JP2010089097A - Method of forging workpiece - Google Patents

Method of forging workpiece Download PDF

Info

Publication number
JP2010089097A
JP2010089097A JP2008258638A JP2008258638A JP2010089097A JP 2010089097 A JP2010089097 A JP 2010089097A JP 2008258638 A JP2008258638 A JP 2008258638A JP 2008258638 A JP2008258638 A JP 2008258638A JP 2010089097 A JP2010089097 A JP 2010089097A
Authority
JP
Japan
Prior art keywords
defect
workpiece
internal
forging
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258638A
Other languages
Japanese (ja)
Other versions
JP4956518B2 (en
Inventor
Tsuyoshi Arikawa
剛史 有川
Takashi Yoshida
鷹志 吉田
Hideki Kakimoto
英樹 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008258638A priority Critical patent/JP4956518B2/en
Publication of JP2010089097A publication Critical patent/JP2010089097A/en
Application granted granted Critical
Publication of JP4956518B2 publication Critical patent/JP4956518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forging a workpiece for easily closing (pressure-bonding) of internal defects of the workpiece. <P>SOLUTION: In the forging method for executing forging while the workpiece 2 is screwed down by an anvil 1 to close internal defects 8 of the workpiece 2, the relationship between the internal defect evaluation index Q and the draft is obtained correspondingly the workpiece 2 to be forged. The position, the size and the shape of the internal defects 8 before the forging are estimated. On the basis of the estimated position, the estimated size and the estimated shape of the defect, the minimum value Qmin for closing the internal defects 8 in the internal defect evaluation index Q is obtained, and the workpiece 2 is screwed down by the anvil 1 with the value equal to or more than the draft corresponding to the minimum value Qmin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被加工材を圧下をすることで被加工材の鍛造を行う被加工材の鍛造方法に関するものである。   The present invention relates to a method for forging a workpiece by forging the workpiece by reducing the workpiece.

従来より、金属系材料等の被加工材を金敷によって圧下することによって被加工材の鍛造を行う鍛造方法が開示されている(例えば、特許文献1)。
特許文献1の熱間鍛錬方法では、材料幅の0.4〜0.7倍の幅で、且つ、材料高さの0.3〜0.5倍の軸方向長さを有する金敷を用いて、予備加熱した金属材料の表面層を冷却しながら鍛錬を行うようにしている。この特許文献1の技術では、形状に合わせた幅の広い金敷を用いて圧下を行うと共に、材料の表面層を冷却させることによって圧下荷重の内部への伝達を促進し、内部欠陥の閉鎖(圧着)を行っている。
Conventionally, a forging method for forging a workpiece by rolling the workpiece such as a metal-based material with an anvil is disclosed (for example, Patent Document 1).
In the hot forging method of Patent Document 1, an anvil having a width 0.4 to 0.7 times the material width and an axial length 0.3 to 0.5 times the material height is used. Forging is performed while cooling the surface layer of the preheated metal material. In the technique of this patent document 1, while rolling down using the wide anvil according to the shape, the surface layer of material is cooled, the transmission of the rolling load to the inside is promoted, and internal defects are closed (crimping) )It is carried out.

さて、連続鋳造等によって鋳造された鋳片(被加工材)を圧延する圧延分野においては、圧延後に鋳片内部の空隙等、即ち、内部欠陥をなくす方法が数々開発されている(例えば、特許文献2、特許文献3)。
特許文献2の圧延方法においては、圧延による空隙圧着パラメータ(評価パラメータ)Gmを定義して、定義したGmの値に基づいて圧延パススケジュールを決定し、これにより、鋳片の内部欠陥を防止している。即ち、特許文献2では、累積値ΣGm+iの値が0.25以上となるように圧延パススケジュールにより圧延している。
Now, in the rolling field in which a slab (workpiece) cast by continuous casting or the like is rolled, a number of methods have been developed to eliminate voids in the slab after rolling, that is, internal defects (for example, patents). Literature 2, Patent Literature 3).
In the rolling method of Patent Document 2, a gap compression parameter (evaluation parameter) Gm by rolling is defined, and a rolling pass schedule is determined based on the defined Gm value, thereby preventing internal defects in the slab. ing. That is, in Patent Document 2, rolling is performed according to a rolling pass schedule so that the cumulative value ΣGm + i is 0.25 or more.

また、特許文献3の圧延方法においては、空隙圧着パラメータGm≧0.20となるパスを1パス以上含むようにパススケジュールを決定して圧延している。
特開平6−277783号公報 特開2005−74487号公報 特開2002−346604号公報
Moreover, in the rolling method of patent document 3, the pass schedule is determined and rolled so as to include one or more passes satisfying the gap compression parameter Gm ≧ 0.20.
JP-A-6-277783 JP 2005-74487 A JP 2002-346604 A

上述したように、特許文献1の技術では、金敷の形状の変更によって被加工材の内部欠陥の閉鎖を行っているが、被加工材の形状に合わせて幅の広い金敷を用いているため、被加工材の形状が変わる毎に金敷もその形状に対応しなければならず、鍛造が非常に手間のかかるものであり、実用的ではないという問題がある。
特許文献2や特許文献3に示すように、空隙圧着パラメータGmを定義して、このGmの値を用いてパススケジュールを決定することで内部欠陥をなくすものとしているが、圧延分野と鍛造分野とでは加工法の違いにより、圧延の技術を鍛造に適用することができないのが実情である。
As described above, in the technique of Patent Document 1, the internal defect of the workpiece is closed by changing the shape of the anvil, but because a wide anvil is used according to the shape of the workpiece, Each time the shape of the workpiece changes, the anvil must also correspond to the shape, and forging is very time-consuming and is not practical.
As shown in Patent Document 2 and Patent Document 3, the gap compression parameter Gm is defined, and the internal schedule is eliminated by determining the pass schedule using this Gm value. In reality, however, rolling techniques cannot be applied to forging due to differences in processing methods.

