JP2010089542A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2010089542A
JP2010089542A JP2008258624A JP2008258624A JP2010089542A JP 2010089542 A JP2010089542 A JP 2010089542A JP 2008258624 A JP2008258624 A JP 2008258624A JP 2008258624 A JP2008258624 A JP 2008258624A JP 2010089542 A JP2010089542 A JP 2010089542A
Authority
JP
Japan
Prior art keywords
belt
region
tire
cord
mediate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258624A
Other languages
Japanese (ja)
Other versions
JP5260221B2 (en
Inventor
Naoto Kashiwabara
直人 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008258624A priority Critical patent/JP5260221B2/en
Priority to US12/561,292 priority patent/US8215355B2/en
Publication of JP2010089542A publication Critical patent/JP2010089542A/en
Application granted granted Critical
Publication of JP5260221B2 publication Critical patent/JP5260221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2025Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers with angle different or variable in the same layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10792Structure where each bias angle reinforcing cord ply has no opposingly angled ply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10801Structure made up of two or more sets of plies wherein the reinforcing cords in one set lie in a different angular position relative to those in other sets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/1081Breaker or belt characterized by the chemical composition or physical properties of elastomer or the like

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of suppressing its diameter growth and excellent in belt durability. <P>SOLUTION: The pneumatic tire has a belt arranged in such a manner that cords are inclined with respect to a tire circumferential direction; wherein, with a region making up 50 to 80% of a belt width around a tire equator line C defined as a mediate region Me, a region inward of the mediate region Me in a tire width direction defined as a center region Ce, and with a region outward of the mediate region Me in the tire width direction defined as a shoulder region Sh, cord angles of the belt 5 with respect to the tire circumferential direction are set such that a relation of θc>θs>θm is satisfied, where a cord angle in the mediate region Me is θm, a cord angle in the center region Ce is θc, and a cord angle in the shoulder region Sh is θs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タイヤ周方向に対してコードが傾斜するように配設されたベルトを備える空気入りタイヤに関する。   The present invention relates to a pneumatic tire including a belt disposed such that a cord is inclined with respect to a tire circumferential direction.

従来、トラックやバスなどの重荷重車両に用いられる空気入りタイヤの内部構造として、タイヤの骨格となるカーカスの外周側に補強用のベルトを配置したものが知られている。ベルトは、通常、タイヤ周方向に対してコードが所定の角度で傾斜するように配設され、そのコード角度はタイヤ幅方向全体にわたって一定となる。   Conventionally, as an internal structure of a pneumatic tire used for heavy-duty vehicles such as trucks and buses, a structure in which a reinforcing belt is disposed on the outer peripheral side of a carcass that is a skeleton of a tire is known. The belt is usually disposed such that the cord is inclined at a predetermined angle with respect to the tire circumferential direction, and the cord angle is constant throughout the tire width direction.

ところが、加硫成形工程を経ることにより、ベルトのコード角度が不均一に変化する場合がある(下記特許文献1)。これは、タイヤを拡径変化させてモールドに密着させる動作に応じて、ベルトのタイヤ周方向に対するコード角度がタイヤ幅方向の中央部よりも両端部で大きくなるものである。これによって、ベルトの両端部では、エンド数(単位幅あたりのコード本数)が小さくなって拘束力が低下する傾向にある。   However, the cord angle of the belt may change non-uniformly through the vulcanization molding process (Patent Document 1 below). This is because the cord angle with respect to the tire circumferential direction of the belt becomes larger at both end portions than in the central portion in the tire width direction in accordance with the operation of changing the diameter of the tire and bringing it into close contact with the mold. As a result, at both ends of the belt, the number of ends (the number of cords per unit width) tends to be small and the binding force tends to decrease.

図7は、上記の如くコード角度が変化したベルトを示す概念図である。符号Cはタイヤ赤道線であり、符号Wはベルト幅である(ベルトの半分が図示されている。)。破線は、コード角度を一定とした場合の仮想ラインである。タイヤ周方向に対するコード角度θは、タイヤ赤道線Cから離れるにつれて大きくなり、ベルトの端部において最大になる。このため、ベルトの拘束力は中央部よりも端部で相対的に低くなる。   FIG. 7 is a conceptual diagram showing a belt in which the cord angle is changed as described above. Symbol C is the tire equator line, and symbol W is the belt width (half of the belt is shown). A broken line is a virtual line when the code angle is constant. The cord angle θ with respect to the tire circumferential direction increases as the distance from the tire equator line C increases, and becomes maximum at the end of the belt. For this reason, the binding force of the belt is relatively lower at the end than at the center.

ところで、空気入りタイヤは、内圧を充填することや走行を重ねることによって、径寸法が大きくなる方向に変化する。この変化は径成長と呼ばれる。径成長が進行すると、タイヤの形状保持性が損なわれてユニフォミティが低下し、偏摩耗の原因になる。したがって、径成長を出来る限り小さくすることが望ましく、そのためにはベルトの拘束力を確保することが重要となる。   By the way, a pneumatic tire changes in the direction in which a radial dimension becomes large by being filled with internal pressure or repeatedly traveling. This change is called radial growth. As the diameter growth proceeds, the shape retention of the tire is impaired and the uniformity is reduced, causing uneven wear. Therefore, it is desirable to reduce the diameter growth as much as possible, and for that purpose, it is important to secure the restraining force of the belt.

