JP2010093213A - Semiconductor element - Google Patents

Semiconductor element Download PDF

Info

Publication number
JP2010093213A
JP2010093213A JP2008264545A JP2008264545A JP2010093213A JP 2010093213 A JP2010093213 A JP 2010093213A JP 2008264545 A JP2008264545 A JP 2008264545A JP 2008264545 A JP2008264545 A JP 2008264545A JP 2010093213 A JP2010093213 A JP 2010093213A
Authority
JP
Japan
Prior art keywords
plane
compound semiconductor
electrode
short
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008264545A
Other languages
Japanese (ja)
Other versions
JP5135612B2 (en
Inventor
Yoshinobu Fujimoto
佳伸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2008264545A priority Critical patent/JP5135612B2/en
Publication of JP2010093213A publication Critical patent/JP2010093213A/en
Application granted granted Critical
Publication of JP5135612B2 publication Critical patent/JP5135612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a less deteriorated characteristics semiconductor element by reducing an influence on element characteristics by diffusion of metal to a compound semiconductor film. <P>SOLUTION: A semiconductor element includes: a compound semiconductor film 1 having a mesa structure formed on a substrate; a short-circuitted electrode 2 formed on a compound semiconductor film 1; and a takeout electrode 3 for electrical connection with the outside. The short-circuitted electrode 2 and the takeout electrode 3 joins with a mesa part of the compound semiconductor film 1. A junction plane of the takeout electrode 3 and the compound semiconductor film 1 with a long side end part of the mesa structure ranges between -15 to +15° with respect to at least one plane among parallel plane to (111) plane, (1-1-1) plane, (-11-1) plane, and (-1-11) plane in a range of -15 to +15° with respect to a plane parallel to (11-1) plane, (1-11) plane, (-111) plane, and (-1-1-1) plane no junction part is formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子に関する。   The present invention relates to a semiconductor element.

以下に、半導体素子の例として、磁電変換素子について説明する。
一般に、磁電変換素子は、素子の入力端子間にバイアスをかけ、周囲の磁界の変化に応じて素子内を流れるキャリアの行路が変化することで、出力端子に起電力が生じたり、素子の抵抗値が変化したりすることで磁界強度の測定を行う素子である。このような磁電変換素子は、強磁性体からなる歯車の回転を検出する検出素子などとして用いられている。
Hereinafter, a magnetoelectric conversion element will be described as an example of the semiconductor element.
In general, a magnetoelectric conversion element applies a bias between the input terminals of the element, and the path of carriers flowing in the element changes according to the change of the surrounding magnetic field, thereby generating an electromotive force at the output terminal or the resistance of the element. It is an element that measures the magnetic field strength by changing the value. Such a magnetoelectric conversion element is used as a detection element for detecting the rotation of a gear made of a ferromagnetic material.

磁電変換素子の磁気抵抗効果は、以下の式によって記述することができる。
ΔR/R0∝(μB)2 :低印加磁界時
ΔR/R0∝(μB) :高印加磁界時
ここで、ΔR=RB−R0であり、RBは磁界中での抵抗値、R0は磁界なしでの抵抗値、μは電子移動度、Bは印加磁界である。ΔR/R0は、磁電変換素子の感度に相当し、低磁場中では電子移動度μの2乗に比例し、高磁場中では電子移動度μに比例する。よって、磁電変換素子では、より高い感度(ΔR/R0)を得るために、電子移動度μの高いInSbのバルクや、真空蒸着法により形成した薄膜などが用いられている。
The magnetoresistive effect of the magnetoelectric conversion element can be described by the following equation.
ΔR / R 0 α (μB) 2: low applied magnetic field when ΔR / R 0 α (μB) : where at high applied magnetic field, is ΔR = R B -R 0, R B is the resistance in the magnetic field, R 0 is a resistance value without a magnetic field, μ is an electron mobility, and B is an applied magnetic field. ΔR / R 0 corresponds to the sensitivity of the magnetoelectric conversion element, and is proportional to the square of the electron mobility μ in a low magnetic field and proportional to the electron mobility μ in a high magnetic field. Therefore, in order to obtain higher sensitivity (ΔR / R 0 ), the magnetoelectric conversion element uses a bulk of InSb having a high electron mobility μ, a thin film formed by a vacuum deposition method, or the like.

磁電変換素子では一般に、基板上に化合物半導体薄膜がミアンダ状に形成され、その上に短絡電極が複数形成されている。また、外部との電気的接続を行うための取り出し電極を備え、この取り出し電極に外部端子を接続することによって、外部との電気的接続が行われる。   In a magnetoelectric conversion element, a compound semiconductor thin film is generally formed on a substrate in a meander shape, and a plurality of short-circuit electrodes are formed thereon. In addition, an extraction electrode for electrical connection with the outside is provided, and an external terminal is connected to the extraction electrode, whereby electrical connection with the outside is performed.

短絡電極および取り出し電極の構造は、電気抵抗率および取り出し電極のボンディング性を考慮して決定される。多層構造で形成される電極の最上層の電極層には、一般的に、Au、Al、またはCuなどが用いられる。また、最下層の電極層は、化合物半導体薄膜との密着性向上のため、Cr、Ni、Ti、またはPdの単体、もしくはこれらの組み合わせからなる合金とすることが多い。電極を構成する金属が半導体薄膜へ拡散することを防止するという観点からは、最下層の電極層は厚い方が好ましいが、最下層の電極層の厚さが大きい場合、電極の抵抗が大きくなるため、磁電変換素子としての感度が低下してしまう。   The structures of the short-circuit electrode and the extraction electrode are determined in consideration of the electrical resistivity and the bonding property of the extraction electrode. In general, Au, Al, Cu, or the like is used for the uppermost electrode layer of the electrode formed in a multilayer structure. In addition, the lowermost electrode layer is often made of Cr, Ni, Ti, or Pd alone or an alloy made of a combination thereof in order to improve adhesion to the compound semiconductor thin film. From the viewpoint of preventing the metal constituting the electrode from diffusing into the semiconductor thin film, the lowermost electrode layer is preferably thicker. However, when the lowermost electrode layer is thick, the resistance of the electrode increases. Therefore, the sensitivity as a magnetoelectric conversion element is reduced.

電極を構成する金属が半導体薄膜へ拡散し、磁電変換素子の特性が変化してしまうという問題の解決方法としては、半導体薄膜と短絡電極とを保護する保護膜を形成する耐熱性樹脂の硬化温度を、280℃以下とすることが知られている(例えば、特許文献1参照)。   As a solution to the problem that the metal constituting the electrode diffuses into the semiconductor thin film and the characteristics of the magnetoelectric conversion element change, the curing temperature of the heat-resistant resin that forms a protective film that protects the semiconductor thin film and the short-circuit electrode Is known to be 280 ° C. or lower (see, for example, Patent Document 1).

特開2003−304009号公報JP 2003-304209 A

近年、高分解能の検出、および、回転媒体の小型化により、磁電変換素子の微細化が要望されている。しかしながら、磁電変換素子の微細化に伴い、化合物半導体の特性変化や電極との接触抵抗変化等の小さな特性変化が、磁電変換素子の特性に大きな影響を及ぼすようになってきた。微細な磁電変換素子においては、前述した特許文献1に記載の方法を用いても特性の劣化が生じてしまい、信頼性の高い磁電変換素子を得るには不十分であった。   In recent years, miniaturization of magnetoelectric transducers has been demanded due to high-resolution detection and miniaturization of rotating media. However, with the miniaturization of magnetoelectric conversion elements, small characteristic changes such as changes in the characteristics of compound semiconductors and changes in contact resistance with electrodes have come to have a great influence on the characteristics of magnetoelectric conversion elements. In a fine magnetoelectric conversion element, even if the method described in Patent Document 1 described above is used, the characteristics are deteriorated, which is insufficient to obtain a highly reliable magnetoelectric conversion element.

本発明は、このような問題を鑑みてなされたものであり、その目的とするところは、化合物半導体膜への金属の拡散が素子の特性へ与える影響を小さくし、その結果として特性変動を小さくした半導体素子を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to reduce the influence of metal diffusion into the compound semiconductor film on the characteristics of the device, and as a result, to reduce the characteristic fluctuation. An object of the present invention is to provide a semiconductor device.

このような目的を達成するために、請求項1に記載の発明は、基板上に形成されたメサ構造を有する化合物半導体膜と、前記化合物半導体膜上に形成された短絡電極と、外部との電気的接続を行うための取り出し電極とを備えた半導体素子であって、前記短絡電極および前記取り出し電極は、前記化合物半導体膜のメサ部分に接合し、前記取り出し電極と前記化合物半導体膜の前記メサ構造の長辺端部との接合面は、(111)面、(1−1−1)面、(−11−1)面、および(−1−11)面に平行な面のうち、少なくとも1つの面に対して−15°〜+15°の範囲であり、(11−1)面、(1−11)面、(−111)面、および(−1−1−1)面に平行な面に対して−15°〜+15°の範囲では、接合部が無いように形成されたことを特徴とする。   In order to achieve such an object, the invention described in claim 1 includes a compound semiconductor film having a mesa structure formed on a substrate, a short-circuit electrode formed on the compound semiconductor film, and an outside. A semiconductor element comprising an extraction electrode for electrical connection, wherein the short-circuit electrode and the extraction electrode are joined to a mesa portion of the compound semiconductor film, and the extraction electrode and the mesa of the compound semiconductor film The joint surface with the long side end of the structure is at least one of a (111) plane, a (1-1-1) plane, a (-11-1) plane, and a plane parallel to the (-1-11) plane. It is in the range of −15 ° to + 15 ° with respect to one plane, and is parallel to the (11-1) plane, the (1-11) plane, the (−111) plane, and the (−1-1-1) plane. In the range of -15 ° to + 15 ° with respect to the surface, it is formed so that there is no joint. It is characterized in.

請求項2に記載の発明は、請求項1に記載の半導体素子であって、前記化合物半導体膜の前記メサ構造の上面が(100)面に平行な面であり、前記取り出し電極と前記化合物半導体膜の前記メサ構造の前記長辺端部との前記接合面は、(111)面または(1−1−1)面に平行な面に対して−15°〜+15°の範囲であることを特徴とする。   A second aspect of the present invention is the semiconductor element according to the first aspect, wherein an upper surface of the mesa structure of the compound semiconductor film is a plane parallel to a (100) plane, and the extraction electrode and the compound semiconductor The joint surface of the mesa structure with the long side end of the film is in a range of −15 ° to + 15 ° with respect to the (111) plane or the plane parallel to the (1-1-1) plane. Features.

請求項3に記載の発明は、請求項1または2に記載の半導体素子であって、前記化合物半導体膜が、InaAlbGa(1-a-b)AsxSb(1-x)(0≦a≦1、0≦b<1、0≦a+b≦1、0≦x≦1)からなることを特徴とする。 The invention according to claim 3 is the semiconductor element according to claim 1 or 2, wherein the compound semiconductor film is In a Al b Ga (1-ab) As x Sb (1-x) (0 ≦ a ≦ 1, 0 ≦ b <1, 0 ≦ a + b ≦ 1, 0 ≦ x ≦ 1).

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の半導体素子であって、前記短絡電極および前記取り出し電極が、Auの単体もしくはAuの合金からなる単層または多層で構成されることを特徴とする。   Invention of Claim 4 is a semiconductor element in any one of Claim 1 thru | or 3, Comprising: The said short circuit electrode and the said extraction electrode are comprised by the single layer or the multilayer which consists of the single-piece | unit of Au, or the alloy of Au It is characterized by being.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の半導体素子であって、前記短絡電極および前記取り出し電極の最下層がTiであり、前記Tiの厚さが10〜200nmであることを特徴とする。   Invention of Claim 5 is a semiconductor element in any one of Claim 1 thru | or 4, Comprising: The lowermost layer of the said short circuit electrode and the said extraction electrode is Ti, and the thickness of the said Ti is 10-200 nm It is characterized by being.

請求項6に記載の発明は、請求項1乃至5のいずれかに記載の半導体素子であって、前記半導体素子が、ホール素子または磁気抵抗素子であることを特徴とする。   A sixth aspect of the present invention is the semiconductor element according to any one of the first to fifth aspects, wherein the semiconductor element is a Hall element or a magnetoresistive element.

請求項7に記載の発明は、請求項1乃至6のいずれかに記載の半導体素子であって、前記化合物半導体膜の短辺の長さが5μmから150μmであり、同一の前記化合物半導体膜における前記短絡電極間の距離が0.5μmから30μmであることを特徴とする。   A seventh aspect of the present invention is the semiconductor element according to any one of the first to sixth aspects, wherein a short side of the compound semiconductor film is 5 μm to 150 μm in the same compound semiconductor film. The distance between the short-circuit electrodes is 0.5 μm to 30 μm.

本発明によれば、微細な磁電変換素子においても特性変動が小さい半導体素子を提供することが可能となる。   According to the present invention, it is possible to provide a semiconductor element having a small characteristic fluctuation even in a fine magnetoelectric conversion element.

以下に、添付の図面を参照しながら、本発明の実施形態について詳細に説明する。なお、複数の図面において同一の符号は同一物を表し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol represents the same thing in several drawing, and the repeated description is abbreviate | omitted.

図1は、本発明の一実施形態に係る磁電変換素子を示す。より具体的には、図1(a)は、磁電変換素子の構造を示し、図1(b)は、この磁電変換素子に関する面方位を示す。   FIG. 1 shows a magnetoelectric transducer according to an embodiment of the present invention. More specifically, FIG. 1A shows the structure of the magnetoelectric conversion element, and FIG. 1B shows the plane orientation of the magnetoelectric conversion element.

この磁電変換素子は、絶縁基板上でミアンダ状に形成された、抵抗値が磁界によって変化する化合物半導体膜1から成る感磁部と、化合物半導体膜上に形成された複数の短絡電極2とを備える。また、外部との電気的接続を行うための取り出し電極3を備え、この取り出し電極3に外部端子を接続することによって、外部との電気的接続が行われる。   This magnetoelectric conversion element includes a magnetosensitive part formed of a compound semiconductor film 1 having a resistance value changed by a magnetic field, formed in a meander shape on an insulating substrate, and a plurality of short-circuit electrodes 2 formed on the compound semiconductor film. Prepare. In addition, an extraction electrode 3 for electrical connection to the outside is provided, and an external terminal is connected to the extraction electrode 3, whereby electrical connection to the outside is performed.

磁電変換素子の感磁部を構成する化合物半導体は、InSbやInAsのバルク、あるいは、InSb、InAs、またはInaAlbGa(1-a-b)AsxSb(1-x)(0≦a+b≦1、0≦x≦1)からなる薄膜であることが好ましいが、本発明においては、化合物半導体であれば良く、その構成元素を限定するものではない。化合物半導体膜の膜厚は通常、0.1〜4μmであるが、好ましくは0.2〜2μmであり、さらに好ましくは0.3〜1.5μmである。また、Siや、Sn、S、Se、Te、Ge、またはCなどの不純物をドープしたものであっても良い。 The compound semiconductor constituting the magnetosensitive part of the magnetoelectric conversion element is a bulk of InSb or InAs, or InSb, InAs, or In a Al b Ga (1-ab) As x Sb (1-x) (0 ≦ a + b ≦ 1, 0 ≦ x ≦ 1) is preferable. However, in the present invention, any compound semiconductor may be used, and the constituent elements thereof are not limited. The thickness of the compound semiconductor film is usually 0.1 to 4 μm, preferably 0.2 to 2 μm, and more preferably 0.3 to 1.5 μm. Further, it may be doped with impurities such as Si, Sn, S, Se, Te, Ge, or C.

化合物半導体が薄膜である場合、薄膜を形成する方法としては、真空蒸着法や分子線エピタキシー(MBE)法などが好ましいが、必ずしもこれらの形成方法でなくても良い。取り出し電極3や短絡電極2は、蒸着法、スパッタ法、またはめっき法などを用いて形成され、Cu、Al、Au単層、または、Ti/Au、Ni/Au、Cr/Cu、Cu/Ni/Au、Ti/Au/Ni、Cr/Au/Ni、Cr/Ni/Au/Ni、Ti/Pt/Au、NiCr/Auの積層などとしても良い。例えばTi/Auの場合、Tiが下層であり、Auが上層である。また、取り出し電極3と短絡電極2は、必ずしも同じ電極構造でなくても良い。   When the compound semiconductor is a thin film, a vacuum deposition method, a molecular beam epitaxy (MBE) method, or the like is preferable as a method for forming the thin film. The extraction electrode 3 and the short-circuit electrode 2 are formed by using a vapor deposition method, a sputtering method, a plating method, or the like, and are Cu, Al, Au single layer, or Ti / Au, Ni / Au, Cr / Cu, Cu / Ni. / Au, Ti / Au / Ni, Cr / Au / Ni, Cr / Ni / Au / Ni, Ti / Pt / Au, NiCr / Au, etc. For example, in the case of Ti / Au, Ti is the lower layer and Au is the upper layer. Further, the extraction electrode 3 and the short-circuit electrode 2 do not necessarily have the same electrode structure.

なお、電極層がTi/Auの場合、Ti層を厚くすることでAuの化合物半導体への拡散を小さくすることができるが、その反面、抵抗値が大きくなり、磁電変換素子としての感度が低下してしまう。本発明においては電極層の厚さを規定するものではないが、多層で形成された電極の場合、下層の厚さ、例えばTi/Auの場合のTi層の厚さは通常、5〜400nmであるが、好ましくは10〜300nmであり、さらに好ましくは10〜200nmである。   When the electrode layer is Ti / Au, the diffusion of Au into the compound semiconductor can be reduced by increasing the thickness of the Ti layer, but on the other hand, the resistance value increases and the sensitivity as a magnetoelectric conversion element decreases. Resulting in. In the present invention, the thickness of the electrode layer is not specified, but in the case of an electrode formed in multiple layers, the thickness of the lower layer, for example, the thickness of the Ti layer in the case of Ti / Au is usually 5 to 400 nm. However, it is preferably 10 to 300 nm, and more preferably 10 to 200 nm.

また、化合物半導体を保護する保護膜の材料は、一般的には絶縁性無機質材料であることが好ましい。保護膜には、例えば、窒化シリコンや酸化ケイ素等の薄膜を、プラズマCVD法等により150〜500nm程度形成したものが用いられるが、本発明においては、保護膜の有無、種類、および膜厚を規定するものではない。   In general, the material of the protective film that protects the compound semiconductor is preferably an insulating inorganic material. As the protective film, for example, a thin film made of silicon nitride, silicon oxide or the like formed by about 150 to 500 nm by a plasma CVD method or the like is used. In the present invention, the presence, type, and film thickness of the protective film are determined. It is not specified.

また、素子外部に形成されるモールド樹脂による化合物半導体や電極への圧力や面内応力を緩和する目的で、化合物半導体および短絡電極上を覆うように軟樹脂層が形成されることが多い。この軟樹脂層には、一般的に、1〜300μmのシリコン系樹脂や、1〜10μm厚のゴム系樹脂が用いられるが、本発明においては、軟樹脂層の有無、種類、および膜厚を規定するものではない。   In addition, a soft resin layer is often formed so as to cover the compound semiconductor and the short-circuit electrode for the purpose of relieving pressure and in-plane stress on the compound semiconductor and the electrode due to the mold resin formed outside the element. In general, a silicon-based resin having a thickness of 1 to 300 μm or a rubber-based resin having a thickness of 1 to 10 μm is used for the soft resin layer. In the present invention, the presence / absence, type, and thickness of the soft resin layer are determined. It is not specified.

また、化合物半導体をエッチングして得られた幅(電流に直交する方向の化合物半導体感磁部の幅)をWとし、短絡電極間の距離(素子長)をLとした場合、L/Wを形状因子と呼ぶ。本発明においては、形状因子L/Wを限定するものではないが、L/W=0.1から0.3が用いられることが多い。通常、電流に直交する方向の化合物半導体感磁部の幅W(化合物半導体の短辺の長さ)は、5μmから500μmであり、より好ましくは5μmから150μmであり、さらに好ましくは15μmから130μmである。また、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは、通常0.5μmから100μmであり、より好ましくは0.5μmから30μmであり、さらに好ましくは5μmから30μmである。   Further, when the width obtained by etching the compound semiconductor (the width of the compound semiconductor magnetosensitive portion in the direction orthogonal to the current) is W and the distance between the short-circuit electrodes (element length) is L, L / W is Called form factor. In the present invention, the shape factor L / W is not limited, but L / W = 0.1 to 0.3 is often used. Usually, the width W (the length of the short side of the compound semiconductor) of the compound semiconductor magnetosensitive portion in the direction orthogonal to the current is 5 μm to 500 μm, more preferably 5 μm to 150 μm, and still more preferably 15 μm to 130 μm. is there. In addition, the distance (element length) L between the short-circuit electrodes in the same compound semiconductor magnetosensitive part is usually 0.5 μm to 100 μm, more preferably 0.5 μm to 30 μm, and further preferably 5 μm to 30 μm. .

なお、本発明に係る半導体素子は、ホール素子または磁気抵抗素子であってもよい。   The semiconductor element according to the present invention may be a Hall element or a magnetoresistive element.

次に、本発明の一実施形態に係る磁電変換素子の作製方法について説明する。   Next, a method for producing a magnetoelectric conversion element according to an embodiment of the present invention will be described.

図2(a)〜(d)は、3端子の磁電変換素子の作製プロセスフローを示す図である。作製プロセスには、通常のフォトグラフィーの技術を用いることができる。また、図3および図4は、化合物半導体端部における、化合物半導体のメサ構造と電極との接合部の構造を示す図である。より具体的には、図3は、化合物半導体のメサ構造上面が(100)面に平行な面である構造を示し、図4は、全ての方位を記載したものである。   FIGS. 2A to 2D are diagrams showing a process flow for producing a three-terminal magnetoelectric transducer. A normal photographic technique can be used for the manufacturing process. 3 and 4 are diagrams showing the structure of the junction between the mesa structure of the compound semiconductor and the electrode at the end of the compound semiconductor. More specifically, FIG. 3 shows a structure in which the upper surface of the mesa structure of the compound semiconductor is a plane parallel to the (100) plane, and FIG. 4 shows all orientations.

図2(a)に示されるように、初めに、化合物半導体に感磁部のパターンを露光・現像し、その後、塩酸・過酸化水素系のエッチング液で所望の形状にメサエッチングして、基板6上に化合物半導体膜1を形成する。化合物半導体のメサ構造は、メサ構造上面に平行な面が(100)面である閃亜鉛鉱構造である。電極とメサ構造長辺端部との接合面は、(111)面または(1−1−1)面に平行な面に対して−15°〜+15°の範囲であり、(11−1)面、(1−11)面、(−111)面、および(−1−1−1)面に平行な面に対して、−15°〜+15°の範囲では接合部が無いようにパターン形成される。本実施形態では、(100)面である化合物半導体を例に説明しているが、(100)面に限らず、電極と化合物半導体との接合部が等価な面に感磁部のパターンが形成された磁電変換素子であれば良い。この場合、電極とメサ構造長辺端部との接合面は、(111)面、(1−1−1)面、(−11−1)面、または(−1−11)面に平行な面のうち、少なくとも1つの面に対して−15°〜+15°の範囲にある。   As shown in FIG. 2 (a), first, the pattern of the magnetically sensitive portion is exposed and developed on the compound semiconductor, and then mesa-etched into a desired shape with a hydrochloric acid / hydrogen peroxide-based etching solution. A compound semiconductor film 1 is formed on 6. The mesa structure of the compound semiconductor is a zinc blende structure in which a plane parallel to the upper surface of the mesa structure is a (100) plane. The joint surface between the electrode and the long side end of the mesa structure is in a range of −15 ° to + 15 ° with respect to the (111) plane or the plane parallel to the (1-1-1) plane, and (11-1) Pattern formation so that there is no joint in the range of -15 ° to + 15 ° with respect to the plane, (1-11) plane, (-111) plane, and plane parallel to the (-1-1-1) plane Is done. In this embodiment, the compound semiconductor having the (100) plane is described as an example. However, the pattern of the magnetosensitive portion is not limited to the (100) plane, and the junction of the electrode and the compound semiconductor is formed on the equivalent plane. Any magnetoelectric conversion element that has been used may be used. In this case, the joint surface between the electrode and the long side end of the mesa structure is parallel to the (111) plane, the (1-1-1) plane, the (-11-1) plane, or the (−1-11) plane. It is in the range of −15 ° to + 15 ° with respect to at least one of the surfaces.