そこで、本発明は、被加工材の内部欠陥の閉鎖(圧着)を簡単に行うことができる被加工材の鍛造方法を提供することを目的とする。   Then, an object of this invention is to provide the forging method of the workpiece which can perform the closing (crimping) of the internal defect of a workpiece easily.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明の手段は、被加工材を金敷によって圧下して前記被加工材の内部欠陥を閉鎖させつつ鍛造を行う鍛造方法において、鍛造する被加工材に対応して式(1)で示される内部欠陥評価指数と圧下率との関係を求めると共に、鍛造前における内部欠陥の欠陥位置、欠陥サイズ及び欠陥形状を推定し、この推定した欠陥位置、欠陥のサイズ及び欠陥形状に基づいて、前記内部欠陥を閉鎖させるために必要な前記内部欠陥評価指数の最低値を求めておき、前記最低値に対応する圧下率以上で被加工材を金敷で圧下する点にある。
In order to achieve the above object, the present invention has taken the following measures.
That is, in the forging method in which the means of the present invention performs forging while reducing the internal defect of the work piece by reducing the work piece with an anvil, the equation (1) corresponds to the work piece to be forged. In addition to obtaining the relationship between the internal defect evaluation index and the reduction ratio, the defect position, the defect size and the defect shape of the internal defect before forging are estimated, and based on the estimated defect position, the defect size and the defect shape, The minimum value of the internal defect evaluation index necessary for closing the internal defects is obtained, and the work material is pressed down with an anvil at a rolling rate corresponding to the minimum value or more.

前記内部欠陥評価指数の最低値を式(2)から求めることが好ましい。   It is preferable to obtain the minimum value of the internal defect evaluation index from the formula (2).

式(2)の第1係数(A)及び第2係数(B)を求めるにあたっては、式(3)〜式(8)を用いることが好ましい。   In obtaining the first coefficient (A) and the second coefficient (B) of Expression (2), it is preferable to use Expression (3) to Expression (8).

前記内部欠陥の欠陥位置、当該内部欠陥の欠陥サイズ及び欠陥形状を推定するに際しては、流動凝固解析を用いると共に、前記内部欠陥評価指数を求めるに際しては、変形解析を用いることが好ましい。   When estimating the defect position of the internal defect, the defect size and the defect shape of the internal defect, it is preferable to use flow solidification analysis and to use deformation analysis when obtaining the internal defect evaluation index.

本発明によれば、被加工材の内部欠陥の閉鎖(圧着)を簡単に行うことができる。   According to the present invention, it is possible to easily close (crimp) internal defects of a workpiece.

本発明の被加工材の鍛造方法について説明する。
図1は、本発明の被加工材の鍛造方法を行う金敷の構成を示したものである。
図1に示すように、金敷1は、ビレットやブルーム、インゴット等の被加工材2を鍛造するものであって、被加工材2に対して圧下を行う上下移動可能な金敷本体3と、この金敷本体3の下側に上下移動不能に固定されて被加工材2が載置される載置台4とを備えている。
金敷本体3は、当該金敷本体3での圧下の際に被加工材2の表面の移動を拘束する拘束部5を備えている。詳しくは、被加工材2と対向する金敷本体3の表面6(対向面ということがある)に拘束部5が設けられ、この拘束部5は、円弧状に形成された複数の凹凸部7により構成されている。
A method for forging a workpiece according to the present invention will be described.
FIG. 1 shows the structure of an anvil that performs the method for forging a workpiece of the present invention.
As shown in FIG. 1, the anvil 1 is forging a workpiece 2 such as a billet, a bloom, an ingot, etc., and an anvil main body 3 that can be moved up and down to reduce the workpiece 2, and this A mounting table 4 is provided below the anvil main body 3 so as to be fixed so as not to move up and down.
The anvil body 3 includes a restraining portion 5 that restrains the movement of the surface of the workpiece 2 when the anvil body 3 is being reduced. Specifically, a restraining portion 5 is provided on the surface 6 (sometimes referred to as an opposing surface) of the anvil main body 3 facing the workpiece 2, and the restraining portion 5 is formed by a plurality of concave and convex portions 7 formed in an arc shape. It is configured.

このような金敷1では、平坦な載置台4に被加工材2を載置した後、金敷本体3を下降させて金敷本体3の対向面6で被加工材2の表面を所定の圧下率で押圧することによって、鍛造を行うことができる。金敷本体3によって被加工材2を圧下すると、被加工材2の表面が圧下する方向と直交する方向(例えば、図1の紙面左右方向)に移動して材料(被加工材2)が流動するが、本発明の拘束部5、即ち、凹凸部7によって圧下時の材料の流動を抑制し、被加工材2の内部に大きな歪みを与えることで、被加工材2の内部欠陥8を圧着により減少させている。   In such an anvil 1, after placing the workpiece 2 on the flat mounting table 4, the anvil main body 3 is lowered and the surface of the workpiece 2 on the opposite surface 6 of the anvil main body 3 at a predetermined reduction rate. Forging can be performed by pressing. When the work piece 2 is rolled down by the anvil body 3, the surface of the work piece 2 moves in a direction perpendicular to the direction of the roll down (for example, the left and right direction in FIG. 1), and the material (work piece 2) flows. However, the restraint portion 5 of the present invention, that is, the uneven portion 7 suppresses the flow of the material at the time of rolling down, and gives a large distortion to the inside of the workpiece 2, thereby compressing the internal defect 8 of the workpiece 2 by pressure bonding. It is decreasing.