この径成長の問題を解消すべく、ベルトのタイヤ周方向に対するコード角度をタイヤ幅方向の中央部で大きく、両端部で小さく、中間部で中位に設定した空気入りタイヤが提案されている(下記特許文献2)。これは、ショルダー領域における径成長が最も顕著であるとの知見に基づき、ベルトの端部周辺のコード角度を調整して拘束力を高めるようにしたものである。   In order to solve this diameter growth problem, a pneumatic tire is proposed in which the cord angle with respect to the tire circumferential direction of the belt is set to be large at the center in the tire width direction, small at both ends, and medium at the middle ( Patent Document 2) below. This is based on the knowledge that the diameter growth in the shoulder region is the most remarkable, and the cord angle around the end of the belt is adjusted to increase the binding force.

しかしながら、かかるタイヤでは、後述するように径成長の抑制効果が十分とは言えず、未だ改善の余地があることが判明した。そればかりか、コード角度が比較的小さいベルトの端部では歪みが増加し易く、ベルト耐久性が低下する傾向にある。このことから、タイヤの径成長を更に抑制しながらも、優れたベルト耐久性を発揮することができる空気入りタイヤが望まれる。
特開2007−84035号公報 特開2003−48111号公報
However, it has been found that such a tire does not have a sufficient effect of suppressing the diameter growth as described later, and there is still room for improvement. In addition, the end of the belt with a relatively small cord angle tends to increase the distortion, and the belt durability tends to decrease. For this reason, a pneumatic tire that can exhibit excellent belt durability while further suppressing the tire diameter growth is desired.
JP 2007-84035 A JP 2003-48111 A

本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤの径成長を抑制することができ、ベルト耐久性にも優れた空気入りタイヤを提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the pneumatic tire which can suppress the diameter growth of a tire and was excellent also in belt durability.

本発明者は、上記目的を達成すべく鋭意研究を重ねたところ、以下の事柄を見出した。すなわち、タイヤに高い内圧を充填したり走行を重ねたりするに際し、カーカスの長さが比較的短いサイドウォール部ではタイヤ幅方向外側への成長(膨らみ)が小さく、図8に示すように、その外周側端に位置するショルダー部を内側に引き込む力Fが作用する。そのため、径成長が進行すると、タイヤの内面形状がメディエイト領域にてタイヤ外周側に凸(内径が大)となり、タイヤ形状が不均一化する傾向にある。   The present inventor has conducted extensive studies to achieve the above object, and has found the following matters. That is, when filling the tire with a high internal pressure or overlapping running, the sidewall portion having a relatively short carcass length has a small growth (bulge) outward in the tire width direction, as shown in FIG. A force F that pulls the shoulder portion located at the outer peripheral end inwardly acts. Therefore, when the diameter growth proceeds, the inner surface shape of the tire becomes convex toward the tire outer periphery side (the inner diameter is large) in the mediate region, and the tire shape tends to be non-uniform.

したがって、ベルトの拘束力はベルトの端部で低いにも関わらず、径成長をより適切に抑制するにはショルダー領域よりも寧ろメディエイト領域に対して処置を施すべきであることが判明した。従来のようにベルトの端部のコード角度を小さくするだけでは、径成長の抑制効果が十分でなく、タイヤの内面形状が安定しないうえ、上述したようなベルト耐久性の問題も生じる。本発明は、かかる知見に基づいてなされたものであり、下記の如き構成により上記目的を達成できるものである。   Accordingly, it has been found that, even though the belt restraining force is low at the end of the belt, the mediate region should be treated rather than the shoulder region in order to more appropriately suppress the radial growth. Just by reducing the cord angle at the end of the belt as in the prior art, the effect of suppressing the diameter growth is not sufficient, the inner surface shape of the tire is not stable, and the problem of belt durability as described above also occurs. The present invention has been made on the basis of such knowledge, and can achieve the above object with the following configuration.

即ち、本発明の空気入りタイヤは、タイヤ周方向に対してコードが傾斜するように配設されたベルトを備える空気入りタイヤにおいて、タイヤ赤道線を中心にしてベルト幅の50〜80%となる領域をメディエイト領域、前記メディエイト領域よりもタイヤ幅方向内側の領域をセンター領域、前記メディエイト領域よりもタイヤ幅方向外側の領域をショルダー領域とし、前記ベルトのタイヤ周方向に対するコード角度に関して、前記メディエイト領域におけるコード角度をθm、前記センター領域におけるコード角度をθc、前記ショルダー領域におけるコード角度をθsとするとき、θc>θs>θmの関係を満たすことを特徴とする。   That is, the pneumatic tire of the present invention is 50 to 80% of the belt width centering on the tire equator line in a pneumatic tire including a belt disposed so that the cord is inclined with respect to the tire circumferential direction. The region is a mediate region, the region inside the tire width direction from the mediate region is a center region, the region outside the mediate region in the tire width direction is a shoulder region, and the cord angle with respect to the tire circumferential direction of the belt, When the chord angle in the mediate region is θm, the chord angle in the center region is θc, and the chord angle in the shoulder region is θs, the relationship θc> θs> θm is satisfied.

本発明に係る空気入りタイヤでは、ベルトのタイヤ周方向に対するコード角度をメディエイト領域で最小とし、タイヤの内面形状が局部的に変化しがちなメディエイト領域において、ベルトの拘束力が最も高くなるようにしている。そのうえで、ショルダー領域のコード角度をセンター領域よりも小さくしている。これにより、タイヤ幅方向全体にわたり径成長を均一に抑制することができる。また、ショルダー領域においてベルトのコード角度を比較的大きく設定できることから、ベルトの端部での歪みの増加を抑えて、優れたベルト耐久性を発揮することができる。   In the pneumatic tire according to the present invention, the cord angle of the belt with respect to the tire circumferential direction is minimized in the mediate region, and the restraint force of the belt is highest in the mediate region where the inner surface shape of the tire tends to change locally. I am doing so. In addition, the cord angle of the shoulder region is made smaller than that of the center region. Thereby, diameter growth can be suppressed uniformly over the whole tire width direction. Moreover, since the cord angle of the belt can be set relatively large in the shoulder region, an increase in distortion at the end of the belt can be suppressed, and excellent belt durability can be exhibited.

上記において、θc−θm≦5°の関係を満たしつつ、前記メディエイト領域から前記センター領域に向かって前記ベルトのコード角度を徐々に変化させているものが好ましい。これによってベルトのコードを滑らかに配置し易くなり、ベルトの強度を適切に確保できる。すなわち、θc−θm>5°とした場合には、コード角度の変化が大きくなるためにコードの滑らかな配置が難しくなる傾向にあり、コードを屈曲させたりするとベルトの強度に悪影響を及ぼすおそれがある。   In the above, it is preferable that the cord angle of the belt is gradually changed from the mediate region toward the center region while satisfying the relationship of θc−θm ≦ 5 °. This facilitates the smooth arrangement of the belt cord and ensures the belt strength appropriately. That is, when θc−θm> 5 °, a change in the cord angle becomes large, so that the smooth arrangement of the cord tends to be difficult. If the cord is bent, the belt strength may be adversely affected. is there.

上記において、θs−θm≦3°の関係を満たしつつ、前記メディエイト領域から前記ショルダー領域に向かって前記ベルトのコード角度を徐々に変化させているものが好ましい。これによってベルトのコードを滑らかに配置し易くなり、ベルトの強度を適切に確保できる。すなわち、θs−θm>3°とした場合には、コード角度の変化が大きくなるためにコードの滑らかな配置が難しくなる傾向にあり、コードを屈曲させたりするとベルトの強度に悪影響を及ぼすおそれがある。   In the above, it is preferable that the cord angle of the belt is gradually changed from the mediate region toward the shoulder region while satisfying the relationship of θs−θm ≦ 3 °. This facilitates the smooth arrangement of the belt cord and ensures the belt strength appropriately. That is, when θs−θm> 3 °, a change in the cord angle becomes large, so that the smooth arrangement of the cord tends to be difficult. If the cord is bent, the strength of the belt may be adversely affected. is there.

本発明は、扁平率が70%以下のタイヤに特に有用である。このような扁平率が低いタイヤでは、サイドウォール部におけるカーカスの長さが相対的に短く、タイヤ幅方向外側への膨らみが抑えられてメディエイト領域での内面形状の変化が顕著となるため、本発明の構成が特に有用となる。   The present invention is particularly useful for a tire having an aspect ratio of 70% or less. In a tire with such a low flatness ratio, the length of the carcass in the sidewall portion is relatively short, and the bulge to the outside in the tire width direction is suppressed, and the change in the inner surface shape in the mediate region becomes significant. The configuration of the present invention is particularly useful.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本発明に係る空気入りタイヤの一例を概略的に示すタイヤ子午線半断面図である。この空気入りタイヤは、一対のビード部1と、ビード部1から各々タイヤ外周側に延びるサイドウォール部2と、そのサイドウォール部2の各々のタイヤ外周側端に連なるトレッド部3とを備える。ビード部1には、鋼線等の収束体をゴム被覆してなる環状のビードコア1aと、硬質ゴムからなるビードフィラー1bとが配設されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a half sectional view of a tire meridian schematically showing an example of a pneumatic tire according to the present invention. The pneumatic tire includes a pair of bead portions 1, a sidewall portion 2 extending from the bead portion 1 to the tire outer peripheral side, and a tread portion 3 connected to each tire outer peripheral side end of the sidewall portion 2. The bead portion 1 is provided with an annular bead core 1a formed by covering a converging body such as a steel wire with rubber and a bead filler 1b made of hard rubber.

カーカス4は、ビード部1の間に架け渡されるようにして配設され、その端部がビードコア1aを介して巻き上げられた状態で係止されている。カーカス4は、タイヤ赤道線Cに対して略90°の角度で延びるコードにより構成され、該コードとしては、スチールコード、並びに、ポリエステルやレーヨン、ナイロン、アラミド等の有機繊維コードが好ましく採用される。   The carcass 4 is disposed so as to be bridged between the bead portions 1 and is locked in a state where its end is wound up via the bead core 1a. The carcass 4 is constituted by a cord extending at an angle of approximately 90 ° with respect to the tire equator line C. As the cord, a steel cord and organic fiber cords such as polyester, rayon, nylon, and aramid are preferably employed. .

カーカス4のトレッド部3外周にはベルト5が配設され、たが効果によってカーカス4を補強している。ベルト5は、多数本のコードをゴムでトッピングしたベルトプライにより構成され、そのコードがタイヤ周方向に対して傾斜するように配設される。ベルト5を構成するコードとしてはスチールコードが例示されるが、上述したような有機繊維コードも使用可能である。   A belt 5 is disposed on the outer periphery of the tread portion 3 of the carcass 4 to reinforce the carcass 4 by an effect. The belt 5 is constituted by a belt ply in which a large number of cords are topped with rubber, and the cords are disposed so as to be inclined with respect to the tire circumferential direction. Steel cords are exemplified as the cords constituting the belt 5, but organic fiber cords as described above can also be used.

図2は、ベルト5を構成するコードの配列を概念的に示している。符号Wはベルト幅であり、図2ではベルト5を半分だけ示している。斜めに延びた実線がコード5cであり、破線はコード角度を一定とした場合の仮想ラインである。メディエイト領域Meは、タイヤ赤道線Cを中心にしてベルト幅Wの50〜80%となる領域であり、それよりもタイヤ幅方向内側の領域をセンター領域Ce、タイヤ幅方向外側の領域をショルダー領域Shとしている。ベルト5の端部はショルダー領域Shに配される。   FIG. 2 conceptually shows the arrangement of the cords constituting the belt 5. Reference numeral W denotes a belt width. In FIG. 2, only half of the belt 5 is shown. The solid line extending obliquely is the cord 5c, and the broken line is a virtual line when the cord angle is constant. The mediate region Me is a region that is 50 to 80% of the belt width W around the tire equator line C. The inner region in the tire width direction is the center region Ce and the outer region in the tire width direction is the shoulder. It is set as area | region Sh. The end of the belt 5 is disposed in the shoulder region Sh.

本発明では、ベルト5のタイヤ周方向に対するコード角度に関して、メディエイト領域Meにおけるコード角度をθm、センター領域Ceにおけるコード角度をθc、ショルダー領域Shにおけるコード角度をθsとするとき、θc>θs>θmの関係が満たされる。すなわち、ベルト5のコード角度(特に断らない限り本明細書ではタイヤ周方向に対する角度である。)は、メディエイト領域Meで最小となり、センター領域Ceで最大となり、ショルダー領域Shでは中位となるように設定される。   In the present invention, regarding the cord angle of the belt 5 with respect to the tire circumferential direction, when the cord angle in the mediate region Me is θm, the cord angle in the center region Ce is θc, and the cord angle in the shoulder region Sh is θs, θc> θs> The relationship of θm is satisfied. That is, the cord angle of the belt 5 (in this specification, the angle with respect to the tire circumferential direction unless otherwise specified) is minimum in the mediate region Me, maximum in the center region Ce, and intermediate in the shoulder region Sh. Is set as follows.

かかる構成によれば、タイヤの内面形状が局部的に変化しがちなメディエイト領域Meにおいて、ベルト5の拘束力が最も高くなる。そのうえで、ショルダー領域Shのコード角度をセンター領域Ceよりも小さくしていることにより、タイヤ幅方向全体にわたり径成長を均一に抑制することができる。また、ショルダー領域Shにおいてベルト5のコード角度を比較的大きく設定できることから、ベルト5の端部での歪みの増加を抑えて、優れたベルト耐久性を発揮することができる。   According to such a configuration, the binding force of the belt 5 becomes the highest in the mediate region Me in which the inner surface shape of the tire tends to change locally. In addition, by making the cord angle of the shoulder region Sh smaller than the center region Ce, it is possible to uniformly suppress the diameter growth over the entire tire width direction. In addition, since the cord angle of the belt 5 can be set to be relatively large in the shoulder region Sh, an increase in distortion at the end of the belt 5 can be suppressed and excellent belt durability can be exhibited.

図3は、ベルト5のコード角度の推移を概念的に示すグラフである。横軸はタイヤ赤道線Cからのタイヤ幅方向距離であり、縦軸はベルト5のタイヤ周方向に対するコード角度である。このグラフが示すように、ベルト5のコード角度は、センター領域Ceからメディエイト領域Meに向かって徐々に小さくなり、メディエイト領域Me内で最小値を示し、メディエイト領域Meからショルダー領域Shに向かって徐々に大きくなっている。   FIG. 3 is a graph conceptually showing the transition of the cord angle of the belt 5. The horizontal axis is the distance in the tire width direction from the tire equator line C, and the vertical axis is the cord angle of the belt 5 with respect to the tire circumferential direction. As shown in this graph, the cord angle of the belt 5 gradually decreases from the center region Ce toward the mediate region Me, shows a minimum value in the mediate region Me, and from the mediate region Me to the shoulder region Sh. It is getting bigger gradually.

このように、各領域内でコード角度が変化する場合には、メディエイト領域Meにおけるコード角度の最小値をθm、センター領域Ceにおけるコード角度の最大値をθc、ショルダー領域Shにおけるコード角度の最大値をθsとし、それらがθc>θs>θmの関係を満たすように設定すればよい。本実施形態であれば、タイヤ赤道線Cの近傍にてθcが得られ、ベルト5の端部近傍にてθsが得られる。   Thus, when the chord angle changes in each area, the minimum chord angle value in the mediate area Me is θm, the maximum chord angle value in the center area Ce is θc, and the maximum chord angle in the shoulder area Sh is The value may be set to θs so that they satisfy the relationship θc> θs> θm. In the present embodiment, θc is obtained near the tire equator line C, and θs is obtained near the end of the belt 5.

したがって、本発明には、ベルトのコード角度が図4に示す如く推移するものが含まれる。(A)は、コード角度がメディエイト領域Meにて一定となる例であり、(B)は、コード角度がセンター領域Ceでも一定となる例である。(C)は、コード角度が、メディエイト領域Meと、センター領域Ce及びショルダー領域Shのメディエイト領域Me近傍にて一定となる例である。(A)〜(C)何れの場合においても、θc>θs>θmの関係が満たされる。   Therefore, the present invention includes a belt in which the cord angle changes as shown in FIG. (A) is an example in which the chord angle is constant in the mediate area Me, and (B) is an example in which the chord angle is also constant in the center area Ce. (C) is an example in which the chord angle is constant in the mediate region Me and in the vicinity of the mediate region Me in the center region Ce and the shoulder region Sh. In any of the cases (A) to (C), the relationship θc> θs> θm is satisfied.

本発明では、θc−θm≦5°の関係を満たしつつ、メディエイト領域Meからセンター領域Ceに向かってベルト5のコード角度を徐々に変化させたものが好ましい。これによって、図2に示すようにコード5cを屈曲させることなく滑らかに配置し易くなり、ベルト5の強度を適切に確保できる。このことは、コード5cがスチールコードである場合には特に有用となる。   In the present invention, it is preferable to gradually change the cord angle of the belt 5 from the mediate region Me toward the center region Ce while satisfying the relationship of θc−θm ≦ 5 °. As a result, as shown in FIG. 2, the cord 5c can be smoothly arranged without being bent, and the strength of the belt 5 can be ensured appropriately. This is particularly useful when the cord 5c is a steel cord.

本発明では0°<θc−θmであるが、好ましくは2°<θc−θmであり、より好ましくは3°≦θc−θmである。これによって、メディエイト領域Meにおけるコード角度を確実に小さくして拘束力が相対的に高められるため、タイヤ幅方向全体にわたって径成長をより均一に抑制することができる。   In the present invention, 0 ° <θc−θm, preferably 2 ° <θc−θm, and more preferably 3 ° ≦ θc−θm. As a result, the cord angle in the mediate region Me is reliably reduced and the restraining force is relatively increased, so that the diameter growth can be more uniformly suppressed over the entire tire width direction.

また、本発明では、θs−θm≦3°の関係を満たしつつ、メディエイト領域Meからショルダー領域Shに向かってベルト5のコード角度を徐々に変化させたものが好ましい。これによって、図2に示すようにコード5cを屈曲させることなく滑らかに配置し易くなり、ベルト5の強度を適切に確保できる。このことは、コード5cがスチールコードである場合には特に有用となる。   In the present invention, it is preferable that the cord angle of the belt 5 is gradually changed from the mediate region Me toward the shoulder region Sh while satisfying the relationship of θs−θm ≦ 3 °. As a result, as shown in FIG. 2, the cord 5c can be smoothly arranged without being bent, and the strength of the belt 5 can be ensured appropriately. This is particularly useful when the cord 5c is a steel cord.

本発明では0°<θs−θmであるが、好ましくは1°<θs−θmであり、より好ましくは2°≦θs−θmである。これによって、メディエイト領域Meにおけるコード角度を確実に小さくして拘束力が相対的に高められるため、タイヤ幅方向全体にわたって径成長をより均一に抑制することができる。   In the present invention, 0 ° <θs−θm, preferably 1 ° <θs−θm, and more preferably 2 ° ≦ θs−θm. As a result, the cord angle in the mediate region Me is reliably reduced and the restraining force is relatively increased, so that the diameter growth can be more uniformly suppressed over the entire tire width direction.

また、本発明では、1°≦θc−θsであることが好ましく、1.5°≦θc−θsであることがより好ましい。これによって、センター領域Ceよりも低くなりがちなショルダー領域Shでのベルト5の拘束力を高めて、タイヤ幅方向全体にわたって径成長をより均一に抑制することができる。   In the present invention, 1 ° ≦ θc−θs is preferable, and 1.5 ° ≦ θc−θs is more preferable. As a result, the binding force of the belt 5 in the shoulder region Sh that tends to be lower than the center region Ce can be increased, and the diameter growth can be more uniformly suppressed over the entire tire width direction.

図2は概念的に記載しているが、実際のコード角度は全体的にもっと小さい。具体的には、θcが10〜30°、θsが8〜28°、θmが5〜25°であるものが例示される。また、本実施形態のように、コード5cが緩やかに曲がっていて直線状に配置されない部分を有する場合、そのコード角度は接線を利用して計測できる。   Although FIG. 2 is conceptually described, the actual chord angle is generally smaller. Specifically, those in which θc is 10 to 30 °, θs is 8 to 28 °, and θm is 5 to 25 ° are exemplified. Further, as in the present embodiment, when the cord 5c is gently bent and has a portion that is not arranged linearly, the cord angle can be measured using a tangent.

図1では、図示の都合上、ベルト5を単層の部材として記載しているが、実際には複数枚(例えば2枚、4枚)のベルトプライを積層することでベルト5が構成される。各ベルトプライは、コード角度がプライ間で互いに逆向きに交差するように配設されるが、それらのコード角度はθc>θs>θmの関係を満たしている。なお、ベルトプライの幅寸法が互いに異なる場合には、ベルト5の最大幅がベルト幅Wとして用いられる。   In FIG. 1, for convenience of illustration, the belt 5 is illustrated as a single-layer member, but actually, the belt 5 is configured by laminating a plurality of (for example, two, four) belt plies. . Each belt ply is disposed such that the cord angles cross in opposite directions between the plies, and the cord angles satisfy a relationship of θc> θs> θm. When the belt ply width dimensions are different from each other, the maximum width of the belt 5 is used as the belt width W.

上述したようなコード角度の設定は、ベルトを構成する複数のベルトプライの何れに採用してもよく、全てのベルトプライに採用しても構わないが、ワーキングベルトとして機能するベルトプライに採用することが好ましい。例えばトラックやバスなどの重荷重車両に用いられる空気入りタイヤにおいて、4枚のベルトプライを積層してなるベルトを備える場合には、ワーキングベルトとして機能する2枚目と3枚目のベルトプライに採用することが好ましい。   The setting of the cord angle as described above may be adopted for any of a plurality of belt plies constituting the belt, may be adopted for all belt plies, but is adopted for a belt ply that functions as a working belt. It is preferable. For example, in the case of pneumatic tires used in heavy-duty vehicles such as trucks and buses, when equipped with a belt formed by laminating four belt plies, the second and third belt plies that function as working belts are used. It is preferable to adopt.

本発明は、扁平率(タイヤ断面高さ/タイヤ断面幅×100)が70%以下のタイヤに特に有用であり、扁平率が60%以下のタイヤには更に有用となる。このような扁平率が低いタイヤでは、サイドウォール部2におけるカーカス4の長さが相対的に短く、タイヤ幅方向外側への膨らみが抑えられてメディエイト領域Meでの内面形状の変化が顕著となるため、本発明の構成が特に有用となる。   The present invention is particularly useful for tires having a flatness ratio (tire cross section height / tire cross section width × 100) of 70% or less, and more useful for tires having a flat ratio of 60% or less. In such a tire having a low flatness ratio, the length of the carcass 4 in the sidewall portion 2 is relatively short, and the bulge to the outside in the tire width direction is suppressed, and the change in the inner surface shape in the mediate region Me is remarkable. Therefore, the configuration of the present invention is particularly useful.

本発明の空気入りタイヤは、前述の如き作用効果により径成長を抑制しながら優れたベルト耐久性を発揮するため、高内圧・高荷重下で用いられる重荷重用空気入りタイヤとして有用であり、中でもスーパーシングルタイヤとして有用である。スーパーシングルタイヤは、トラックやバス等において従来片側2本あった複輪タイヤを1本にした超扁平タイヤである。   The pneumatic tire of the present invention exhibits excellent belt durability while suppressing diameter growth due to the above-described effects, and is useful as a heavy duty pneumatic tire used under high internal pressure and high load. Useful as a super single tire. A super single tire is an ultra-flat tire obtained by combining two single-wheel tires that have conventionally been two on one side in trucks and buses.

本発明の空気入りタイヤは、ベルトのコード角度を上記の如く設定する程度の改変で、その他は従来のタイヤ製造工程と同様にして製造を行うことができる。なお、上記のようなベルトは、例えば、本出願人による特開2002−127711号公報に記載の製造装置を利用して、コードを1本ずつ又は数本ずつ順次に且つコード角度を変えながら配置することで作製することができる。   The pneumatic tire of the present invention can be manufactured in the same manner as in the conventional tire manufacturing process, with modifications to such an extent that the cord angle of the belt is set as described above. The belt as described above is arranged, for example, by using the manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2002-127711 filed by the applicant of the present invention, one by one or several at a time and changing the cord angle. It can produce by doing.

以下、本発明の構成と効果を具体的に示す実施例について説明する。実施例等における評価項目は下記のようにして測定を行った。   Examples that specifically show the structure and effects of the present invention will be described below. Evaluation items in Examples and the like were measured as follows.

(1)径成長(内面安定性)
サイズ445/50R22.5のタイヤに対し、リム寄せ、新品INF及び成長後INFの3つの状態における内径を計測し、各状態間における内面状態を評価した。内径の計測位置は、タイヤ赤道線からベルトの端部にわたってタイヤ幅方向に10mm間隔で設定した。後掲する表1及び図5では、リム寄せ時から成長後INF時における内面変化量(径成長量)を載せている。但し、表1では各領域の代表位置における値を示しており、センター、メディエイト、ショルダーの各領域の代表位置は、それぞれベルト半幅に対するタイヤ赤道線からの距離が0、78、100%となる位置に設定している。
(1) Diameter growth (internal stability)
For tires of size 445 / 50R22.5, the inner diameter was measured in three states, rim gathering, new INF and grown INF, and the inner surface state between each state was evaluated. The measurement position of the inner diameter was set at 10 mm intervals in the tire width direction from the tire equator line to the end of the belt. In Table 1 and FIG. 5 to be described later, the amount of inner surface change (diameter growth amount) from the time of rim alignment to the time of INF after growth is listed. However, Table 1 shows the values at the representative positions of each region, and the representative positions of the center, mediate, and shoulder regions are 0, 78, and 100% of the distance from the tire equator line to the belt half width, respectively. The position is set.

なお、リム寄せとは、リム組みした新品タイヤに空気を少し充填して内圧を50kPaとした状態を指す。また、新品INFとは、リム寄せ状態にあるタイヤに空気を更に充填(インフレート)して、内圧を830kPaとした状態を指す。更に、成長後INFとは、新品INF状態にあるタイヤをドラム上にて88km/hで20000km走行させた後、内圧を830kPaとした状態を指す。各例の評価結果を表1及び図5に示す。   Note that rim gathering refers to a state in which a new tire assembled with a rim is slightly filled with air and the internal pressure is 50 kPa. The new INF refers to a state in which the tire in the rim-shifted state is further filled (inflated) with air and the internal pressure is set to 830 kPa. Further, the post-growth INF refers to a state in which a tire in a new INF state is run for 20000 km at 88 km / h on a drum and then the internal pressure is set to 830 kPa. The evaluation results of each example are shown in Table 1 and FIG.

(2)ベルト耐久性
サイズ445/50R22.5のタイヤを用いて、ECE54の耐久試験に準拠したドラム走行を実施し、ベルトに故障が発生するまでの走行距離を評価した。従来例の結果を100として指数で示し、数値が大きいほどベルト耐久性が良好であることを示す。各例の評価結果を表1に示す。
(2) Belt durability Using a tire having a size of 445 / 50R22.5, drum running was performed according to the durability test of ECE54, and the running distance until the belt failed was evaluated. The result of the conventional example is shown as an index with 100, and the larger the value, the better the belt durability. The evaluation results of each example are shown in Table 1.

