JP2010085628A - Method and device for adjusting optical system - Google Patents

Method and device for adjusting optical system Download PDF

Info

Publication number
JP2010085628A
JP2010085628A JP2008253583A JP2008253583A JP2010085628A JP 2010085628 A JP2010085628 A JP 2010085628A JP 2008253583 A JP2008253583 A JP 2008253583A JP 2008253583 A JP2008253583 A JP 2008253583A JP 2010085628 A JP2010085628 A JP 2010085628A
Authority
JP
Japan
Prior art keywords
optical system
incident
pair
light receiving
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008253583A
Other languages
Japanese (ja)
Inventor
Takeshi Utagawa
健 歌川
Toru Iwane
透 岩根
Tomoyuki Kuwata
知由己 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008253583A priority Critical patent/JP2010085628A/en
Publication of JP2010085628A publication Critical patent/JP2010085628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten an optical axis adjustment time, and to improve adjustment accuracy. <P>SOLUTION: A first shift amount is obtained as the shift amount of a first output pair obtained by defining two incident heights of three or more incident heights of the optical system 3 as a first incident height pair and receiving each of a pair of light beams incident from the first incident height pair with an image surface of the optical system 3. A second shift amount is obtained as the shift amount of a second output pair obtained by receiving each of a pair of light beams incident from a second incident height pair different from the first incident height pair from among the three or more incident heights of the optical system 3 with the image surface of the optical system 3. The position of the optical system 3 is adjusted on the basis of the first and second shift amounts. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光学系の調整方法および装置に関する。   The present invention relates to an optical system adjustment method and apparatus.

従来、複数の光学ブロックから構成される結像光学系の光学調整は、特定の光学ブロックの偏心量を微調整することによって行われている。つまり、調整対象の結像光学系により所定の位置にある点光源の像をイメージセンサー上に結像し、モニターに表示された点像ができる限りきれいになるように、結像光学系の特定の光学ブロックの位置を手動により動かして調整している。
この出願の発明に関連する先行技術文献としては次のものがある。
第4 光の鉛筆 鶴田 匡夫著 新技術コミュニケーションズ 1997年
Conventionally, optical adjustment of an imaging optical system composed of a plurality of optical blocks is performed by finely adjusting the amount of eccentricity of a specific optical block. In other words, the image of the point light source at a predetermined position is formed on the image sensor by the image forming optical system to be adjusted, and the specific image forming optical system is selected so that the point image displayed on the monitor is as clean as possible. The position of the optical block is adjusted manually.
Prior art documents related to the invention of this application include the following.
The 4th Pencil of Light Shino Tsuruta New Technology Communications 1997

しかしながら、上述した従来の調整方法では、特定の光学ブロックをどの方向に動かしてよいのか解らないので、試行錯誤で動かしながら良い位置に収斂させているが、この方法では調整に時間がかかる上に、定量性がないので調整者ごとのバラツキがあり、品質が安定しないという問題がある。   However, in the conventional adjustment method described above, it is not known in which direction the specific optical block may be moved, so that it is converged in a good position while moving by trial and error. However, this method takes time for adjustment. Since there is no quantitative property, there is a problem that there are variations among the adjusters and the quality is not stable.

(1) 請求項1の発明は、光学系の3つ以上の入射高のうちの2つの入射高を第1の入射高対とし、該第1の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第1の出力対のずれ量を第1のずれ量として求め、前記光学系の3つ以上の入射高のうち前記第1の入射高対とは異なる第2の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第2の出力対のずれ量を第2のずれ量として求め、前記第1および第2のずれ量に基づいて前記光学系の位置を調整する光学系調整方法である。
(2) 請求項2の発明は、請求項1に記載の光学系調整方法において、前記第1の入射高対は、前記光学系の第1の入射高と該第1の入射高とは異なる第2の入射高との対であり、前記2つの入射高対は、前記第1および第2の入射高とは異なる第3の入射高と前記第2の入射高との対である。
(3) 請求項3の発明は、請求項2に記載の光学系調整方法において、前記第2の入射高は、前記光学系の光軸に対応する入射高である。
(4) 請求項4の発明は、請求項2または請求項3に記載の光学系調整方法において、前記第1および第3の入射高に対する前記第1および第2のずれ量を表示し、前記表示に基づいて前記光学系の位置を調整する。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の光学系調整方法において、前記第1および第2のずれ量に基づいて前記光学系の位置の調整量を求める。
(6) 請求項6の発明は、請求項5に記載の光学系調整方法において、前記第1および第2のずれ量を、前記光学系の入射高を変数とする該変数のべき乗を含む関数として求め、前記関数の偶数次の項の係数に基づいて前記調整量を求める。
(7) 請求項7の発明は、請求項3に記載の光学系調整方法において、前記第1および第2のずれ量に対する前記調整量の関係を予め記憶し、前記関係に基づいて前記調整量を求める。
(8) 請求項8の発明は、請求項1〜7のいずれか一項に記載の光学系調整方法において、複数波長の前記光線のそれぞれについて前記第1および第2のずれ量を求める。
(9) 請求項9の発明は、光学系の3つ以上の入射高のうちの2つの入射高を第1の入射高対とし、該第1の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第1の出力対のずれを第1のずれ量として測定するとともに、前記光学系の3つ以上の入射高のうち前記第1の入射高対とは異なる第2の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第2の出力対のずれを第2のずれ量として測定する測定手段と、前記測定手段による前記第1および第2のずれ量に基づいて前記光学系の位置を調整する調整手段とを備えた光学系調整装置である。
(10) 請求項10の発明は、第1および第2のマイクロレンズを配列したマイクロレンズアレイと、前記第1および第2のマイクロレンズのそれぞれに対して少なくとも3つの受光素子を設けて光束を受光する受光素子アレイと、前記第1のマイクロレンズに対応する前記少なくとも3つの受光素子のうち互いに異なる第1および第2の受光素子を選択するとともに、前記第2のマイクロレンズに対応する前記少なくとも3つの受光素子のうち前記第1および第2の受光素子に対応する第3および第4の受光素子を選択する選択手段と、光学系からの光束を前記第1の受光素子で受光して得られる出力と、前記光束を前記第3の受光素子で受光して得られる出力とに基づいて第1信号列とするとともに、前記光束を前記第2の受光素子で受光して得られる出力と、前記光束を前記第4の受光素子で受光して得られる出力とに基づいて第2信号列とし、前記第1信号列と前記第2信号列とのずれ量を測定する測定手段と、前記選択手段が選択する受光素子対を変更することにより、前記測定手段によって複数の前記ずれ量を求める制御手段と、前記複数のずれ量に基づいて前記光学系の位置を調整する調整手段とを備えた光学系調整装置である。
(1) According to the first aspect of the present invention, two of the three or more incident heights of the optical system are defined as the first incident height pair, and each of the pair of light beams incident from the first incident height pair Of the first output pair obtained by receiving the light on the image plane of the optical system as a first shift amount, and the first incident height pair of the three or more incident heights of the optical system Is obtained as a second deviation amount by calculating a deviation amount of the second output pair obtained by receiving each of a pair of light beams incident from different second incident height pairs on the image plane of the optical system. In this optical system adjustment method, the position of the optical system is adjusted based on a second shift amount.
(2) The invention according to claim 2 is the optical system adjustment method according to claim 1, wherein the first incident height pair is different from the first incident height of the optical system. The second incident height is a pair, and the two incident height pairs are a pair of a third incident height and the second incident height different from the first and second incident heights.
(3) The invention according to claim 3 is the optical system adjustment method according to claim 2, wherein the second incident height is an incident height corresponding to an optical axis of the optical system.
(4) The invention of claim 4 is the optical system adjustment method according to claim 2 or 3, wherein the first and second shift amounts with respect to the first and third incident heights are displayed, and The position of the optical system is adjusted based on the display.
(5) The invention of claim 5 is the optical system adjustment method according to any one of claims 1 to 4, wherein the adjustment amount of the position of the optical system is determined based on the first and second deviation amounts. Ask.
(6) The invention according to claim 6 is the optical system adjustment method according to claim 5, wherein the first and second shift amounts include a power of the variable having an incident height of the optical system as a variable. And the adjustment amount is obtained based on the coefficient of the even-order term of the function.
(7) The invention according to claim 7 is the optical system adjustment method according to claim 3, wherein a relationship of the adjustment amount with respect to the first and second shift amounts is stored in advance, and the adjustment amount is based on the relationship. Ask for.
(8) According to an eighth aspect of the present invention, in the optical system adjustment method according to any one of the first to seventh aspects, the first and second shift amounts are obtained for each of the light beams having a plurality of wavelengths.
(9) According to the ninth aspect of the present invention, two of the three or more incident heights of the optical system are defined as the first incident height pair, and each of the pair of light beams incident from the first incident height pair Of the first output pair obtained by receiving the light on the image plane of the optical system as a first shift amount, and the first incident height pair of the three or more incident heights of the optical system is measured. Measuring means for measuring, as a second shift amount, a shift of the second output pair obtained by receiving each of a pair of light beams incident from a second pair of incident heights different from the second light amount on the image plane of the optical system; An optical system adjustment apparatus comprising: an adjustment unit that adjusts a position of the optical system based on the first and second shift amounts by the measurement unit.
(10) The invention of claim 10 provides a light beam by providing a microlens array in which first and second microlenses are arranged, and at least three light receiving elements for each of the first and second microlenses. The light receiving element array for receiving light and the at least three light receiving elements corresponding to the first microlens are selected from different first and second light receiving elements, and at least the first microlens corresponding to the second microlens. Selection means for selecting the third and fourth light receiving elements corresponding to the first and second light receiving elements among the three light receiving elements, and the light beam from the optical system is received by the first light receiving element. And the first light train based on the output obtained by receiving the light beam by the third light receiving element and receiving the light beam by the second light receiving element. And a second signal sequence based on the output obtained by receiving the light beam by the fourth light receiving element, and measuring a deviation amount between the first signal sequence and the second signal sequence. By changing the measurement means and the light receiving element pair selected by the selection means, the measurement means adjusts the position of the optical system based on the plurality of deviation amounts. An optical system adjustment apparatus including an adjustment unit.

本発明によれば、容易に結像光学系を調整することができる。   According to the present invention, the imaging optical system can be easily adjusted.

図1は一実施の形態の結像光学系調整装置の構成を示す。一実施の形態の結像光学系調整装置1は、図2に示すように、チャート像表示装置2の表示面に表示されたチャート像からの光を調整対象の結像光学系3の異なる部分瞳を介して受光し、それらのチャート像のずれ量を検出して結像光学系3の球面収差を測定し、測定結果の球面収差に基づいて調整対象の結像光学系3の光学調整を行う。ここで、収差測定装置4により検出される像のズレ量は、部分瞳の中心を光線の入射高とする結像光学系3の横収差を表す。   FIG. 1 shows a configuration of an imaging optical system adjusting apparatus according to an embodiment. As shown in FIG. 2, the imaging optical system adjusting apparatus 1 according to the embodiment is configured to adjust the light from the chart image displayed on the display surface of the chart image display apparatus 2 in different parts of the imaging optical system 3 to be adjusted. Light is received through the pupil, the amount of deviation of these chart images is detected, the spherical aberration of the imaging optical system 3 is measured, and the optical adjustment of the imaging optical system 3 to be adjusted is made based on the spherical aberration of the measurement result. Do. Here, the image shift amount detected by the aberration measuring device 4 represents the lateral aberration of the imaging optical system 3 in which the center of the partial pupil is the incident height of the light beam.

この一実施の形態では、調整対象の結像光学系3が第1光学ブロック3aと第2光学ブロック3bから構成されているものとし、第2光学ブロック3bの位置を調整して結像光学系3の光学調整を行う例を示す。   In this embodiment, the imaging optical system 3 to be adjusted is composed of a first optical block 3a and a second optical block 3b, and the imaging optical system is adjusted by adjusting the position of the second optical block 3b. 3 shows an example in which the optical adjustment 3 is performed.

結像光学系調整装置1は、収差測定装置4、調整信号作成装置5および位置調整装置6から構成されている。収差測定装置4は、結像光学系3の異なる部分瞳を介してチャート像を受光し、それらのチャート像のずれ量を検出して結像光学系3の球面収差を測定する。調整信号作成装置5は、収差測定装置4による測定結果に基づいて結像光学系3の調整信号を作成し、位置調整装置6へ出力する。位置調整装置6は、調整信号作成装置5からの調整信号にしたがって調整対象の結像光学系3の第2光学ブロック3bの位置を調整する。   The imaging optical system adjustment device 1 includes an aberration measurement device 4, an adjustment signal creation device 5, and a position adjustment device 6. The aberration measuring device 4 receives the chart image through different partial pupils of the imaging optical system 3 and detects the shift amount of these chart images to measure the spherical aberration of the imaging optical system 3. The adjustment signal creation device 5 creates an adjustment signal for the imaging optical system 3 based on the measurement result by the aberration measurement device 4 and outputs the adjustment signal to the position adjustment device 6. The position adjusting device 6 adjusts the position of the second optical block 3b of the imaging optical system 3 to be adjusted according to the adjustment signal from the adjustment signal generating device 5.

チャート像表示装置2は、測定対象の結像光学系3を挟んで結像光学系調整装置1の反対側に設置され、図3に示すような黒色のバーを並べたチャート(パターン)を表示する。チャートは、図3(a)に示すような1本線のエッジチャート、好ましくは図3(b)、(c)に示すような複数の境界を有する多本線のエッジチャートで、かつ、偽合焦を避けるために黒色バーの幅と配置間隔を変え、配列周期の変化があるチャートを用いるのが望ましい。   The chart image display device 2 is installed on the opposite side of the imaging optical system adjustment device 1 across the imaging optical system 3 to be measured, and displays a chart (pattern) in which black bars are arranged as shown in FIG. To do. The chart is a single-line edge chart as shown in FIG. 3 (a), preferably a multi-line edge chart having a plurality of boundaries as shown in FIGS. 3 (b) and 3 (c), and a false focus. In order to avoid this, it is desirable to use a chart in which the width and arrangement interval of the black bars are changed and the arrangement period changes.

図4は結像光学系調整装置1の収差測定装置4の構成を示し、(a)がその横断面図、(b)が結像光学系3側から見た正面図である。収差測定装置4は、複数のマイクロレンズ(例えばこの実施例ではL1〜L6)を一列に配列したマイクロレンズアレイ41と、複数の受光素子(例えばこの実施例ではS1〜S6)を一列に配列した受光素子アレイ42とを備え、結像光学系3から入射した光束を各マイクロレンズL1〜L6を介して各受光素子S1〜S6により受光する。なお、マイクロレンズおよび受光素子の個数はこの実施例に限定されない。また、受光素子S1〜S6は、この実施例では複数の受光部が縦8個、横8個のマトリクス状に配列された受光素子を例に上げて説明するが、受光素子内の受光部の数と配置はこの実施例に限定されない。   4A and 4B show the configuration of the aberration measuring apparatus 4 of the imaging optical system adjusting apparatus 1, wherein FIG. 4A is a transverse sectional view thereof, and FIG. 4B is a front view as viewed from the imaging optical system 3 side. The aberration measuring device 4 has a microlens array 41 in which a plurality of microlenses (for example, L1 to L6 in this embodiment) are arranged in a row and a plurality of light receiving elements (for example, S1 to S6 in this embodiment) in a row. The light receiving element array 42 is provided, and the light beam incident from the imaging optical system 3 is received by the light receiving elements S1 to S6 via the microlenses L1 to L6. The numbers of microlenses and light receiving elements are not limited to this example. In this embodiment, the light receiving elements S1 to S6 are described by taking a light receiving element in which a plurality of light receiving parts are arranged in a matrix of 8 vertical and 8 horizontal, as an example. The number and arrangement are not limited to this embodiment.