以下、本発明の被加工材の鍛造方法について説明する。
本発明の被加工材の鍛造方法においては、図2に示すように、まず、鍛造する被加工材2を選択する(S1)。選択された被加工材2に対して、当該被加工材2を圧下したときの式(1)に示す内部欠陥評価指数Qを求めると共に、圧下率を求める(S2)。
即ち、S2においては、被加工材2に対する金敷1の圧下率を少しずつ変化させ、所定の圧下率で被加工材2を圧下したときの被加工材2の中心位置O(図2参照)における静水応力や相当応力をコンピュータシュミュレーションにおける変形解析によって、式(1)に示す内部欠陥評価指数Qを求める。そして、各内部欠陥評価指数Qと圧下率との関係(テーブル)を作成する。ここで、内部欠陥評価指数Qを求めるときの変形解析は、材料内の塑性変形や弾性変形の状態を忠実に再現でき、内部の応力状態をシュミュレートできるものであって、変形解析を行うソフトウェアとしては、例えば、ABAQUSなどの汎用製品を用いている.
例えば、条件:冷間据込,形状:Φ100×H150,弾性係数:E=2.05E+05,ポアソン比:ε=0.29である所定の材料では、表1に示すような、各内部欠陥評価指数Qと圧下率との関係(テーブル)を作成する。
Hereinafter, the forging method of the workpiece of the present invention will be described.
In the method for forging a workpiece according to the present invention, as shown in FIG. 2, first, the workpiece 2 to be forged is selected (S1). For the selected workpiece 2, the internal defect evaluation index Q shown in Equation (1) when the workpiece 2 is rolled down is obtained, and the rolling reduction is obtained (S 2).
That is, in S2, the reduction rate of the anvil 1 with respect to the workpiece 2 is changed little by little, and the workpiece 2 is reduced at the center position O (see FIG. 2) when the workpiece 2 is reduced at a predetermined reduction rate. An internal defect evaluation index Q shown in the equation (1) is obtained by deformation analysis in computer simulation for hydrostatic stress or equivalent stress. Then, a relationship (table) between each internal defect evaluation index Q and the rolling reduction is created. Here, the deformation analysis when calculating the internal defect evaluation index Q can faithfully reproduce the state of plastic deformation and elastic deformation in the material and can simulate the internal stress state, and is a software for performing deformation analysis. Uses, for example, general-purpose products such as ABAQUS.
For example, for a predetermined material with conditions: cold upset, shape: Φ100 × H150, elastic modulus: E = 2.05E + 05, Poisson's ratio: ε = 0.29, each internal defect evaluation index as shown in Table 1 Create a relationship (table) between Q and rolling reduction.

ただし、この表1は、上記に示した材料について、内部欠陥評価指数Qと圧下率との関係(対応表)を示したものでこれに限定されない。材質、形状、温度、摩擦によって被加工材2毎に内部欠陥評価指数Qと圧下率との関係(対応表)を求めることが好ましい。
次に、選択した被加工材2に対し、被加工材2の鋼塊生成後(鍛造前)における内部欠陥8の発生状況を推定する(S3)。即ち、鍛造前、即ち、圧下前に、被加工材2での内部欠陥8が発生した位置(欠陥位置)、内部欠陥8の欠陥サイズ、欠陥形状を流動凝固解析などを用いて推定をする。この流動凝固解析では、インゴット等に造塊する際での様々な条件を用いてコンピュータシュミュレーションを行い、これによって、欠陥位置、欠陥サイズ、欠陥形状を推定することができる。例えば、流動凝固解析は、「神戸製鋼技法vol.56 No1 Apr.2006 凝固・流動シュミュレーション技術の鋳鍛鋼製品への応用」や「神戸製鋼技法vol.51 No1 Dec.2001」に記載されている技術と同じであって、流動凝固解析を行うソフトウェアとしては、例えば、ADSTEFNやJSCASTという製品を用いている。
図3に示すように、欠陥位置とは、金敷によって圧下される圧下表面2aから最も近い内部欠陥(最上内部欠陥8aということがある)8aの中心までの距離を、被加工材2の高さHを用いて表したものである。即ち、圧下表面2aから最上内部欠陥8aの中心までの距離が欠陥位置である。欠陥位置が1/2ということは、圧下表面2aから1/2Hの距離の所に最上内部欠陥8aが存在していることを示し、欠陥位置が1/3ということは、圧下表面2aから1/3Hの距離の所に最上内部欠陥8aが存在していることを示し、欠陥位置が1/4ということは、圧下表面2aから1/4Hの距離の所に最上内部欠陥8aが存在していることを示している。これから分かるように、本発明では、最も圧下表面2aに近く、圧下によって閉鎖され難い最上内部欠陥8aを基準としている。
However, this Table 1 shows the relationship (correspondence table) between the internal defect evaluation index Q and the reduction ratio for the materials shown above, and is not limited to this. It is preferable to obtain the relationship (correspondence table) between the internal defect evaluation index Q and the rolling reduction for each workpiece 2 by the material, shape, temperature, and friction.
Next, with respect to the selected workpiece 2, the state of occurrence of internal defects 8 after the production of the steel ingot of the workpiece 2 (before forging) is estimated (S 3). That is, before forging, that is, before reduction, the position (defect position) where the internal defect 8 occurs in the workpiece 2, the defect size of the internal defect 8, and the defect shape are estimated using fluidized solidification analysis. In this fluidized solidification analysis, computer simulation is performed using various conditions when ingoting into an ingot or the like, and thereby a defect position, a defect size, and a defect shape can be estimated. For example, fluidized solidification analysis is described in "Kobe Steel Technique vol.56 No1 Apr.2006 Application of Solidification / Flow Simulation Technology to Cast Forged Steel Products" and "Kobe Steel Technique Vol.51 No1 Dec.2001". As software that is the same as the technology and performs flow solidification analysis, for example, products such as ADSTEFN and JSAST are used.
As shown in FIG. 3, the defect position refers to the distance from the rolling surface 2 a squeezed by the anvil to the center of the nearest internal defect (sometimes referred to as the uppermost internal defect 8 a) 8 a and the height of the workpiece 2. This is expressed using H. That is, the distance from the reduction surface 2a to the center of the uppermost internal defect 8a is the defect position. A defect position of 1/2 indicates that the uppermost internal defect 8a exists at a distance of 1 / 2H from the rolling surface 2a, and a defect position of 1/3 indicates that 1% from the rolling surface 2a. This means that the uppermost internal defect 8a exists at a distance of / 3H, and that the defect position is 1/4 means that the uppermost internal defect 8a exists at a distance of 1 / 4H from the rolling surface 2a. It shows that. As can be seen from the above, the present invention is based on the uppermost internal defect 8a that is closest to the reduction surface 2a and is difficult to close by reduction.

図3に示すように、欠陥サイズとは、内部欠陥8(最上内部欠陥8a)の大きさを被加工材2の幅Dと内部欠陥8の幅dとを用いて表したものである。言い換えれば、欠陥サイズは被加工材2の幅に対する内部欠陥8の幅の比(d/D)である。
欠陥形状とは、内部欠陥8の形状を内部欠陥8の幅dと内部欠陥8の高さhとを用いて表したもので、h/dの値が1に近いほど内部欠陥8の形状が円形と略同じものとなり、h/dの値が大きくなればなるほど内部欠陥8の形状が楕円形、若しくは先細り形状となる。
As shown in FIG. 3, the defect size represents the size of the internal defect 8 (the uppermost internal defect 8a) using the width D of the workpiece 2 and the width d of the internal defect 8. In other words, the defect size is the ratio (d / D) of the width of the internal defect 8 to the width of the workpiece 2.
The defect shape represents the shape of the internal defect 8 using the width d of the internal defect 8 and the height h of the internal defect 8. The closer the h / d value is to 1, the more the shape of the internal defect 8 is. It becomes substantially the same as a circle, and the larger the value of h / d, the more the shape of the internal defect 8 becomes elliptical or tapered.

次に、流動凝固解析により、欠陥位置、欠陥サイズ(d/D)、欠陥形状(h/d)の推定を行った後は、これらを用いて式(2)〜式(8)により、内部欠陥を閉鎖させるための最低値Qminを算出する。   Next, after estimating the defect position, the defect size (d / D), and the defect shape (h / d) by the flow solidification analysis, using these, the equations (2) to (8) A minimum value Qmin for closing the defect is calculated.

具体的には、欠陥位置を式(5)〜式(8)に代入して、係数α、β、γ、ζを求める(S4)。例えば、欠陥位置が1/2であれば0.5、欠陥位置が1/4であれば0.25をぞれぞれの式に代入する。次に、求めた係数α、β、γ、ζ及び欠陥サイズ(d/D)を式(5)及び式(6)に代入して、係数A(第1係数ということがある)と係数B(第2係数ということがある)を求める(S5)。求めた第1係数A、第2係数B及び欠陥形状(h/d)を代入して、最低値Qminを求める(S6)。そして、次に、予め求めておいた内部欠陥評価指数Qと圧下率との対応表から最低値Qminにおける圧下率を選択して、少なくとも、選択した圧下率以上で被加工材2を金敷で圧下する(S7)。   Specifically, the coefficients α, β, γ, and ζ are obtained by substituting the defect positions into the equations (5) to (8) (S4). For example, if the defect position is 1/2, 0.5 is substituted for each equation, and if the defect position is 1/4, 0.25 is substituted for each equation. Next, the obtained coefficients α, β, γ, ζ and defect size (d / D) are substituted into the equations (5) and (6), and a coefficient A (sometimes referred to as a first coefficient) and a coefficient B (Sometimes referred to as a second coefficient) (S5). The calculated first coefficient A, second coefficient B, and defect shape (h / d) are substituted to determine the minimum value Qmin (S6). Then, the reduction rate at the minimum value Qmin is selected from the correspondence table between the internal defect evaluation index Q and the reduction rate obtained in advance, and the workpiece 2 is reduced by the anvil at least above the selected reduction rate. (S7).

例えば、表1に示すように、最低値Qminが0.4159であった場合、圧下率は57%であるため、被加工材2を実際に圧下する際は57%以上で圧下をする。
ただし、対応表に最低値Qminに一致する圧下率が無い場合は、求めた最低値Qminによりも次に高い値の最低値Qminを選択して、その最低値Qminに対応する圧下率を選択する。
表1に示すように、最低値Qminが0.4233であった場合、この最低値Qminよりも次に高い数値(0.430734)を選択し、この最低値Qmin(0.430734)に対応する圧下率(58%)を選択する。
For example, as shown in Table 1, when the minimum value Qmin is 0.4159, the reduction ratio is 57%. Therefore, when the workpiece 2 is actually reduced, the reduction is performed at 57% or more.
However, if there is no rolling reduction that matches the minimum value Qmin in the correspondence table, the lowest value Qmin that is the next higher value than the calculated minimum value Qmin is selected, and the rolling reduction corresponding to the minimum value Qmin is selected. .
As shown in Table 1, when the minimum value Qmin is 0.4233, a numerical value (0.430734) next higher than the minimum value Qmin is selected and corresponds to the minimum value Qmin (0.430734). Select the reduction ratio (58%).

式(2)〜式(8)を導出した過程を説明する。
まず、発明者は、図4に示すような欠陥を有する材料(サンプル)に対して圧下を行い、圧下を行ったときの内部欠陥評価指数Qと、欠陥の空隙面積比(欠陥のつぶれ度合い)との関係を調べる様々な実験を行った。そして、各欠陥の位置(P/H)と、各欠陥形状(h/d)に分けた上で、内部欠陥評価指数Qと、欠陥の空隙面積比との関係を整理すると、図5ような結果となり、内部欠陥評価指数Q及び空隙面積比は、各欠陥の位置(P/H)や各欠陥形状(h/d)によって異なることを見いだした。
The process of deriving equations (2) to (8) will be described.
First, the inventor performs reduction on a material (sample) having a defect as shown in FIG. 4, and the internal defect evaluation index Q when the reduction is performed, and the void area ratio of the defect (defect crushing degree). Various experiments were conducted to investigate the relationship. Then, after dividing each defect position (P / H) and each defect shape (h / d), the relationship between the internal defect evaluation index Q and the void area ratio of the defects is arranged as shown in FIG. As a result, it was found that the internal defect evaluation index Q and the void area ratio differ depending on the position of each defect (P / H) and each defect shape (h / d).

そこで、発明者は、さらに検証を進め、内部欠陥を閉鎖したときの最低値Qminと、欠陥形状(h/d)とについて様々な実験を行い、この実験により、最低値Qminと欠陥形状(h/d)とについてまとめると図6に示すものとなった。
その結果、図6に示すように、最低値Qminと欠陥形状(h/d)とは線形関係があることを見出が分かった。式(2)に示す如く、最低値Qminと欠陥形状(h/d)との関係を係数A(第1係数ということがある)と係数B(第2係数ということがある)とを用いて表すこととした。
Therefore, the inventor conducted further verification and conducted various experiments on the minimum value Qmin when the internal defect was closed and the defect shape (h / d). By this experiment, the minimum value Qmin and the defect shape (h / D) is summarized as shown in FIG.
As a result, as shown in FIG. 6, it was found that the minimum value Qmin and the defect shape (h / d) have a linear relationship. As shown in Expression (2), the relationship between the minimum value Qmin and the defect shape (h / d) is expressed by using a coefficient A (sometimes referred to as a first coefficient) and a coefficient B (sometimes referred to as a second coefficient). I decided to represent it.

ここで、図6に示すように、欠陥形状(h/d)が同じ値であっても、欠陥サイズ(d/D)が異なれば、内部欠陥8を閉鎖させるための最低値Qminが異なることが分かった。
そこで、実験データにより、第1係数A及び第2係数Bと欠陥サイズ(d/D)とについてまとめた。
図7は、実験等のデータから第1係数A及び第2係数Bと欠陥サイズ(d/D)との関係をまとめたものである。その結果、図7に示す如く、第1係数Aは式(3)に示すように欠陥サイズ(d/D)と係数α、βで表すことができ、第2係数Bは式(4)に示すように欠陥サイズ(d/D)と係数γ、ζで表すことができることが分かった。
Here, as shown in FIG. 6, even if the defect shape (h / d) is the same value, the minimum value Qmin for closing the internal defect 8 is different if the defect size (d / D) is different. I understood.
Therefore, the first coefficient A, the second coefficient B, and the defect size (d / D) are summarized by experimental data.
FIG. 7 summarizes the relationship between the first coefficient A and the second coefficient B and the defect size (d / D) based on data from experiments and the like. As a result, as shown in FIG. 7, the first coefficient A can be expressed by the defect size (d / D) and the coefficients α and β as shown in Expression (3), and the second coefficient B can be expressed by Expression (4). As shown, the defect size (d / D) and the coefficients γ and ζ can be expressed.

図7を詳細にみると、同じ欠陥サイズ(d/D)であっても、欠陥位置によっては、第1係数A及び第2係数Bが異なることが分かった。即ち、欠陥形状(h/d)が同じ値であっても、欠陥位置が異なれば、内部欠陥8を閉鎖させるための最低値Qminが異なることが分かった。
具体的に見ると、図7(a)に示すように、欠陥位置1/2Hでの欠陥サイズ(d/D)に対する第1係数A及び第2係数Bの値と、図7(b)に示すように、欠陥位置1/3Hでの欠陥サイズ(d/D)に対する第1係数A及び第2係数Bの値とは異なっている。
Looking at FIG. 7 in detail, it was found that the first coefficient A and the second coefficient B differ depending on the defect position even with the same defect size (d / D). That is, it was found that even if the defect shape (h / d) is the same value, the minimum value Qmin for closing the internal defect 8 is different if the defect position is different.
Specifically, as shown in FIG. 7A, the values of the first coefficient A and the second coefficient B with respect to the defect size (d / D) at the defect position 1 / 2H, and FIG. As shown, the values of the first coefficient A and the second coefficient B for the defect size (d / D) at the defect position 1 / 3H are different.

また、図7(c)に示すように、欠陥位置1/2Hや欠陥位置1/3Hにおける第1係数A及び第2係数Bの値と、欠陥位置1/4Hとも異なっている。
そこで、欠陥位置によって第1係数A及び第2係数Bが異なることから、欠陥位置と第1係数Aを求めるための式(2)に示した係数α、βと、欠陥位置と第2係数Bを求めるための式(3)に示した係数γ、ζについてまとめた。
図8は、欠陥位置と、第1係数A及び第2係数Bを求めるための係数α、β、γ、ζとについてまとめたものである。
Further, as shown in FIG. 7C, the values of the first coefficient A and the second coefficient B at the defect position 1 / 2H and the defect position 1 / 3H are also different from the defect position 1 / 4H.
Therefore, since the first coefficient A and the second coefficient B differ depending on the defect position, the coefficients α and β shown in the equation (2) for obtaining the defect position and the first coefficient A, the defect position, and the second coefficient B The coefficients γ and ζ shown in Equation (3) for obtaining the above are summarized.
FIG. 8 summarizes the defect positions and the coefficients α, β, γ, and ζ for obtaining the first coefficient A and the second coefficient B.

図8(a)は、欠陥位置に対する係数α及びβの影響(変化)を示し、図8(b)は、欠陥位置に対する係数γの影響(変化)を示ている。また、図8(c)は、欠陥位置に対する係数ζの影響(変化)を示している。
図8に示すように、欠陥位置によって最低値Qminは変化するものとなっており、係数αは欠陥位置に応じて式(5)から求められると共に、係数βは欠陥位置に応じて式(6)から求められるものとなった。また、係数γは欠陥位置に応じて式(7)から求められると共に、係数ζは欠陥位置に応じて式(8)から求められるものとなった。
FIG. 8A shows the influence (change) of the coefficients α and β on the defect position, and FIG. 8B shows the influence (change) of the coefficient γ on the defect position. FIG. 8C shows the influence (change) of the coefficient ζ on the defect position.
As shown in FIG. 8, the minimum value Qmin varies depending on the defect position. The coefficient α is obtained from the equation (5) according to the defect position, and the coefficient β is determined from the equation (6) according to the defect position. ). Further, the coefficient γ is obtained from the equation (7) according to the defect position, and the coefficient ζ is obtained from the expression (8) according to the defect position.

したがって、内部欠陥の欠陥位置、欠陥サイズ及び欠陥形状に基づいて内部欠陥を閉鎖させる最低値Qminを求めることができるものに至った。
以上のように本発明によれば、被加工材2の内部欠陥8を閉鎖させつつ鍛造を行う鍛造方法においては、まず、鍛造する被加工材2に対応して式(1)で示される内部欠陥評価指数Qと圧下率との関係を求め、鍛造前における内部欠陥の欠陥位置、欠陥サイズ及び欠陥形状を推定し、この推定した欠陥位置、欠陥のサイズ及び欠陥形状に基づいて、内部欠陥評価指数Qおいて内部欠陥を閉鎖させるための最低値Qminを求めておき、最低値Qminに対応する圧下率以上で被加工材を金敷で圧下している。
Therefore, the minimum value Qmin for closing the internal defect can be obtained based on the defect position, defect size, and defect shape of the internal defect.
As described above, according to the present invention, in the forging method in which forging is performed while the internal defect 8 of the workpiece 2 is closed, first, the interior represented by the formula (1) corresponding to the workpiece 2 to be forged is shown. Obtain the relationship between the defect evaluation index Q and the reduction ratio, estimate the defect position, defect size, and defect shape of the internal defect before forging, and evaluate the internal defect based on the estimated defect position, defect size, and defect shape. A minimum value Qmin for closing an internal defect is obtained at an index Q, and the workpiece is rolled down with an anvil at a rolling reduction rate corresponding to the minimum value Qmin or higher.

これによって、鍛造する前の被加工材2に内在している内部欠陥8の特性(欠陥位置、欠陥サイズ、欠陥形状)を全て考慮した金敷の圧下による鍛造が行え、内部欠陥8を確実に閉鎖させることができる。即ち、内部欠陥8の特性に応じて実際に圧下する圧下率を変えるだけで、内部欠陥8を確実に閉鎖、消滅させることができる。さらに、本発明によれば、最上内部欠陥8aにおける欠陥位置、欠陥サイズ、欠陥形状を基準として最低値Qminを求め、これで求めた最低値Qminで実際に圧下する圧下率を決定して鍛造を行っている。そのため、最上内部欠陥8aとは別に数多くの内部欠陥8が内在していたとしても、このようにして決定した圧下率に基づいて圧下すれば、複雑な圧下率制御等を行わなくても他の場所に内在する内部欠陥8も確実に閉鎖することができる。   As a result, forging can be performed by reducing the anvil considering the characteristics (defect position, defect size, defect shape) of the internal defects 8 inherent in the workpiece 2 before forging, and the internal defects 8 are securely closed. Can be made. That is, the internal defect 8 can be reliably closed and extinguished only by changing the rolling reduction actually reduced according to the characteristics of the internal defect 8. Further, according to the present invention, the minimum value Qmin is obtained with reference to the defect position, defect size, and defect shape in the uppermost internal defect 8a, and forging is performed by determining the reduction ratio that is actually reduced at the obtained minimum value Qmin. Is going. Therefore, even if there are many internal defects 8 apart from the uppermost internal defect 8a, if the reduction is performed on the basis of the reduction ratio determined in this way, it is not necessary to perform complicated reduction control or the like. The internal defect 8 inherent in the place can also be reliably closed.

さて、同じ圧下率であっても被加工材2の形状、材質、温度,摩擦等(鍛造条件)が異なると、被加工材2の内部に発生する応力が異なることが考えられる。例えば、同じ圧下率であっても、変形し易い材質であれば、内部に発生する応力(例えば,相当応力),ひずみ(相当ひずみ)は大きいものとなる。
このように内部の応力・ひずみ状態というのは、内部欠陥8を閉鎖するために、様々な影響を及ぼすことから、本発明によれば、圧下した際の被加工材2の内部に発生した応力・ひずみを示すことができる内部欠陥評価指数Qによって考慮している。そして、本発明によれば、内部欠陥8を確実に閉鎖できる内部欠陥評価指数Qの最低値Qminを求めた上で、その内部欠陥評価指数Qの最低値Qminから適正な圧下率を求め、その圧下率で圧下しているため、確実に内部欠陥8を閉鎖することができる。
Now, even if the rolling reduction is the same, if the shape, material, temperature, friction, etc. (forging conditions) of the workpiece 2 are different, the stress generated in the workpiece 2 may be different. For example, even if the rolling reduction is the same, if the material is easily deformable, the stress (e.g., equivalent stress) and strain (equivalent strain) generated inside will be large.
As described above, the internal stress / strain state has various effects to close the internal defect 8, and according to the present invention, the stress generated in the work piece 2 during the reduction. -It is considered by the internal defect evaluation index Q that can show strain. And according to this invention, after calculating | requiring the minimum value Qmin of the internal defect evaluation index Q which can close the internal defect 8 reliably, an appropriate rolling reduction rate is calculated | required from the minimum value Qmin of the internal defect evaluation index Q, Since the reduction is performed at the reduction rate, the internal defect 8 can be reliably closed.

表2は、本発明の被加工材2の鍛造方法で鍛造を行った実施例と、本発明の被加工材2の鍛造方法とは別の方法で鍛造を行った比較例とをまとめたものである。   Table 2 summarizes an example in which forging was performed by the forging method of the workpiece 2 of the present invention and a comparative example in which forging was performed by a method different from the forging method of the workpiece 2 of the present invention. It is.

表2に示すように、実施例及び比較例では、UT評価(超音波測定器)にて被加工材2の内部欠陥8を評価した。表2に示すように、内部欠陥8が所定未満(無いもの)については良好「○」とした。また、表2に示すように、内部欠陥8が所定以上(有るもの)については不良「×」とした。
実施例1〜実施例6では、欠陥位置、欠陥サイズ及び欠陥形状を推定し、この推定した欠陥位置、欠陥のサイズ及び欠陥形状に基づいて内部欠陥8を閉鎖させる内部欠陥評価指数の最低値Qminを求め(算出Qmin)、この最低値Qmin(算出Qmin)に対応する圧下率(算出圧下率)よりも、大きな圧下率(適用圧下率)にて被加工材2を金敷で圧下しているため、内部欠陥8は見受けられなかった(表2、評価「○」)。
As shown in Table 2, in the example and the comparative example, the internal defect 8 of the workpiece 2 was evaluated by UT evaluation (ultrasonic measuring device). As shown in Table 2, when the internal defect 8 was less than a predetermined value (not present), it was determined as “good”. Further, as shown in Table 2, if the internal defect 8 is greater than or equal to a predetermined value (existing), the defect is “x”.
In the first to sixth embodiments, the defect position, the defect size, and the defect shape are estimated, and the minimum value Qmin of the internal defect evaluation index for closing the internal defect 8 based on the estimated defect position, defect size, and defect shape. (Calculated Qmin), and the workpiece 2 is rolled down with an anvil at a rolling reduction (applied rolling reduction) larger than the rolling reduction (calculated rolling reduction) corresponding to this minimum value Qmin (calculated Qmin). Internal defect 8 was not found (Table 2, evaluation “◯”).

比較例1〜比較例6では、欠陥位置、欠陥サイズ及び欠陥形状における推定作業を行わず、欠陥位置、欠陥のサイズ及び欠陥形状に基づいて内部欠陥8を閉鎖させる金敷の最低値Qminも求めずに、金敷で圧下した場合、内部欠陥8は見受けられた(表2、評価「×」)。
なお、比較例1〜比較例10において、本発明と同様に、欠陥位置、欠陥サイズ及び欠陥形状を推定して最低値Qmin(算出Qmin)を求め、実際に適用した内部欠陥評価指数の適用値を仮に求めてみると、この適用した適用Qminは、算出Qminよりも低い値であり、実際に圧下した圧下率(適用圧下率)は、内部欠陥の閉鎖のために求められる圧下率(算出圧下率)も低い値であった。
In Comparative Examples 1 to 6, the estimation work for the defect position, the defect size, and the defect shape is not performed, and the minimum value Qmin of the anvil that closes the internal defect 8 is not obtained based on the defect position, the defect size, and the defect shape. In addition, when it was crushed with an anvil, an internal defect 8 was observed (Table 2, evaluation “×”).
In Comparative Examples 1 to 10, as in the present invention, the defect position, defect size, and defect shape are estimated to obtain the minimum value Qmin (calculated Qmin), and the applied value of the actually applied internal defect evaluation index Is calculated, the applied Qmin applied is lower than the calculated Qmin, and the actual reduction ratio (applied reduction ratio) is the reduction ratio (calculated reduction) required for closing internal defects. Rate) was also low.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。例えば、上記実施形態では、流動凝固解析によって欠陥位置、欠陥のサイズ及び欠陥形状を推定したが、これに限らない。
例えば、モデル実験において、予め溶融凝固させた被加工材2の圧下前に所定の長さで切り出しておき(例えば、幅方向、高さ方向に1mm切り出す)、図9に示すように切り出したサンプル2Aから重量を測定して高さ方向及び幅方向の密度を測定し、密度の低い部分は、内部欠陥が存在すると考え、高さ方向及び幅方向の密度分布から欠陥位置、欠陥のサイズ及び欠陥形状を推定してもよい。図9に示す例では、高さ方向及び幅方向の密度分布において、その密度が閾値よりも低い範囲を欠陥が存在するとし、その範囲の長さを内部欠陥8の幅d、内部欠陥8の高さhとしている。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. For example, in the above embodiment, the defect position, the defect size, and the defect shape are estimated by the flow solidification analysis, but the present invention is not limited to this.
For example, in a model experiment, a sample cut out at a predetermined length (for example, cut out by 1 mm in the width direction and the height direction) before the work material 2 melted and solidified in advance is cut out as shown in FIG. The weight is measured from 2A and the density in the height direction and the width direction is measured. The low density portion is considered to have an internal defect, and the defect position, the size of the defect and the defect are determined from the density distribution in the height direction and the width direction. The shape may be estimated. In the example shown in FIG. 9, in the density distribution in the height direction and the width direction, it is assumed that the defect exists in a range where the density is lower than the threshold value, and the length of the range is the width d of the internal defect 8 and the internal defect 8. The height is h.

また、被加工材2内に複数の内部欠陥が存在する場合は次のようにしてもよい。まず、シュミュレーション等によって凝固時に発生する欠陥形状、欠陥位置、欠陥サイズを推定しておき、欠陥形状(h/d)が同じものにおいての欠陥位置を求める。このとき、欠陥形状(h/d)毎に欠陥位置を求めておく。即ち、複数の内部欠陥が存在する場合は、内部欠陥の欠陥形状毎に欠陥位置をそれぞれ求める。そして、ぞれぞれの欠陥形状に対して、欠陥位置、欠陥サイズを用いて最低値Qminを求め、求めた最低値Qminの中で最も最大であるものを、鍛造(圧下)を行う際に採用する。   Further, when a plurality of internal defects exist in the workpiece 2, the following may be performed. First, a defect shape, a defect position, and a defect size generated during solidification are estimated by simulation or the like, and a defect position with the same defect shape (h / d) is obtained. At this time, a defect position is obtained for each defect shape (h / d). That is, when there are a plurality of internal defects, a defect position is obtained for each defect shape of the internal defect. Then, for each defect shape, the minimum value Qmin is obtained using the defect position and the defect size, and the largest of the obtained minimum values Qmin is forged (reduced). adopt.

本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

金敷の構成図である。It is a block diagram of an anvil. 被加工材の鍛造方法を示すフローチャートである。It is a flowchart which shows the forge method of a workpiece. 欠陥位置、欠陥サイズ及び欠陥形状の定義を示す図である。It is a figure which shows the definition of a defect position, a defect size, and a defect shape. 内部欠陥評価指数と、欠陥の空隙面積比との関係を求めるための材料のサンプル図である。It is a sample figure of the material for calculating | requiring the relationship between an internal defect evaluation index | exponent and the void | hole area ratio of a defect. 内部欠陥評価指数Qと、欠陥の空隙面積比との関係を示す図である。It is a figure which shows the relationship between the internal defect evaluation index | exponent Q and the void | hole area ratio of a defect. 圧下率(最低値Qmin)と欠陥形状(h/d)との関係図である。It is a related figure of rolling reduction (minimum value Qmin) and defect shape (h / d). 欠陥形状(h/d)と欠陥サイズ(d/D)との関係図であって、(a)は、欠陥位置1/2Hにおける欠陥形状(h/d)と欠陥サイズ(d/D)との関係図であり、(b)は、欠陥位置1/3Hにおける欠陥形状(h/d)と欠陥サイズ(d/D)との関係図であり、(c)は、欠陥位置1/4Hにおける欠陥形状(h/d)と欠陥サイズ(d/D)との関係図である。FIG. 4 is a relationship diagram between a defect shape (h / d) and a defect size (d / D), where (a) shows a defect shape (h / d) and a defect size (d / D) at a defect position 1 / 2H. (B) is a relationship diagram between a defect shape (h / d) and a defect size (d / D) at a defect position 1 / 3H, and (c) is a diagram at a defect position 1 / 4H. It is a related figure of defect shape (h / d) and defect size (d / D). 欠陥サイズ(d/D)と欠陥位置との関係図であって、(a)は、欠陥位置と係数α及び係数βとの関係図であり、(b)は、欠陥位置と係数γとの関係図であり、(c)は、欠陥位置と係数ζとの関係図である。FIG. 4 is a relationship diagram between a defect size (d / D) and a defect position, where (a) is a relationship diagram between the defect position and a coefficient α and a coefficient β, and (b) is a relationship between the defect position and the coefficient γ. It is a relationship figure, (c) is a relation figure of a defect position and coefficient ζ. 欠陥位置、欠陥のサイズ及び欠陥形状を推定する別の方法を示した図である。It is the figure which showed another method of estimating a defect position, the size of a defect, and a defect shape.