Figure 2010089542
Figure 2010089542

表1及び図5より、実施例1、2は、何れも径成長が抑制されていて内面が安定していると共に、優れたベルト耐久性を発揮していることが分かる。これに対し、比較例1では、ショルダー領域が内側に引き込まれていて内面が安定しておらず、ベルト耐久性も低い。また、比較例2では、ショルダー領域で径成長が大きく、ベルト耐久性も低い。比較例3,4では径成長の抑制効果が小さく、従来例では径成長の抑制が不十分であると共にベルト耐久性が低い。   From Table 1 and FIG. 5, it can be seen that in Examples 1 and 2, the diameter growth is suppressed, the inner surface is stable, and excellent belt durability is exhibited. On the other hand, in Comparative Example 1, the shoulder region is drawn inward, the inner surface is not stable, and the belt durability is low. In Comparative Example 2, diameter growth is large in the shoulder region, and belt durability is low. In Comparative Examples 3 and 4, the effect of suppressing the diameter growth is small, and in the conventional example, the suppression of the diameter growth is insufficient and the belt durability is low.

図6は、(A)従来例と(B)実施例1におけるタイヤの断面形状の変化を示す模式図である。実線がリム寄せ、1点鎖線が新品INF、2点鎖線が成長後INFの状態を示している。   FIG. 6 is a schematic diagram showing changes in the cross-sectional shape of the tire in (A) a conventional example and (B) Example 1. A solid line indicates a rim approach, a one-dot chain line indicates a new INF, and a two-dot chain line indicates a state of INF after growth.

従来例では、リム寄せから新品INFに至る過程で、更には新品INFから成長後INFに至る過程で、それぞれ径成長がタイヤ幅方向全体にわたって大きい。これに対して、実施例1では、リム寄せから新品INFに至る過程での径成長は僅かで、新品INFから成長後INFに至る過程では径成長が良好に抑制されており、タイヤの内面形状が安定している。   In the conventional example, in the process from the rim gathering to the new INF, and further in the process from the new INF to the grown INF, the diameter growth is large over the entire tire width direction. On the other hand, in Example 1, the diameter growth in the process from the rim gathering to the new INF is slight, and the diameter growth is well suppressed in the process from the new INF to the post-growing INF, and the inner shape of the tire Is stable.

本発明に係る空気入りタイヤの一例を概略的に示すタイヤ子午線半断面図The tire meridian half sectional view schematically showing an example of the pneumatic tire according to the present invention ベルトのコード配列を示す概念図Conceptual diagram showing belt cord arrangement ベルトのコード角度の推移を示すグラフGraph showing changes in belt cord angle 本発明の別実施形態におけるベルトのコード角度の推移を示すグラフThe graph which shows transition of the cord angle of the belt in another embodiment of the present invention. 内面成長量を示すグラフGraph showing the amount of internal growth 従来例と実施例1におけるタイヤの断面形状の変化を示す模式図Schematic diagram showing changes in the cross-sectional shape of the tire in the conventional example and Example 1 従来タイヤにおけるベルトのコード配列を示す概念図Conceptual diagram showing belt cord arrangement in conventional tires 径成長の過程におけるタイヤの挙動を説明する図Diagram explaining tire behavior in the process of radial growth

符号の説明Explanation of symbols

2 サイドウォール部
4 カーカス
5 ベルト
5c コード
C タイヤ赤道線
Ce センター領域
Me メディエイト領域
Sh ショルダー領域
W ベルト幅
2 Side wall part 4 Carcass 5 Belt 5c Code C Tire equator line Ce Center area Me Mediate area Sh Shoulder area W Belt width

Claims (4)

タイヤ周方向に対してコードが傾斜するように配設されたベルトを備える空気入りタイヤにおいて、
タイヤ赤道線を中心にしてベルト幅の50〜80%となる領域をメディエイト領域、前記メディエイト領域よりもタイヤ幅方向内側の領域をセンター領域、前記メディエイト領域よりもタイヤ幅方向外側の領域をショルダー領域とし、
前記ベルトのタイヤ周方向に対するコード角度に関して、前記メディエイト領域におけるコード角度をθm、前記センター領域におけるコード角度をθc、前記ショルダー領域におけるコード角度をθsとするとき、
θc>θs>θmの関係を満たすことを特徴とする空気入りタイヤ。
In a pneumatic tire provided with a belt arranged so that the cord is inclined with respect to the tire circumferential direction,
An area that is 50 to 80% of the belt width centered on the tire equator line is a mediate area, an area inside the tire width direction from the mediate area is a center area, and an area that is outside the mediate area in the tire width direction Is the shoulder area,
Regarding the cord angle with respect to the tire circumferential direction of the belt, when the cord angle in the mediate region is θm, the cord angle in the center region is θc, and the cord angle in the shoulder region is θs,
A pneumatic tire characterized by satisfying a relationship of θc>θs> θm.
θc−θm≦5°の関係を満たしつつ、前記メディエイト領域から前記センター領域に向かって前記ベルトのコード角度を徐々に変化させている請求項1記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the cord angle of the belt is gradually changed from the mediate region toward the center region while satisfying a relationship of θc−θm ≦ 5 °. θs−θm≦3°の関係を満たしつつ、前記メディエイト領域から前記ショルダー領域に向かって前記ベルトのコード角度を徐々に変化させている請求項1又は2記載の空気入りタイヤ。   3. The pneumatic tire according to claim 1, wherein the cord angle of the belt is gradually changed from the mediate region toward the shoulder region while satisfying a relationship of θs−θm ≦ 3 °. 扁平率が70%以下である請求項1〜3いずれか1項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein the flatness is 70% or less.
JP2008258624A 2008-10-03 2008-10-03 Pneumatic tire Expired - Fee Related JP5260221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008258624A JP5260221B2 (en) 2008-10-03 2008-10-03 Pneumatic tire
US12/561,292 US8215355B2 (en) 2008-10-03 2009-09-17 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258624A JP5260221B2 (en) 2008-10-03 2008-10-03 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010089542A true JP2010089542A (en) 2010-04-22
JP5260221B2 JP5260221B2 (en) 2013-08-14

Family

ID=42074851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258624A Expired - Fee Related JP5260221B2 (en) 2008-10-03 2008-10-03 Pneumatic tire

Country Status (2)

Country Link
US (1) US8215355B2 (en)
JP (1) JP5260221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230538A (en) * 2010-04-23 2011-11-17 Toyo Tire & Rubber Co Ltd Pneumatic tire
CN109760475A (en) * 2017-11-09 2019-05-17 东洋橡胶工业株式会社 Pneumatic tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720539B2 (en) * 2016-01-13 2020-07-08 住友ゴム工業株式会社 Pneumatic tire
JP2018075898A (en) * 2016-11-08 2018-05-17 東洋ゴム工業株式会社 Pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164605A (en) * 1987-12-21 1989-06-28 Yokohama Rubber Co Ltd:The Pneumatic radial tire for use of heavy load
JPH0648111A (en) * 1992-07-27 1994-02-22 Toyo Tire & Rubber Co Ltd Radial tire
JPH07309104A (en) * 1994-05-18 1995-11-28 Bridgestone Corp Pneumatic tire for passenger car
JP2003154809A (en) * 2001-11-21 2003-05-27 Bridgestone Corp Pneumatic tire and manufacturing method of pneumatic tire
JP2007084035A (en) * 2005-08-23 2007-04-05 Toyo Tire & Rubber Co Ltd Pneumatic tire and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747203A (en) * 1980-09-05 1982-03-18 Bridgestone Corp Pneumatic flat radial tire for heavy load
JP3378815B2 (en) * 1998-12-10 2003-02-17 住友ゴム工業株式会社 Heavy duty tire
JP2003048111A (en) 2001-08-07 2003-02-18 Osaka Gas Co Ltd Pipe end beveling machine and pipe end beveling method
JP2004203298A (en) * 2002-12-26 2004-07-22 Bridgestone Corp Pneumatic tire
JP2006306151A (en) * 2005-04-26 2006-11-09 Yokohama Rubber Co Ltd:The Pneumatic tire
CN101024368B (en) * 2006-02-22 2010-05-26 东洋橡胶工业株式会社 Pneumatic tire and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164605A (en) * 1987-12-21 1989-06-28 Yokohama Rubber Co Ltd:The Pneumatic radial tire for use of heavy load
JPH0648111A (en) * 1992-07-27 1994-02-22 Toyo Tire & Rubber Co Ltd Radial tire
JPH07309104A (en) * 1994-05-18 1995-11-28 Bridgestone Corp Pneumatic tire for passenger car
JP2003154809A (en) * 2001-11-21 2003-05-27 Bridgestone Corp Pneumatic tire and manufacturing method of pneumatic tire
JP2007084035A (en) * 2005-08-23 2007-04-05 Toyo Tire & Rubber Co Ltd Pneumatic tire and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230538A (en) * 2010-04-23 2011-11-17 Toyo Tire & Rubber Co Ltd Pneumatic tire
CN109760475A (en) * 2017-11-09 2019-05-17 东洋橡胶工业株式会社 Pneumatic tire
JP2019085019A (en) * 2017-11-09 2019-06-06 Toyo Tire株式会社 Pneumatic tire

Also Published As

Publication number Publication date
US8215355B2 (en) 2012-07-10
JP5260221B2 (en) 2013-08-14
US20100084068A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5249843B2 (en) Pneumatic tire
JP2009073337A (en) Pneumatic tire
US10328753B2 (en) Pneumatic tire
JP2006199224A (en) Run-flat tire
CN112770919B (en) Pneumatic tire
JP6720539B2 (en) Pneumatic tire
JP2020152136A (en) Pneumatic tire for heavy load
JP5260221B2 (en) Pneumatic tire
JP6450112B2 (en) Pneumatic tire
JP6300342B2 (en) Run flat tire
JP6003106B2 (en) Pneumatic tire manufacturing method
JP2016037087A (en) Tire for two-wheeled vehicle
JP2007276694A (en) Pneumatic tire
JPWO2012141149A1 (en) Pneumatic tires for motorcycles
JP2013052756A (en) Pneumatic tire
JP2017137007A (en) Pneumatic tire
JP2008055962A (en) Pneumatic tire
JP5944657B2 (en) Pneumatic tire
JP4577005B2 (en) Pneumatic tire for light truck
JP2006159985A (en) Pneumatic run flat tire
JP2017001432A (en) Pneumatic tire
JP2015227138A (en) Pneumatic tire
US8967214B2 (en) Pneumatic radial tire
JP4813070B2 (en) Pneumatic tires for motorcycles
JP2011218972A (en) Pneumatic radial tire for heavy load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees