JP2010089719A - Power supply system for hybrid car - Google Patents

Power supply system for hybrid car Download PDF

Info

Publication number
JP2010089719A
JP2010089719A JP2008263692A JP2008263692A JP2010089719A JP 2010089719 A JP2010089719 A JP 2010089719A JP 2008263692 A JP2008263692 A JP 2008263692A JP 2008263692 A JP2008263692 A JP 2008263692A JP 2010089719 A JP2010089719 A JP 2010089719A
Authority
JP
Japan
Prior art keywords
power supply
power
control
power source
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008263692A
Other languages
Japanese (ja)
Inventor
Kenji Itagaki
憲治 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008263692A priority Critical patent/JP2010089719A/en
Publication of JP2010089719A publication Critical patent/JP2010089719A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To secure a power supply capacity necessary in EV mode, and to set an optimal power supply voltage in HV mode, in a hybrid car. <P>SOLUTION: The power supply system of a hybrid car is provided with a master power source, and first and second slave power sources. The master power source is connected to an MG(Motor-Generator) in both HV and EV modes. The first and second slave power sources are disconnected from the MG in HV mode, and either the first or second slave power source is connected to the MG in EV mode. N battery cells are required in total for traveling a predetermined target distance in EV mode. The Nm battery cells are distributed to the master power source for setting the output voltage Vm of the master power source to a lower limit value Vlow(HV) in a voltage control range β in HV mode, and residual (N-Nm) battery cells are uniformly distributed to the first and second slave power sources. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド車両の電源システムに関し、特に、動力源である回転電機と電力を授受可能な複数の電源を備えた電源システムに関する。   The present invention relates to a power supply system for a hybrid vehicle, and more particularly, to a power supply system including a plurality of power supplies that can exchange power with a rotating electrical machine that is a power source.

ハイブリッド車両には、動力源である回転電機と電力を授受可能な電源が備えられる。特開2003−209969号公報には、高電圧インバータおよびモータを低電圧電池モジュールで使用するための電源制御システムを備えたハイブリッド車両が開示されている。   A hybrid vehicle is provided with a power source capable of transmitting and receiving electric power to and from a rotating electric machine that is a power source. Japanese Patent Laid-Open No. 2003-209969 discloses a hybrid vehicle including a power supply control system for using a high voltage inverter and a motor in a low voltage battery module.

特開2003−209969号公報に開示された電源制御システムは、車両の電動牽引モータに調整済みの電力を提供する少なくとも1つのインバータと、それぞれが電池とブースト/バック直流・直流コンバータを有し、並列に配線され、少なくとも1つのインバータに直流電力を提供する複数の電源ステージとを備える。電源ステージは、少なくとも1つのインバータへの出力電圧を維持するよう制御される。
特開2003−209969号公報 特開2008−109840号公報 特開2007−335151号公報
The power supply control system disclosed in Japanese Patent Application Laid-Open No. 2003-209969 has at least one inverter that provides adjusted electric power to an electric traction motor of a vehicle, each having a battery and a boost / buck DC / DC converter, And a plurality of power supply stages that are wired in parallel and provide DC power to at least one inverter. The power stage is controlled to maintain an output voltage to at least one inverter.
JP 2003-209969 A JP 2008-109840 A JP 2007-335151 A

ところで、通常、ハイブリッド車両は、走行モードとして、電気走行モードとハイブリッド走行モードとを有する。これらの走行モードは、モータに供給すべき電圧範囲が異なる。すなわち、ハイブリッド走行モードでは、エンジンとモータとの双方の動力を用いて車両を走行させるため、モータの動力のみを用いる電気走行モードと比べて、モータに供給する電圧を低く設定することが可能となる。   By the way, normally, a hybrid vehicle has an electric travel mode and a hybrid travel mode as travel modes. These travel modes differ in the voltage range to be supplied to the motor. In other words, in the hybrid travel mode, the vehicle is driven using the power of both the engine and the motor, so that the voltage supplied to the motor can be set lower than in the electric travel mode using only the power of the motor. Become.

特開2003−209969号公報には、モータと電力を授受可能な複数の電源を備えたハイブリッド車両が開示されているが、走行モードに応じて複数の電源とモータとの接続状態をどのように制御するのか、また、走行モードおよび複数の電源の接続状態を考慮して、各電源の出力電圧をどのような値に設定するのかについて、何ら言及されていない。   Japanese Patent Application Laid-Open No. 2003-209969 discloses a hybrid vehicle having a plurality of power sources capable of transmitting and receiving electric power to and from a motor. How is the connection state between the plurality of power sources and the motor depending on the driving mode? There is no mention of what value to set the output voltage of each power supply in consideration of the control mode and the connection state of the plurality of power supplies.

本発明は、上述の課題を解決するためになされたものであって、その目的は、電気走行モードとハイブリッド走行モードとを走行モードとして有するハイブリッド車両において、電気走行モード時に必要な電源容量を確保しつつ、ハイブリッド走行制御時の電源電圧を最適な値にすることができる電源システムを提供することである。   The present invention has been made to solve the above-described problem, and an object of the present invention is to secure a necessary power capacity in the electric travel mode in a hybrid vehicle having the electric travel mode and the hybrid travel mode as travel modes. However, it is an object to provide a power supply system capable of setting the power supply voltage at the time of hybrid travel control to an optimum value.

この発明に係る電源システムは、内燃機関および回転電機の少なくともいずれかを動力源とするハイブリッド車両に搭載される、回転電機と電力を授受可能な電源システムである。ハイブリッド車両においては、内燃機関および回転電機の少なくともいずれかの動力でハイブリッド車両を走行させるハイブリッド走行制御、および内燃機関を用いずに回転電機の動力でハイブリッド車両を走行させる電気走行制御のいずれかの走行制御が実行される。電源システムは、ハイブリッド走行制御および電気走行制御のいずれの制御が実行される場合においても回転電機に接続される主電源と、ハイブリッド走行制御が実行される場合に回転電機と切り離され、電気走行制御が実行される場合に少なくとも1つが回転電機に接続される複数の副電源とを含む。主電源の出力電圧は、複数の副電源のいずれの出力電圧よりも低い値に設定される。   A power supply system according to the present invention is a power supply system that is mounted on a hybrid vehicle that uses at least one of an internal combustion engine and a rotating electric machine as a power source, and that can exchange electric power with the rotating electric machine. In the hybrid vehicle, any one of hybrid travel control that causes the hybrid vehicle to travel with the power of at least one of the internal combustion engine and the rotating electrical machine, and electrical travel control that causes the hybrid vehicle to travel with the power of the rotating electrical machine without using the internal combustion engine. Travel control is executed. The power supply system is separated from the main power source connected to the rotating electrical machine when either hybrid traveling control or electric traveling control is executed, and separated from the rotating electrical machine when hybrid traveling control is executed. Includes a plurality of sub power sources connected to the rotating electrical machine. The output voltage of the main power supply is set to a value lower than any output voltage of the plurality of sub power supplies.

好ましくは、電源システムは、回転電機と主電源との間に設けられ、主電源の出力電圧を回転電機の制御電圧範囲に含まれる値に変換して回転電機に出力する第1のコンバータと、回転電機と複数の副電源との間に設けられ、複数の副電源の出力電圧を回転電機の制御電圧範囲に含まれる値に変換して回転電機に出力する第2のコンバータとをさらに含む。ハイブリッド走行制御時における回転電機の最適制御電圧範囲の第1の下限値は、電気走行制御時における回転電機の制御電圧範囲の第2の下限値よりも低い。主電源の出力電圧は、第1の下限値に設定される。複数の副電源の出力電圧は、第1の下限値と第2の下限値の間の値に設定される。   Preferably, the power supply system is provided between the rotating electrical machine and the main power source, and converts the output voltage of the main power source into a value included in the control voltage range of the rotating electrical machine and outputs the value to the rotating electrical machine, A second converter provided between the rotating electrical machine and the plurality of sub power sources, and converting the output voltages of the plurality of sub power sources into values included in a control voltage range of the rotating electrical machine and outputting the values to the rotating electrical machine; The first lower limit value of the optimum control voltage range of the rotating electrical machine during the hybrid travel control is lower than the second lower limit value of the control voltage range of the rotating electrical machine during the electrical travel control. The output voltage of the main power supply is set to the first lower limit value. The output voltages of the plurality of sub power supplies are set to a value between the first lower limit value and the second lower limit value.

さらに好ましくは、主電源および複数の副電源の各々の内部には、直列に接続された複数の電池セルが備えられる。主電源および複数の副電源の各々は、内部に備えられた電池セルの数に応じた出力電圧を出力する。主電源には、電気走行制御時の走行可能距離を所定の目標距離以上に確保するために必要な電池セルの総数のうち、主電源の出力電圧が第1の下限値となる数の電池セルが備えられる。複数の副電源には、必要な電池セルの総数のうち、主電源に備えられた数以外の残余の数の電池セルが複数の副電源の各々に均等に備えられる。   More preferably, a plurality of battery cells connected in series are provided in each of the main power supply and the plurality of sub power supplies. Each of the main power supply and the plurality of sub power supplies outputs an output voltage corresponding to the number of battery cells provided therein. The main power source includes a number of battery cells in which the output voltage of the main power source is the first lower limit value out of the total number of battery cells necessary to ensure a travelable distance at the time of electric travel control equal to or greater than a predetermined target distance. Is provided. In the plurality of sub power sources, the remaining number of battery cells other than the number provided in the main power source out of the total number of necessary battery cells are equally provided in each of the plurality of sub power sources.

さらに好ましくは、ハイブリッド車両は、車両外部の電源からの電力を主電源および複数の副電源に充電可能なプラグインハイブリッド車両である。   More preferably, the hybrid vehicle is a plug-in hybrid vehicle capable of charging power from a power source outside the vehicle to a main power source and a plurality of sub power sources.

本発明によれば、電気走行モード時に必要な電源容量を確保しつつ、ハイブリッド走行制御時の電源電圧を最適な値にすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the power supply voltage at the time of hybrid driving control can be made into an optimal value, ensuring a power supply capacity required at the time of electric driving mode.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、この発明の実施の形態に係る車両の全体ブロック図である。図1を参照して、車両100は、電源システム1と、駆動力発生部2とを、ECU(Electronic Control Unit)8000とを含む。   FIG. 1 is an overall block diagram of a vehicle according to an embodiment of the present invention. Referring to FIG. 1, vehicle 100 includes a power supply system 1, a driving force generation unit 2, and an ECU (Electronic Control Unit) 8000.

駆動力発生部2は、第1インバータ30−1と、第2インバータ30−2と、第1MG(Motor-Generator)32−1と、第2MG32−2と、動力分割装置34と、エンジン36と、駆動輪38とを含む。   The driving force generator 2 includes a first inverter 30-1, a second inverter 30-2, a first MG (Motor-Generator) 32-1, a second MG 32-2, a power split device 34, and an engine 36. Drive wheel 38.

第1MG32−1、第2MG32−2およびエンジン36は、動力分割装置34に連結される。そして、この車両100は、エンジン36および第2MG32−2の少なくとも一方からの駆動力によって走行する。より具体的には、車両100は、電気走行モード(以下「EV走行モード」ともいう)およびハイブリッド走行モード(以下「HV走行モード」ともいう)のいずれかの走行モードで走行する。EV走行モードは、エンジン36の動力を用いずに第2MG32−2の動力によって車両100を走行させる走行モードである。HV走行モードは、エンジン36と第2MG32−2との動力によって車両100を走行させる走行モードである。ECU8000は、車両100の走行時に、EV走行モードで車両100を走行させるEV走行制御と、HV走行モードで車両100を走行させるHV走行制御とのいずれかの制御を行なう。   First MG 32-1, second MG 32-2 and engine 36 are coupled to power split device 34. The vehicle 100 travels with driving force from at least one of the engine 36 and the second MG 32-2. More specifically, vehicle 100 travels in any one of an electric travel mode (hereinafter also referred to as “EV travel mode”) and a hybrid travel mode (hereinafter also referred to as “HV travel mode”). The EV travel mode is a travel mode in which the vehicle 100 travels with the power of the second MG 32-2 without using the power of the engine 36. The HV travel mode is a travel mode in which the vehicle 100 is traveled by the power of the engine 36 and the second MG 32-2. When the vehicle 100 is traveling, the ECU 8000 performs either EV traveling control for traveling the vehicle 100 in the EV traveling mode or HV traveling control for traveling the vehicle 100 in the HV traveling mode.

エンジン36が発生する動力は、動力分割装置34によって2経路に分割される。すなわち、一方は駆動輪38へ伝達される経路であり、もう一方は第1MG32−1へ伝達される経路である。   The power generated by the engine 36 is divided into two paths by the power split device 34. That is, one is a path transmitted to the drive wheel 38, and the other is a path transmitted to the first MG 32-1.

第1MG32−1および第2MG32−2の各々は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える三相交流回転電機から成る。HV走行制御中においては、電源システム1に含まれる蓄電装置(後述)の充電状態を示す値であるSOC(State Of Charge)を所定範囲(たとえば40%程度〜60%程度)に維持するようにエンジン36が運転されて、動力分割装置34によって分割されたエンジン36の動力を用いて第1MG32−1による発電が行なわれる。第1MG32−1によって発電された電力は電源システム1へ供給される。   Each of the first MG 32-1 and the second MG 32-2 is an AC rotating electric machine, for example, a three-phase AC rotating electric machine including a rotor in which a permanent magnet is embedded. During HV traveling control, SOC (State Of Charge), which is a value indicating a charging state of a power storage device (described later) included in power supply system 1, is maintained within a predetermined range (for example, about 40% to 60%). The engine 36 is operated, and power generation by the first MG 32-1 is performed using the power of the engine 36 divided by the power split device 34. The electric power generated by the first MG 32-1 is supplied to the power supply system 1.

第2MG32−2は、電源システム1から供給される電力および第1MG32−1により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG32−2の駆動力は、駆動輪38に伝達される。なお、車両の制動時等には、駆動輪38により第2MG32−2が駆動され、第2MG32−2が発電機として作動する。これにより、第2MG32−2は、制動エネルギを電力に変換する回生ブレーキとして作動する。そして、第2MG32−2により発電された電力は、電源システム1へ供給される。   Second MG 32-2 generates driving force using at least one of the power supplied from power supply system 1 and the power generated by first MG 32-1. Then, the driving force of the second MG 32-2 is transmitted to the driving wheels 38. When the vehicle is braked, the second MG 32-2 is driven by the drive wheels 38, and the second MG 32-2 operates as a generator. Thus, second MG 32-2 operates as a regenerative brake that converts braking energy into electric power. Then, the electric power generated by the second MG 32-2 is supplied to the power supply system 1.

動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、第1MG32−1の回転軸に連結される。リングギヤは第2MG32−2の回転軸に連結される。   Power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear. The pinion gear engages with the sun gear and the ring gear. The carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36. The sun gear is connected to the rotation shaft of the first MG 32-1. The ring gear is coupled to the rotation shaft of second MG 32-2.

第1インバータ30−1および第2インバータ30−2は、主正母線MPLおよび主負母線MNLに接続される。そして、第1インバータ30−1および第2インバータ30−2は、電源システム1から供給される駆動電力(直流電力)を交流電力に変換してそれぞれ第1MG32−1および第2MG32−2へ出力する。また、第1インバータ30−1および第2インバータ30−2は、それぞれ第1MG32−1および第2MG32−2が発電する交流電力を直流電力に変換して回生電力として電源システム1へ出力する。   First inverter 30-1 and second inverter 30-2 are connected to main positive bus MPL and main negative bus MNL. Then, first inverter 30-1 and second inverter 30-2 convert drive power (DC power) supplied from power supply system 1 to AC power and output the AC power to first MG 32-1 and second MG 32-2, respectively. . Moreover, the first inverter 30-1 and the second inverter 30-2 convert the AC power generated by the first MG 32-1 and the second MG 32-2, respectively, into DC power and output it as regenerative power to the power supply system 1.

なお、第1インバータ30−1および第2インバータ30−2の各々は、たとえば、三相分のスイッチング素子を含むブリッジ回路から成る。そして、各インバータは、それぞれECU8000からの駆動信号PWIV1,PWIV2に応じてスイッチング動作を行なうことにより、対応のMGを駆動する。   Note that each of the first inverter 30-1 and the second inverter 30-2 includes, for example, a bridge circuit including switching elements for three phases. Each inverter drives a corresponding MG by performing a switching operation in accordance with drive signals PWIV1 and PWIV2 from ECU 8000, respectively.

ECU8000は、図示されない各センサの検出信号、走行状況およびアクセル開度などに基づいて車両要求パワーPsを算出し、その算出した車両要求パワーPsに基づいて第1MG32−1および第2MG32−2のトルク目標値および回転数目標値を算出する。そして、ECU8000は、第1MG32−1および第2MG32−2の発生トルクおよび回転数が目標値となるように第1インバータ30−1および第2インバータ30−2を制御する。   ECU 8000 calculates vehicle required power Ps based on detection signals of respective sensors (not shown), travel conditions, accelerator opening, and the like, and torques of first MG 32-1 and second MG 32-2 based on the calculated vehicle required power Ps. A target value and a rotational speed target value are calculated. ECU 8000 controls first inverter 30-1 and second inverter 30-2 so that the generated torque and rotation speed of first MG 32-1 and second MG 32-2 become target values.

電源システム1は、第1蓄電装置10−1と、第2蓄電装置10−2と、第3蓄電装置10−3と、第1コンバータ12−1と、第2コンバータ12−2と、第1切替装置18−1と、第2切替装置18−2と、主正母線MPLと、主負母線MNLと、平滑コンデンサCと、電流センサ14−1〜14−3と、電圧センサ16−1〜16−3,20と、充電装置11と、コネクタ13とを含む。   The power supply system 1 includes a first power storage device 10-1, a second power storage device 10-2, a third power storage device 10-3, a first converter 12-1, a second converter 12-2, Switching device 18-1, second switching device 18-2, main positive bus MPL, main negative bus MNL, smoothing capacitor C, current sensors 14-1 to 14-3, and voltage sensors 16-1 to 16-1. 16-3, 20, charging device 11, and connector 13.

充電装置11は、車両外部に設けられた電力会社の交流電源19からの電力を直流に変換して、第1蓄電装置10−1、第2蓄電装置10−2、第3蓄電装置10−3へ出力する。ECU8000は、電力会社の交流電源19に接続されたパドル15が車両側のコネクタ13に接続された場合、第1蓄電装置10−1、第2蓄電装置10−2、第3蓄電装置10−3の各々の充電状態を示す値であるSOCm、SOCs1、SOCs2が上限値(たとえば80%程度)になるように、充電装置11を制御する。すなわち、車両100は、車両外部の電源から供給された電力での走行が可能な車両(以下、「プラグイン車両」ともいう)である。なお、本発明に係る電源システムが適用可能な車両は、プラグイン車両であることに限定されない。   The charging device 11 converts electric power from an AC power supply 19 of an electric power company provided outside the vehicle into direct current, and the first power storage device 10-1, the second power storage device 10-2, and the third power storage device 10-3. Output to. When the paddle 15 connected to the AC power supply 19 of the electric power company is connected to the vehicle-side connector 13, the ECU 8000 includes the first power storage device 10-1, the second power storage device 10-2, and the third power storage device 10-3. The charging device 11 is controlled such that SOCm, SOCs1, and SOCs2, which are values indicating the respective charging states, become upper limit values (for example, about 80%). In other words, vehicle 100 is a vehicle capable of traveling with electric power supplied from a power source outside the vehicle (hereinafter also referred to as “plug-in vehicle”). The vehicle to which the power supply system according to the present invention is applicable is not limited to a plug-in vehicle.

第1蓄電装置10−1、第2蓄電装置10−2および第3蓄電装置10−3の各々は、たとえばニッケル水素やリチウムイオン等の電池セルを複数直列に接続した直流電源である。第1蓄電装置10−1、第2蓄電装置10−2および第3蓄電装置10−3の各々の出力電圧は、内部に備えられる電池セルの数で調整される。各蓄電装置の出力電圧(電池セルの数)については後述する。なお、第1蓄電装置10−1、第2蓄電装置10−2および第3蓄電装置10−3のいずれかが、たとえば再充電可能な大容量のキャパシタ等であってもよい。   Each of first power storage device 10-1, second power storage device 10-2, and third power storage device 10-3 is a DC power source in which a plurality of battery cells such as nickel hydride and lithium ion are connected in series. The output voltages of first power storage device 10-1, second power storage device 10-2, and third power storage device 10-3 are adjusted by the number of battery cells provided therein. The output voltage (number of battery cells) of each power storage device will be described later. Note that any of first power storage device 10-1, second power storage device 10-2, and third power storage device 10-3 may be, for example, a rechargeable large-capacity capacitor.

第1蓄電装置10−1は第1コンバータ12−1に接続され、第2蓄電装置10−2および第3蓄電装置10−3は第2切替装置18−2に接続される。   First power storage device 10-1 is connected to first converter 12-1, and second power storage device 10-2 and third power storage device 10-3 are connected to second switching device 18-2.

第1切替装置18−1は、第1蓄電装置10−1と第1コンバータ12−1との間に設けられ、ECU8000からの切替信号SW1に従って、第1蓄電装置10−1と第1コンバータ12−1との電気的な接続状態を切り替える。より具体的には、第1切替装置18−1は、システムリレーRY1を含む。切替信号SW1が非活性化されているとき、システムリレーRY1はオンされ、切替信号SW1が活性化されているとき、システムリレーRY1はオンされる。切替信号SW1は、図示しないイグニッションスイッチがユーザによってオンされた時に活性化される。すなわち、車両100の走行時においては、システムリレーRY1はオンに維持される。   First switching device 18-1 is provided between first power storage device 10-1 and first converter 12-1, and in accordance with switching signal SW1 from ECU 8000, first power storage device 10-1 and first converter 12 are provided. Switch the electrical connection state with -1. More specifically, the first switching device 18-1 includes a system relay RY1. When the switching signal SW1 is deactivated, the system relay RY1 is turned on. When the switching signal SW1 is activated, the system relay RY1 is turned on. The switching signal SW1 is activated when an unillustrated ignition switch is turned on by the user. That is, system relay RY1 is kept on when vehicle 100 is traveling.

第2切替装置18−2は、第2蓄電装置10−2および第3蓄電装置10−3と第2コンバータ12−2との間に設けられ、ECU8000からの切替信号SW2に従って、第2蓄電装置10−2および第3蓄電装置10−3と第2コンバータ12−2との電気的な接続状態を切り替える。より具体的には、第2切替装置18−2は、システムリレーRY2,RY3を含む。システムリレーRY2は、第2蓄電装置10−2と第2コンバータ12−2との間に配設される。システムリレーRY3は、第3蓄電装置10−3と第2コンバータ12−2との間に配設される。そして、ECU8000は、システムリレーRY2,RY3のそれぞれのオン,オフを制御するための切替信号SW2を生成して第2切替装置18−2へ出力する。   Second switching device 18-2 is provided between second power storage device 10-2 and third power storage device 10-3 and second converter 12-2, and in accordance with switching signal SW2 from ECU 8000, second power storage device 10-2, the third power storage device 10-3, and the electrical connection state of the second converter 12-2 are switched. More specifically, the second switching device 18-2 includes system relays RY2 and RY3. System relay RY2 is arranged between second power storage device 10-2 and second converter 12-2. System relay RY3 is arranged between third power storage device 10-3 and second converter 12-2. ECU 8000 generates a switching signal SW2 for controlling on / off of each of system relays RY2 and RY3, and outputs the switching signal SW2 to second switching device 18-2.

第1コンバータ12−1および第2コンバータ12−2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。第1コンバータ12−1は、ECU8000からの駆動信号PWC1に基づいて、第1蓄電装置10−1と主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。第2コンバータ12−2は、ECU8000からの駆動信号PWC2に基づいて、第2切替装置18−2によって第2コンバータ12−2に電気的に接続される第2蓄電装置10−2および第3蓄電装置10−3のいずれかと主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。   First converter 12-1 and second converter 12-2 are connected in parallel to main positive bus MPL and main negative bus MNL. First converter 12-1 performs voltage conversion between first power storage device 10-1, main positive bus MPL, and main negative bus MNL based on drive signal PWC1 from ECU 8000. Second converter 12-2, based on drive signal PWC2 from ECU 8000, second power storage device 10-2 and third power storage electrically connected to second converter 12-2 by second switching device 18-2. Voltage conversion is performed between any of the devices 10-3 and the main positive bus MPL and the main negative bus MNL.

平滑コンデンサCは、主正母線MPLと主負母線MNLとの間に接続され、主正母線MPLおよび主負母線MNLに含まれる電力変動成分を低減する。電圧センサ20は、主正母線MPLと主負母線MNLとの間の電圧Vhを検出し、その検出値をECU8000へ出力する。なお、電圧Vhは、第1インバータ30−1および第2インバータ30−2に入力される電圧である。以下においては、この電圧Vhを「システム電圧Vh」とも記載する。   Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components contained in main positive bus MPL and main negative bus MNL. Voltage sensor 20 detects voltage Vh between main positive bus MPL and main negative bus MNL, and outputs the detected value to ECU 8000. The voltage Vh is a voltage input to the first inverter 30-1 and the second inverter 30-2. Hereinafter, this voltage Vh is also referred to as “system voltage Vh”.

電流センサ14−1〜14−3は、第1蓄電装置10−1に対して入出力される電流Ib1、第2蓄電装置10−2に対して入出力される電流Ib2、および第3蓄電装置10−3に対して入出力される電流Ib3をそれぞれ検出し、その検出値をECU8000へ出力する。なお、各電流センサ14−1〜14−3は、対応の蓄電装置から出力される電流(放電電流)を正値として検出し、対応の蓄電装置に入力される電流(充電電流)を負値として検出する。なお、この図1では、各電流センサ14−1〜14−3が正極線の電流を検出する場合が示されているが、各電流センサ14−1〜14−3は負極線の電流を検出してもよい。   Current sensors 14-1 to 14-3 include current Ib1 input / output to / from first power storage device 10-1, current Ib2 input / output to / from second power storage device 10-2, and third power storage device. Current Ib3 input / output to / from 10-3 is detected, and the detected value is output to ECU 8000. Each of the current sensors 14-1 to 14-3 detects a current (discharge current) output from the corresponding power storage device as a positive value and a current (charge current) input to the corresponding power storage device as a negative value. Detect as. FIG. 1 shows a case where each of the current sensors 14-1 to 14-3 detects a positive line current, but each of the current sensors 14-1 to 14-3 detects a negative line current. May be.

電圧センサ16−1〜16−3は、第1蓄電装置10−1の電圧Vb1、第2蓄電装置10−2の電圧Vb2、および第3蓄電装置10−3の電圧Vb3をそれぞれ検出し、その検出値をECU8000へ出力する。   Voltage sensors 16-1 to 16-3 detect voltage Vb1 of first power storage device 10-1, voltage Vb2 of second power storage device 10-2, and voltage Vb3 of third power storage device 10-3, respectively. The detected value is output to ECU 8000.

