JP2010086799A - Laminated battery - Google Patents

Laminated battery Download PDF

Info

Publication number
JP2010086799A
JP2010086799A JP2008254918A JP2008254918A JP2010086799A JP 2010086799 A JP2010086799 A JP 2010086799A JP 2008254918 A JP2008254918 A JP 2008254918A JP 2008254918 A JP2008254918 A JP 2008254918A JP 2010086799 A JP2010086799 A JP 2010086799A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
negative electrode
tabs
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008254918A
Other languages
Japanese (ja)
Inventor
Masataka Shinyashiki
昌孝 新屋敷
Atsuhiro Funabashi
淳浩 船橋
Masayuki Fujiwara
雅之 藤原
Hitoshi Maeda
仁史 前田
Nobuyuki Tamura
宜之 田村
Yasuyuki Okuda
泰之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008254918A priority Critical patent/JP2010086799A/en
Publication of JP2010086799A publication Critical patent/JP2010086799A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated battery capable of suppressing deterioration of a cycle lifetime of the battery even when high-rate charge and discharge are carried out, by controlling the occurrence of variations in the connection resistance between an electrode plate and a current collector terminal. <P>SOLUTION: The laminated battery has a plurality of positive electrode plates and negative electrode plates alternately laminated through a separator, and the electrode tabs extended from each electrode plate are jointed respectively to the current collector terminal of the positive and negative electrodes laminated in a plurality of layers. A penetrated part 31A is formed in at least one of the electrode plate tabs 11, and a plurality of electrode plate tabs 11 are jointed through the penetrated part 31A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は積層型電池に関し、特に、ロボット、電気自動車、バックアップ電源などに使用される大容量でハイレート特性を有する積層式電池に関する。
特に、積層枚数が多く、多数の極板タブを集電端子に接続することを必要とする積層式電池において、各極板との接続抵抗が均一化された大容量のリチウムイオン電池に関する。
The present invention relates to a laminated battery, and more particularly, to a laminated battery having a high capacity and a high rate characteristic used for a robot, an electric vehicle, a backup power source and the like.
More particularly, the present invention relates to a large-capacity lithium ion battery in which the connection resistance with each electrode plate is made uniform in a stacked battery that requires a large number of stacked sheets and a large number of electrode plate tabs connected to current collector terminals.

近年、電池は、携帯電話、ノートパソコン、PDA等の移動情報端末の電源のみならず、ロボット、電気自動車、バックアップ電源などに使用されるようになってきており、さらなる高容量化が要求されるようになってきている。このような要求に対し、リチウムイオン二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような駆動電源として広く利用されている。   In recent years, batteries have been used not only for power sources of mobile information terminals such as mobile phones, notebook personal computers, and PDAs, but also for robots, electric vehicles, backup power sources, etc., and further increase in capacity is required. It has become like this. In response to such demands, lithium ion secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources as described above.

このようなリチウムイオン二次電池の電池形態としては、大別して、正負極板をセパレータを介して巻回した電極体を外装体に封入した渦巻型のものと、方形状電極を複数積層した積層電極体を外装体に封入した積層型のものとがある。   The battery form of such a lithium ion secondary battery is broadly divided into a spiral type in which an electrode body obtained by winding a positive and negative electrode plate through a separator is enclosed in an exterior body, and a laminate in which a plurality of rectangular electrodes are laminated. There is a laminated type in which an electrode body is enclosed in an exterior body.

これらリチウムイオン二次電池のうち後者の電池の積層電極体の具体的な構成は、正極リードを有するシート状の正極と、負極リードを有するシート状の負極とを、負極と実質的に同形状の方形状のセパレータを介して必要な数だけ積層した構造となっている。また、各極板から延出した極板タブが複数枚積層し重ねるようにして正負極の集電端子にそれぞれ超音波溶接により接合される構造となっている(下記特許文献1、2参照)。   Among these lithium ion secondary batteries, the specific structure of the laminated electrode body of the latter battery is that a sheet-like positive electrode having a positive electrode lead and a sheet-like negative electrode having a negative electrode lead are substantially the same shape as the negative electrode. The required number of layers are stacked via a square separator. In addition, a plurality of electrode plate tabs extending from each electrode plate are stacked and overlapped so as to be joined to the positive and negative current collecting terminals by ultrasonic welding, respectively (see Patent Documents 1 and 2 below). .

特開2008−66170号公報JP 2008-66170 A 特開2008−91268号公報JP 2008-91268 A

ここで、リチウムイオン二次電池においては、上述のように近年大容量化が進行しており、これにともない、正負極の極板の積層枚数が多くなる傾向にあり、また、電池がハイレートで充放電されることを考慮して、正負極の集電端子の厚みが増大する傾向にある。このため、厚肉の集電端子に極板タブを多数枚積層した状態で超音波溶接する必要が生じるが、集電端子と極板タブとの厚みの相違や、極板タブが同時に多数枚接合されることから、溶接部の溶着性が悪化してきている。このため、極板と集電端子との間の接続抵抗値にバラツキが生じており、特に、ハイレートでの充放電を行った際に、各極板に流れる電流値が不均一となる。即ち、極板と集電端子との間の接続抵抗値が小さい部位では大きな電流が流れ、一方、極板と集電端子との間の接続抵抗値が大きい部位では小さな電流が流れる。これにより、電池内で充放電状態の偏在が生じ、その結果、部分的に過放電や過充電となって、電池のサイクル寿命が低下するという問題があった。   Here, in the lithium ion secondary battery, the capacity has increased in recent years as described above, and accordingly, the number of positive and negative electrode plates tends to increase, and the battery has a high rate. Considering charging / discharging, the thickness of the positive and negative current collecting terminals tends to increase. For this reason, it is necessary to perform ultrasonic welding in a state where a large number of electrode plate tabs are stacked on a thick-walled current collecting terminal. Since it is joined, the weldability of the welded part has deteriorated. For this reason, there is a variation in the connection resistance value between the electrode plate and the current collector terminal. In particular, when charging / discharging at a high rate, the value of the current flowing through each electrode plate becomes non-uniform. That is, a large current flows at a portion where the connection resistance value between the electrode plate and the current collecting terminal is small, while a small current flows at a portion where the connection resistance value between the electrode plate and the current collecting terminal is large. As a result, the charge / discharge state is unevenly distributed in the battery, and as a result, there is a problem in that the battery is partially overdischarged or overcharged and the cycle life of the battery is reduced.

そこで、例えば超音波溶接により印加するエネルギー量を増大させて接合強度を高めることで、上記のように極板の積層枚数が多くなったり集電端子の厚みが増大した場合にも溶接部の溶着性を良好とし、これにより極板と集電端子との間の接続抵抗値を均一とすることも考えられる。しかしながら、このように超音波溶接により印加するエネルギー量を増大させる方法には、特に最表層の極板タブが破断しやすくなるという難点が伴う。   Therefore, for example, by increasing the amount of energy applied by ultrasonic welding to increase the bonding strength, the welded portion can be welded even when the number of stacked electrode plates is increased or the thickness of the current collecting terminal is increased as described above. It is also conceivable that the connection resistance value between the electrode plate and the current collecting terminal is made uniform. However, the method of increasing the amount of energy applied by ultrasonic welding in this way is accompanied by the difficulty that the outermost electrode tab is particularly liable to break.

また、極板タブが集電端子に接合される接合部(以下、「端子接合部」とも称す)と上記極板との間の位置(以下、「中位置」とも称す)で上記積層された複数枚の極板タブのみが接合され一体化することでも接続抵抗値の均一性を向上する事が出来るが、この方法でも極板タブの枚数が増加すると、極板タブのみの溶接部での溶接均一性が低下する。   Further, the electrode plate tab is laminated at a position (hereinafter also referred to as “middle position”) between the electrode plate tab and the electrode plate (hereinafter also referred to as “terminal connection portion”). Even if only a plurality of electrode tabs are joined and integrated, the uniformity of the connection resistance value can be improved, but this method also increases the number of electrode tabs in the welded part of only the electrode tabs. Welding uniformity is reduced.

本発明は、このようなことを考慮してなされたものであって、極板と集電端子との間の接続抵抗値にバラツキが生じるのを抑制することにより、ハイレートでの充放電を行った場合であっても電池のサイクル寿命が低下するのを抑制することが可能な積層式電池を提供することを目的とする。   The present invention has been made in consideration of the above, and performs charging and discharging at a high rate by suppressing variations in the connection resistance value between the electrode plate and the current collecting terminal. Even if it is a case, it aims at providing the laminated battery which can suppress that the cycle life of a battery falls.

上記目的を達成するために、本発明の積層式電池は、
複数枚の正極板と負極板とがセパレータを介して交互に積層され、各極板から延出した極板タブが正負極の集電端子にそれぞれ複数枚積層して接合された積層式電池であって、
少なくとも一つの極板タブに貫通部が形成され、複数の極板タブ同士が貫通部を介して接合されていることを特徴とする
In order to achieve the above object, the laminated battery of the present invention is
A stacked battery in which a plurality of positive and negative electrode plates are alternately stacked via separators, and a plurality of electrode plate tabs extending from each electrode plate are stacked and bonded to positive and negative current collecting terminals, respectively. There,
A penetration part is formed in at least one electrode plate tab, and a plurality of electrode plate tabs are joined to each other through the penetration part.

上記構成によれば、極板の積層枚数が多くなったり集電端子の厚みが増大した場合でも、極板タブの接合部分においては、貫通部が形成され、複数の極板タブ同士が貫通部を介して接合されるため、そのぶん接合される極板タブの枚数が少なくなる。したがって、十分に接合強度を確保して極板と集電端子との間の接続抵抗値を均一とすることができ、また、例えば超音波溶接により印加するエネルギー量を増大させたりすることも不要であるため、極板タブの破断といった事態を招くこともない。   According to the above configuration, even when the number of stacked electrode plates is increased or the thickness of the current collecting terminal is increased, a penetration portion is formed at the junction portion of the electrode plate tabs, and a plurality of electrode plate tabs are connected to each other. Therefore, the number of electrode tabs to be joined is reduced. Therefore, it is possible to ensure sufficient bonding strength and make the connection resistance value between the electrode plate and the current collecting terminal uniform, and it is not necessary to increase the amount of energy applied by, for example, ultrasonic welding. Therefore, a situation such as breakage of the electrode plate tab is not caused.

上記極板タブが集電端子に接合される接合部(端子接合部)と上記極板との間の位置(中位置)に上記貫通部が形成され、該貫通部で上記積層された複数枚の極板タブのみが接合され一体化されていることが望ましい。   A plurality of sheets in which the penetrating part is formed at a position (medium position) between a joining part (terminal joining part) where the electrode plate tab is joined to a current collecting terminal and the electrode plate, and the laminated parts are formed at the penetrating part It is desirable that only the electrode plate tabs are joined and integrated.

貫通部は、端子接合部に形成するようにしても、この端子接合部における接合強度を確保して極板と集電端子との間の接続抵抗値を均一とすることができるが、中位置においては1枚あたりの厚さ数μm〜数十μm程度の薄肉の極板タブのみが積層した状態にあるため、この中位置(なかでも特に望ましくは端子接合部と極板との間における中央の位置)に貫通部を形成して該貫通部を介して積層された複数枚の極板タブのみを接合し一体化するようにすると、より容易かつ確実に極板タブ同士を接合一体化することができて極板と集電端子との間の接続抵抗値を均一とすることができる。また、極板タブ同士が端子接合部だけでなく中位置においても接合されるため、そのぶんより確実に極板タブ同士を電気的に接続することができる。   Even though the through portion is formed in the terminal joint portion, it is possible to secure the joint strength at the terminal joint portion and make the connection resistance value between the electrode plate and the current collecting terminal uniform, but the middle position In this case, only a thin plate tab having a thickness of several μm to several tens of μm per sheet is in a laminated state, so this middle position (especially particularly desirable is the center between the terminal joint and the plate). If a plurality of electrode plate tabs stacked through the through part are joined and integrated, the electrode plate tabs are joined and integrated more easily and reliably. The connection resistance value between the electrode plate and the current collecting terminal can be made uniform. In addition, since the electrode tabs are joined not only at the terminal joint portion but also at the middle position, the electrode tabs can be electrically connected more reliably.

上記接合が超音波溶接によりなされたものであることが望ましい。
上記接合は、例えば、接合対象部材を変形させるグサリ、カシメ等やネジ止め等のように、接合対象部材を機械的に接合する方法によって行うようにしても、上記本発明の効果は発揮され、また簡易な設備で接合作業を行うことができてそのぶん電池の製造を容易かつ安価に行うことができるという利点もあるが、溶接によるほうが抵抗を均一化できるため望ましい。
また、溶接方法としては、例えば抵抗溶接法やレーザー溶接法等も可能であるが、溶接強度等の点で超音波溶接が特に望ましい。
It is desirable that the joining is performed by ultrasonic welding.
The effect of the present invention is exhibited even when the joining is performed by a method of mechanically joining the joining target member, such as a shearing, caulking, screwing, or the like that deforms the joining target member, In addition, there is an advantage that the joining work can be performed with simple equipment and the battery can be manufactured easily and inexpensively, but welding is preferable because the resistance can be made uniform.
Further, as a welding method, for example, a resistance welding method or a laser welding method can be used, but ultrasonic welding is particularly desirable in terms of welding strength and the like.

本発明によれば、極板の積層枚数が多くなったり集電端子の厚みが増大した場合でも、十分に接合強度を確保して極板と集電端子との間の接続抵抗値にバラツキが生じるのを抑制することができ、これにより、ハイレートでの充放電を行った際にも電池のサイクル寿命が低下するのを抑制することができるという優れた効果を奏する。   According to the present invention, even when the number of stacked electrode plates is increased or the thickness of the current collecting terminal is increased, the connection resistance value between the electrode plate and the current collecting terminal is not sufficiently varied by ensuring sufficient bonding strength. Occurrence of the battery can be suppressed, and this provides an excellent effect that the cycle life of the battery can be suppressed from being lowered even when charging / discharging at a high rate.

以下、本発明に係る積層式電池を以下に説明する。なお、本発明における積層式電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the laminated battery according to the present invention will be described below. The laminated battery according to the present invention is not limited to those shown in the following embodiments, and can be implemented with appropriate modifications within a range not changing the gist thereof.

〔正極の作製〕
正極活物質としてのLiCoO2を90質量%と、導電剤としてのカーボンブラックを5質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合して正極用スラリーを調製した後、この正極用スラリーを、正極集電体としてのアルミニウム箔(厚み:15μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.1mmにまで圧縮した後、図1に示すように、幅L1=95mm、高さL2=115mmになるように切断して、両面に正極活物質層1aを有する正極板1を作製した。この際、正極板1における一短辺の一方端部(図上では左端部)から幅L3=30mm、高さL4=20mmの活物質未塗布部を延出させて正極タブ11とした。
[Production of positive electrode]
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of carbon black as a conductive agent, 5% by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent ( NMP) solution was mixed to prepare a positive electrode slurry, and this positive electrode slurry was applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector. Then, after drying the solvent and compressing to a thickness of 0.1 mm with a roller, as shown in FIG. 1, it was cut so that the width L1 = 95 mm and the height L2 = 115 mm, and the positive electrode active material layer on both sides A positive electrode plate 1 having 1a was produced. At this time, an active material uncoated portion having a width L3 = 30 mm and a height L4 = 20 mm was extended from one end portion (left end portion in the figure) of one short side of the positive electrode plate 1 to form a positive electrode tab 11.

〔負極の作製〕
負極活物質としての黒鉛粉末を95質量%と、結着剤としてのポリフッ化ピニリデンを5質量%と、溶剤としてのNMP溶液とを混合して負極用スラリーを調製した後、この負極用スラリーを負極集電体としての銅箔(厚み:10μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.08mmにまで圧縮した後、図2に示すように、幅L7=100mm、高さL8=120mmになるように切断して、両面に負極活物質層2aを有する負極板2を作製した。この際、負極板2の一短辺において上記正極板1の正極タブ11形成側端部と反対側となる端部(図上では右端部)から幅L9=30mm、高さL10=20mmの活物質未塗布部を延出させて負極タブ12とした。
(Production of negative electrode)
A negative electrode slurry was prepared by mixing 95% by mass of graphite powder as a negative electrode active material, 5% by mass of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. It apply | coated to both surfaces of the copper foil (thickness: 10 micrometers) as a negative electrode collector. Then, after drying the solvent and compressing to a thickness of 0.08 mm with a roller, as shown in FIG. 2, it was cut so that the width L7 = 100 mm and the height L8 = 120 mm, and the negative electrode active material layer on both sides A negative electrode plate 2 having 2a was produced. At this time, an active portion having a width L9 = 30 mm and a height L10 = 20 mm from an end portion (right end portion in the drawing) opposite to the positive electrode tab 11 forming side end portion of the positive electrode plate 1 on one short side of the negative electrode plate 2. The material uncoated portion was extended to form a negative electrode tab 12.

〔正負極タブの穿孔〕
図4(a)に示すように、上記正極板1の正極タブ11における中位置に、幅方向に間隔を置いて2箇所にそれぞれ貫通部31A、31Aを穿設した。より具体的には、各貫通部31A、31Aは、幅5mm、高さ5mmの正方形状であり、貫通部31Aの左辺が正極タブ11における正極板1側端縁からいずれも数mm、該正極タブ11における外側端縁(正極板1の一方長縁に連続する側端縁;図上では左側端縁)からそれぞれ0mm、15mmの位置に形成されている。このようにして貫通部31A、31Aを穿設した正極板1を、以下、「Aタイプ正極板1A」とも称す。
また、図4(b)に示すように、別の正極板1の正極タブ11における中位置に、上記Aタイプ正極板1Aの両貫通部31A、31Aを幅方向内側(図上では右側)へ5mmだけずらすようにして、即ち、正極タブ11における外側端縁(図上では左側端縁)から5mm、20mmの位置に、該貫通部31A、31Aと同寸法および同形状を有する貫通部31B、31Bをそれぞれ穿設した。このようにして貫通部31B、31Bを穿設した正極板1を、以下、「Bタイプ正極板1B」とも称す。
また、図4(c)に示すように、さらに別の正極板1の正極タブ11における中位置に、上記Bタイプ正極板1Bの両貫通部31B、31Bを幅方向内側(図上では右側)へ5mmだけずらすようにして、即ち、正極タブ11における外側端縁(図上では左側端縁)から10mm、25mmの位置に、該貫通部31B、31Bと同寸法および同形状を有する貫通部31C、31Cをそれぞれ穿設した。このようにして貫通部31C、31Cを穿設した正極板1を、以下、「Cタイプ正極板1C」とも称す。
[Perforation of positive and negative electrode tabs]
As shown in FIG. 4 (a), through portions 31A and 31A were drilled at two positions at intervals in the width direction in the middle position of the positive electrode tab 11 of the positive electrode plate 1, respectively. More specifically, each of the through portions 31A and 31A has a square shape with a width of 5 mm and a height of 5 mm, and the left side of the through portion 31A is a few mm from the edge of the positive electrode tab 11 on the positive electrode plate 1 side. The tab 11 is formed at positions of 0 mm and 15 mm from the outer edge (side edge continuous to one long edge of the positive electrode plate 1; left edge in the figure), respectively. The positive electrode plate 1 having the through-holes 31A and 31A thus drilled is also referred to as “A type positive electrode plate 1A” hereinafter.
Further, as shown in FIG. 4B, the through-holes 31A and 31A of the A-type positive electrode plate 1A are placed inward in the width direction (right side in the figure) at the middle position in the positive electrode tab 11 of another positive electrode plate 1. A through portion 31B having the same size and shape as the through portions 31A and 31A at a position 5 mm and 20 mm away from the outer end edge (left end edge in the figure) of the positive electrode tab 11, Each 31B was drilled. The positive electrode plate 1 having the through-holes 31B and 31B thus formed is hereinafter also referred to as “B type positive electrode plate 1B”.
Moreover, as shown in FIG.4 (c), both the penetration parts 31B and 31B of the said B type positive electrode plate 1B are made into the width direction inner side (right side on a figure) in the middle position in the positive electrode tab 11 of another positive electrode plate 1. FIG. The through-hole 31C having the same size and the same shape as the through-holes 31B and 31B at a position 10 mm and 25 mm away from the outer edge (left edge in the figure) of the positive electrode tab 11 , 31C were drilled. The positive electrode plate 1 having the through-holes 31C and 31C thus drilled is also referred to as “C-type positive electrode plate 1C” hereinafter.

一方、図5(a)に示すように、上記負極板2における負極タブ12の中位置において、上記Aタイプ正極板1Aの両貫通部31A、31Aと左右対称となる位置、即ち、負極タブ12における外側端縁(負極板2の一方長縁に連続する側端縁;図上では右側端縁)からそれぞれ0mm、15mmの位置に、該貫通部31A、31Aと同寸法および同形状を有する貫通部32A、32Aをそれぞれ穿設した。このようにして貫通部32A、32Aを穿設した負極板2を、以下、「Aタイプ負極板2A」とも称す。
また、図5(b)に示すように、別の負極板2の負極タブ12における中位置に、上記Aタイプ負極板2Aの両貫通部32A、32Aを幅方向内側(図上では左側)へ5mmだけずらすようにして、即ち、負極タブ12における外側端縁(図上では右側端縁)から5mm、20mmの位置に、該貫通部32A、32Aと同寸法および同形状を有する貫通部32B、32Bをそれぞれ穿設した。このようにして貫通部32B、32Bを穿設した負極板2を、以下、「Bタイプ負極板2B」とも称す。
また、図5(c)に示すように、さらに別の負極板2の負極タブ12における中位置に、上記Bタイプ負極板2Bの両貫通部32B、32Bを幅方向内側(図上では左側)へ5mmだけずらすようにして、即ち、負極タブ12における外側端縁(図上では右側端縁)から10mm、25mmの位置に、該貫通部32B、32Bと同寸法および同形状を有する貫通部32C、32Cをそれぞれ穿設した。このようにして貫通部32C、32Cを穿設した負極板2を、以下、「Cタイプ負極板2C」とも称す。
On the other hand, as shown in FIG. 5 (a), at the middle position of the negative electrode tab 12 in the negative electrode plate 2, a position that is bilaterally symmetrical with the two through portions 31A and 31A of the A type positive electrode plate 1A, that is, the negative electrode tab 12 is provided. Penetrating portions having the same dimensions and the same shape as the penetrating portions 31A and 31A at positions of 0 mm and 15 mm, respectively, from the outer edge (the side edge continuous to one long edge of the negative electrode plate 2; the right edge in the figure). Portions 32A and 32A were drilled, respectively. The negative electrode plate 2 in which the through portions 32A and 32A are thus drilled is hereinafter also referred to as “A type negative electrode plate 2A”.
Further, as shown in FIG. 5B, the through-holes 32A and 32A of the A type negative electrode plate 2A are placed inward in the width direction (left side in the figure) at the middle position in the negative electrode tab 12 of another negative electrode plate 2. A through portion 32B having the same size and the same shape as the through portions 32A and 32A at a position 5 mm and 20 mm away from the outer end edge (right end edge in the drawing) of the negative electrode tab 12, Each 32B was drilled. The negative electrode plate 2 in which the through portions 32B and 32B are thus drilled is hereinafter also referred to as “B type negative electrode plate 2B”.
Further, as shown in FIG. 5 (c), both through portions 32B and 32B of the B-type negative electrode plate 2B are arranged in the width direction inside (left side in the figure) at the middle position in the negative electrode tab 12 of another negative electrode plate 2. The through portion 32C having the same size and the same shape as the through portions 32B and 32B at a position of 10 mm and 25 mm from the outer end edge (right end edge in the drawing) of the negative electrode tab 12. , 32C were drilled. The negative electrode plate 2 having the through portions 32C and 32C drilled in this manner is hereinafter also referred to as “C type negative electrode plate 2C”.

上記のように2箇所ずつ計12箇所にそれぞれ形成された貫通部31A、31B、31C、32A、32B、32Cのうち、Aタイプ正極板1A、Cタイプ正極板1C、Aタイプ負極板2AならびにCタイプ負極板2Cにおける正極タブ11ないし負極タブ12の一方側端縁に接する4箇所にそれぞれ形成された貫通部31A、31C、32A、32Cは、当該側端縁から内側へ正方形状に陥入する切欠となっており、それ以外の、正極タブ11ないし負極タブ12の端縁に接することなく内側に位置する8箇所にそれぞれ形成された貫通部31A、31B、31C、32A、32B、32Cは、正方形状の貫通孔となっている。   Of the penetrating portions 31A, 31B, 31C, 32A, 32B, and 32C formed in two places as described above, the A type positive plate 1A, the C type positive plate 1C, the A type negative plate 2A and C The through portions 31A, 31C, 32A, 32C respectively formed at four locations in contact with the one side edge of the positive electrode tab 11 to the negative electrode tab 12 in the type negative electrode plate 2C are indented in a square shape from the side edge. The other through-holes 31A, 31B, 31C, 32A, 32B, and 32C formed at eight locations located inside without contacting the edges of the positive electrode tab 11 or the negative electrode tab 12 are notches. It is a square through hole.

〔積層電極体の作製〕
上記正極板1を計80枚(Aタイプ正極板1A×27枚+Bタイプ正極板1B×27枚+Cタイプ正極板1C×26枚)、負極板2を計81枚(Aタイプ負極板2A×27枚+Bタイプ負極板2B×27枚+Cタイプ負極板2C×27枚)調製するとともに、図3(b)に示すポリプロピレンよるなる方形状のセパレータ3a(幅L5=100mm、高さL6=120mm、厚み30μm)を162枚調製し、図6に示すように、正極板1と負極板2とをセパレータ3aを介して交互に積層した。このとき、正極1の両面のセパレータ3aは、図3(c)に示すように周縁部を融着部4で熱溶着して袋状に形成し、正極1を袋状セパレータ3で内包する構造とした。その際、正負極板1、2のタイプがA→B→C→A→・・・の順番となり、かつ両端面部に負極板2が位置するように、即ち、一方端面から他方端面まで1点ずつ順に並べると、セパレータ3a、Aタイプ負極板2A、セパレータ3a、Aタイプ正極板1A、セパレータ3a、Bタイプ負極板2B、セパレータ3a、Bタイプ正極板1B、セパレータ3a、Cタイプ負極板2C、セパレータ3a、Cタイプ正極板1C、セパレータ3a、Aタイプ負極板2A、セパレータ3a、Aタイプ正極板1A、セパレータ3a、・・・(中略)・・・Cタイプ負極板2C、セパレータ3aとなるように積層した。ついで、この積層体の両端面を形状保持のための絶縁テープ26(図7参照)で接続して、積層電極体10を得た。
(Production of laminated electrode body)
80 positive electrode plates 1 in total (A type positive electrode plate 1A × 27 sheets + B type positive electrode plate 1B × 27 sheets + C type positive electrode plate 1C × 26 sheets) and 81 negative electrode plates 2 in total (A type negative electrode plate 2A × 27) Sheet + B type negative electrode plate 2B × 27 sheets + C type negative electrode plate 2C × 27 sheets) and a rectangular separator 3a made of polypropylene shown in FIG. 3B (width L5 = 100 mm, height L6 = 120 mm, thickness) 30 μm) were prepared, and as shown in FIG. 6, the positive electrode plates 1 and the negative electrode plates 2 were alternately laminated via the separators 3a. At this time, as shown in FIG. 3C, the separators 3 a on both sides of the positive electrode 1 are formed in a bag shape by thermally welding the peripheral portion with the fusion part 4, and the positive electrode 1 is included in the bag-like separator 3. It was. At that time, the types of the positive and negative electrode plates 1 and 2 are in the order of A → B → C → A →... And the negative electrode plate 2 is positioned on both end surfaces, that is, one point from one end surface to the other end surface. When arranged in order, separator 3a, A type negative electrode plate 2A, separator 3a, A type positive electrode plate 1A, separator 3a, B type negative electrode plate 2B, separator 3a, B type positive electrode plate 1B, separator 3a, C type negative electrode plate 2C, Separator 3a, C-type positive electrode plate 1C, separator 3a, A-type negative electrode plate 2A, separator 3a, A-type positive electrode plate 1A, separator 3a, ... (omitted) ... C-type negative electrode plate 2C, separator 3a Laminated. Subsequently, both end surfaces of this laminated body were connected with an insulating tape 26 (see FIG. 7) for maintaining the shape to obtain a laminated electrode body 10.

〔集電端子の溶接〕
図7ないし図9に示すように、積層された正極タブ11および負極タブ12のそれぞれの延出端部(即ち端子接合部)11C、12Cに、厚み0.5mmのアルミニウム板よりなる正極集電端子15ならびに厚み0.5mmの銅板よりなる負極集電端子16を、それぞれ下記表1に示す条件で、超音波溶接法にて接合した。
[Welding of current collector terminal]
As shown in FIGS. 7 to 9, positive electrode current collectors made of an aluminum plate having a thickness of 0.5 mm are provided on the extended end portions (ie, terminal joint portions) 11C and 12C of the stacked positive electrode tab 11 and negative electrode tab 12, respectively. The terminal 15 and the negative electrode current collecting terminal 16 made of a copper plate having a thickness of 0.5 mm were joined by ultrasonic welding under the conditions shown in Table 1 below.

〔正負極タブの溶接〕
図7および図8に示すように、正極集電端子15と正極板1を接続する80枚の正極タブ11の中位置11Mにおける貫通部31A、31B、31C形成位置で、正極タブ11のみ53枚または54枚を下記表1に示す条件で超音波溶接した。このとき、各貫通部31A、31B、31Cの位置ではこの貫通部31A、31B、31Cが形成された正極タブ11が溶接されない、即ち、貫通部31A、31B、31Cの形成箇所をとばすようにして(貫通部31A、31B、31Cを介して)正極タブ11同士が溶接されるようになっている。このとき、形成位置が3通りに異なる貫通部31A、31B、31Cが、上下に重なる正極タブ11に比して1つずつ横に(幅方向に)ずらしていくようにして配置されているので、各貫通部31A、31B、31Cの位置では、積層された正極タブ11の3枚毎に、貫通部31A、31B、31Cのうちの1つが介在することとなり、したがって、各貫通部31A、31B、31Cの位置で溶接される正極タブ11の枚数は、積層された全正極タブ11の枚数の2/3となる。本実施形態の場合、全80枚の正極板1のうち、Aタイプ正極板1AおよびBタイプ正極板1Bが各27枚、Cタイプ正極板1Cが26枚となっているので、Aタイプ正極板1Aの貫通部31A、31AないしBタイプ正極板1Bの貫通部31B、31Bの位置では、当該27枚のAタイプ正極板1AないしBタイプ正極板1Bの正極タブ11を除く53枚の正極タブ11が溶接され、Cタイプ正極板1Cの貫通部31C、31Cの位置では、当該26枚のCタイプ正極板1Cの正極タブ11を除く54枚の正極タブ11が溶接されることとなる。
[Welding of positive and negative tabs]
As shown in FIG. 7 and FIG. 8, only 53 of the positive electrode tabs 11 are formed at the positions where the through portions 31A, 31B, and 31C are formed in the middle position 11M of the 80 positive electrode tabs 11 connecting the positive electrode current collecting terminals 15 and the positive electrode plate 1. Or 54 sheets were ultrasonically welded under the conditions shown in Table 1 below. At this time, the positive electrode tab 11 in which the through portions 31A, 31B, and 31C are formed is not welded at the positions of the through portions 31A, 31B, and 31C, that is, the formation portions of the through portions 31A, 31B, and 31C are skipped. The positive electrode tabs 11 are welded to each other (through the through portions 31A, 31B, 31C). At this time, the through portions 31A, 31B, and 31C that are formed in three different positions are arranged so as to be shifted side by side (in the width direction) one by one as compared to the positive electrode tabs 11 that overlap in the vertical direction. At the positions of the through portions 31A, 31B, 31C, one of the through portions 31A, 31B, 31C is interposed for every three stacked positive electrode tabs 11, and thus each of the through portions 31A, 31B. The number of positive electrode tabs 11 welded at the position of 31C is 2/3 of the total number of stacked positive electrode tabs 11. In the case of the present embodiment, among the 80 positive electrode plates 1 in total, there are 27 A type positive electrode plates 1A and 27 B type positive electrode plates 1B and 26 C type positive electrode plates 1C. At the positions of the through portions 31A and 31B of the 1A through portion 31A, 31A to B type positive electrode plate 1B, 53 positive electrode tabs 11 excluding the positive electrode tab 11 of the 27 A type positive electrode plates 1A to B type positive electrode plate 1B. Are welded, and 54 positive electrode tabs 11 other than the positive electrode tabs 11 of the 26 C type positive electrode plates 1C are welded at the positions of the through portions 31C and 31C of the C type positive electrode plate 1C.

また、図7および図9に示すように、負極集電端子16と負極板2を接続する81枚の負極タブ12の中位置12Mにおける貫通部32A、32B、32C形成箇所で、負極タブ12のみ54枚を下記表1に示す条件で超音波溶接した。このとき、全81枚の負極板2のうち、Aタイプ負極板2A、Bタイプ負極板2BおよびCタイプ負極板2Cは均等に27枚ずつとなっているので、各貫通部32A、32B、32Cの位置では、いずれも54枚の負極タブ12が溶接されることとなる。   Further, as shown in FIGS. 7 and 9, only the negative electrode tab 12 is formed at the positions where the through portions 32A, 32B, and 32C are formed at the middle position 12M of the 81 negative electrode tabs 12 connecting the negative electrode current collecting terminal 16 and the negative electrode plate 2. 54 sheets were ultrasonically welded under the conditions shown in Table 1 below. At this time, among the 81 negative electrode plates 2, the A type negative electrode plate 2A, the B type negative electrode plate 2B, and the C type negative electrode plate 2C are uniformly 27 pieces each, so that each of the through portions 32A, 32B, 32C In this position, 54 negative electrode tabs 12 are all welded.

Figure 2010086799
Figure 2010086799

上記超音波溶接は、図12に示すように、溶接治具である超音波溶接機のチップ33を正極タブ11および負極タブ12のそれぞれに押し当てて行うが、このとき、チップ33は6本が横方向に一直線に並ぶように構成され、接合対象部材である正極タブ11ないし負極タブ12を挟んで反対側からも同じく6本で構成されたチップ33が押し当てられるように構成されており(反対側のチップ33は図示省略)、これにより、図8ないし図9に示すように、正極タブ11ないし負極タブ12の延出方向と垂直な方向(幅方向)に沿って一直線に並ぶ6箇所の略円形(直径5mm)の溶接点31W、32Wで、正極タブ11ないし負極タブ12の端子接合部11C、12Cおよび中位置11M、12Mのそれぞれが溶接される。   As shown in FIG. 12, the ultrasonic welding is performed by pressing the tip 33 of an ultrasonic welding machine, which is a welding jig, against each of the positive electrode tab 11 and the negative electrode tab 12. At this time, six tips 33 are provided. Are arranged in a straight line in the horizontal direction, and are configured such that the same six chips 33 are pressed from the opposite side across the positive electrode tab 11 or the negative electrode tab 12 which is a member to be joined. (The chip 33 on the opposite side is not shown). As a result, as shown in FIGS. 8 to 9, the chips 33 are aligned in a straight line along the direction (width direction) perpendicular to the extending direction of the positive electrode tab 11 to the negative electrode tab 12. The terminal joints 11C and 12C and the middle positions 11M and 12M of the positive electrode tab 11 or the negative electrode tab 12 are welded at substantially circular (diameter 5 mm) welding points 31W and 32W, respectively.

ここで、上記6箇所の溶接点31W、32Wに対応する位置には、それぞれ貫通部31A、31B、31C(ないし貫通部32A、32B、32C)が形成されているので、各溶接点31W、32Wの位置ではこの貫通部31A、31B、31C(ないし貫通部32A、32B、32C)が形成された正極タブ11(ないし負極タブ12)が溶接されない、即ち、貫通部31A、31B、31C(ないし貫通部32A、32B、32C)形成箇所をとばすようにして正極タブ11(ないし負極タブ12)が溶接されるようになっている。このとき、形成位置が3通りに異なる貫通部31A、31B、31C(ないし貫通部32A、32B、32C)が、上下に重なる正極タブ11(ないし負極タブ12)に比して1つずつ横に(幅方向に)ずらしていくようにして配置されているので、各溶接点31W、32Wの位置では、積層された正極タブ11(ないし負極タブ12)の3枚毎に、貫通部31A、31B、31C(ないし貫通部32A、32B、32C)のうちの1つが介在することとなり、したがって、各溶接点31W、32Wで溶接される正極タブ11(ないし負極タブ12)の枚数は、積層された全正極タブ11(ないし全負極タブ12)の枚数の2/3となる。本実施形態の場合、全80枚の正極板1のうち、Aタイプ正極板1AおよびBタイプ正極板1Bが各27枚、Cタイプ正極板1Cが26枚となっているので、Aタイプ正極板1Aの貫通部31A、31AないしBタイプ正極板1Bの貫通部31B、31Bの位置では、当該27枚のAタイプ正極板1AないしBタイプ正極板1Bの正極タブ11を除く53枚の正極タブ11が溶接され、Cタイプ正極板1Cの貫通部31C、31Cの位置では、当該26枚のCタイプ正極板1Cの正極タブ11を除く54枚の正極タブ11が溶接されることとなる。また、全81枚の負極板2のうち、Aタイプ負極板2A、Bタイプ負極板2BおよびCタイプ負極板2Cは均等に27枚ずつとなっているので、各貫通部32A、32B、32Cの位置では、いずれも54枚の負極タブ12が溶接されることとなる。   Here, through portions 31A, 31B, and 31C (or through portions 32A, 32B, and 32C) are formed at positions corresponding to the six welding points 31W and 32W, respectively, the welding points 31W and 32W are formed. In this position, the positive electrode tab 11 (or negative electrode tab 12) on which the through portions 31A, 31B, and 31C (or through portions 32A, 32B, and 32C) are formed is not welded, that is, the through portions 31A, 31B, and 31C (or through) The positive electrode tab 11 (or the negative electrode tab 12) is welded so as to skip portions 32A, 32B, and 32C). At this time, the through portions 31A, 31B, and 31C (or through portions 32A, 32B, and 32C) having different formation positions are placed one by one in comparison with the positive electrode tab 11 (or negative electrode tab 12) that overlaps vertically. Since they are arranged so as to be shifted (in the width direction), at the positions of the welding points 31W and 32W, the through portions 31A and 31B are provided for every three positive electrode tabs 11 (or negative electrode tabs 12) stacked. , 31C (or through portions 32A, 32B, 32C) are interposed, and therefore the number of positive electrode tabs 11 (or negative electrode tabs 12) welded at the respective welding points 31W, 32W is laminated. This is 2/3 of the number of all positive electrode tabs 11 (or all negative electrode tabs 12). In the case of the present embodiment, among the 80 positive electrode plates 1 in total, there are 27 A type positive electrode plates 1A and 27 B type positive electrode plates 1B and 26 C type positive electrode plates 1C. At the positions of the through portions 31A and 31B of the 1A through portion 31A, 31A to B type positive electrode plate 1B, 53 positive electrode tabs 11 excluding the positive electrode tab 11 of the 27 A type positive electrode plates 1A to B type positive electrode plate 1B. Are welded, and 54 positive electrode tabs 11 other than the positive electrode tabs 11 of the 26 C type positive electrode plates 1C are welded at the positions of the through portions 31C and 31C of the C type positive electrode plate 1C. In addition, among the 81 negative plates 2, the A type negative plate 2A, the B type negative plate 2B, and the C type negative plate 2C are equally 27 pieces each, so that each of the through portions 32A, 32B, 32C In the position, 54 negative electrode tabs 12 are all welded.

積層された正極タブ11(ないし負極タブ12)は、図11(a)に示すように、上下から超音波溶接機のチップ34を押し当てるようにして溶接され、これにより、図11(b)に示すように、溶接点31Wで正極タブ11(ないし負極タブ12)が接合され一体化される。このとき、前述の通り、溶接点31Wで溶接される正極タブ11(ないし負極タブ12)の枚数は積層された全正極タブ11(ないし全負極タブ12)の枚数の2/3となっているので、接合不良を生じることもなく確実に接合一体化される。
なお、図10および図11には、正極タブ11を溶接する状況が示され、図10ではAタイプ正極板1Aの正極タブ11の側から視た状況が示されている。図10および図11においては、明確化のため、Aタイプ正極板1A、Bタイプ正極板1BおよびCタイプ正極板1Cのそれぞれの正極タブ11(以下、それぞれAタイプ正極タブ11A、Bタイプ正極タブ11BおよびCタイプ正極タブ11Cとも称す)の各2枚ずつ、計6枚のみが示されている。また、溶接治具として前記した片側6本のチップ33を備える超音波溶接機を用いて6箇所の溶接点31Wで一斉に溶接するのにかえて、ここでは、片側1本の1対のチップ34を備える超音波溶接機を用いて6箇所の溶接点31Wを一方端から1箇所ずつ溶接していくようにしている。
As shown in FIG. 11A, the laminated positive electrode tab 11 (or negative electrode tab 12) is welded so as to press the tip 34 of the ultrasonic welder from above and below, and as a result, FIG. As shown, the positive electrode tab 11 (or the negative electrode tab 12) is joined and integrated at the welding point 31W. At this time, as described above, the number of positive electrode tabs 11 (or negative electrode tabs 12) welded at the welding point 31W is 2/3 of the total number of stacked positive electrode tabs 11 (or all negative electrode tabs 12). Therefore, it is surely joined and integrated without causing poor bonding.
10 and 11 show a situation where the positive electrode tab 11 is welded, and FIG. 10 shows a situation seen from the positive electrode tab 11 side of the A-type positive electrode plate 1A. 10 and 11, for the sake of clarity, the positive tabs 11 of the A-type positive plate 1A, B-type positive plate 1B and C-type positive plate 1C (hereinafter referred to as A-type positive tab 11A and B-type positive tab, respectively). 11B and C-type positive electrode tab 11C), each of which is 6 in total, only 6 are shown. In addition, instead of using the ultrasonic welding machine having six tips 33 on one side as a welding jig to weld at six welding points 31W all at once, a pair of tips on one side is used here. An ultrasonic welding machine having 34 is used to weld six welding points 31W one by one from one end.

上記正極タブ11の溶接点31Wの状況を図13に模式的に断面で示す。同図においては、明確化のため、積層電極体10の積層方向中央に位置するAタイプ正極タブ11A、Bタイプ正極タブ11BおよびCタイプ正極タブ11Cの3枚の正極タブ11のみが示されている。同図においては、Bタイプ正極タブ11Bの貫通部31Bに、Aタイプ正極タブ11AおよびCタイプ正極タブ11Cが両側から入り込み、該貫通部31B内で互いに重なり合って接合一体化されている。即ち、貫通部31Bによって形成されていたBタイプ正極タブ11Bの厚みぶんの空隙を詰めるようにして、Aタイプ正極タブ11AおよびCタイプ正極タブ11Cが互いに密に重なり合って接合一体化されている。   The state of the welding point 31W of the positive electrode tab 11 is schematically shown in cross section in FIG. In the figure, for the sake of clarity, only three positive electrode tabs 11 of an A type positive electrode tab 11A, a B type positive electrode tab 11B and a C type positive electrode tab 11C located in the center of the stacked electrode body 10 in the stacking direction are shown. Yes. In the same figure, the A type positive electrode tab 11A and the C type positive electrode tab 11C enter the penetration part 31B of the B type positive electrode tab 11B from both sides, and are overlapped and joined together in the penetration part 31B. In other words, the A-type positive electrode tab 11A and the C-type positive electrode tab 11C are tightly overlapped and integrated with each other so as to close the thickness gap of the B-type positive electrode tab 11B formed by the through portion 31B.

このようにして、正極タブ11の溶接点31Wでは、積層された正極タブ11がそれぞれ各貫通部31A、31B、31C内に入り込み、当該貫通部31A、31B、31Cを挟んで上下に位置する正極タブ11同士が重なり合って接合一体化され、全体として積層方向中央にむかって上下から寄り合うようにして接合一体化される。即ち、溶接点31Wにおいては、各貫通部31A、31B、31Cによって形成されていた正極タブ11の厚みぶんの空隙を詰めるようにして、53枚または54枚の正極タブ11が密に重なり合って接合一体化される。   In this way, at the welding point 31W of the positive electrode tab 11, the stacked positive electrode tabs 11 enter the respective through portions 31A, 31B, and 31C, and are located above and below the through portions 31A, 31B, and 31C. The tabs 11 are overlapped and joined and integrated, and as a whole, they are joined and integrated toward the center in the stacking direction so as to face each other from above and below. That is, at the welding point 31W, 53 or 54 positive electrode tabs 11 are closely overlapped and joined so as to close the gap of the thickness of the positive electrode tab 11 formed by the through portions 31A, 31B, 31C. Integrated.

〔外装体への封入〕
図14に示すように、あらかじめ電極体が設置できるように成形した2枚のラミネートフィルム28で構成した外装体25に、上記積層電極体10を挿入し、正極集電端子15および負極集電端子16のみが外装体25より外部に突出するよう正極集電端子15および負極集電端子16がある辺を熱融着するとともに、残りの3辺の内、2辺を熱融着した。
[Encapsulation in exterior body]
As shown in FIG. 14, the laminated electrode body 10 is inserted into an exterior body 25 composed of two laminate films 28 formed so that the electrode body can be installed in advance, and a positive current collecting terminal 15 and a negative current collecting terminal The sides where the positive electrode current collector terminal 15 and the negative electrode current collector terminal 16 are heat-sealed so that only 16 protrudes from the exterior body 25, and two of the remaining three sides were heat-sealed.

〔電解液の封入、密封化〕
上記外装体25の熱溶着していない1辺から、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解された電解液を注入し、最後に熱溶着していない1辺を熱溶着することにより電池を作製した。
[Encapsulation and sealing of electrolyte]
LiPF 6 is 1M (moles) in a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70 from one side where the outer package 25 is not thermally welded. The battery was fabricated by injecting an electrolytic solution dissolved at a ratio of 1 / liter) and finally thermally welding one side that was not thermally welded.

(実施例)
実施例の積層式電池としては、上記発明を実施するための最良の形態で説明した電池と同様に作製したものを用いた。
このようにして作製した電池を、以下、本発明電池Aと称する。
(Example)
As the stacked battery of the example, a battery manufactured in the same manner as the battery described in the best mode for carrying out the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A.

(比較例)
上記正極タブ11および負極タブ12に貫通部を穿設せずに中位置で溶接するようにした以外は、上記実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Zと称する。
(Comparative example)
A battery was fabricated in the same manner as in the above example, except that the positive electrode tab 11 and the negative electrode tab 12 were welded at a middle position without drilling through portions.
The battery thus manufactured is hereinafter referred to as a comparative battery Z.

〔本発明電池と比較電池との比較〕
上記本発明電池Aおよび比較電池Zにおける正極タブ11および負極タブ12の中位置を比較したところ、本発明電池A1では確実に溶接され良好な接合状態となっていたのに対し、比較電池Zでは接合不良を生じているのが確認された。
[Comparison of the battery of the present invention and a comparative battery]
When the middle positions of the positive electrode tab 11 and the negative electrode tab 12 in the present invention battery A and the comparison battery Z were compared, the present invention battery A1 was reliably welded and in a good joined state, whereas the comparison battery Z It was confirmed that bonding failure occurred.

〔本発明電池の利点〕
上記本発明電池Aおよび比較電池Zにおいては、正極タブ11が80枚、負極タブ12が81枚と積層枚数が多くなっているが、本発明電池Aにおける正極タブ11および負極タブ12の中位置11M、12Mにおける接合部分すなわち溶接点31W、32Wにおいては、貫通部31A、31B、31C、32A、32B、32Cが形成されているため、そのぶん接合される枚数が、正極タブ11が53枚または54枚、負極タブ12が54枚と、全積層枚数の2/3にまで低減されており、これにより、確実に溶接がなされて十分に溶着性が確保されている。したがって、正負極板1、2と正負極集電端子15、16との間の接続抵抗値にバラツキが生じることもなく、また、例えば超音波溶接により印加するエネルギー量を増大させたりすることも不要であるため、正極タブ11ないし負極タブ12の破断といった事態を招くこともない。
[Advantages of the battery of the present invention]
In the present invention battery A and the comparative battery Z, the number of stacked positive electrodes 11 is 80, the number of negative electrode tabs 12 is 81, and the number of stacked layers is increased. Since the penetration portions 31A, 31B, 31C, 32A, 32B, and 32C are formed at the joining portions in 11M and 12M, that is, the welding points 31W and 32W, the number of the positive tabs 11 is 53 or 54 sheets and 54 negative electrode tabs 12 are reduced to 2/3 of the total number of laminated sheets, so that welding is ensured and sufficient weldability is secured. Therefore, there is no variation in the connection resistance value between the positive and negative electrode plates 1 and 2 and the positive and negative electrode current collecting terminals 15 and 16, and the amount of energy applied by, for example, ultrasonic welding may be increased. Since it is unnecessary, there is no possibility of the positive electrode tab 11 or the negative electrode tab 12 being broken.

これに対し、比較電池Zにおいては、接合される正極タブ11ないし負極タブ12の枚数が80枚ないし81枚と多くなっているので、確実に溶接することが困難で溶着性が不十分となっており、したがって接続抵抗値にバラツキが生じることとなり、また確実に溶接すべく超音波溶接により印加するエネルギー量を増大させたりすると、正極タブ11ないし負極タブ12が破断しやすくなる。   On the other hand, in the comparative battery Z, since the number of the positive electrode tabs 11 to the negative electrode tabs 12 to be joined is as large as 80 to 81, it is difficult to reliably weld and the weldability becomes insufficient. Therefore, the connection resistance value varies, and if the amount of energy applied by ultrasonic welding is increased in order to ensure welding, the positive electrode tab 11 or the negative electrode tab 12 tends to break.

(その他の事項)
(1)上記実施例では、位置が3通りに異なる貫通部31A、31B、31C(ないし貫通部32A、32B、32C)がそれぞれ形成されたAタイプ正極板1A、Bタイプ正極板1BおよびCタイプ正極板(ないしAタイプ負極板2A、Bタイプ負極板およびCタイプ負極板2C)がこの順に積層された構成となっているが、これ以外にも、貫通部の位置を例えば2通りや4通りに異なるように形成するようにしてもよい。図15は貫通部の位置を4通りに異なるように形成した例を示す模式図である。同図に示す4枚のうちの1枚である正極板1Dにおいては、正極タブ11の中位置であって、該正極タブ11における外側端縁(図上では左側端縁)から0mmの位置に、前記実施例における貫通部31Aと同寸法および同形状を有する貫通部31Dが穿設されており、これ以外の3枚である正極板1E、1F、1Gにおいては、上記正極板1Dの貫通部31Dの位置から、正極タブ11における内側端縁(図上では右側端縁)まで、等間隔にずらしていくようにして貫通部31E、31F、31Gがそれぞれ形成されている。これら4枚の正極板1D、1E、1F、1Gはこの順に積層され、各貫通部31D、31E、31F、31Gの位置にそれぞれ対応する4箇所の溶接点で正極タブ11が溶接される。この構成によれば、各溶接点で溶接される正極タブ11の枚数は、積層された全正極タブ11の枚数の3/4となる。
(Other matters)
(1) In the above embodiment, the A type positive electrode plate 1A, the B type positive electrode plate 1B, and the C type in which the through portions 31A, 31B, and 31C (or through portions 32A, 32B, and 32C) having three different positions are respectively formed. The positive electrode plate (or the A type negative electrode plate 2A, the B type negative electrode plate, and the C type negative electrode plate 2C) is laminated in this order. They may be formed differently. FIG. 15 is a schematic view showing an example in which the positions of the penetrating portions are formed so as to differ in four ways. In the positive electrode plate 1D which is one of the four sheets shown in the figure, it is located at the middle position of the positive electrode tab 11 and at a position 0 mm from the outer edge (the left edge in the figure) of the positive electrode tab 11. A through-hole 31D having the same size and the same shape as the through-hole 31A in the embodiment is drilled, and in the other three positive plates 1E, 1F, 1G, the through-hole of the positive plate 1D Through portions 31E, 31F, and 31G are formed so as to be shifted from the position of 31D to the inner edge (right edge in the drawing) of the positive electrode tab 11 at equal intervals. These four positive electrode plates 1D, 1E, 1F, and 1G are laminated in this order, and the positive electrode tab 11 is welded at four welding points respectively corresponding to the positions of the through portions 31D, 31E, 31F, and 31G. According to this configuration, the number of positive electrode tabs 11 welded at each welding point is 3/4 of the total number of stacked positive electrode tabs 11.

(2)上記実施例では、正極タブ11ないし負極タブ12の中位置11M、12Mに貫通部31A、31B、31C、32A、32B、32Cが形成され、該貫通部31A、31B、31C、32A、32B、32Cの位置で53枚ないし54枚の正極タブ11ないし負極タブ12が接合され一体化される構成となっているが、貫通部は、正極タブ11ないし負極タブ12の端子接合部11C、12Cに形成するようにしてもよく、この場合、端子接合部11C、12Cにおける接合強度を確保して正極板1ないし負極板2と正極集電端子15ないし負極集電端子16との間の接続抵抗値を均一とすることができ、また、中位置11M、12Mでの接合を不要とすることもできる。
ただし、中位置11M、12Mにおいては1枚あたりの厚さ10μmないし15μmの薄肉の正極タブ11ないし負極タブ12のみが積層した状態にあるため、上記実施例のようにこの中位置11M、12Mに貫通部31A、31B、31C、32A、32B、32Cを形成して該貫通部31A、31B、31C、32A、32B、32Cで積層された複数枚の正極タブ11ないし負極タブ12のみを接合し一体化するようにすると、より容易かつ確実に正極タブ11ないし負極タブ12同士を接合一体化することができて正負極板1、2と正負極集電端子15、16との間の接続抵抗値を均一とすることができる。また、正極タブ11ないし負極タブ12同士が端子接合部11C、12Cだけでなく中位置11M、12Mにおいても接合されるため、そのぶんより確実に正極タブ11ないし負極タブ12同士を電気的に接続することができる。
なお、正極タブ11ないし負極タブ12の中位置11M、12Mおよび端子接合部11C、12Cのいずれにも貫通部を形成するようにして、これら両部位における接合がより確実になされる構成としてもよい。
(2) In the above embodiment, the through portions 31A, 31B, 31C, 32A, 32B, and 32C are formed at the middle positions 11M and 12M of the positive electrode tab 11 to the negative electrode tab 12, and the through portions 31A, 31B, 31C, 32A, 53 to 54 positive electrode tabs 11 to 12 negative tabs 12 are joined and integrated at the positions of 32B and 32C, but the penetrating parts are terminal joints 11C of the positive electrode tab 11 to the negative electrode tab 12, In this case, the connection strength between the positive electrode plate 1 or the negative electrode plate 2 and the positive electrode current collecting terminal 15 or the negative electrode current collecting terminal 16 is ensured by ensuring the bonding strength at the terminal bonding portions 11C and 12C. The resistance value can be made uniform, and the joining at the middle positions 11M and 12M can be made unnecessary.
However, in the middle positions 11M and 12M, only the thin positive electrode tab 11 or the negative electrode tab 12 having a thickness of 10 μm to 15 μm per layer is in a laminated state. Only a plurality of positive electrode tabs 11 or negative electrode tabs 12 formed by forming through portions 31A, 31B, 31C, 32A, 32B, and 32C and stacked by the through portions 31A, 31B, 31C, 32A, 32B, and 32C are joined together. In this way, the positive electrode tab 11 or the negative electrode tab 12 can be joined and integrated more easily and reliably, and the connection resistance value between the positive and negative electrode plates 1 and 2 and the positive and negative electrode current collecting terminals 15 and 16 can be obtained. Can be made uniform. Further, since the positive electrode tab 11 or the negative electrode tab 12 are bonded not only at the terminal bonding portions 11C and 12C but also at the middle positions 11M and 12M, the positive electrode tab 11 or the negative electrode tab 12 are more reliably electrically connected. can do.
In addition, it is good also as a structure by which a penetration part is formed in both the middle positions 11M and 12M of the positive electrode tab 11 thru | or the negative electrode tab 12, and the terminal junction parts 11C and 12C, and joining in these both parts is made more reliably. .

(3)上記実施例では、貫通部31A、31B、31C、32A、32B、32Cの位置における正極タブ11および負極タブ12の接合を超音波溶接により行うようにしているが、接合方法としては、例えば、接合対象部材を変形させるグサリ、カシメ等やネジ止め等のように、接合対象部材を機械的に接合する方法によって行うようにしても、上記貫通部31A、31B、31C、32A、32B、32Cにより接合状態をより良好とすることができ、また簡易な設備で接合作業を行うことができてそのぶん電池の製造を容易かつ安価に行うことができるという利点もある。ただし、溶接によるほうが抵抗を均一化できるため望ましい。
また、溶接方法としては、例えば抵抗溶接法やレーザー溶接法等も可能であるが、溶接強度等の点で超音波溶接が特に望ましい。
(3) In the above embodiment, the positive electrode tab 11 and the negative electrode tab 12 are joined by ultrasonic welding at the positions of the penetrating portions 31A, 31B, 31C, 32A, 32B, and 32C. For example, even if it is performed by a method of mechanically joining a member to be joined, such as a shearing, caulking or screwing that deforms the member to be joined, the through portions 31A, 31B, 31C, 32A, 32B, There is an advantage that the joined state can be made better by 32C, the joining work can be performed with simple equipment, and the battery can be easily and inexpensively manufactured. However, welding is preferable because the resistance can be made uniform.
Further, as a welding method, for example, a resistance welding method or a laser welding method can be used, but ultrasonic welding is particularly desirable in terms of welding strength and the like.

(4)上記実施例では、貫通部31A、31B、31C、32A、32B、32Cの位置で溶接される正極タブ11ないし負極タブ12の枚数が53枚ないし54枚となっているが、溶接される正極タブないし負極タブの枚数としては、上記実施例と同一条件であれば、60枚以下であることが望ましい。正極タブないし負極タブの溶接枚数が60枚以下であれば、確実に溶接がなされて十分に接合強度が確保される。
換言すれば、正極タブないし負極タブの全積層枚数が60枚を超えて(例えば上記実施例のように80枚程度以上に)多数となるほど、確実に溶接することが難しく接合強度の確保も困難となるので、正極タブないし負極タブの全積層枚数が60枚を超えていて、かつ貫通部の形成により正極タブないし負極タブの溶接枚数を60枚以下まで低減できれば、本発明の構成が特に有用となる。
(4) In the above embodiment, the number of the positive electrode tab 11 or the negative electrode tab 12 to be welded at the positions of the penetrating portions 31A, 31B, 31C, 32A, 32B, and 32C is 53 to 54. The number of positive electrode tabs or negative electrode tabs is preferably 60 or less under the same conditions as in the above embodiment. If the number of positive electrode tabs or negative electrode tabs to be welded is 60 or less, welding is reliably performed and sufficient bonding strength is ensured.
In other words, as the total number of stacked positive electrode tabs or negative electrode tabs exceeds 60 (for example, about 80 or more as in the above embodiment), it is difficult to reliably weld and securing the bonding strength is difficult. Therefore, if the total number of stacked positive electrode tabs or negative electrode tabs exceeds 60, and the number of welded positive electrode tabs or negative electrode tabs can be reduced to 60 or less by forming through portions, the configuration of the present invention is particularly useful. It becomes.

(5)上記実施例では正極タブ11ないし負極タブ12の中位置11M、12Mにおいて6箇所の溶接点31W、32Wで溶接されているが、貫通部の位置は前述の通り2通りとしてもよいため、溶接点は2箇所以上とすれば、本発明の目的は達成できる。但し、溶着強度を確保するには、4箇所ないし6箇所のように多数の溶接点とするのが好ましい。 (5) In the above-described embodiment, the welding is performed at the six welding points 31W and 32W at the middle positions 11M and 12M of the positive electrode tab 11 or the negative electrode tab 12. However, as described above, the positions of the through portions may be two. If the number of welding points is two or more, the object of the present invention can be achieved. However, in order to ensure the welding strength, it is preferable to use a large number of welding points such as 4 to 6 points.

(6)上記実施例では正極タブ11ないし負極タブ12の中位置11M、12Mにおいて幅方向に1列に配列された6箇所の溶接点31W、32Wで溶接されているが、例えば図16に示すように、2列以上の溶接点41Wで溶接される構成としても良い。 (6) In the above-described embodiment, welding is performed at six welding points 31W and 32W arranged in a line in the width direction at the middle positions 11M and 12M of the positive electrode tab 11 to the negative electrode tab 12, for example, as shown in FIG. Thus, it is good also as a structure welded by the welding point 41W of 2 or more rows.

(7)上記実施例では、正極集電端子15をアルミニウム板、負極集電端子16を銅板でそれぞれ構成しているが、これらをニッケル板で構成しても良い。このように両集電端子に同一素材のものを用いれば、電池の生産コストが低減できる。但し、このような構成とした場合には異種金属同士(なぜなら、正極タブ11はアルミニウム、負極タブ12は銅から構成されている)の溶接となるため、溶接部の溶着性が悪くなり、正負極板と正負極集電端子との間の接続抵抗値にバラツキを生じるという問題が一層顕在化する。そこで、上記本発明のような構成とすれば、このような問題を抑制できるので、特に有用である。 (7) In the above embodiment, the positive electrode current collecting terminal 15 is made of an aluminum plate and the negative electrode current collecting terminal 16 is made of a copper plate, but these may be made of a nickel plate. Thus, if the same material is used for both current collecting terminals, the production cost of the battery can be reduced. However, in such a configuration, since dissimilar metals are welded together (because the positive electrode tab 11 is made of aluminum and the negative electrode tab 12 is made of copper), the weldability of the welded portion deteriorates, and The problem of variation in the connection resistance value between the negative electrode plate and the positive and negative current collecting terminals becomes more apparent. Therefore, the configuration as in the present invention is particularly useful because such problems can be suppressed.

(8)正負極板と正負極集電端子との間の接続抵抗値にバラツキが生じるのを抑制するためには、例えば図17ないし図19に示すように、積層される複数枚の正極タブないし負極タブを幅方向に並べて配置するようにしてもよい。この例では、図17に示す幅狭の正極タブ11Lを一短辺の一方端部(図上では左端部)に形成した正極板(以下、第1正極板とも称す)1Lと、図18に示す幅狭の正極タブ11Rを一短辺の一方端(図上では左端)から上記第1正極板1Lの正極タブ11Lの幅だけずらした位置に形成した正極板(以下、第2正極板とも称す)1Rとを作製する。尚、この際、第1正極板1Lと第2正極板1Rとを積層枚数の半分ずつ作製する(上記実施例の如く正極板1が80枚なら40枚ずつ)。またこのとき、上記実施例の場合と同様にして、各正極タブ11L、11Rに、1枚毎に幅方向にずらすようにして位置を3通りに変えた貫通部31L、31Rをそれぞれ穿設しておくようにする。そして、図19に示すように、第1正極板1Lの正極タブ11Lと第2正極板1Rの正極タブ11Rとが重ならない状態で、各正極タブ11L、11Rを端子接続部11Cおよび中位置11Mでそれぞれ溶着する。この構成によれば、溶接枚数がさらに半減されるので、正極板1と正極端子15との間の接続抵抗値にバラツキが生じるのをさらに効果的に抑制することができる。また、負極板2についても、同様の構成とすれば、同様の効果を発揮できる。但し、上記実施例に示したものと比べると、第1正極板1Lの正極タブ11Lおよび第2正極板1Rの正極タブ11Rのそれぞれの幅が狭くなるので、若干抵抗が上昇する。したがって、上記実施例に示した構造とする方が望ましい。 (8) In order to suppress variation in the connection resistance value between the positive and negative electrode plates and the positive and negative current collecting terminals, for example, as shown in FIGS. 17 to 19, a plurality of stacked positive electrode tabs Or you may make it arrange | position a negative electrode tab side by side in the width direction. In this example, a positive electrode plate (hereinafter also referred to as a first positive electrode plate) 1L in which a narrow positive electrode tab 11L shown in FIG. 17 is formed at one end portion (left end portion in the drawing) of one short side, and FIG. A positive electrode plate 11R formed at a position shifted from the one end of one short side (the left end in the figure) by the width of the positive electrode tab 11L of the first positive electrode plate 1L (hereinafter also referred to as the second positive electrode plate). 1R). At this time, the first positive electrode plate 1L and the second positive electrode plate 1R are produced by a half of the number of laminated sheets (40 sheets each if the number of the positive electrode plates 1 is 80 as in the above embodiment). At this time, similarly to the case of the above-described embodiment, the positive electrode tabs 11L and 11R are respectively provided with through portions 31L and 31R whose positions are changed in three ways so as to be shifted in the width direction. To keep. Then, as shown in FIG. 19, in a state where the positive electrode tab 11L of the first positive electrode plate 1L and the positive electrode tab 11R of the second positive electrode plate 1R do not overlap, the positive electrode tabs 11L and 11R are connected to the terminal connection portion 11C and the middle position 11M. To weld each. According to this configuration, since the number of welds is further reduced by half, it is possible to more effectively suppress variation in the connection resistance value between the positive electrode plate 1 and the positive electrode terminal 15. Moreover, if the negative electrode plate 2 has the same configuration, the same effect can be exhibited. However, as compared with the one shown in the above embodiment, the width of each of the positive electrode tab 11L of the first positive electrode plate 1L and the positive electrode tab 11R of the second positive electrode plate 1R is narrowed, so that the resistance is slightly increased. Therefore, the structure shown in the above embodiment is preferable.

(9)正極活物質としては、上記LiCoO2に限定するものではなく、LiNiO2、LiMn24或いはこれらの複合体等であっても良い。また、負極活物質としては、天然黒鉛、人造黒鉛等が好適に用いられる。 (9) The positive electrode active material, not limited to the above LiCoO 2, LiNiO 2, LiMn 2 O 4 or may be a composites thereof, and the like. Moreover, natural graphite, artificial graphite, etc. are used suitably as a negative electrode active material.

(10)上記実施例では、全ての負極板2につき、負極集電体の両面に負極活物質層を形成したが、正極板と対向していない部位の負極活物質層(具体的には、最外に配置された負極板の外側に存在する負極活物質層)はなくても良い。このような構造とすれば、積層電極体の厚みが小さくなるので、電池をより高容量密度化できる。 (10) In the above examples, the negative electrode active material layers were formed on both sides of the negative electrode current collector for all the negative electrode plates 2, but the negative electrode active material layers (specifically, not facing the positive electrode plate) There may be no negative electrode active material layer) on the outer side of the outermost negative electrode plate. With such a structure, since the thickness of the laminated electrode body is reduced, the battery can have a higher capacity density.

本発明は、例えば、ロボット、電気自動車およびバックアップ電源等に用いる電池に好適に適用することができる。   The present invention can be suitably applied to, for example, a battery used for a robot, an electric vehicle, a backup power source, and the like.

本発明の積層式電池に用いる正極板の平面図である。It is a top view of the positive electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる負極板の平面図である。It is a top view of the negative electrode plate used for the laminated battery of this invention. 本発明の積層式電池の一部を示す図であって、同図(a)は正極の平面図、同図(b)はセパレータの斜視図、同図(c)は正極が内部に配置された袋状セパレータを示す平面図である。It is a figure which shows a part of laminated battery of this invention, Comprising: The figure (a) is a top view of a positive electrode, The figure (b) is a perspective view of a separator, The figure (c) is a positive electrode arrange | positioned inside. It is a top view which shows the bag-shaped separator. 本発明の積層式電池に用いる正極板の正極タブに貫通部を穿設した状況を示す平面図である。It is a top view which shows the condition where the penetration part was drilled in the positive electrode tab of the positive electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる負極板の負極タブに貫通部を穿設した状況を示す平面図である。It is a top view which shows the condition where the penetration part was pierced in the negative electrode tab of the negative electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の分解斜視図である。It is a disassembled perspective view of the laminated electrode body used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の側面図である。It is a side view of the laminated electrode body used for the laminated battery of this invention. 正極タブ同士(中位置)、ならびに、正極タブと正極集電端子と(端子接合部)を溶着した状態を示す平面図である。It is a top view which shows the state which welded the positive electrode tabs (middle position) and the positive electrode tab, the positive electrode current collection terminal, and (terminal junction part). 負極タブ同士(中位置)、ならびに、負極タブと負極集電端子と(端子接合部)を溶着した状態を示す平面図である。It is a top view which shows the state which welded the negative electrode tabs (middle position) and the negative electrode tab, the negative electrode current collection terminal, and (terminal junction part). 中位置における正極タブ同士の接合部分の状況を示す部分平面図である。It is a fragmentary top view which shows the condition of the junction part of positive electrode tabs in a middle position. 図10のA−A線部における(a)溶接前および(b)溶接中の状況を示す断面図である。It is sectional drawing which shows the condition in (A) welding before (a) welding in the AA line part of FIG. 極板タブの溶接状況を示す分解斜視図である。It is a disassembled perspective view which shows the welding condition of an electrode plate tab. 正極タブの溶接点の状況を模式的に示す断面図である。It is sectional drawing which shows typically the condition of the welding point of a positive electrode tab. 本発明の積層式電池の斜視図である。It is a perspective view of the laminated battery of the present invention. 本発明の積層式電池に用いる正極板の正極タブに変形例に係る貫通部を穿設した状況を示す平面図である。It is a top view which shows the condition which penetrated the penetration part which concerns on a modification on the positive electrode tab of the positive electrode plate used for the laminated battery of this invention. 中位置における正極タブ同士の接合部分の変形例を示す部分平面図である。It is a fragmentary top view which shows the modification of the junction part of positive electrode tabs in a middle position. 本発明の積層式電池に用いる正極板の変形例を示す平面図である。It is a top view which shows the modification of the positive electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる正極板の変形例を示す平面図である。It is a top view which shows the modification of the positive electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の変形例を示す平面図である。It is a top view which shows the modification of the laminated electrode body used for the laminated battery of this invention.

符号の説明Explanation of symbols

11:正極タブ(極板タブ)
31A:貫通部
11: Positive electrode tab (electrode plate tab)
31A: penetration

Claims (3)

複数枚の正極板と負極板とがセパレータを介して交互に積層され、各極板から延出した極板タブが正負極の集電端子にそれぞれ複数枚積層して接合された積層式電池であって、
少なくとも一つの極板タブに貫通部が形成され、複数の極板タブ同士が貫通部を介して接合されていることを特徴とする積層式電池。
A stacked battery in which a plurality of positive and negative electrode plates are alternately stacked via separators, and a plurality of electrode plate tabs extending from each electrode plate are stacked and bonded to positive and negative current collecting terminals, respectively. There,
A laminated battery comprising: a through portion formed in at least one electrode plate tab; and a plurality of electrode plate tabs joined together through the through portion.
上記極板タブが集電端子に接合される接合部と上記極板との間に上記貫通部が形成され、該貫通部で上記積層された複数枚の極板タブのみが接合され一体化されていることを特徴とする、請求項1に記載の積層式電池。   The penetration part is formed between a junction part where the electrode tab is joined to the current collector terminal and the electrode plate, and only the plurality of laminated electrode plate tabs are joined and integrated at the penetration part. The stacked battery according to claim 1, wherein: 上記接合が超音波溶接によりなされたものである、請求項1又は2に記載の積層式電池。   The laminated battery according to claim 1 or 2, wherein the joining is performed by ultrasonic welding.
JP2008254918A 2008-09-30 2008-09-30 Laminated battery Withdrawn JP2010086799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254918A JP2010086799A (en) 2008-09-30 2008-09-30 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254918A JP2010086799A (en) 2008-09-30 2008-09-30 Laminated battery

Publications (1)

Publication Number Publication Date
JP2010086799A true JP2010086799A (en) 2010-04-15

Family

ID=42250562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254918A Withdrawn JP2010086799A (en) 2008-09-30 2008-09-30 Laminated battery

Country Status (1)

Country Link
JP (1) JP2010086799A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065900A (en) * 2009-09-18 2011-03-31 Sanyo Electric Co Ltd Stack type battery
JP2013218958A (en) * 2012-04-11 2013-10-24 Toyota Industries Corp Power storage device and secondary battery
JP2014130800A (en) * 2012-11-28 2014-07-10 Toyota Motor Corp Manufacturing method and manufacturing apparatus for battery electrode
JP2014146460A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Method for manufacturing power storage device
JP2020017524A (en) * 2018-07-24 2020-01-30 アルモール Method for manufacturing current collector and associated device
WO2024079848A1 (en) * 2022-10-13 2024-04-18 TeraWatt Technology株式会社 Lithium secondary battery and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065900A (en) * 2009-09-18 2011-03-31 Sanyo Electric Co Ltd Stack type battery
JP2013218958A (en) * 2012-04-11 2013-10-24 Toyota Industries Corp Power storage device and secondary battery
JP2014130800A (en) * 2012-11-28 2014-07-10 Toyota Motor Corp Manufacturing method and manufacturing apparatus for battery electrode
JP2014146460A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Method for manufacturing power storage device
JP2020017524A (en) * 2018-07-24 2020-01-30 アルモール Method for manufacturing current collector and associated device
WO2024079848A1 (en) * 2022-10-13 2024-04-18 TeraWatt Technology株式会社 Lithium secondary battery and method for producing same

Similar Documents

Publication Publication Date Title
JP5252871B2 (en) Stacked battery
JP5474466B2 (en) Stacked battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP5252937B2 (en) Stacked battery and method for manufacturing the same
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
JP4444989B2 (en) Lithium ion secondary battery
JP6214758B2 (en) Prismatic secondary battery
US20140182118A1 (en) Method for manufacturing secondary cell and secondary cell
JP5550923B2 (en) Method for manufacturing prismatic secondary battery
JP2012033399A (en) Rectangular secondary battery
CN108292730B (en) Electrochemical device
JP2011076838A (en) Laminate type battery
JP2015199095A (en) Ultrasonic welding apparatus and method of manufacturing battery
JP2010232145A (en) Laminated-type battery and method of manufacturing same
KR20160052449A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
EP3579305A1 (en) Electrode having improved electrode tab welding characteristic and secondary battery comprising same
JP2010086799A (en) Laminated battery
JP2018181510A (en) Secondary battery
WO2014141640A1 (en) Laminate exterior cell
JP5678270B2 (en) Power generation element and secondary battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2011175913A (en) Laminated battery
JP2009110812A (en) Battery and method of manufacturing the same
JP5472941B2 (en) Non-aqueous electrolyte battery
JP2016129095A (en) Flat type battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206