ここで、図5を参照して像のズレ量の検出原理を説明する。説明を解りやすくするために、図5では、収差測定装置4が、5個のマイクロレンズL1〜L5が一列に配列されたマイクロレンズアレイと、5個の受光素子S1〜S5が一列に配列された受光素子アレイとを備えているものとして説明する。調整対象の結像光学系3の瞳面には、結像光学系3の光軸と交わる点を通る直線上に5個の部分瞳A、B、C、D、Eが設定されている。なお、部分瞳Cは結像光学系3の光軸との交点を中心とする部分瞳である。   Here, the detection principle of the image shift amount will be described with reference to FIG. In order to make the explanation easy to understand, in FIG. 5, the aberration measuring device 4 includes a microlens array in which five microlenses L1 to L5 are arranged in a row and five light receiving elements S1 to S5 in a row. In the following description, the light receiving element array is provided. On the pupil plane of the imaging optical system 3 to be adjusted, five partial pupils A, B, C, D, and E are set on a straight line passing through a point that intersects the optical axis of the imaging optical system 3. The partial pupil C is a partial pupil centered on the intersection with the optical axis of the imaging optical system 3.

マイクロレンズL1〜L5のレンズ面(図5に破線で示す)を像ズレ検出面としたとき、各マイクロレンズL1〜L5のレンズ面に結像された像について考察する。結像光学系3の部分瞳Cを通過した光束に関して、マイクロレンズL1、L2、L3、L4、L5のレンズ面にできた像に寄与する光は、各受光素子S1、S2、S3、S4、S5の受光部c(1)、c(2)、c(3)、c(4)、c(5)で受光される。ここで、結像光学系3の部分瞳Cを通過した光束による受光部c(1)、c(2)、c(3)、c(4)、c(5)の検出像を、{c(i)}(i=1,2,3,4,5)で表す。   Considering the lens surfaces of the microlenses L1 to L5 (shown by broken lines in FIG. 5) as image shift detection surfaces, consider the images formed on the lens surfaces of the microlenses L1 to L5. Regarding the light beam that has passed through the partial pupil C of the imaging optical system 3, the light that contributes to the image formed on the lens surfaces of the microlenses L1, L2, L3, L4, and L5 is received by each of the light receiving elements S1, S2, S3, S4, Light is received by the light receiving portions c (1), c (2), c (3), c (4), and c (5) in S5. Here, the detection images of the light receiving portions c (1), c (2), c (3), c (4), c (5) by the light beam that has passed through the partial pupil C of the imaging optical system 3 are represented by {c (i)} (i = 1, 2, 3, 4, 5).

同様に、結像光学系3の部分瞳Aを通過した光束に関して、マイクロレンズL1、L2、L3、L4、L5のレンズ面にできた像に寄与する光は、各受光素子S1、S2、S3、S4、S5の受光部a(1)、a(2)、a(3)、a(4)、a(5)で受光され、これらの受光部の検出像を{a(i)}(i=1,2,3,4,5)で表す。結像光学系3の部分瞳Bを通過した光束に関して、マイクロレンズL1、L2、L3、L4、L5のレンズ面にできた像に寄与する光は、各受光素子S1、S2、S3、S4、S5の受光部b(1)、b(2)、b(3)、b(4)、b(5)で受光され、これらの受光部の検出像を{b(i)}(i=1,2,3,4,5)で表す。   Similarly, with respect to the light beam that has passed through the partial pupil A of the imaging optical system 3, the light that contributes to the image formed on the lens surfaces of the microlenses L1, L2, L3, L4, and L5 is received by each of the light receiving elements S1, S2, S3. , S4, S5 are received by the light receiving portions a (1), a (2), a (3), a (4), a (5), and the detection images of these light receiving portions are {a (i)} ( i = 1, 2, 3, 4, 5). Regarding the light beam that has passed through the partial pupil B of the imaging optical system 3, the light that contributes to the image formed on the lens surfaces of the microlenses L1, L2, L3, L4, and L5 is received by each of the light receiving elements S1, S2, S3, S4, The light receiving portions b (1), b (2), b (3), b (4), and b (5) in S5 receive the light, and the detected images of these light receiving portions are {b (i)} (i = 1). , 2, 3, 4, 5).

また、結像光学系3の部分瞳Dを通過した光束に関して、マイクロレンズL1、L2、L3、L4、L5のレンズ面にできた像に寄与する光は、各受光素子S1、S2、S3、S4、S5の受光部d(1)、d(2)、d(3)、d(4)、d(5)で受光され、これらの受光部の検出像を{d(i)}(i=1,2,3,4,5)で表す。結像光学系3の部分瞳Eを通過した光束に関して、マイクロレンズL1、L2、L3、L4、L5のレンズ面にできた像に寄与する光は、各受光素子S1、S2、S3、S4、S5の受光部e(1)、e(2)、e(3)、e(4)、e(5)で受光され、これらの受光部の検出像を{e(i)}(i=1,2,3,4,5)で表す。   Regarding the light beam that has passed through the partial pupil D of the imaging optical system 3, the light that contributes to the image formed on the lens surfaces of the microlenses L1, L2, L3, L4, and L5 is received by each of the light receiving elements S1, S2, S3, Light is received by the light receiving portions d (1), d (2), d (3), d (4), and d (5) in S4 and S5, and the detection images of these light receiving portions are {d (i)} (i = 1, 2, 3, 4, 5). Regarding the light beam that has passed through the partial pupil E of the imaging optical system 3, the light that contributes to the image formed on the lens surfaces of the microlenses L1, L2, L3, L4, and L5 is received by each of the light receiving elements S1, S2, S3, S4, The light receiving portions e (1), e (2), e (3), e (4), e (5) in S5 receive the light, and the detected images of these light receiving portions are {e (i)} (i = 1). , 2, 3, 4, 5).

今、図6(a)に示すように、物点Oからの光束のうち結像光学系3の各入射高の位置A、B、C、D、Eに入手した光線が、像面Iにおいて、それぞれa、b、c、d、eの位置に入射するものとする。各位置A、B、D、Eに入射する光線の像面Iにおける入射位置a、b、d、eの、近軸のCに入射する光線の像面Iの入射位置cに対する位置ズレ量Sac、Sbc、Sdc、Secが横収差である。そして、この位置ズレ量Sac、Sbc、Sdc、Secを求めるために、図4、図5に示すような像ズレ検出装置を用いる。   Now, as shown in FIG. 6A, the light rays obtained from the object point O at the incident height positions A, B, C, D and E of the imaging optical system 3 are reflected on the image plane I. , Respectively, are incident at positions a, b, c, d, and e. The amount of positional deviation Sac of the incident positions a, b, d, e on the image plane I of the light beam incident on each position A, B, D, E with respect to the incident position c on the image plane I of the light beam incident on the paraxial C. , Sbc, Sdc, and Sec are lateral aberrations. Then, in order to obtain the positional shift amounts Sac, Sbc, Sdc, and Sec, an image shift detection device as shown in FIGS. 4 and 5 is used.

次に、像{c(i)}を基準にした像{a(i)}のズレ量Sacを演算する。同様に、像{c(i)}を基準にした像{b(i)}のズレ量Sbc、像{d(i)}のズレ量Sdc、像{e(i)}のズレ量Secをそれぞれ演算する。   Next, a displacement amount Sac of the image {a (i)} with respect to the image {c (i)} is calculated. Similarly, the deviation amount Sbc of the image {b (i)} with reference to the image {c (i)}, the deviation amount Sdc of the image {d (i)}, and the deviation amount Sec of the image {e (i)} Calculate each.

このような2像のズレ量は、例えば次のようにして求める。ここでは、2像に関する信号列を{a(i)}、{b(i)}(i=1、2、・・)として説明する。まず、2像に関する信号列{a(i)}、{b(i)}の相関量C(N)を次式により算出する。
C(N)=Σ|a(i)−b(i)| ・・・(1)
(1)式において、Σはi=pL〜qLの総和演算を表し、N=i−jが2像に関する信号列のシフト量、すなわち2像の像ズレ量である。離散的に求められた相関量C(N)に基づいて、三点内挿の手法により連続的な相関量の最小値を与えるシフト量(像ズレ量)Lを求める。ここで、シフト量Nのときの相関量をC0とし、シフト量(N−1)のときの相関量をCrとし、シフト(N+1)のときの相関量をCfとすると、シフト量(像ズレ量)Lは(2)式により求められる。
DL=0.5・(Cr−Cf),
E=max{Cf−C0、Cr−C0},
L=N+DL/E ・・・(2)
Such a shift amount between the two images is obtained as follows, for example. Here, a description will be given assuming that the signal sequences related to the two images are {a (i)}, {b (i)} (i = 1, 2,...). First, the correlation amount C (N) of the signal sequences {a (i)} and {b (i)} regarding the two images is calculated by the following equation.
C (N) = Σ | a (i) −b (i) | (1)
In the equation (1), Σ represents a total operation of i = pL to qL, and N = i−j is a signal sequence shift amount for two images, that is, an image shift amount of the two images. Based on the discretely obtained correlation amount C (N), a shift amount (image shift amount) L that gives the minimum value of the continuous correlation amount is obtained by a three-point interpolation method. Here, assuming that the correlation amount at the shift amount N is C0, the correlation amount at the shift amount (N−1) is Cr, and the correlation amount at the shift (N + 1) is Cf, the shift amount (image shift). (Quantity) L is determined by equation (2).
DL = 0.5 · (Cr−Cf),
E = max {Cf-C0, Cr-C0},
L = N + DL / E (2)

このようにして算出された像ズレ量Sac、Sbc、Sdc、Secを並べれば、それぞれ部分瞳A、B、C、D、Eの中心を光線の入射高とする結像光学系3の横収差を表し、図6(b)に示すように部分瞳Cを基準にした場合の横収差図を描くことができる。なお、横収差図から縦収差図に書き直す方法は周知であり、説明を省略する。収差測定装置1のマイクロコンピューター(不図示)は、収差測定装置4により検出されたズレ量に基づいて結像光学系3の球面収差特性を演算する。   If the image shift amounts Sac, Sbc, Sdc, and Sec calculated in this way are arranged, the lateral aberration of the imaging optical system 3 in which the centers of the partial pupils A, B, C, D, and E are incident on the light rays, respectively. As shown in FIG. 6B, a lateral aberration diagram based on the partial pupil C can be drawn. Note that a method of rewriting from a lateral aberration diagram to a longitudinal aberration diagram is well known, and a description thereof will be omitted. A microcomputer (not shown) of the aberration measuring apparatus 1 calculates the spherical aberration characteristic of the imaging optical system 3 based on the amount of deviation detected by the aberration measuring apparatus 4.

このように、一実施の形態の収差測定装置4によれば、調整対象の結像光学系3の球面収差特性を簡便に測定することができ、しかも、収差測定装置4の受光素子アレイ42から出力される像信号をコンピューターを用いて演算処理するので、高速な測定が可能になる。   As described above, according to the aberration measuring apparatus 4 of the embodiment, the spherical aberration characteristic of the imaging optical system 3 to be adjusted can be easily measured, and the light receiving element array 42 of the aberration measuring apparatus 4 can be used. Since the output image signal is processed using a computer, high-speed measurement is possible.

なお、上述した実施例では結像光学系3の光軸上の部分瞳Cを基準にし、部分瞳Cと他の部分瞳A、B、D、Eとの間の像のズレ量Sac、Sbc、Sdc、Secを検出し、これらの像ズレ量に基づいて結像光学系3の球面収差を測定する例を示したが、隣接する部分瞳の間の像のズレ量が求められる部分瞳対の組み合わせにしたがって像ズレ量を求め、球面収差を測定してもよい。例えば図5に示す例では、部分瞳AとBの間の像ズレ量Sabと、部分瞳BとCの間の像ズレ量Sbcと、部分瞳CとDの間の像ズレ量Scdと、部分瞳DとEの間の像ズレ量Sdeとを求め、これらの像ズレ量に基づいて球面収差を測定してもよい。   In the above-described embodiment, the image shift amounts Sac, Sbc between the partial pupil C and the other partial pupils A, B, D, E with reference to the partial pupil C on the optical axis of the imaging optical system 3. , Sdc, and Sec are detected, and the spherical aberration of the imaging optical system 3 is measured based on these image shift amounts. However, the partial pupil pair in which the image shift amount between adjacent partial pupils is obtained. The amount of image shift may be obtained according to the combination of the above and spherical aberration may be measured. For example, in the example shown in FIG. 5, the image shift amount Sab between the partial pupils A and B, the image shift amount Sbc between the partial pupils B and C, the image shift amount Scd between the partial pupils C and D, The image deviation amount Sde between the partial pupils D and E may be obtained, and the spherical aberration may be measured based on these image deviation amounts.

上述した一実施の形態では、複数のマイクロレンズを一列に配列したマイクロレンズアレイと、複数の受光素子を一列に配列した受光素子アレイを用いた像ズレ検出装置4の実施例を示したが、図7に示すように、複数のマイクロレンズを二次元状に配列したマイクロレンズアレイと、複数の受光素子を二次元状に配列した受光素子アレイを用いて像ズレ量を検出するようにしてもよい。図7に示す変形例では、複数のマイクロレンズと複数の受光素子を偶数列と奇数列で互いに違いに並べ(偶数列と奇数列でマイクロレンズの横方向のピッチの半分だけずらして並べる)、二次元配列を形成している。この場合、チャート回転装置などにより図3(b)、(c)に示すようにチャートの方向を切り換えれば、結像光学系3の複数の方向における球面収差を測定することができる。   In the embodiment described above, an example of the image shift detection device 4 using a microlens array in which a plurality of microlenses are arranged in a row and a light receiving element array in which a plurality of light receiving elements are arranged in a row has been shown. As shown in FIG. 7, an image shift amount may be detected using a microlens array in which a plurality of microlenses are arranged in a two-dimensional manner and a light receiving element array in which a plurality of light receiving elements are arranged in a two-dimensional manner. Good. In the modification shown in FIG. 7, a plurality of microlenses and a plurality of light receiving elements are arranged differently in even columns and odd columns (arranged by shifting half the pitch in the horizontal direction of the microlenses in even columns and odd columns), A two-dimensional array is formed. In this case, spherical aberration in a plurality of directions of the imaging optical system 3 can be measured by switching the chart direction as shown in FIGS. 3B and 3C using a chart rotating device or the like.

また、図8に示すように、偶数列の受光素子列51で求めた像ズレ量と、これと同一の瞳対に関して奇数列の受光素子列52で求めた像ズレ量とを平均し、瞳対を変えながらそれぞれの瞳対に対する平均ズレ量を求めて球面収差を測定することによって、さらに収差の測定精度を向上させることができる。さらに、図9に示すように、偶数行の受光素子行53で求めた像ズレ量と、これと同一の瞳対に関して奇数行の受光素子列54で求めた像ズレ量とを平均し、瞳対を変えながらそれぞれの瞳対に対する平均ズレ量を求めて球面収差を測定することによって、縦方向(図8の検出方向から90度回転させた方向)においてさらに収差の測定精度を向上させることができる。   Further, as shown in FIG. 8, the image shift amount obtained by the even-numbered light receiving element rows 51 and the image shift amount obtained by the odd-numbered light receiving element rows 52 with respect to the same pupil pair are averaged, and the pupil The aberration measurement accuracy can be further improved by measuring the spherical aberration by obtaining the average deviation amount for each pupil pair while changing the pair. Further, as shown in FIG. 9, the image shift amount obtained from the even-numbered light receiving element rows 53 and the image shift amount obtained from the odd-numbered light receiving element columns 54 with respect to the same pupil pair are averaged. By measuring the spherical aberration by obtaining the average deviation amount for each pupil pair while changing the pair, the aberration measurement accuracy can be further improved in the vertical direction (direction rotated by 90 degrees from the detection direction in FIG. 8). it can.

さらに、図10に示すように、赤R、緑G、青Bなどの特定波長の光源を有する照明装置21によりチャート面を照明すれば、特定波長における結像光学系3の球面収差特性を測定することができる。さらに、ディスプレイ上にチャートを表示し、これを回転させたり、色を変えたりすれば、簡易的にチャートを表示することができる。   Furthermore, as shown in FIG. 10, if the chart surface is illuminated by an illumination device 21 having a light source of a specific wavelength such as red R, green G, and blue B, the spherical aberration characteristic of the imaging optical system 3 at the specific wavelength is measured. can do. Furthermore, if the chart is displayed on the display and rotated or the color is changed, the chart can be displayed simply.

ここで、マイクロレンズアレイと受光素子アレイを用いて結像光学系の特性を測定する方法として、結像光学系の瞳面の波面収差を測定する方法が知られている。これは、結像光学系の瞳面の波面収差を測定するために、瞳面近傍もしくはこれと等価な位置に二次元マイクロレンズアレイを配置するとともに、その背後に二次元受光素子アレイを配置し、二次元受光素子アレイ上の点像の位置から各マイクロレンズに入射する光線の方向を検出し、これにより瞳面における波面を検出するものである。この方法は瞳面における波面を検出する方式である。   Here, as a method of measuring the characteristics of the imaging optical system using the microlens array and the light receiving element array, a method of measuring the wavefront aberration of the pupil plane of the imaging optical system is known. In order to measure the wavefront aberration of the pupil plane of the imaging optical system, a two-dimensional microlens array is placed near or equivalent to the pupil plane, and a two-dimensional light receiving element array is placed behind it. The direction of the light ray incident on each microlens is detected from the position of the point image on the two-dimensional light receiving element array, thereby detecting the wavefront on the pupil plane. This method is a method of detecting a wavefront on the pupil plane.

これに対し本願発明に関わる収差測定方法は、結像面近傍に配置されたマイクロレンズアレイと受光素子アレイを用いて像のズレ量を検出し、像ズレ量に基づいて結像光学系の収差を測定するものであり、波面を測定する上記従来のものとはまったく異なるものである。   On the other hand, the aberration measurement method according to the present invention detects an image shift amount using a microlens array and a light receiving element array arranged in the vicinity of the image forming surface, and the aberration of the image forming optical system based on the image shift amount. And is completely different from the above-described conventional method for measuring the wavefront.

また、従来から、結像光学系の球面収差を測定する方法が知られており、図11を参照してこの測定方法を説明する。入射高hで結像光学系100に入射する光線101が、結像光学系100の焦点面近傍において光軸102に垂直な第1面103に入射してできる第1点像104と、第1面から少し離れた光軸102に垂直な第2面105に入射してできる第2点像106とを求め、第1点像104の重心と第2点像106の重心とを結ぶ直線が光軸と交わる位置z(h)を求め、光線の入射高hを順次変更して位置z(h)を求め、入射高hに対する位置z(h)をプロットして結像光学系の球面収差を測定する。   Conventionally, a method for measuring the spherical aberration of the imaging optical system is known, and this measurement method will be described with reference to FIG. A first point image 104 formed by a light beam 101 incident on the imaging optical system 100 at an incident height h being incident on a first surface 103 perpendicular to the optical axis 102 in the vicinity of the focal plane of the imaging optical system 100; A second point image 106 formed by being incident on the second surface 105 perpendicular to the optical axis 102 slightly away from the surface is obtained, and a straight line connecting the centroid of the first point image 104 and the centroid of the second point image 106 is the light. The position z (h) intersecting the axis is obtained, the incident height h of the light beam is sequentially changed to obtain the position z (h), and the position z (h) with respect to the incident height h is plotted to obtain the spherical aberration of the imaging optical system. taking measurement.

しかしながら、上述した従来の収差測定方法はすべて手作業で行わなければならず、非常に煩雑で工数がかかるという問題がある。これに対し上述した一実施の形態の収差測定方法によれば、簡便かつ短時間で光学系の球面収差を測定することができる。   However, all of the conventional aberration measuring methods described above must be performed manually, and there is a problem that it is very complicated and requires a lot of man-hours. On the other hand, according to the aberration measurement method of the embodiment described above, the spherical aberration of the optical system can be measured easily and in a short time.

収差測定装置4により結像光学系3の横収差を測定した後、調整信号作成装置5により複数の像ズレ量から収差の対称性に関する物理量を計算し、この収差対称性に関する物理量に基づいて結像光学系3の第2光学ブロック3b(図1参照)を調整するための調整信号を作成する。   After measuring the lateral aberration of the imaging optical system 3 by the aberration measuring device 4, the adjustment signal generating device 5 calculates a physical quantity related to the symmetry of the aberration from a plurality of image shift amounts, and the result is based on the physical quantity related to the aberration symmetry. An adjustment signal for adjusting the second optical block 3b (see FIG. 1) of the image optical system 3 is created.

図12および図13は収差測定装置4から得られた収差特性f(x)の一例を示し、横軸xは像高を、縦軸yが像ズレ量を表す。図12に示すように、収差特性f(x)が原点(図2に示す像ズレ検出面と結像光学系3の光軸との交点)に関して点対称である場合は、収差は光軸に関して対象であり、これ以上の調整は不要である。一方、図13に示すように、収差特性f(x)が原点に関して点対称でない場合には、収差は光軸に関して対象ではない。したがって、結像光学系3の調整対象の第2光学ブロック3bの位置を調整し、収差特性が図12に示す特性になるようにしなければならない。以下に、いくつかの調整方法を説明する。   12 and 13 show an example of the aberration characteristic f (x) obtained from the aberration measuring device 4, the horizontal axis x represents the image height, and the vertical axis y represents the image shift amount. As shown in FIG. 12, when the aberration characteristic f (x) is point-symmetric with respect to the origin (the intersection of the image shift detection surface shown in FIG. 2 and the optical axis of the imaging optical system 3), the aberration is related to the optical axis. No further adjustment is required. On the other hand, as shown in FIG. 13, when the aberration characteristic f (x) is not point-symmetric with respect to the origin, the aberration is not a target with respect to the optical axis. Therefore, it is necessary to adjust the position of the second optical block 3b to be adjusted in the imaging optical system 3 so that the aberration characteristic becomes the characteristic shown in FIG. Several adjustment methods will be described below.

《第1の調整方法》
まず、収差測定装置4から得られた収差特性f(x)を像高xの“べき乗”に展開した係数を求める。f(0)=0の条件で収差特性f(x)を表現しているとすると、収差特性f(x)は次のように表される。
f(x)=a1・x+a2・x+a3・x+a4・x+a5・x+・・・ ・・・(3)
(3)式において、xの1次の項はデフォーカス量に関する量を表すので無視する。xの1次項以外の奇数次の項は原点に関して点対称な成分を表すので、光軸に関する収差対称性については問題ない。
<First adjustment method>
First, a coefficient obtained by expanding the aberration characteristic f (x) obtained from the aberration measuring device 4 to “power” of the image height x is obtained. Assuming that the aberration characteristic f (x) is expressed under the condition of f (0) = 0, the aberration characteristic f (x) is expressed as follows.
f (x) = a1 · x + a2 · x 2 + a3 · x 3 + a4 · x 4 + a5 · x 5 + (3)
In equation (3), the first-order term of x represents the amount related to the defocus amount and is ignored. Since odd-order terms other than the first-order term of x represent components that are point-symmetric with respect to the origin, there is no problem with aberration symmetry with respect to the optical axis.

結像光学系3に偏芯があるとxの偶数次の項の係数a2、a4、・・が0にならない。この第1の調整方法において、収差特性に関する物理量とは、収差特性f(x)を像高xのべき乗に展開したときのxの偶数次の項の係数a2、a4、・・、あるいはこれらの係数の線形結合である。   If the imaging optical system 3 is decentered, the coefficients a2, a4,. In the first adjustment method, the physical quantity relating to the aberration characteristic is the coefficient a2, a4,... Of these even-order terms of x when the aberration characteristic f (x) is developed to the power of the image height x, or these It is a linear combination of coefficients.

調整信号作成装置5は、像高xの偶数次の項の係数a2、a4、・・が0になる調整信号、換言すれば収差特性f(x)を図12に示すような原点に関して点対称にするための調整信号、つまり収差特性f(x)を光軸に関して対象とするための調整信号を生成し、位置調整装置6へ送る。位置調整装置6は、この調整信号にしたがって結像光学系3の第2光学ブロック3bの位置を調整する。収差測定装置4は位置調整装置6による調整後の収差を測定して収差特性f(x)を出力し、調整信号作成装置5は新しい収差特性f(x)に基づいて調整信号を生成する。つまり、結像光学系3の収差特性f(x)が図12に示す理想的な特性になるようにフィードバック制御を行う。   The adjustment signal generating device 5 is point-symmetric with respect to the origin of the adjustment signal in which the coefficients a2, a4,... An adjustment signal for adjusting the aberration characteristic f (x) with respect to the optical axis is generated and sent to the position adjustment device 6. The position adjusting device 6 adjusts the position of the second optical block 3b of the imaging optical system 3 according to this adjustment signal. The aberration measuring device 4 measures the aberration after adjustment by the position adjusting device 6 and outputs the aberration characteristic f (x), and the adjustment signal generating device 5 generates an adjustment signal based on the new aberration characteristic f (x). That is, feedback control is performed so that the aberration characteristic f (x) of the imaging optical system 3 becomes an ideal characteristic shown in FIG.

なお、計算もしくは実験により上述した収差対称性に関する物理量を調整量に変換する変換テーブルを予め作成しておき、この変換テーブルを用いて調整量を決定すれば、効率的な調整が可能である。   It should be noted that efficient adjustment is possible if a conversion table for converting the physical quantity relating to the above-mentioned aberration symmetry into an adjustment amount is created in advance by calculation or experiment, and the adjustment amount is determined using this conversion table.

《第2の調整方法》
この第2の調整方法では、調整信号作成装置5が、図14に示すような収差特性に対する調整量を表すテーブルを予め内蔵メモリ(不図示)に記憶しており、このテーブルデータから収差測定装置4により測定された収差特性に近い収差特性を検索し、検索結果の収差特性に対応する調整量にしたがって位置調整装置6により調整を行う。
<< Second adjustment method >>
In this second adjustment method, the adjustment signal generating device 5 stores in advance a table representing the adjustment amount for the aberration characteristics as shown in FIG. 14 in a built-in memory (not shown), and from this table data, the aberration measuring device. An aberration characteristic close to the aberration characteristic measured by 4 is searched, and the position adjustment device 6 performs adjustment according to the adjustment amount corresponding to the aberration characteristic of the search result.

完全に調整された結像光学系の収差特性をg5(x)として記録し、この収差特性g5(x)の場合の調整量をd5=0として記録する。この状態から調整量d6=Δだけ位置調整したときに測定された収差特性をg6(x)とし、収差特性g6(x)と調整量d6を対応づけて記録する。同様に、調整量をd7=2Δとしたときに測定された収差特性をg7(x)として記録し、調整量をd8=3Δとしたときに測定された収差特性をg8(x)として記録する。また、調整量をd4=−Δとしたときに測定された収差特性をg4(x)として記録し、調整量をd5=−2Δとしたときに測定された収差特性をg5(x)として記録し、調整量をd6=−3Δとしたときに測定された収差特性をg6(x)として記録する。このようにして図14に示す収差特性と調整量のテーブルを作成し、調整信号生成装置5の内蔵メモリに記憶する。   The aberration characteristic of the completely adjusted imaging optical system is recorded as g5 (x), and the adjustment amount in the case of this aberration characteristic g5 (x) is recorded as d5 = 0. From this state, the aberration characteristic measured when the position is adjusted by the adjustment amount d6 = Δ is g6 (x), and the aberration characteristic g6 (x) and the adjustment amount d6 are recorded in association with each other. Similarly, the aberration characteristic measured when the adjustment amount is d7 = 2Δ is recorded as g7 (x), and the aberration characteristic measured when the adjustment amount is d8 = 3Δ is recorded as g8 (x). . The aberration characteristic measured when the adjustment amount is d4 = −Δ is recorded as g4 (x), and the aberration characteristic measured when the adjustment amount is d5 = −2Δ is recorded as g5 (x). Then, the aberration characteristic measured when the adjustment amount is d6 = −3Δ is recorded as g6 (x). In this way, a table of aberration characteristics and adjustment amounts shown in FIG. 14 is created and stored in the built-in memory of the adjustment signal generator 5.

収差測定装置4により調整対象の結像光学系3の収差特性f(x)が測定されたら、テーブルデータの収差特性gi(i=1、2、・・)と測定した収差特性f(x)との差Ciを演算する。
Ci=Σ|gi(x)−f(x)| ・・・(4)
(4)式において、xは結像光学系の光軸中心からの入射光の光線の入射高(像高)であり、x=1,2,3,・・・である。Σはxの離散的な値に関する和を表す。データテーブル上のすべての収差特性giに対して(4)式により差Ciを演算し、最小値を示す差Ciに対応する調整量diを採用する。位置調整装置6は、採用された調整量diだけ結像光学系3の第2光学ブロック3bの位置を調整する。
When the aberration measuring device 4 measures the aberration characteristic f (x) of the imaging optical system 3 to be adjusted, the measured aberration characteristic g (i = 1, 2,...) And the measured aberration characteristic f (x). The difference Ci is calculated.
Ci = Σ | gi (x) −f (x) | (4)
In the equation (4), x is the incident height (image height) of incident light from the center of the optical axis of the imaging optical system, and x = 1, 2, 3,. Σ represents the sum of discrete values of x. The difference Ci is calculated by the equation (4) for all aberration characteristics gi on the data table, and the adjustment amount di corresponding to the difference Ci indicating the minimum value is adopted. The position adjusting device 6 adjusts the position of the second optical block 3b of the imaging optical system 3 by the adopted adjustment amount di.

なお、補間により真の最小値を示す収差特性giと調整量diを演算してもよい。また、(4)式においてデフォーカス量が同じ条件で横収差を比較する必要があるので、測定した収差特性f(x)を上記(3)式に展開した場合の1次の項の係数a1と、テーブルデータgi(x)を次式のようにべき乗に展開した場合の1次の項の係数b1とが同じになるように、収差特性の検出位置をそろえる必要がある。
gi(x)=b1・x+b2・x+b3・x+b4・x+・・・ ・・・(5)
これには色々な方法が考えられるが、(5)式の1次項の係数b1が(3)式の1次項の係数a1に等しくなる位置に収差検出面を調整し、a1をb1に置換して比較すればよい。
The aberration characteristic gi indicating the true minimum value and the adjustment amount di may be calculated by interpolation. Further, since it is necessary to compare the lateral aberration under the same defocus amount in the equation (4), the coefficient a1 of the first-order term when the measured aberration characteristic f (x) is expanded to the above equation (3). Thus, it is necessary to align the detection positions of the aberration characteristics so that the coefficient b1 of the first-order term when the table data gi (x) is expanded to the power as in the following equation is the same.
gi (x) = b1 · x + b2 · x 2 + b3 · x 3 + b4 · x 4 + ··· ··· (5)
Various methods can be considered for this, but the aberration detection surface is adjusted to a position where the coefficient b1 of the first-order term in equation (5) is equal to the coefficient a1 of the first-order term in equation (3), and a1 is replaced with b1. Compare.

なお、上述した実施の形態とそれらの変形例において、実施の形態どうし、または実施の形態と変形例とのあらゆる組み合わせが可能である。例えば図7〜図9により説明したように、結像光学系の球面収差を複数の方向において測定し、それらの方向ごとに光学調整を行うようにしてもよい。   In the above-described embodiments and their modifications, all combinations of the embodiments or the embodiments and the modifications are possible. For example, as described with reference to FIGS. 7 to 9, the spherical aberration of the imaging optical system may be measured in a plurality of directions, and optical adjustment may be performed in each of these directions.

上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、(1)短時間で正確に結像光学系を調整することができる。また、(2)正確な調整量を決定することができる。さらに、(3)簡易的に短時間で光学調整を行うことができる。   According to the above-described embodiment and its modifications, the following operational effects can be achieved. First, (1) the imaging optical system can be accurately adjusted in a short time. Also, (2) an accurate adjustment amount can be determined. Furthermore, (3) optical adjustment can be performed easily in a short time.

一実施の形態の収差測定装置の構成を示す1 shows a configuration of an aberration measurement apparatus according to an embodiment. 収差の測定原理を説明するための図Diagram for explaining the measurement principle of aberration チャート例を示す図Diagram showing example chart 収差測定装置の構成を示す図Diagram showing the configuration of the aberration measurement device 像ズレ量の検出方法を説明するための図The figure for demonstrating the detection method of the amount of image shifts 横収差の測定結果を示す図Diagram showing measurement results of lateral aberration 複数のマイクロレンズと受光素子を二次元状に配列した像ズレ検出装置を示す図The figure which shows the image shift detection apparatus which arranged the several micro lens and the light receiving element in the two-dimensional form マイクロレンズと受光素子を二次元配列した像ズレ検出装置による変形例の像ズレ検出方法を説明するための図The figure for demonstrating the image shift detection method of the modification by the image shift detection apparatus which arranged the micro lens and the light receiving element two-dimensionally マイクロレンズと受光素子を二次元配列した像ズレ検出装置による他の変形例の像ズレ検出方法を説明するための図The figure for demonstrating the image shift detection method of the other modification by the image shift detection apparatus which arranged the micro lens and the light receiving element two-dimensionally チャート像表示装置の変形例を示す図The figure which shows the modification of a chart image display apparatus 従来の光学系の球面収差測定方法を説明するための図The figure for demonstrating the spherical aberration measuring method of the conventional optical system 光軸に関して対象な収差特性の例を示す図The figure which shows the example of the target aberration characteristic regarding the optical axis 光軸に関して対象でない収差特性の例を示す図The figure which shows the example of the aberration characteristic which is not object regarding the optical axis 収差特性に対する調整量のテーブルを示す図The figure which shows the table of the adjustment amount with respect to an aberration characteristic

符号の説明Explanation of symbols

1;結像光学系調整装置、2;チャート像表示装置、3;結像光学系、3a;第1光学ブロック、3b;第2光学ブロック、4;収差測定装置、5;調整信号作成装置、6;位置調整装置、41;マイクロレンズアレイ、42;受光素子アレイ DESCRIPTION OF SYMBOLS 1; Imaging optical system adjustment apparatus, 2; Chart image display apparatus, 3; Imaging optical system, 3a; 1st optical block, 3b; 2nd optical block, 4; Aberration measuring apparatus, 5; 6; Position adjusting device, 41; Micro lens array, 42; Light receiving element array

Claims (10)

光学系の3つ以上の入射高のうちの2つの入射高を第1の入射高対とし、該第1の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第1の出力対のずれ量を第1のずれ量として求め、
前記光学系の3つ以上の入射高のうち前記第1の入射高対とは異なる第2の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第2の出力対のずれ量を第2のずれ量として求め、
前記第1および第2のずれ量に基づいて前記光学系の位置を調整することを特徴とする光学系調整方法。
Two incident heights out of three or more incident heights of the optical system are defined as a first incident height pair, and each of a pair of light beams incident from the first incident height pair is received by the image plane of the optical system. The amount of deviation of the first output pair obtained as described above is obtained as the first amount of deviation,
A pair of light beams incident from a second incident height pair different from the first incident height pair out of three or more incident heights of the optical system are received by the image plane of the optical system. The amount of deviation of the output pair of 2 is obtained as the second amount of deviation,
An optical system adjustment method comprising adjusting the position of the optical system based on the first and second shift amounts.
請求項1に記載の光学系調整方法において、
前記第1の入射高対は、前記光学系の第1の入射高と該第1の入射高とは異なる第2の入射高との対であり、前記2つの入射高対は、前記第1および第2の入射高とは異なる第3の入射高と前記第2の入射高との対であることを特徴とする光学系調整方法。
The optical system adjustment method according to claim 1,
The first incident height pair is a pair of a first incident height of the optical system and a second incident height different from the first incident height, and the two incident height pairs are the first incident height pair. And a pair of a third incident height different from the second incident height and the second incident height.
請求項2に記載の光学系調整方法において、
前記第2の入射高は、前記光学系の光軸に対応する入射高であることを特徴とする光学系調整方法。
In the optical system adjustment method according to claim 2,
The optical system adjustment method, wherein the second incident height is an incident height corresponding to an optical axis of the optical system.
請求項2または請求項3に記載の光学系調整方法において、
前記第1および第3の入射高に対する前記第1および第2のずれ量を表示し、前記表示に基づいて前記光学系の位置を調整することを特徴とする光学系調整方法。
In the optical system adjustment method according to claim 2 or 3,
An optical system adjustment method comprising: displaying the first and second shift amounts with respect to the first and third incident heights; and adjusting the position of the optical system based on the display.
請求項1〜4のいずれか一項に記載の光学系調整方法において、
前記第1および第2のずれ量に基づいて前記光学系の位置の調整量を求めることを特徴とする光学系調整方法。
In the optical system adjustment method according to any one of claims 1 to 4,
An optical system adjustment method, wherein an adjustment amount of the position of the optical system is obtained based on the first and second deviation amounts.
請求項5に記載の光学系調整方法において、
前記第1および第2のずれ量を、前記光学系の入射高を変数とする該変数のべき乗を含む関数として求め、
前記関数の偶数次の項の係数に基づいて前記調整量を求めることを特徴とする光学系調整方法。
In the optical system adjustment method according to claim 5,
The first and second shift amounts are obtained as a function including a power of the variable with the incident height of the optical system as a variable,
An optical system adjustment method, wherein the adjustment amount is obtained based on a coefficient of an even-order term of the function.
請求項3に記載の光学系調整方法において、
前記第1および第2のずれ量に対する前記調整量の関係を予め記憶し、
前記関係に基づいて前記調整量を求めることを特徴とする光学系調整方法。
In the optical system adjustment method according to claim 3,
Storing in advance the relationship of the adjustment amount with respect to the first and second deviation amounts;
An optical system adjustment method, wherein the adjustment amount is obtained based on the relationship.
請求項1〜7のいずれか一項に記載の光学系調整方法において、
複数波長の前記光線のそれぞれについて前記第1および第2のずれ量を求めることを特徴とする光学系調整方法。
In the optical system adjustment method according to any one of claims 1 to 7,
An optical system adjustment method, wherein the first and second shift amounts are obtained for each of the light beams having a plurality of wavelengths.
光学系の3つ以上の入射高のうちの2つの入射高を第1の入射高対とし、該第1の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第1の出力対のずれを第1のずれ量として測定するとともに、前記光学系の3つ以上の入射高のうち前記第1の入射高対とは異なる第2の入射高対から入射する一対の光線のそれぞれを前記光学系の像面で受光して得られる第2の出力対のずれを第2のずれ量として測定する測定手段と、
前記測定手段による前記第1および第2のずれ量に基づいて前記光学系の位置を調整する調整手段とを備えたことを特徴とする光学系調整装置。
Two incident heights out of three or more incident heights of the optical system are defined as a first incident height pair, and each of a pair of light beams incident from the first incident height pair is received by the image plane of the optical system. The first output pair shift obtained in this way is measured as the first shift amount, and the second incident height pair different from the first incident height pair among the three or more incident heights of the optical system is measured. Measuring means for measuring a deviation of a second output pair obtained by receiving each of a pair of incident light beams on the image plane of the optical system as a second deviation amount;
An optical system adjustment apparatus comprising: an adjustment unit that adjusts a position of the optical system based on the first and second shift amounts by the measurement unit.
第1および第2のマイクロレンズを配列したマイクロレンズアレイと、
前記第1および第2のマイクロレンズのそれぞれに対して少なくとも3つの受光素子を設けて光束を受光する受光素子アレイと、
前記第1のマイクロレンズに対応する前記少なくとも3つの受光素子のうち互いに異なる第1および第2の受光素子を選択するとともに、前記第2のマイクロレンズに対応する前記少なくとも3つの受光素子のうち前記第1および第2の受光素子に対応する第3および第4の受光素子を選択する選択手段と、
光学系からの光束を前記第1の受光素子で受光して得られる出力と、前記光束を前記第3の受光素子で受光して得られる出力とに基づいて第1信号列とするとともに、前記光束を前記第2の受光素子で受光して得られる出力と、前記光束を前記第4の受光素子で受光して得られる出力とに基づいて第2信号列とし、前記第1信号列と前記第2信号列とのずれ量を測定する測定手段と、
前記選択手段が選択する受光素子対を変更することにより、前記測定手段によって複数の前記ずれ量を求める制御手段と、
前記複数のずれ量に基づいて前記光学系の位置を調整する調整手段とを備えたことを特徴とする光学系調整装置。
A microlens array in which first and second microlenses are arranged;
A light receiving element array that receives at least three light receiving elements for each of the first and second microlenses to receive a light beam;
The first and second light receiving elements different from each other among the at least three light receiving elements corresponding to the first microlens are selected, and the at least three light receiving elements corresponding to the second microlens are selected. Selection means for selecting third and fourth light receiving elements corresponding to the first and second light receiving elements;
Based on the output obtained by receiving the light beam from the optical system with the first light receiving element and the output obtained by receiving the light beam with the third light receiving element, the first signal sequence is obtained. Based on the output obtained by receiving the light beam by the second light receiving element and the output obtained by receiving the light beam by the fourth light receiving element, a second signal sequence is obtained, and the first signal sequence and the Measuring means for measuring a deviation amount from the second signal sequence;
Control means for obtaining a plurality of deviation amounts by the measuring means by changing a light receiving element pair selected by the selecting means;
An optical system adjustment apparatus comprising: an adjustment unit that adjusts a position of the optical system based on the plurality of deviation amounts.
JP2008253583A 2008-09-30 2008-09-30 Method and device for adjusting optical system Pending JP2010085628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008253583A JP2010085628A (en) 2008-09-30 2008-09-30 Method and device for adjusting optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008253583A JP2010085628A (en) 2008-09-30 2008-09-30 Method and device for adjusting optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014040307A Division JP2014149535A (en) 2014-03-03 2014-03-03 Method and device for adjusting optical system

Publications (1)

Publication Number Publication Date
JP2010085628A true JP2010085628A (en) 2010-04-15

Family

ID=42249654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008253583A Pending JP2010085628A (en) 2008-09-30 2008-09-30 Method and device for adjusting optical system

Country Status (1)

Country Link
JP (1) JP2010085628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149535A (en) * 2014-03-03 2014-08-21 Nikon Corp Method and device for adjusting optical system
JP2017138624A (en) * 2017-05-02 2017-08-10 株式会社ニコン Imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271636A (en) * 1985-05-28 1986-12-01 Sony Corp Optical disc
JPH0949781A (en) * 1995-08-08 1997-02-18 Nikon Corp Inspecting device for optical system and projection exposure apparatus with the inspecting device
JPH09189849A (en) * 1996-01-09 1997-07-22 Olympus Optical Co Ltd Focus detection device for microscope
JP2003241282A (en) * 2002-02-18 2003-08-27 Minolta Co Ltd Camera system and photographic lens
JP2007184911A (en) * 2005-12-06 2007-07-19 Matsushita Electric Ind Co Ltd Digital camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271636A (en) * 1985-05-28 1986-12-01 Sony Corp Optical disc
JPH0949781A (en) * 1995-08-08 1997-02-18 Nikon Corp Inspecting device for optical system and projection exposure apparatus with the inspecting device
JPH09189849A (en) * 1996-01-09 1997-07-22 Olympus Optical Co Ltd Focus detection device for microscope
JP2003241282A (en) * 2002-02-18 2003-08-27 Minolta Co Ltd Camera system and photographic lens
JP2007184911A (en) * 2005-12-06 2007-07-19 Matsushita Electric Ind Co Ltd Digital camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149535A (en) * 2014-03-03 2014-08-21 Nikon Corp Method and device for adjusting optical system
JP2017138624A (en) * 2017-05-02 2017-08-10 株式会社ニコン Imaging device

Similar Documents

Publication Publication Date Title
US11950981B2 (en) Scanning system and calibration thereof
JP5159986B2 (en) Imaging apparatus and imaging method
US8783871B2 (en) Near eye tool for refractive assessment
JP5139832B2 (en) Observation device
CN110044498B (en) Hartmann wavefront sensor mode wavefront restoration method based on deep learning
JP2008180722A (en) Apparatus for mapping optical elements
JP2011237215A (en) Depth map output device
SA521430479B1 (en) Apparatus and method of providing parameter estimation
JP2008249909A (en) Imaging apparatus and optical system
CN108885089A (en) Focusing system for telecentric optics measurement machine
JP5391384B2 (en) Optical performance evaluation method for eyeglass lenses
CN102928196A (en) Detection method and device for free-form surface lens
JP2010085628A (en) Method and device for adjusting optical system
JP2005337978A (en) Display method for eccentricity measured result
Young et al. Compact, modular and in-plane AOSLO for high-resolution retinal imaging
Delley et al. Fast full-field modulation transfer function analysis for photographic lens quality assessment
JP2014149535A (en) Method and device for adjusting optical system
JP5544765B2 (en) Wavefront shape measuring apparatus and wavefront shape measuring method
JP2009151154A (en) Photodetector, focus detector and imaging apparatus
JP5412767B2 (en) Deviation measuring apparatus and deviation measuring method
JP2012018006A (en) Optical detector
JP2015031754A (en) Imaging device and control method for the same, information processing device and control method for the same, and system
Leppinen Advanced Optical Referencing for Waveguide Measurement System
Pathak Simultaneous realisation of zonal and modal wavefront sensing using programmable multiplexed grating patterns
JP2009288076A (en) Aberration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203