ECU8000は、電流センサ14−1〜14−3および電圧センサ16−1〜16−3,20からの各検出値、ならびに車両要求パワーPsに基づいて、第1コンバータ12−1および第2コンバータ12−2をそれぞれ駆動するための駆動信号PWC1,PWC2、第1インバータ30−1および第2インバータ30−2をそれぞれ駆動するための駆動信号PWIV1,PWIV2、エンジン36を制御するPWENGを生成する。そして、ECU8000は、その生成した駆動信号PWC1,PWC2,PWIV1,PWIV2,PWENGを、それぞれ第1コンバータ12−1、第2コンバータ12−2、第1インバータ30−1、第2インバータ30−2、エンジン36へ出力する。   ECU 8000, based on the detected values from current sensors 14-1 to 14-3 and voltage sensors 16-1 to 16-3 and 20, and vehicle required power Ps, first converter 12-1 and second converter 12 -2 to drive drive signals PWC1 and PWC2 for driving the first inverter 30-1 and the second inverter 30-2, and PWENG for controlling the engine 36, respectively. Then, the ECU 8000 sends the generated drive signals PWC1, PWC2, PWIV1, PWIV2, and PWENG to the first converter 12-1, the second converter 12-2, the first inverter 30-1, the second inverter 30-2, Output to the engine 36.

ここで、ECU8000は、電源システム1から駆動力発生部2へ電力を供給する放電モード時(すなわち車両要求パワーPs>0)、第1コンバータ12−1に接続される第1蓄電装置10−1の放電余裕電力量と、第2切替装置18−2によって第2コンバータ12−2に接続可能な第2蓄電装置10−2および第3蓄電装置10−3の放電余裕電力量の合計との比率に応じて、第1蓄電装置10−1と第2切替装置18−2によって第2コンバータ12−2に電気的に接続された蓄電装置とから放電される電力の配分を示す放電分配率を算出する。そして、ECU8000は、その算出された放電分配率に従って第1コンバータ12−1および第2コンバータ12−2を制御する。   Here, ECU 8000 is a first power storage device 10-1 connected to first converter 12-1 in a discharge mode in which power is supplied from power supply system 1 to driving force generation unit 2 (that is, vehicle required power Ps> 0). Between the discharge margin power amount of the second power storage device 10-2 and the third power storage device 10-3 connectable to the second converter 12-2 by the second switching device 18-2 Accordingly, a discharge distribution ratio indicating a distribution of electric power discharged from the first power storage device 10-1 and the power storage device electrically connected to the second converter 12-2 by the second switching device 18-2 is calculated. To do. ECU 8000 controls first converter 12-1 and second converter 12-2 in accordance with the calculated discharge distribution ratio.

また、ECU8000は、駆動力発生部2から電源システム1へ電力が供給される充電モード時(すなわち車両要求パワーPs<0)、第1蓄電装置10−1の充電余裕電力量と、第2切替装置18−2によって第2コンバータ12−2に電気的に接続された蓄電装置の充電余裕電力量との比率に応じて、第1蓄電装置10−1と第2コンバータ12−2に接続された蓄電装置とへ充電される電力の配分を示す充電分配率を算出する。そして、ECU8000は、その算出された充電分配率に従って第1コンバータ12−1および第2コンバータ12−2を制御する。   In addition, ECU 8000, in the charging mode in which electric power is supplied from driving force generation unit 2 to power supply system 1 (that is, vehicle required power Ps <0), the amount of remaining charging power for first power storage device 10-1 and the second switching. Connected to the first power storage device 10-1 and the second converter 12-2 in accordance with the ratio of the charge margin power amount of the power storage device electrically connected to the second converter 12-2 by the device 18-2 A charge distribution ratio indicating distribution of electric power charged to the power storage device is calculated. ECU 8000 controls first converter 12-1 and second converter 12-2 in accordance with the calculated charge distribution ratio.

さらに、車両100には、HVスイッチ17が備えられる。HVスイッチ17は、HV走行を要求していることを示すHV要求を運転者が入力するためのスイッチである。運転者によってHVスイッチ17がオンされると、HVスイッチ17は、HV要求信号RhvをECU8000に出力する。   Further, the vehicle 100 is provided with an HV switch 17. The HV switch 17 is a switch for the driver to input an HV request indicating that HV traveling is requested. When the HV switch 17 is turned on by the driver, the HV switch 17 outputs an HV request signal Rhv to the ECU 8000.

ECU8000は、車両要求パワーPs、各電源のSOC、HVスイッチ17からのHV要求信号Rhvなどに基づいて、EV走行制御およびHV走行制御のいずれの走行制御を実行する。   ECU 8000 executes either travel control of EV travel control or HV travel control based on vehicle required power Ps, SOC of each power source, HV request signal Rhv from HV switch 17, and the like.

HV走行制御時には、各電源のSOCが所定の範囲に含まれるように各MGによる発電や回生、モータ出力が制御される。たとえば、ECU8000は、上述したように、各電源の充電が必要な場合には、停止中のエンジン36を始動したり運転中のエンジン36の出力を増加したりして各MGによる発電量を増やして各電源に対する充電量を増加させる。   During HV traveling control, power generation, regeneration, and motor output by each MG are controlled so that the SOC of each power source is included in a predetermined range. For example, as described above, the ECU 8000 increases the amount of power generated by each MG by starting the stopped engine 36 or increasing the output of the operating engine 36 when each power supply needs to be charged. Increase the amount of charge for each power supply.

ECU8000は、HV走行制御時およびEV走行制御のいずれにおいても、第1コンバータ12−1および第2コンバータ12−2の少なくともいずれかを制御することによって、システム電圧Vhを、各MGを作動するのに最適な電圧範囲(以下、単に「電圧制御範囲」ともいう)に含まれる値に調整する。   ECU 8000 operates system voltage Vh for each MG by controlling at least one of first converter 12-1 and second converter 12-2 in both HV traveling control and EV traveling control. Is adjusted to a value included in the optimum voltage range (hereinafter also simply referred to as “voltage control range”).

図2に、上述の電圧制御範囲と、各蓄電装置の出力電圧との関係を示す。なお、以下の説明においては、第1蓄電装置10−1を「マスタ電源」、第2蓄電装置10−2を「第1スレーブ電源」、第3蓄電装置10−3を「第2スレーブ電源」とも称する。   FIG. 2 shows the relationship between the voltage control range described above and the output voltage of each power storage device. In the following description, first power storage device 10-1 is “master power source”, second power storage device 10-2 is “first slave power source”, and third power storage device 10-3 is “second slave power source”. Also called.

図2に示すように、EV走行制御時の電圧制御範囲αは、下限値Vlow(EV)から上限値Vhiまでの範囲である。一方、HV走行制御時の電圧制御範囲βは、下限値Vlow(HV)から上限値Vhiまでの範囲である。下限値Vlow(EV)は、下限値Vlow(HV)よりも高い値である。たとえば、上限値Vhiは650ボルト程度、下限値Vlow(EV)は500ボルト程度、下限値Vlow(HV)は200ボルト程度の値であってもよい。   As shown in FIG. 2, the voltage control range α during EV traveling control is a range from the lower limit value Vlow (EV) to the upper limit value Vhi. On the other hand, the voltage control range β during HV traveling control is a range from the lower limit value Vlow (HV) to the upper limit value Vhi. The lower limit value Vlow (EV) is higher than the lower limit value Vlow (HV). For example, the upper limit value Vhi may be about 650 volts, the lower limit value Vlow (EV) may be about 500 volts, and the lower limit value Vlow (HV) may be about 200 volts.

ECU8000は、EV走行制御時にはシステム電圧Vhが電圧制御範囲αに含まれ、HV走行制御時にはシステム電圧Vhが電圧制御範囲βに含まれるように、第1コンバータ12−1および第2コンバータ12−2の少なくともいずれかを制御する。   ECU 8000 includes first converter 12-1 and second converter 12-2 so that system voltage Vh is included in voltage control range α during EV traveling control, and system voltage Vh is included in voltage control range β during HV traveling control. Control at least one of the following.

マスタ電源(第1蓄電装置10−1)の出力電圧Vmは、HV走行制御時の電圧制御範囲βの下限値Vlow(HV)に設定されている。第1スレーブ電源(第2蓄電装置10−2)の出力電圧Vs1と、第2スレーブ電源(第3蓄電装置10−3)の出力電圧Vs2とは、下限値Vlow(HV)と下限値Vlow(EV)との間の値に設定される。   The output voltage Vm of the master power source (first power storage device 10-1) is set to the lower limit value Vlow (HV) of the voltage control range β during HV traveling control. The output voltage Vs1 of the first slave power supply (second power storage device 10-2) and the output voltage Vs2 of the second slave power supply (third power storage device 10-3) are a lower limit value Vlow (HV) and a lower limit value Vlow ( EV).

このような出力電圧を実現するための、マスタ電源、第1スレーブ電源、第2スレーブ電源の電池セルの配分について以下に説明する。   The distribution of the battery cells of the master power supply, the first slave power supply, and the second slave power supply for realizing such an output voltage will be described below.

所定の目標走行可能距離をEV走行で実現するために必要な電池セルの数(以下「必要セル総数」ともいう)がN個である場合、まず、マスタ電源の出力電圧Vmが下限値Vlow(HV)になるようにマスタ電源の電池セル数Nmを決定する。次に、必要セル総数Nからマスタ電源の電池セル数Nmを除いた残余の(N−Nm)個の電池セルを、第1スレーブ電源と、第2スレーブ電源とに分配する。本実施の形態においては、残余の(N−Nm)個の電池セルを第1スレーブ電源と、第2スレーブ電源とに均等に分配している。すなわち、第1スレーブ電源および第2スレーブ電源にはそれぞれ{(N−Nm)/2}個の電池セルが分配される。これにより、第1スレーブ電源の出力電圧Vs1と、第2スレーブ電源の出力電圧Vs2とが同じ値となっている。   When the number of battery cells (hereinafter also referred to as “total number of required cells”) necessary for realizing a predetermined target travelable distance by EV travel is N, first, the output voltage Vm of the master power supply is set to the lower limit value Vlow ( HV), the number Nm of battery cells of the master power source is determined. Next, the remaining (N−Nm) battery cells obtained by subtracting the number Nm of battery cells of the master power source from the necessary total number N are distributed to the first slave power source and the second slave power source. In the present embodiment, the remaining (N−Nm) battery cells are equally distributed to the first slave power source and the second slave power source. That is, {(N−Nm) / 2} battery cells are distributed to the first slave power supply and the second slave power supply, respectively. Thereby, the output voltage Vs1 of the first slave power supply and the output voltage Vs2 of the second slave power supply have the same value.

たとえば、1つの電池セルの出力電圧が約3.6ボルト、必要セル総数Nが288個、下限値Vlow(HV)が200ボルト程度である場合、マスタ電源の電池セル数Nmを56個とし、第1スレーブ電源および第2スレーブ電源にそれぞれ116個の電池セルを分配する。これにより、Vm=約201ボルト、Vs1=Vs2=約417ボルトとなる。   For example, if the output voltage of one battery cell is about 3.6 volts, the total number of required cells N is 288, and the lower limit value Vlow (HV) is about 200 volts, the number of battery cells Nm of the master power supply is 56, 116 battery cells are distributed to the first slave power supply and the second slave power supply, respectively. As a result, Vm = about 201 volts and Vs1 = Vs2 = about 417 volts.

なお、図2の一点鎖線で示す電圧値Vaveは、必要セル総数N個をマスタ電源、第1スレーブ電源、第2スレーブ電源の3つの電源で均等に分配した場合の各電源の出力電圧を示す。   Note that the voltage value Vave indicated by the one-dot chain line in FIG. 2 indicates the output voltage of each power supply when the required total number N of cells is evenly distributed among the three power supplies of the master power supply, the first slave power supply, and the second slave power supply. .

図3に、ECU8000の機能ブロック図を示す。ECU8000は、入力インターフェイス8100と、演算処理部8200と、記憶部8300と、出力インターフェイス8400とを含む。   FIG. 3 shows a functional block diagram of ECU 8000. ECU 8000 includes an input interface 8100, a calculation processing unit 8200, a storage unit 8300, and an output interface 8400.

入力インターフェイス8100は、各センサなどの検出結果を受信して、演算処理部8200に送信する。   The input interface 8100 receives detection results of each sensor and transmits the detection results to the arithmetic processing unit 8200.

記憶部8300には、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部8200からデータが読み出されたり、格納されたりする。   Various information, programs, threshold values, maps, and the like are stored in the storage unit 8300, and data is read from or stored in the arithmetic processing unit 8200 as necessary.

演算処理部8200は、走行制御部8210と、SOC算出部8220と、切替制御部8230とを含む。   Arithmetic processing unit 8200 includes a travel control unit 8210, an SOC calculation unit 8220, and a switching control unit 8230.

走行制御部8210は、各電源のSOC、HV要求信号Rhvなどに基づいて、EV走行制御およびHV走行制御のいずれの走行制御を実行する。走行制御部8210は、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2のいずれかが所定のしきい値(たとえば20%)を超えていると、EV走行制御を実行し、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2の双方がしきい値よりも低下すると、HV走行制御を実行する。また、走行制御部8210は、EV走行制御中にHV要求信号Rhvが受信されると、EV走行制御を停止して強制的にHV走行制御を実行する。以下の説明においては、HV要求信号Rhvに基づいて実行されるHV走行制御を、通常のHV走行制御と区別するために「強制HV走行制御」とも記載する。   The travel control unit 8210 executes any travel control of EV travel control and HV travel control based on the SOC of each power source, the HV request signal Rhv, and the like. Travel control unit 8210 executes EV travel control when either SOCs1 of the first slave power supply or SOCs2 of the second slave power supply exceeds a predetermined threshold (for example, 20%), and the first slave power supply When both SOCs1 and SOCs2 of the second slave power supply drop below the threshold value, HV running control is executed. In addition, when the HV request signal Rhv is received during EV traveling control, traveling control unit 8210 stops EV traveling control and forcibly executes HV traveling control. In the following description, the HV traveling control executed based on the HV request signal Rhv is also referred to as “forced HV traveling control” in order to distinguish it from normal HV traveling control.

さらに、走行制御部8210は、実行される走行制御に応じてシステム電圧Vhの制御範囲を切り替える。すなわち、走行制御部8210は、EV走行制御時にはシステム電圧Vhが上述の電圧制御範囲αに含まれ、HV走行制御時にはシステム電圧Vhが上述した電圧制御範囲βに含まれるように、第1コンバータ12−1および第2コンバータ12−2の少なくともいずれかを制御する。   Furthermore, traveling control unit 8210 switches the control range of system voltage Vh according to the traveling control to be executed. That is, traveling control unit 8210 includes first converter 12 so that system voltage Vh is included in voltage control range α described above during EV traveling control, and system voltage Vh is included in voltage control range β described above during HV traveling control. -1 and / or the second converter 12-2.

走行制御部8210は、これらの制御を実現させる駆動信号PWC1,PWC2,PWIV1,PWIV2,PWENGを生成し、それぞれ第1コンバータ12−1、第2コンバータ12−2、第1インバータ30−1、第2インバータ30−2、エンジン36へ、出力インターフェイス8400経由で出力する。   The traveling control unit 8210 generates drive signals PWC1, PWC2, PWIV1, PWIV2, and PWENG that realize these controls, and the first converter 12-1, the second converter 12-2, the first inverter 30-1, 2 Output to the inverter 30-2 and the engine 36 via the output interface 8400.

SOC算出部8220は、電流センサ14−1〜14−3および電圧センサ16−1〜16−3,20からの各検出値に基づいて、マスタ電源のSOCm、第1スレーブ電源のSOCs1、第2スレーブ電源のSOCs2を算出する。   Based on the detection values from the current sensors 14-1 to 14-3 and the voltage sensors 16-1 to 16-3 and 20, the SOC calculation unit 8220 includes the SOCm of the master power supply, the SOCs1 of the first slave power supply, the second Calculate SOCs2 of the slave power supply.

切替制御部8230は、実行される走行制御や各電源のSOCなどに基づいて、第1スレーブ電源および第2スレーブ電源と第2コンバータ12−2との電気的な接続状態を切り替える切替信号SW2を生成し、第2切替装置18−2に出力インターフェイス8400経由で出力する。   The switching control unit 8230 receives a switching signal SW2 for switching an electrical connection state between the first slave power source and the second slave power source and the second converter 12-2 based on the travel control to be executed, the SOC of each power source, and the like. And output to the second switching device 18-2 via the output interface 8400.

切替制御部8230は、第1スレーブ電源のSOCs1がしきい値を超えていると、第1スレーブ電源を接続させて第2スレーブ電源を切り離す(システムリレーRY2をオンさせ、かつ、システムリレーRY3をオフさせる)ように切替信号SW2を生成する。   When the SOCs1 of the first slave power supply exceeds the threshold value, the switching control unit 8230 connects the first slave power supply and disconnects the second slave power supply (turns on the system relay RY2 and turns on the system relay RY3. The switching signal SW2 is generated so as to be turned off.

切替制御部8230は、第1スレーブ電源のSOCs1がしきい値よりも低下し、かつ第2スレーブ電源のSOCs2がしきい値を超えている場合、第1スレーブ電源を切り離して第2スレーブ電源を接続する(システムリレーRY2をオフさせ、かつ、システムリレーRY3をオンさせる)ように切替信号SW2を生成する。   When the SOCs1 of the first slave power supply falls below the threshold value and the SOCs2 of the second slave power supply exceeds the threshold value, the switching control unit 8230 disconnects the first slave power supply and turns off the second slave power supply. The switching signal SW2 is generated so as to be connected (the system relay RY2 is turned off and the system relay RY3 is turned on).

切替制御部8230は、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2の双方がしきい値よりも低下した場合、第1スレーブ電源および第2スレーブ電源の双方を切り離す(システムリレーRY2、RY3を双方ともオフさせる)ように切替信号SW2を生成する。   When both SOCs1 of the first slave power supply and SOCs2 of the second slave power supply drop below the threshold value, the switching control unit 8230 disconnects both the first slave power supply and the second slave power supply (system relays RY2, RY3). The switching signal SW2 is generated so that both are turned off.

なお、切替制御部8230は、EV走行制御中にHV要求信号Rhvが受信されたことに応じて強制HV走行制御が実行される場合、第1スレーブ電源および第2スレーブ電源の双方を切り離す切替信号SW2を生成するのではなく、HV要求信号Rhvが受信された時点の切替信号SW2をそのまま維持する。   When the forced HV traveling control is executed in response to the reception of the HV request signal Rhv during the EV traveling control, the switching control unit 8230 switches the switching signal for disconnecting both the first slave power supply and the second slave power supply. Instead of generating SW2, the switching signal SW2 at the time when the HV request signal Rhv is received is maintained as it is.

上述した機能は、ソフトウェアによって実現されるようにしてもよく、ハードウェアにより実現されるようにしてもよい。以下の説明では、上述した機能がソフトウェアによって実現される場合、具体的には、演算処理部8200であるCPUが記憶部8300に記憶されたプログラムを実行することによって上述した機能が実現される場合について説明する。   The functions described above may be realized by software or hardware. In the following description, when the above-described function is realized by software, specifically, when the CPU that is the arithmetic processing unit 8200 executes the program stored in the storage unit 8300, the above-described function is realized. Will be described.

以下、図4を参照して、ECU8000で実行されるプログラムの制御構造について説明する。なお、このプログラムは、予め定められたサイクルタイムで繰り返し実行される。   Hereinafter, a control structure of a program executed by ECU 8000 will be described with reference to FIG. Note that this program is repeatedly executed at a predetermined cycle time.

ステップ(以下、ステップをSと略す)100にて、ECU8000は、第1スレーブ電源のSOCs1がしきい値を超えているか否かを判断する。SOCs1がしきい値を超えていると(S100にてYES)、処理はS102に移される。そうでないと(S100にてNO)、処理はS104に移される。   In step (hereinafter, step is abbreviated as S) 100, ECU 8000 determines whether or not SOCs1 of the first slave power supply exceeds a threshold value. If SOCs1 exceeds the threshold value (YES in S100), the process proceeds to S102. Otherwise (NO in S100), the process proceeds to S104.

S102にて、ECU8000は、第1スレーブ電源を接続させて第2スレーブ電源を切り離す切替信号SW2を生成して第2切替装置18−2に出力する。これにより、各インバータにマスタ電源と第1スレーブ電源とが接続された状態となる。   In S102, ECU 8000 generates a switching signal SW2 that connects the first slave power source and disconnects the second slave power source, and outputs the switching signal SW2 to second switching device 18-2. As a result, the master power supply and the first slave power supply are connected to each inverter.

S104にて、ECU8000は、第2スレーブ電源のSOCs2がしきい値を超えているか否かを判断する。SOCs2がしきい値を超えていると(S104にてYES)、処理はS106に移される。そうでないと(S104にてNO)、処理はS108に移される。   In S104, ECU 8000 determines whether or not SOCs2 of the second slave power supply exceeds a threshold value. If SOCs2 exceeds the threshold value (YES in S104), the process proceeds to S106. Otherwise (NO in S104), the process proceeds to S108.

S106にて、ECU8000は、第1スレーブ電源を切り離して第2スレーブ電源を接続させる切替信号SW2を生成して第2切替装置18−2に出力する。これにより、各インバータにマスタ電源と第2スレーブ電源とが接続された状態となる。   In S106, ECU 8000 generates a switching signal SW2 for disconnecting the first slave power source and connecting the second slave power source, and outputs the switching signal SW2 to second switching device 18-2. As a result, the master power source and the second slave power source are connected to each inverter.

S108にて、ECU8000は、EV走行制御を実行する。なお、EV走行制御時には、システム電圧Vhが上述の電圧制御範囲αに含まれるように、第1コンバータ12−1および第2コンバータ12−2が制御される。より具体的には、ECU8000は、システム電圧Vhを電圧制御範囲αの下限値Vlow(EV)に制御するとともに、必要に応じてシステム電圧Vhを電圧制御範囲α内で上昇させる。   In S108, ECU 8000 executes EV travel control. During EV travel control, first converter 12-1 and second converter 12-2 are controlled such that system voltage Vh is included in voltage control range α described above. More specifically, ECU 8000 controls system voltage Vh to lower limit value Vlow (EV) of voltage control range α, and raises system voltage Vh within voltage control range α as necessary.

S110にて、ECU8000は、EV走行制御中において、運転者によってHVスイッチ17がオンされたか否か(HV要求信号Rhvを受信したか否か)を判断する。HVスイッチ17がオンされると(S110にてYES)、処理はS112に移される。そうでないと(S110にてNO)、この処理は終了する。   In S110, ECU 8000 determines whether or not HV switch 17 is turned on by the driver during EV traveling control (whether or not HV request signal Rhv has been received). If HV switch 17 is turned on (YES in S110), the process proceeds to S112. Otherwise (NO in S110), this process ends.

S112にて、ECU8000は、強制HV走行制御を実行する。なお、強制HV走行制御時においては、HV要求信号Rhvが受信された時点の切替信号SW2がそのまま維持される。   In S112, ECU 8000 executes forced HV traveling control. In forced HV traveling control, the switching signal SW2 when the HV request signal Rhv is received is maintained as it is.

S114にて、ECU8000は、第1スレーブ電源および第2スレーブ電源の双方を切り離す切替信号SW2を生成して第2切替装置18−2に出力する。これにより、各インバータにマスタ電源のみが接続された状態となる。   In S114, ECU 8000 generates a switching signal SW2 that disconnects both the first slave power supply and the second slave power supply, and outputs the generated signal to second switching device 18-2. Thereby, only the master power supply is connected to each inverter.

S116にて、ECU8000は、HV走行制御を実行する。なお、HV走行制御時には、システム電圧Vhが上述の電圧制御範囲βに含まれるように、第1コンバータ12−1が制御される。より具体的には、ECU8000は、システム電圧Vhを電圧制御範囲βの下限値Vlow(HV)に制御するとともに、必要に応じてシステム電圧Vhを電圧制御範囲β内で上昇させる。   In S116, ECU 8000 executes HV traveling control. In the HV traveling control, the first converter 12-1 is controlled so that the system voltage Vh is included in the voltage control range β described above. More specifically, ECU 8000 controls system voltage Vh to lower limit value Vlow (HV) of voltage control range β, and raises system voltage Vh within voltage control range β as necessary.

以上のような構造およびフローチャートに基づくECU8000の制御動作と、本発明の実施の形態に係る電源システム1に含まれる各電源の出力電圧について説明する。   The control operation of ECU 8000 based on the above-described structure and flowchart, and the output voltage of each power supply included in power supply system 1 according to the embodiment of the present invention will be described.

図5は、各電源のSOCを上限値(たとえば80パーセント程度の値)まで充電した後に車両を継続走行させた場合の、各電源のSOCと、実行される走行制御と、各電源の接続状態とを示すタイミングチャートである。   FIG. 5 shows the SOC of each power source, the travel control to be executed, and the connection state of each power source when the vehicle is continuously driven after the SOC of each power source is charged to an upper limit value (for example, a value of about 80%). It is a timing chart which shows.

車両100の走行時(イグニッションオン時)においては、システムリレーRY1はオンに維持されるため、マスダ電源は第1コンバータ12−1経由で各インバータに常時接続されている。   When the vehicle 100 is traveling (when the ignition is on), the system relay RY1 is kept on, so that the power source of the master is always connected to each inverter via the first converter 12-1.

走行開始直後は、SOCs1がしきい値を超えているため(S100にてYES)、第2コンバータ12−2に第1スレーブ電源が接続された状態(S102)でEV走行制御が実行される(S108)。したがって、SOCs1がしきい値まで低下する時刻t1までは、マスタ電源と第1スレーブ電源との電力でEV走行制御が行なわれる。   Immediately after the start of traveling, since SOCs1 exceeds the threshold value (YES in S100), EV traveling control is executed in a state where the first slave power source is connected to second converter 12-2 (S102) ( S108). Therefore, until the time t1 when SOCs1 falls to the threshold value, EV running control is performed with the power of the master power supply and the first slave power supply.

時刻t1にてSOCs1がしきい値まで低下すると(S100にてNO)、SOCs2がしきい値を超えているため(S104にてYES)、第1スレーブ電源が切り離されるとともに、第2コンバータ12−2に第2スレーブ電源が接続されて(S106)、EV走行制御が継続して実行される(S108)。SOCs2がしきい値まで低下する時刻t2までは、マスタ電源と第2スレーブ電源との電力でEV走行制御が行なわれる。   When SOCs1 falls to the threshold value at time t1 (NO in S100), since SOCs2 exceeds the threshold value (YES in S104), the first slave power supply is disconnected and second converter 12- 2 is connected to the second slave power supply (S106), and EV traveling control is continuously executed (S108). Until the time t2 when the SOCs2 drops to the threshold value, EV running control is performed with the power of the master power supply and the second slave power supply.

なお、図5に示すように、EV走行制御中は、第2スレーブ電源のSOCs2が下限値となるタイミングで、マスタ電源のSOCmも下限値となるように、マスタ電源の充放電が制御される。   As shown in FIG. 5, during EV traveling control, charging / discharging of the master power supply is controlled so that the SOCm of the master power supply also becomes the lower limit value at the timing when the SOCs2 of the second slave power supply becomes the lower limit value. .

このように、各電源のSOCがそれぞれ下限値になるまでEV走行制御が行なわれる。ここで、各電源に備えられる電池セル数の合計は、必要セル総数N個である。したがって、所定の目標走行可能距離をEV走行で実現することができる。   In this way, EV traveling control is performed until the SOC of each power source reaches the lower limit value. Here, the total number of battery cells provided in each power supply is the required total number N. Therefore, a predetermined target travelable distance can be realized by EV travel.

なお、EV走行制御時の電圧制御範囲αの下限値Vlow(EV)は、マスタ電源の出力電圧Vm、第1スレーブ電源の出力電圧Vs1、および第2スレーブ電源の出力電圧Vs2よりも高い。そのため、図5の矢印に示すように、EV走行制御時においては、Vm、Vs1およびVs2がそれぞれ第1コンバータ12−1および第2コンバータ12−2によって少なくとも下限値Vlow(EV)まで昇圧される。   The lower limit value Vlow (EV) of the voltage control range α during EV travel control is higher than the output voltage Vm of the master power supply, the output voltage Vs1 of the first slave power supply, and the output voltage Vs2 of the second slave power supply. Therefore, as shown by the arrows in FIG. 5, during EV travel control, Vm, Vs1, and Vs2 are boosted to at least the lower limit value Vlow (EV) by the first converter 12-1 and the second converter 12-2, respectively. .

時刻t2にてSOCs2がしきい値まで低下すると(S104にてNO)、第1スレーブ電源および第2スレーブ電源の双方が第2コンバータ12−2から切り離される(S114)とともに、EV走行制御からHV走行制御に切り替えられる(S116)。したがって、時刻t2以降は、マスタ電源のみでHV走行制御が行なわれる。   When SOCs2 falls to the threshold value at time t2 (NO in S104), both the first slave power supply and the second slave power supply are disconnected from second converter 12-2 (S114), and the EV running control is started from HV. Switching to traveling control is performed (S116). Therefore, after time t2, HV traveling control is performed only by the master power source.

ここで、たとえば、必要セル総数N個を各電源に均等に分配した場合、マスタ電源の出力電圧は、図5に示すVaveとなり、HV走行制御時の電圧制御範囲βの下限値Vlow(HV)を超えてしまう。そのため、HV走行制御時のシステム電圧Vhが不必要に高くなってしまい、最適な電圧設定とならない。   Here, for example, when the necessary total number N of cells is evenly distributed to each power source, the output voltage of the master power source becomes Vave shown in FIG. 5, and the lower limit value Vlow (HV) of the voltage control range β during HV traveling control. Will be exceeded. Therefore, the system voltage Vh at the time of HV traveling control becomes unnecessarily high, and the optimum voltage setting is not achieved.

そこで、本実施の形態においては、HV走行制御時の電源をマスタ電源のみとし、必要セル総数N個のうち、マスタ電源の出力電圧VmをHV走行制御時の電圧制御範囲βの下限値Vlow(HV)にするNm個の電池セルをマスタ電源に分配し、残余の(N−Nm)個の電池セルを、第1スレーブ電源と、第2スレーブ電源とに均等に分配する。   Therefore, in the present embodiment, only the master power source is used during the HV running control, and the output voltage Vm of the master power source out of the total number N of required cells is the lower limit value Vlow of the voltage control range β during the HV running control. HV) is distributed to the master power source, and the remaining (N−Nm) battery cells are equally distributed to the first slave power source and the second slave power source.

これにより、HV走行制御時のシステム電圧Vhが、第1コンバータ12−1による昇圧動作を行なうことなく下限値Vlow(HV)となる。そのため、昇圧による電力損失を低減することができる。さらに、必要セル総数N個を各電源で均等に分配した場合に比べて、システム電圧Vhが不必要に高くなることを抑制して消費電力の低減を図ることができる。   Thereby, system voltage Vh at the time of HV traveling control becomes lower limit value Vlow (HV) without performing the step-up operation by first converter 12-1. Therefore, power loss due to boosting can be reduced. Furthermore, it is possible to reduce power consumption by suppressing the system voltage Vh from becoming unnecessarily high as compared to the case where the necessary total number N of cells is evenly distributed among the power sources.

なお、本実施の形態においては、EV走行制御中において、運転者によってHVスイッチ17がオンされると(S110にてYES)、強制HV走行制御を実行される(S112)。強制HV走行制御時においては、各電源との接続状態は、HVスイッチ17がオンされた時点(HV要求信号Rhvが受信された時点)の状態に維持される。したがって、メイン電源およびスレーブ電源のSOCを所定の範囲に維持した走行が可能となる。このような走行は、たとえば、目的地到着後に各電源の電力が必要となる場合など、何らかの事情で運転者が電力を維持しておきたい場合に有効である。   In the present embodiment, if the HV switch 17 is turned on by the driver during EV traveling control (YES in S110), forced HV traveling control is executed (S112). During forced HV traveling control, the connection state with each power source is maintained at the time when the HV switch 17 is turned on (when the HV request signal Rhv is received). Therefore, it is possible to run while maintaining the SOC of the main power supply and the slave power supply within a predetermined range. Such traveling is effective when the driver wants to maintain the power for some reason, for example, when the power of each power source is required after arrival at the destination.

以上のように、本実施の形態に係るハイブリッド車両においては、HV走行制御時にはMGに接続される電源は、マスタ電源のみである。そして、本実施の形態に係る電源システムによれば、必要セル総数のうち、マスタ電源の出力電圧をHV走行制御時の電圧制御範囲の下限値にする電池セル数をマスタ電源に分配し、残余の電池セル数を、残りのスレーブ電源に均等に分配する。これにより、EV走行時に必要な電池容量を確保しつつ、HV走行制御時のシステム電圧を最適な電圧に設定することができる。   As described above, in the hybrid vehicle according to the present embodiment, the power source connected to MG at the time of HV traveling control is only the master power source. According to the power supply system according to the present embodiment, among the necessary total number of cells, the number of battery cells that make the output voltage of the master power supply the lower limit value of the voltage control range at the time of HV traveling control is distributed to the master power supply, and the remainder Evenly distribute the number of battery cells to the remaining slave power supplies. Thereby, the system voltage at the time of HV traveling control can be set to an optimal voltage, while ensuring the battery capacity required at the time of EV traveling.

なお、本実施の形態においては、2つのスレーブ電源を備える場合について説明したが、本発明は、スレーブ電源を3つ以上備えるハイブリッド車両にも適用可能である。   In the present embodiment, the case where two slave power supplies are provided has been described. However, the present invention can also be applied to a hybrid vehicle including three or more slave power supplies.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係る電源システムを備えた車両の全体ブロック図である。1 is an overall block diagram of a vehicle including a power supply system according to an embodiment of the present invention. EV走行制御時の電圧制御範囲と、HV走行制御時の電圧制御範囲と、各蓄電装置の出力電圧との関係を示す図である。It is a figure which shows the relationship between the voltage control range at the time of EV driving | running control, the voltage control range at the time of HV driving control, and the output voltage of each electrical storage apparatus. 制御装置の機能ブロック図である。It is a functional block diagram of a control device. 制御装置の制御構造を示すフローチャートである。It is a flowchart which shows the control structure of a control apparatus. 各電源のSOC、走行制御、および各電源の接続状態を示すタイミングチャートである。It is a timing chart which shows SOC of each power supply, traveling control, and the connection state of each power supply.

符号の説明Explanation of symbols

1 電源システム、2 駆動力発生部、10−1〜10−3 蓄電装置、11 充電装置、12−1,12−2 コンバータ、13 コネクタ、14−1〜14−3 電流センサ、15 パドル、16−1〜16−3,20 電圧センサ、17 HVスイッチ、18−1,18−2 切替装置、19 交流電源、22 コンバータECU、30−1,30−2 インバータ、32−1,32−2 MG、34 動力分割装置、36 エンジン、38 駆動輪、100 車両、8000 ECU、8100 入力インターフェイス、8200 演算処理部、8210 走行制御部、8220 SOC算出部、8230 切替制御部、8300 記憶部、8400 出力インターフェイス、MPL 主正母線、MNL 主負母線、C 平滑コンデンサ、RY1,RY2,RY3 システムリレー。   DESCRIPTION OF SYMBOLS 1 Power supply system, 2 Driving force generation part, 10-1 to 10-3 Power storage device, 11 Charging device, 12-1, 12-2 Converter, 13 Connector, 14-1 to 14-3 Current sensor, 15 Paddle, 16 -1 to 16-3, 20 Voltage sensor, 17 HV switch, 18-1, 18-2 switching device, 19 AC power supply, 22 Converter ECU, 30-1, 30-2 Inverter, 32-1, 32-2 MG , 34 Power split device, 36 engine, 38 driving wheel, 100 vehicle, 8000 ECU, 8100 input interface, 8200 arithmetic processing unit, 8210 travel control unit, 8220 SOC calculation unit, 8230 switching control unit, 8300 storage unit, 8400 output interface , MPL main positive bus, MNL main negative bus, C smoothing capacitor, RY1, RY2 RY3 system relay.

Claims (4)

内燃機関および回転電機の少なくともいずれかを動力源とするハイブリッド車両に搭載される、前記回転電機と電力を授受可能な電源システムであって、前記ハイブリッド車両においては、前記内燃機関および前記回転電機の少なくともいずれかの動力で前記ハイブリッド車両を走行させるハイブリッド走行制御、および前記内燃機関を用いずに前記回転電機の動力で前記ハイブリッド車両を走行させる電気走行制御のいずれかの走行制御が実行され、
前記電源システムは、
前記ハイブリッド走行制御および前記電気走行制御のいずれの制御が実行される場合においても前記回転電機に接続される主電源と、
前記ハイブリッド走行制御が実行される場合に前記回転電機と切り離され、前記電気走行制御が実行される場合に少なくとも1つが前記回転電機に接続される複数の副電源とを含み、
前記主電源の出力電圧は、前記複数の副電源のいずれの出力電圧よりも低い値に設定される、ハイブリッド車両の電源システム。
A power supply system that is mounted on a hybrid vehicle that uses at least one of an internal combustion engine and a rotating electric machine as a power source and that can exchange electric power with the rotating electric machine, and in the hybrid vehicle, the internal combustion engine and the rotating electric machine Travel control of at least one of hybrid travel control for traveling the hybrid vehicle with power and electric travel control for traveling the hybrid vehicle with power of the rotating electrical machine without using the internal combustion engine is executed,
The power supply system includes:
A main power source connected to the rotating electrical machine when any of the hybrid running control and the electric running control is executed;
A plurality of sub-power supplies that are disconnected from the rotating electrical machine when the hybrid traveling control is executed, and at least one of which is connected to the rotating electrical machine when the electrical traveling control is executed;
The hybrid vehicle power supply system, wherein an output voltage of the main power supply is set to a value lower than any output voltage of the plurality of sub power supplies.
前記電源システムは、
前記回転電機と前記主電源との間に設けられ、前記主電源の出力電圧を前記回転電機の制御電圧範囲に含まれる値に変換して前記回転電機に出力する第1のコンバータと、
前記回転電機と前記複数の副電源との間に設けられ、前記複数の副電源の出力電圧を前記回転電機の制御電圧範囲に含まれる値に変換して前記回転電機に出力する第2のコンバータとをさらに含み、
前記ハイブリッド走行制御時における前記回転電機の最適制御電圧範囲の第1の下限値は、前記電気走行制御時における前記回転電機の制御電圧範囲の第2の下限値よりも低く、
前記主電源の出力電圧は、前記第1の下限値に設定され、
前記複数の副電源の出力電圧は、前記第1の下限値と前記第2の下限値の間の値に設定される、請求項1に記載のハイブリッド車両の電源システム。
The power supply system includes:
A first converter that is provided between the rotating electrical machine and the main power supply, converts an output voltage of the main power supply into a value included in a control voltage range of the rotating electrical machine, and outputs the value to the rotating electrical machine;
A second converter that is provided between the rotating electrical machine and the plurality of sub-power supplies, converts an output voltage of the plurality of sub-power supplies into a value included in a control voltage range of the rotating electrical machine, and outputs the value to the rotating electrical machine. And further including
The first lower limit value of the optimum control voltage range of the rotating electrical machine during the hybrid travel control is lower than the second lower limit value of the control voltage range of the rotating electrical machine during the electrical travel control,
The output voltage of the main power supply is set to the first lower limit value,
2. The power supply system for a hybrid vehicle according to claim 1, wherein output voltages of the plurality of sub power supplies are set to a value between the first lower limit value and the second lower limit value.
前記主電源および前記複数の副電源の各々の内部には、直列に接続された複数の電池セルが備えられ、
前記主電源および前記複数の副電源の各々は、内部に備えられた電池セルの数に応じた出力電圧を出力し、
前記主電源には、前記電気走行制御時の走行可能距離を所定の目標距離以上に確保するために必要な電池セルの総数のうち、前記主電源の出力電圧が前記第1の下限値となる数の電池セルが備えられ、
前記複数の副電源には、前記必要な電池セルの総数のうち、前記主電源に備えられた数以外の残余の数の電池セルが前記複数の副電源の各々に均等に備えられる、請求項1または2に記載のハイブリッド車両の電源システム。
Each of the main power source and the plurality of sub power sources includes a plurality of battery cells connected in series,
Each of the main power supply and the plurality of sub power supplies outputs an output voltage corresponding to the number of battery cells provided therein,
Of the total number of battery cells necessary for the main power source to ensure a travelable distance at the time of the electric travel control equal to or greater than a predetermined target distance, the output voltage of the main power source is the first lower limit value. A number of battery cells,
The plurality of sub-power supplies, the remaining number of battery cells other than the number provided in the main power supply out of the total number of necessary battery cells are equally provided in each of the plurality of sub-power supplies. 3. A power supply system for a hybrid vehicle according to 1 or 2.
前記ハイブリッド車両は、車両外部の電源からの電力を前記主電源および前記複数の副電源に充電可能なプラグインハイブリッド車両である、請求項1〜3のいずれかに記載のハイブリッド車両の電源システム。   The power supply system for a hybrid vehicle according to any one of claims 1 to 3, wherein the hybrid vehicle is a plug-in hybrid vehicle that can charge power from a power source outside the vehicle to the main power source and the plurality of sub power sources.
JP2008263692A 2008-10-10 2008-10-10 Power supply system for hybrid car Pending JP2010089719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263692A JP2010089719A (en) 2008-10-10 2008-10-10 Power supply system for hybrid car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263692A JP2010089719A (en) 2008-10-10 2008-10-10 Power supply system for hybrid car

Publications (1)

Publication Number Publication Date
JP2010089719A true JP2010089719A (en) 2010-04-22

Family

ID=42252864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263692A Pending JP2010089719A (en) 2008-10-10 2008-10-10 Power supply system for hybrid car

Country Status (1)

Country Link
JP (1) JP2010089719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011896A (en) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd Power supply device for hybrid car
WO2013018221A1 (en) * 2011-08-04 2013-02-07 トヨタ自動車株式会社 Vehicle, and vehicle control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298805A (en) * 1996-04-30 1997-11-18 Yamaha Motor Co Ltd Power supply method for electric motor car and its equipment
JP2004262357A (en) * 2003-03-03 2004-09-24 Nippon Home Keizai Kenkyusho:Kk Electric car and its continuous operation guarantee system
JP2007325351A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Motor drive control system
JP2008167620A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Vehicle power supply device and the vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298805A (en) * 1996-04-30 1997-11-18 Yamaha Motor Co Ltd Power supply method for electric motor car and its equipment
JP2004262357A (en) * 2003-03-03 2004-09-24 Nippon Home Keizai Kenkyusho:Kk Electric car and its continuous operation guarantee system
JP2007325351A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Motor drive control system
JP2008167620A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Vehicle power supply device and the vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011896A (en) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd Power supply device for hybrid car
WO2013018221A1 (en) * 2011-08-04 2013-02-07 トヨタ自動車株式会社 Vehicle, and vehicle control method
EP2740644A4 (en) * 2011-08-04 2016-11-16 Toyota Motor Co Ltd Vehicle, and vehicle control method

Similar Documents

Publication Publication Date Title
JP4788842B2 (en) Control device and control method for hybrid vehicle
EP2353920B1 (en) Electrically driven vehicle and electrically driven vehicle control method
US8742718B2 (en) Charging apparatus for vehicle
JP5234179B2 (en) Electric vehicle power supply system and control method thereof
JP5621845B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
WO2010050038A1 (en) Power supply system for electric vehicle and control method for the same
WO2010050044A1 (en) Electric power source system for electrically driven vehicle and its control method
EP2403103B1 (en) Control apparatus and method for vehicle
WO2010143277A1 (en) Power supply system for electric vehicle and control method thereof
WO2010143280A1 (en) Electric vehicle and method for controlling electric vehicle
WO2010050040A1 (en) Electric power source system for electrically driven vehicle and its control method
JP5245780B2 (en) vehicle
WO2007123222A1 (en) Power supply system and vehicle
US20110068740A1 (en) Power supply system for vehicle, electric vehicle having the same, and method of controlling power supply system for vehicle
JP2011015473A (en) Power supply system, electric vehicle including the same, and method of controlling the power supply system
JP2009033830A (en) Controller and control method for electric system, program achieving the method, and recording medium recording the program
EP2353921B1 (en) Vehicle control device and control method
JP4915273B2 (en) Electrical device and method for controlling electrical device
US10569656B2 (en) Regenerative control device
JP2010089719A (en) Power supply system for hybrid car
JP6665582B2 (en) Hybrid vehicle
JP2015013517A (en) Vehicle controller
JP2011223719A (en) Power supply apparatus
JP2023067409A (en) hybrid vehicle
WO2010089888A1 (en) Power source system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225