符号の説明Explanation of symbols

1 金敷
2 被加工材
3 金敷本体
1 Anvil 2 Work material 3 Anvil body

Claims (4)

被加工材を金敷によって圧下して前記被加工材の内部欠陥を閉鎖させつつ鍛造を行う鍛造方法において、
鍛造する被加工材に対応して式(1)で示される内部欠陥評価指数と圧下率との関係を求めると共に、鍛造前における内部欠陥の欠陥位置、欠陥サイズ及び欠陥形状を推定し、この推定した欠陥位置、欠陥のサイズ及び欠陥形状に基づいて、前記内部欠陥を閉鎖させるために必要な前記内部欠陥評価指数の最低値を求めておき、
前記最低値に対応する圧下率以上で被加工材を金敷で圧下することを特徴とする被加工材の鍛造方法。
In the forging method in which forging is performed while closing the internal defect of the workpiece by reducing the workpiece with an anvil,
Corresponding to the work material to be forged, the relationship between the internal defect evaluation index and the reduction ratio expressed by the formula (1) is obtained, and the defect position, defect size and defect shape of the internal defect before forging are estimated, and this estimation is performed. Based on the defect position, the size of the defect and the defect shape, the minimum value of the internal defect evaluation index necessary to close the internal defect,
A method for forging a workpiece, wherein the workpiece is rolled down with an anvil at a rolling reduction corresponding to the minimum value or more.
前記内部欠陥評価指数の最低値を式(2)から求めることを特徴とする請求項1に記載の被加工材の鍛造方法。
The method for forging a workpiece according to claim 1, wherein a minimum value of the internal defect evaluation index is obtained from equation (2).
式(2)の第1係数(A)及び第2係数(B)を求めるにあたっては、式(3)〜式(8)を用いることを特徴とする請求項2に記載の被加工材の鍛造方法。
The forging of the workpiece according to claim 2, wherein the first coefficient (A) and the second coefficient (B) of the expression (2) are obtained by using the expressions (3) to (8). Method.
前記内部欠陥の欠陥位置、当該内部欠陥の欠陥サイズ及び欠陥形状を推定するに際しては、流動凝固解析を用いると共に、前記内部欠陥評価指数を求めるに際しては、変形解析を用いることを特徴とする請求項1〜3のいずれか1項に記載の被加工材の鍛造方法。   The solidification analysis is used when estimating the defect position of the internal defect, the defect size and the defect shape of the internal defect, and the deformation analysis is used when obtaining the internal defect evaluation index. The forging method of the workpiece of any one of 1-3.
JP2008258638A 2008-10-03 2008-10-03 Method for forging work material Expired - Fee Related JP4956518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258638A JP4956518B2 (en) 2008-10-03 2008-10-03 Method for forging work material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258638A JP4956518B2 (en) 2008-10-03 2008-10-03 Method for forging work material

Publications (2)

Publication Number Publication Date
JP2010089097A true JP2010089097A (en) 2010-04-22
JP4956518B2 JP4956518B2 (en) 2012-06-20

Family

ID=42252324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258638A Expired - Fee Related JP4956518B2 (en) 2008-10-03 2008-10-03 Method for forging work material

Country Status (1)

Country Link
JP (1) JP4956518B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945190A (en) * 2016-06-20 2016-09-21 安徽省瑞杰锻造有限责任公司 Free forging technology of large-scale module
CN110993040A (en) * 2019-11-28 2020-04-10 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from casting state to forging state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277783A (en) * 1993-03-30 1994-10-04 Japan Steel Works Ltd:The Method for hot-forging metallic material
JP2000271734A (en) * 1999-03-29 2000-10-03 Hitachi Kyowa Engineering Co Ltd Method for analyzing fluidize-solidification
JP2008110398A (en) * 2006-10-05 2008-05-15 Kobe Steel Ltd Method for designing forging process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277783A (en) * 1993-03-30 1994-10-04 Japan Steel Works Ltd:The Method for hot-forging metallic material
JP2000271734A (en) * 1999-03-29 2000-10-03 Hitachi Kyowa Engineering Co Ltd Method for analyzing fluidize-solidification
JP2008110398A (en) * 2006-10-05 2008-05-15 Kobe Steel Ltd Method for designing forging process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945190A (en) * 2016-06-20 2016-09-21 安徽省瑞杰锻造有限责任公司 Free forging technology of large-scale module
CN110993040A (en) * 2019-11-28 2020-04-10 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from casting state to forging state
CN110993040B (en) * 2019-11-28 2023-03-14 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from cast state to forged state

Also Published As

Publication number Publication date
JP4956518B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Duan et al. Three dimensional thermal mechanical coupled simulation during hot rolling of aluminium alloy 3003
US8706283B2 (en) System for evaluating manufacturability of a casting design
Zhou et al. Computer simulated and experimentally verified isothermal extrusion of 7075 aluminium through continuous ram speed variation
WO2013047692A1 (en) Mold designing method, and mold
Chakraborty et al. Determination of optimal taper in continuous casting billet mould using thermo-mechanical models of mould and billet
Skripalenko et al. Prediction of potential fracturing during radial-shear rolling of continuously cast copper billets by means of computer simulation
Nalawade et al. Effect of pass schedule and groove design on the metal deformation of 38MnVS6 in the initial passes of hot rolling
US10974318B2 (en) Cast product mechanical characteristic prediction method, cast product mechanical characteristic prediction system, and computer readable recording medium recording cast product mechanical characteristic prediction program
JP2007330977A (en) Casting simulation method, apparatus therefor, program therefor, the program-recording medium, and casting method
JP4956518B2 (en) Method for forging work material
Cha et al. Adaptive wear model for shear-cutting simulation with open cutting line
Vallellano et al. Analysis of deformations and stresses in flat rolling of wire
Gattmah et al. Effects of increasing mass scaling in 3D explicit finite element analysis on the wire drawing process
JP4866302B2 (en) Forging process design system and forging process
Yang et al. Finite element simulation of equal channel angular extrusion
Duan et al. Prediction of temperature evolution by FEM during multi-pass hot flat rolling of aluminium alloys
JP2010069509A (en) Method of forging material to be worked
JP5494353B2 (en) Mold life determination method and apparatus
Nalawade et al. Void closure in a large cross section bars hot rolled from a low alloy steel ingot casting
JP4813999B2 (en) Forging shape prediction method and program thereof
CN104368800A (en) Methods for simulating oxides in aluminum castings
JP6973617B2 (en) Continuous steel casting method and reduction roll for continuous casting
De Souza et al. Numerical estimation of frictional effects in equal channel angular extrusion
JP2007125589A (en) Apparatus and method for analyzing casting process
JP5494352B2 (en) Mold welding determination method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4956518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees