ部より小さい第2のエッジ部を形成したことを特徴とする光造形装置。   The stereolithography apparatus according to claim 2, wherein the bow portion and the edge portion constituting the smoothing device are integrally formed by different smooth parts, and at the lower end portion of the bow portion. An optical modeling apparatus, wherein a second edge portion smaller than the edge portion is formed at an end opposite to the edge portion. 前記請求項1に記載した光造形装置において、前記平滑装置を構成する前記船首部と前記エッジ部とを、前記容器の内部に留める異なる光硬化樹脂に対応する角度で、複数形成し、もって、異なる光硬化樹脂に対して当該平滑装置の前記船首部と前記エッジ部とを取替え可能としたことを特徴とする光造形装置。   In the stereolithography apparatus according to claim 1, a plurality of the bow portion and the edge portion constituting the smoothing device are formed at an angle corresponding to different photo-curing resins that are held inside the container, An optical modeling apparatus characterized in that the bow portion and the edge portion of the smoothing device can be exchanged for different photo-curing resins.
JP2008269623A 2008-10-20 2008-10-20 Stereolithography apparatus Withdrawn JP2010094938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269623A JP2010094938A (en) 2008-10-20 2008-10-20 Stereolithography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269623A JP2010094938A (en) 2008-10-20 2008-10-20 Stereolithography apparatus

Publications (1)

Publication Number Publication Date
JP2010094938A true JP2010094938A (en) 2010-04-30

Family

ID=42256976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269623A Withdrawn JP2010094938A (en) 2008-10-20 2008-10-20 Stereolithography apparatus

Country Status (1)

Country Link
JP (1) JP2010094938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105818382A (en) * 2016-04-15 2016-08-03 浙江大学 Method for constructing three-dimensional structure based on digital light processing
CN113942224A (en) * 2021-09-23 2022-01-18 深圳摩方新材科技有限公司 Scraper for one-way bubble scraping, bubble scraping device and bubble scraping method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105818382A (en) * 2016-04-15 2016-08-03 浙江大学 Method for constructing three-dimensional structure based on digital light processing
CN105818382B (en) * 2016-04-15 2017-12-22 浙江大学 A kind of method based on digital light processing structure three-dimensional structure
CN113942224A (en) * 2021-09-23 2022-01-18 深圳摩方新材科技有限公司 Scraper for one-way bubble scraping, bubble scraping device and bubble scraping method
CN113942224B (en) * 2021-09-23 2023-06-06 深圳摩方新材科技有限公司 Scraper, bubble scraping device and bubble scraping method for scraping bubbles in one direction

Similar Documents

Publication Publication Date Title
RU2569516C2 (en) Method of making 3d object and stereolithographic machine to this end
JP3803735B2 (en) Light solidification modeling device that performs optical scanning simultaneously with recoating
US11738511B2 (en) Additive manufacturing using foaming radiation-curable resin
US9079357B2 (en) Method for the layered construction of a shaped body made of highly viscous photopolymerizable material
US9120270B2 (en) Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer
CN201070835Y (en) Resin liquid level control and coating device for photo-curing rapid-shaping equipment
US20130292862A1 (en) Solid Image Apparatus With Improved Part Separation From The Image Plate
JP6058819B2 (en) 3D object production
US10173411B2 (en) Three-dimensional printing apparatus
CN105711088A (en) Light-cured 3D printer
JP6380948B2 (en) Powder material supply device for 3D modeling equipment
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
CN205601188U (en) Photocuring 3D printing apparatus based on DLP
JP2019136923A (en) Three dimensional modeling method
Hsiao et al. Single-digit-micrometer-resolution continuous liquid interface production
CN108437452A (en) A kind of 3D formation systems moving spliced upper projection pattern
JP2010094938A (en) Stereolithography apparatus
JPH0976354A (en) Stereoscopic shaping apparatus
CN208789091U (en) A kind of 3D formation system moving spliced upper projection pattern
JPH10249943A (en) Apparatus for stereo lithography
JP4923159B2 (en) Stereolithography equipment
JPH08156105A (en) Shaping device by photo-setting with controller for solution surface height
JP2016078306A (en) Shaping apparatus
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JP6385045B2 (en) Manufacturing method of molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101125