電極を構成するAuなどの金属の、化合物半導体への拡散速度は、面方位によって異なり、(111)面、(1−1−1)面、(−11−1)面、および(−1−11)面では遅く、(11−1)面、(1−11)面、(−111)面、および(−1−1−1)面では速い。すなわち、(11−1)面、(1−11)面、(−111)面、および(−1−1−1)面に対して、−15°〜+15°の範囲では接合部が無いようにパターン形成することで、特性変動を小さくすることができる。感磁部のパターンの形成方法は、ドライ方式でも良く、塩酸・過酸化水素系以外のエッチング液を用いてもよい。   The diffusion rate of a metal such as Au constituting the electrode into the compound semiconductor varies depending on the plane orientation, and is a (111) plane, (1-1-1) plane, (-11-1) plane, and (-1- It is slow in the (11) plane, and fast in the (11-1) plane, the (1-11) plane, the (−111) plane, and the (−1-1-1) plane. That is, there is no joint in the range of −15 ° to + 15 ° with respect to the (11-1) plane, the (1-11) plane, the (−111) plane, and the (−1-1-1) plane. By forming a pattern on the surface, characteristic fluctuation can be reduced. The method for forming the pattern of the magnetic sensitive part may be a dry method, or an etching solution other than hydrochloric acid / hydrogen peroxide.

図3に示されるように、化合物半導体膜の感磁部の端部と、化合物半導体膜表面との成す角θは、通常、90°から150°である。より好ましくは、90°から135°であり、さらに好ましくは110°から135°である。   As shown in FIG. 3, the angle θ formed by the end of the magnetically sensitive portion of the compound semiconductor film and the surface of the compound semiconductor film is usually 90 ° to 150 °. More preferably, it is 90 ° to 135 °, and further preferably 110 ° to 135 °.

次いで、図2(b)に示されるように、窒化シリコン膜からなる保護膜4を、プラズマCVD法により感磁部上に形成する。   Next, as shown in FIG. 2B, a protective film 4 made of a silicon nitride film is formed on the magnetic sensitive part by plasma CVD.

次いで、図2(c)に示されるように、短絡電極2を形成する部分の保護膜4を、短絡電極2を形成する部分よりも狭い範囲で反応性イオンエッチング装置を用いて除去した後、短絡電極2および取り出し電極3を形成する。   Next, as shown in FIG. 2 (c), after removing the protective film 4 in the portion forming the short-circuit electrode 2 using a reactive ion etching apparatus in a range narrower than the portion forming the short-circuit electrode 2, A short-circuit electrode 2 and a take-out electrode 3 are formed.

最後に、図2(d)に示されるように、磁電変換素子の感磁部面上に、軟樹脂層5を形成する。   Finally, as shown in FIG. 2 (d), the soft resin layer 5 is formed on the magnetosensitive part surface of the magnetoelectric transducer.

このようにして、3つの端子電極(取り出し電極)を有し、各端子電極間に複数の短絡電極を有する3端子構成の磁電変換素子を、フォトリソグラフィーを応用して作成することができる。   In this manner, a three-terminal magnetoelectric transducer having three terminal electrodes (extraction electrodes) and having a plurality of short-circuit electrodes between the terminal electrodes can be produced by applying photolithography.

なお、本実施形態では、3端子の磁電変換素子を用いて説明を行ったが、本発明においては、端子数を規定するものではなく、例えば4端子であっても良い。また、化合物半導体は閃亜鉛鉱構造の化合物半導体であればよく、バルクであっても良い。また、電極を形成した後に保護膜を形成しても良く、保護膜の種類は窒化シリコンでなくても良い。保護膜を除去する方法は、反応性イオンエッチングではなく、他のドライエッチングやウエットエッチング方式であっても良い。また、端子電極と短絡電極は2度に分けて形成しても良い。   Although the present embodiment has been described using a three-terminal magnetoelectric conversion element, in the present invention, the number of terminals is not specified, and for example, four terminals may be used. The compound semiconductor may be a compound semiconductor having a zinc blende structure and may be bulk. Further, the protective film may be formed after the electrode is formed, and the type of the protective film may not be silicon nitride. The method of removing the protective film may be other dry etching or wet etching methods instead of reactive ion etching. Further, the terminal electrode and the short-circuit electrode may be formed in two portions.

以下に、本発明について、実施例を挙げて更に詳細に説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
まず、厚さ0.63mmの半絶縁性GaAs単結晶基板の(100)面上に、分子線エピタキシー法を用いてSnドープInSb薄膜をエピタキシャル成長させた。成膜したInSbの厚さは1μmであり、電気特性を公知のファンデルポー法で測定したところ、電子濃度は7×1016/cm3、電子移動度は、40000cm2/Vsであった。
Example 1
First, a Sn-doped InSb thin film was epitaxially grown on a (100) plane of a semi-insulating GaAs single crystal substrate having a thickness of 0.63 mm by using molecular beam epitaxy. The thickness of the deposited InSb was 1 μm, and the electrical properties were measured by a known van der Pauw method. As a result, the electron concentration was 7 × 10 16 / cm 3 and the electron mobility was 40000 cm 2 / Vs.

次に、GaAs基板上に成膜したInSbの表面にフォトレジストを均一に塗布し、露光・現像した後に、塩酸・過酸化水素系のエッチング液でメサエッチングした。このとき、感磁部に電流が流れる向き、すなわち化合物半導体感磁部の長辺方向が、(011)面に垂直となる向きに感磁部を形成した。その上に、保護膜として、窒化シリコン薄膜をプラズマCVD法で150nm形成した。その後、再度フォトレジストを塗布した後に、短絡電極および取り出し電極を形成する部分の保護膜を、反応性イオンエッチング装置を用いて除去した。続いてフォトレジストを塗布して、短絡電極および取り出し電極を形成するための露光・現像を行い、真空蒸着法で電極を蒸着し、リフトオフ法で短絡電極および取り出し電極を形成した。電極厚は、Ti/Au=50nm/450nmとした。1層目のTiを形成後、真空中で引き続き2層目のAuを形成した。次に、モールド樹脂による圧力や面内応力を緩和するために、感磁部面上にゴム系樹脂を形成した。   Next, a photoresist was uniformly applied to the surface of InSb formed on the GaAs substrate, exposed and developed, and then mesa-etched with a hydrochloric acid / hydrogen peroxide-based etching solution. At this time, the magnetic sensitive part was formed in a direction in which current flows in the magnetic sensitive part, that is, a direction in which the long side direction of the compound semiconductor magnetic sensitive part is perpendicular to the (011) plane. A silicon nitride thin film having a thickness of 150 nm was formed thereon as a protective film by plasma CVD. Then, after applying a photoresist again, the protective film of the part which forms a short circuit electrode and a taking-out electrode was removed using the reactive ion etching apparatus. Subsequently, a photoresist was applied, exposure and development were performed to form a short-circuit electrode and a take-out electrode, electrodes were deposited by a vacuum evaporation method, and a short-circuit electrode and a take-out electrode were formed by a lift-off method. The electrode thickness was Ti / Au = 50 nm / 450 nm. After forming the first layer of Ti, the second layer of Au was subsequently formed in vacuum. Next, in order to relieve the pressure and in-plane stress due to the mold resin, a rubber-based resin was formed on the surface of the magnetic sensitive part.

このようにして、化合物半導体膜を感磁部とし、半導体感磁部の列が1素子あたり8列であり、端子電極間に複数の短絡電極を有する4端子の磁電変換素子を複数製作した。なお、図5に示される短絡電極間の距離7は4μm、化合物半導体膜のメサ構造端部の電極との接合面と、化合物半導体膜表面との成す角度θは、117°であった。(111)面あるいは(1−1−1)面からのずれは、約8°であった。電流に直交する方向、すなわち化合物半導体感磁部短辺の幅Wは56μmであり、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは11μmであった。   In this way, a plurality of four-terminal magnetoelectric conversion elements having a compound semiconductor film as a magnetic sensing portion, eight rows of semiconductor magnetic sensing portions per element, and a plurality of short-circuit electrodes between the terminal electrodes were manufactured. The distance 7 between the short-circuit electrodes shown in FIG. 5 was 4 μm, and the angle θ formed between the bonding surface of the compound semiconductor film with the electrode at the end of the mesa structure and the surface of the compound semiconductor film was 117 °. The deviation from the (111) plane or the (1-1-1) plane was about 8 °. The direction perpendicular to the current, that is, the width W of the short side of the compound semiconductor magnetic sensing part was 56 μm, and the distance (element length) L between the short-circuit electrodes in the same compound semiconductor magnetic sensitive part was 11 μm.

続いて裏面研削によって、GaAs基板を所定の厚さに研磨し、リードフレーム上に接着剤で接着した後に、プラスチックパッケージでモールドした。特性変化を評価するため、加速試験として121℃2atm100%のPCT試験を行った。36素子試験を行い、試験300時間で中点電位の変動量σが3.0mV(印加電圧5V)となり、変動量が小さく良い結果となった。   Subsequently, the GaAs substrate was polished to a predetermined thickness by backside grinding, adhered to the lead frame with an adhesive, and then molded with a plastic package. In order to evaluate the change in characteristics, a PCT test at 121 ° C. and 2 atm 100% was performed as an acceleration test. A 36-element test was conducted, and the fluctuation amount σ of the midpoint potential was 3.0 mV (applied voltage 5 V) after 300 hours of the test.

(比較例1)
(01−1)面に垂直に電流が流れる向きに感磁部を形成したことを除けば、実施例1と同様にして磁電変換素子を作成した。これは、実施例1の化合物半導体感磁部を(100)面上で90°回転させたことに相当する。化合物半導体膜のメサ構造端部の電極との接合面と、化合物半導体膜表面との成す角度θは、132°であった。(1−11)面あるいは(11−1)面からのずれは、約7°であった。また、電極厚は、Ti/Au=50nm/450nmであった。電流に直交する方向、すなわち化合物半導体感磁部短辺の幅Wは56μmであり、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは11μmであった。この素子の特性変化を評価するため、実施例1の素子に対する試験と同様の試験を行った結果、中点電位の変動量σは16.0mV(印加電圧5V)であった。電流が流れる向きを(011)面に垂直方向となるように感磁部を形成した実施例1では、中点電位の変動量σが3.0mV(印加電圧5V)であったのに対し、変動量が大きい結果となった。
(Comparative Example 1)
A magnetoelectric conversion element was produced in the same manner as in Example 1 except that the magnetosensitive part was formed in a direction in which current flows perpendicularly to the (01-1) plane. This corresponds to rotating the compound semiconductor magnetosensitive part of Example 1 by 90 ° on the (100) plane. The angle θ formed between the joint surface of the compound semiconductor film with the electrode at the end of the mesa structure and the surface of the compound semiconductor film was 132 °. The deviation from the (1-11) plane or the (11-1) plane was about 7 °. The electrode thickness was Ti / Au = 50 nm / 450 nm. The direction perpendicular to the current, that is, the width W of the short side of the compound semiconductor magnetic sensing part was 56 μm, and the distance (element length) L between the short-circuit electrodes in the same compound semiconductor magnetic sensitive part was 11 μm. As a result of performing a test similar to the test on the element of Example 1 in order to evaluate the characteristic change of this element, the fluctuation amount σ of the midpoint potential was 16.0 mV (applied voltage 5 V). In Example 1 in which the magnetosensitive part was formed so that the direction of current flow was perpendicular to the (011) plane, the variation σ of the midpoint potential was 3.0 mV (applied voltage 5 V), whereas The amount of fluctuation was large.

(実施例2)
電極厚をTi/Au=100nm/450nmとしたことを除けば、実施例1と同様に磁電変換素子を作成した。電流に直交する方向の化合物半導体感磁部の幅Wは54μmであり、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは11μmであった。この素子の特性変化を評価するため、実施例1の素子に対する試験と同様の試験を行った結果、中点電位の変動量σが1.2mV(印加電圧5V)となり、変動量が小さく良い結果となった。
(Example 2)
A magnetoelectric transducer was prepared in the same manner as in Example 1 except that the electrode thickness was Ti / Au = 100 nm / 450 nm. The width W of the compound semiconductor magnetosensitive part in the direction orthogonal to the current was 54 μm, and the distance (element length) L between the short-circuit electrodes in the same compound semiconductor magnetosensitive part was 11 μm. As a result of performing a test similar to the test on the element of Example 1 in order to evaluate the characteristic change of this element, the fluctuation amount σ of the midpoint potential is 1.2 mV (applied voltage 5 V), and the fluctuation amount is small and good. It became.

(実施例3)
電流に直交する方向の化合物半導体感磁部の幅Wは120μmであり、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは24μmであり、短絡電極間の距離7が12μmであることを除けば、実施例2と同様にして磁電変換素子を作成した。また、電極厚はTi/Au=100nm/450nmであった。この素子の特性変化を評価するため、実施例1の素子に対する試験と同様の試験を行った結果、中点電位の変動量σが1.3mV(印加電圧5V)となり、変動量が小さく良い結果となった。
(Example 3)
The width W of the compound semiconductor magnetosensitive part in the direction orthogonal to the current is 120 μm, the distance (element length) L between the shorting electrodes in the same compound semiconductor magnetosensitive part is 24 μm, and the distance 7 between the shorting electrodes is 12 μm. Except that, a magnetoelectric transducer was prepared in the same manner as in Example 2. The electrode thickness was Ti / Au = 100 nm / 450 nm. As a result of performing a test similar to the test on the element of Example 1 in order to evaluate the characteristic change of this element, the fluctuation amount σ of the midpoint potential is 1.3 mV (applied voltage 5 V), and the fluctuation amount is small and good. It became.

(実施例4)
半導体感磁部の数が16列であることを除けば、実施例3と同様にして磁電変換素子を作成した。電流に直交する方向の化合物半導体感磁部の幅Wは120μmであり、同一の化合物半導体感磁部における短絡電極間の距離(素子長)Lは24μmであり、短絡電極間の距離7は12μmであった。また、電極厚はTi/Au=100nm/450nmであった。この素子の特性変化を評価するため、実施例1の素子に対する試験と同様の試験を結果、中点電位の変動量σが2.3mV(印加電圧5V)となり、変動量が小さく良い結果となった。
Example 4
A magnetoelectric conversion element was produced in the same manner as in Example 3 except that the number of semiconductor magnetic sensing portions was 16 rows. The width W of the compound semiconductor magnetosensitive part in the direction orthogonal to the current is 120 μm, the distance (element length) L between the shorting electrodes in the same compound semiconductor magnetosensitive part is 24 μm, and the distance 7 between the shorting electrodes is 12 μm. Met. The electrode thickness was Ti / Au = 100 nm / 450 nm. In order to evaluate the characteristic change of this element, a test similar to the test on the element of Example 1 was performed. As a result, the fluctuation amount σ of the midpoint potential was 2.3 mV (applied voltage 5 V), and the fluctuation amount was small and good. It was.

このように、本発明によると、特性劣化が小さい半導体素子を提供することが可能となる。すなわち、取り出し電極間を接続する配線と、化合物半導体との接合部において、接合面の面方位を制御することにより、素子の信頼性を向上させることができる。   Thus, according to the present invention, it is possible to provide a semiconductor element with small characteristic deterioration. That is, the reliability of the element can be improved by controlling the surface orientation of the joint surface at the joint between the wiring connecting the extraction electrodes and the compound semiconductor.

本発明の一実施形態に係る磁電変換素子を示す図である。It is a figure which shows the magnetoelectric conversion element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁電変換素子の作製プロセスフローを示す図である。It is a figure which shows the preparation process flow of the magnetoelectric conversion element which concerns on one Embodiment of this invention. 化合物半導体端部における、化合物半導体のメサ構造と電極との接合部の構造を示す図である。It is a figure which shows the structure of the junction part of the mesa structure of a compound semiconductor and an electrode in the compound semiconductor edge part. 化合物半導体端部における、化合物半導体のメサ構造と電極との接合部の構造を示す図である。It is a figure which shows the structure of the junction part of the mesa structure of a compound semiconductor and an electrode in the compound semiconductor edge part. 本発明の一実施形態に係る磁電変換素子の一部を拡大した図である。It is the figure which expanded a part of magnetoelectric conversion element concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 化合物半導体膜
2 短絡電極
3 取り出し電極
4 保護膜
5 軟樹脂層
6 基板
7 短絡電極間の距離
DESCRIPTION OF SYMBOLS 1 Compound semiconductor film 2 Short electrode 3 Extraction electrode 4 Protective film 5 Soft resin layer 6 Substrate 7 Distance between short electrodes

Claims (7)

基板上に形成されたメサ構造を有する化合物半導体膜と、前記化合物半導体膜上に形成された短絡電極と、外部との電気的接続を行うための取り出し電極とを備えた半導体素子であって、
前記短絡電極および前記取り出し電極は、前記化合物半導体膜のメサ部分に接合し、
前記取り出し電極と前記化合物半導体膜の前記メサ構造の長辺端部との接合面は、(111)面、(1−1−1)面、(−11−1)面、および(−1−11)面に平行な面のうち、少なくとも1つの面に対して−15°〜+15°の範囲であり、(11−1)面、(1−11)面、(−111)面、および(−1−1−1)面に平行な面に対して−15°〜+15°の範囲では、接合部が無いように形成されたことを特徴とする半導体素子。
A semiconductor device comprising a compound semiconductor film having a mesa structure formed on a substrate, a short-circuit electrode formed on the compound semiconductor film, and an extraction electrode for electrical connection with the outside,
The short-circuit electrode and the extraction electrode are bonded to a mesa portion of the compound semiconductor film,
The bonding surface between the extraction electrode and the long side end of the mesa structure of the compound semiconductor film has a (111) plane, a (1-1-1) plane, a (-11-1) plane, and (-1- 11) It is a range of −15 ° to + 15 ° with respect to at least one of the planes parallel to the plane, and includes (11-1) plane, (1-11) plane, (−111) plane, and ( -1-1-1) A semiconductor element formed so as not to have a junction in a range of -15 ° to + 15 ° with respect to a plane parallel to the plane.
前記化合物半導体膜の前記メサ構造の上面が(100)面に平行な面であり、前記取り出し電極と前記化合物半導体膜の前記メサ構造の前記長辺端部との前記接合面は、(111)面または(1−1−1)面に平行な面に対して−15°〜+15°の範囲であることを特徴とする請求項1に記載の半導体素子。   An upper surface of the mesa structure of the compound semiconductor film is a plane parallel to a (100) plane, and the bonding surface between the extraction electrode and the long side end of the mesa structure of the compound semiconductor film is (111) 2. The semiconductor element according to claim 1, wherein the semiconductor element has a range of -15 [deg.] To +15 [deg.] With respect to a plane or a plane parallel to the (1-1-1) plane. 前記化合物半導体膜が、InaAlbGa(1-a-b)AsxSb(1-x)(0≦a≦1、0≦b<1、0≦a+b≦1、0≦x≦1)からなることを特徴とする請求項1または2に記載の半導体素子。 The compound semiconductor film is made of In a Al b Ga (1-ab) As x Sb (1-x) (0 ≦ a ≦ 1, 0 ≦ b <1, 0 ≦ a + b ≦ 1, 0 ≦ x ≦ 1). The semiconductor element according to claim 1, wherein: 前記短絡電極および前記取り出し電極が、Auの単体もしくはAuの合金からなる単層または多層で構成されることを特徴とする請求項1乃至3のいずれかに記載の半導体素子。   4. The semiconductor device according to claim 1, wherein the short-circuit electrode and the extraction electrode are formed of a single layer or a multilayer made of a single substance of Au or an alloy of Au. 前記短絡電極および前記取り出し電極の最下層がTiであり、前記Tiの厚さが10〜200nmであることを特徴とする請求項1乃至4のいずれかに記載の半導体素子。   5. The semiconductor element according to claim 1, wherein a lowermost layer of the short-circuit electrode and the extraction electrode is Ti, and a thickness of the Ti is 10 to 200 nm. 前記半導体素子が、ホール素子または磁気抵抗素子であることを特徴とする請求項1乃至5のいずれかに記載の半導体素子。   6. The semiconductor element according to claim 1, wherein the semiconductor element is a Hall element or a magnetoresistive element. 前記化合物半導体膜の短辺の長さが5μmから150μmであり、同一の前記化合物半導体膜における前記短絡電極間の距離が0.5μmから30μmであることを特徴とする請求項1乃至6のいずれかに記載の半導体素子。   The length of the short side of the compound semiconductor film is 5 μm to 150 μm, and the distance between the short-circuit electrodes in the same compound semiconductor film is 0.5 μm to 30 μm. A semiconductor device according to claim 1.
JP2008264545A 2008-10-10 2008-10-10 Semiconductor element Active JP5135612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264545A JP5135612B2 (en) 2008-10-10 2008-10-10 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264545A JP5135612B2 (en) 2008-10-10 2008-10-10 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2010093213A true JP2010093213A (en) 2010-04-22
JP5135612B2 JP5135612B2 (en) 2013-02-06

Family

ID=42255633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264545A Active JP5135612B2 (en) 2008-10-10 2008-10-10 Semiconductor element

Country Status (1)

Country Link
JP (1) JP5135612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030550A (en) * 2011-07-27 2013-02-07 Asahi Kasei Electronics Co Ltd Magnetoresistive element and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275178A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Semiconductor device and its production
JPH07170000A (en) * 1993-12-16 1995-07-04 Nippondenso Co Ltd Semiconductor device and its manufacture
JPH07176807A (en) * 1993-12-17 1995-07-14 Asahi Chem Ind Co Ltd Semiconductor element
JPH07245432A (en) * 1994-03-04 1995-09-19 Victor Co Of Japan Ltd Hall element and its manufacture
JPH11121874A (en) * 1997-10-21 1999-04-30 Sony Corp Semiconductor light emitting device and its manufacture
JP2004022678A (en) * 2002-06-13 2004-01-22 Asahi Kasei Corp Magnetoresistive semiconductor element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275178A (en) * 1975-12-18 1977-06-23 Matsushita Electric Ind Co Ltd Semiconductor device and its production
JPH07170000A (en) * 1993-12-16 1995-07-04 Nippondenso Co Ltd Semiconductor device and its manufacture
JPH07176807A (en) * 1993-12-17 1995-07-14 Asahi Chem Ind Co Ltd Semiconductor element
JPH07245432A (en) * 1994-03-04 1995-09-19 Victor Co Of Japan Ltd Hall element and its manufacture
JPH11121874A (en) * 1997-10-21 1999-04-30 Sony Corp Semiconductor light emitting device and its manufacture
JP2004022678A (en) * 2002-06-13 2004-01-22 Asahi Kasei Corp Magnetoresistive semiconductor element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030550A (en) * 2011-07-27 2013-02-07 Asahi Kasei Electronics Co Ltd Magnetoresistive element and method of manufacturing the same

Also Published As

Publication number Publication date
JP5135612B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5536339B2 (en) Thin film laminate, thin film magnetic sensor using the same, and manufacturing method thereof
JP3916870B2 (en) Magnetic sensor and manufacturing method thereof
JP2005337866A (en) Magnetic substance detector and semiconductor package
US5198795A (en) Magnetoelectric transducer and process for producing the same
JP4891425B2 (en) Hall element
JP4240306B2 (en) Rotation detector
KR940009999B1 (en) Magnetoelectric transducer and process for producing the same
JP5135612B2 (en) Semiconductor element
JP6654386B2 (en) Hall sensor
JP6017160B2 (en) Hall element
US20120038356A1 (en) Methods and Apparatuses for Low-Noise Magnetic Sensors
US10379175B2 (en) Low-noise magnetic sensors
JP5475485B2 (en) Magnetic detector
JP6301608B2 (en) Magnetic sensor and method of manufacturing magnetic sensor
JP2000138403A (en) Thin film magnetic sensor
JP2012204539A (en) Magnetoresistive element
JP6130672B2 (en) Hall element, method of manufacturing the same, and magnetic sensor
JP6144505B2 (en) Magnetic sensor device
JP4308084B2 (en) Magnetic detector
JP6017152B2 (en) Magnetoresistive element
JP6073565B2 (en) Magnetoresistive element
JP6082521B2 (en) Semiconductor element
JP5314261B2 (en) Semiconductor magnetoresistive element and design method thereof
KR102449792B1 (en) Manufacturing method of flexible magnetic sensor and the flexible magnetic sensor thereby
JP2013030550A (en) Magnetoresistive element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

R150 Certificate of patent or registration of utility model

Ref document number: 5135612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350