JP2010082031A - X-ray ct image reconstruction method using energy information - Google Patents

X-ray ct image reconstruction method using energy information Download PDF

Info

Publication number
JP2010082031A
JP2010082031A JP2008252139A JP2008252139A JP2010082031A JP 2010082031 A JP2010082031 A JP 2010082031A JP 2008252139 A JP2008252139 A JP 2008252139A JP 2008252139 A JP2008252139 A JP 2008252139A JP 2010082031 A JP2010082031 A JP 2010082031A
Authority
JP
Japan
Prior art keywords
ray
image reconstruction
attenuation coefficient
image
weighted averaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252139A
Other languages
Japanese (ja)
Other versions
JP5049937B2 (en
Inventor
Kazuma Yokoi
一磨 横井
Kensuke Amamiya
健介 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008252139A priority Critical patent/JP5049937B2/en
Publication of JP2010082031A publication Critical patent/JP2010082031A/en
Application granted granted Critical
Publication of JP5049937B2 publication Critical patent/JP5049937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that when merely obtaining an image by using only energy of a small range close to monochrome, influence of beam hardening can be removed but count is reduced in a narrow window and a statistics error is increased and the removal cannot be attained by a present X-ray tube performance and data of each window has to be added (averaged) in some form, and that even when performing weighed averaging at the time of counting, remarkable control of the beam hardening is followed by side reaction of raising a weighing function of only a narrow energy portion, that is, increasing the influence of statistics noise. <P>SOLUTION: An image reconstruction method for an X-ray CT device subjects a count measured values obtained in a plurality of energy windows to transformation to the line integral of an X-ray linear attenuation coefficient and thereafter to weighed averaging. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、X線CT撮像装置、特に光子エネルギー情報取得を行うスペクトル測定型X線CT撮像装置に関する。   The present invention relates to an X-ray CT imaging apparatus, and more particularly to a spectrum measurement type X-ray CT imaging apparatus that acquires photon energy information.

特許文献1では、ビームハードニング現象に因るアーチファクトや軟部組織のコントラスト分解能の低下を防止した状態で、従来の積分モードにおいて得られていたものと同等の、透過放射線に拠る画像を提供するために、複数のエネルギー領域それぞれの計数データにエネルギー領域別に与えられた重み係数の重み付けを施し、重み付けされた収集画素毎の複数のエネルギー領域それぞれの計数データを互いに加算して収集画素毎の放射線画像生成用データとして出力している。   In Patent Document 1, in order to provide an image based on transmitted radiation equivalent to that obtained in the conventional integration mode in a state in which artifacts due to the beam hardening phenomenon and a decrease in contrast resolution of soft tissue are prevented. In addition, the count data of each of the plurality of energy regions is weighted by a weighting factor given for each energy region, and the count data of each of the plurality of energy regions for each weighted collection pixel is added to each other to obtain a radiation image for each collection pixel Output as data for generation.

特開2006−101926号公報JP 2006-101926 A

カウントをエネルギーごとに得るまではスペクトル測定の一般的な処理であり、その後にカウント値の任意の重み付け平均(加算)処理を行うことが特徴的である。単に単色に近い狭い範囲のエネルギーだけ用いて画像を得てもビームハードニングの影響を除去できるが、これは狭いウィンドウではカウントが減り、統計誤差が大きくなるため現状のX線管性能では実現できず、ウィンドウごとのデータを何らかの形で加算(平均化)する必要がある。   The process is a general process of spectrum measurement until a count is obtained for each energy, and thereafter, an arbitrary weighted average (addition) process is performed on the count value. The effect of beam hardening can be eliminated even if an image is obtained using only a narrow range of energy close to a single color, but this is not possible with the current X-ray tube performance because the count is reduced in a narrow window and the statistical error is increased. However, it is necessary to add (average) the data for each window in some form.

しかし、カウントの時点で重み付け平均を行っても、ビームハードニングを顕著に抑制するためには狭いエネルギー部分のみの重み付け関数を高くする、すなわち統計ノイズの影響を大きくする副作用が伴う。   However, even if weighted averaging is performed at the time of counting, there is a side effect of increasing the weighting function only for a narrow energy portion, that is, increasing the influence of statistical noise, in order to significantly suppress beam hardening.

複数のエネルギーウィンドウで得られたカウント計測値に対し、X線線減弱係数の線積分に変換した後に、重み付け平均化を行うことを特徴とするX線CT装置の画像再構成手法。   An image reconstruction method for an X-ray CT apparatus, characterized in that weighted averaging is performed after the count measurement values obtained in a plurality of energy windows are converted into a line integral of an X-ray attenuation coefficient.

ビームハードニングアーチファクトのない、または顕著に抑制された、統計ノイズが従来程度に抑えられた良好な再構成画像を得ることができる。   It is possible to obtain a good reconstructed image that is free from beam hardening artifacts or is significantly suppressed and statistical noise is suppressed to a conventional level.

以下、図面を用いて各実施例を説明する。   Embodiments will be described below with reference to the drawings.

図1にX線CT装置概略を示す。X線CT装置1はガントリ2,X線を放射する放射線源であるX線管3,放射線を検出する検出器パネル4,被験者が寝るベッド6,X線CT装置を現場で操作する操作パネル7,検出器からの検出信号に基づいて画像を生成する画像処理計算装置8,画像処理計算装置へ指令を入力する入力・操作装置9,画像処理計算装置で生成した画像を表示する表示装置10を持つ。検出器パネル4は内部にX線のエネルギー情報を電気信号に変換する複数の検出素子を持ち、検出素子は後段にパルスモード計測回路を持つ。X線管3と検出器パネル4は被験者20を挟んで対向に配置し、ガントリの回転駆動部により被験者20の周りを360度方向に回転する。被験者20はベッド6上で静止し、体軸方向にはX線管3と検出器パネル4の組が紙面垂直方向(ベッドの長手方向)に移動しながらの撮像を行う。   FIG. 1 shows an outline of an X-ray CT apparatus. The X-ray CT apparatus 1 includes a gantry 2, an X-ray tube 3 which is a radiation source for emitting X-rays, a detector panel 4 for detecting radiation, a bed on which a subject sleeps, and an operation panel 7 for operating the X-ray CT apparatus in the field. An image processing calculation device 8 for generating an image based on a detection signal from the detector, an input / operation device 9 for inputting a command to the image processing calculation device, and a display device 10 for displaying an image generated by the image processing calculation device. Have. The detector panel 4 has a plurality of detection elements for converting X-ray energy information into electrical signals, and the detection elements have a pulse mode measurement circuit in the subsequent stage. The X-ray tube 3 and the detector panel 4 are arranged opposite to each other with the subject 20 interposed therebetween, and are rotated around the subject 20 in a 360-degree direction by a rotation drive unit of the gantry. The subject 20 stands still on the bed 6 and performs imaging while the set of the X-ray tube 3 and the detector panel 4 moves in the direction of the body axis in the direction perpendicular to the paper surface (longitudinal direction of the bed).

図2にスペクトル測定型CT画像再構成手順を示す。図2の画像再構成手順は図1の画像処理計算装置8によって実行される。画像処理計算装置8は、各計算処理内容を記録するメモリと、計算処理実行部であるCPUを有する。X線管3と検出器パネル4がガントリ2を回転しながらX線照射・検出をしているとき、測定値である光子数(以下カウントC)は一定時間(例:1ms)内1画素に入射した光子のエネルギースペクトルの形で得る。N個のエネルギーウィンドウの代表エネルギーをENとしたとき、投影カウントデータはC(ρ,θ,E)となる。ここでθは、短い一定時間内には検出器パネル4の中心が局在しているとみなせる、ガントリ回転方向のある角度である。単純化のため、ρはパラレルビーム変換後の値とし、任意の1断層に着目することで体軸方向zは考えず、エネルギーウィンドウ内ではμの変動は十分小さく一定値として扱うが、本特許の本質には影響しない。 FIG. 2 shows a spectrum measurement type CT image reconstruction procedure. The image reconstruction procedure in FIG. 2 is executed by the image processing calculation device 8 in FIG. The image processing calculation device 8 includes a memory that records the contents of each calculation process and a CPU that is a calculation process execution unit. When the X-ray tube 3 and the detector panel 4 are irradiating and detecting X-rays while rotating the gantry 2, the number of photons (hereinafter referred to as count C) that is a measured value is 1 pixel within a certain time (eg, 1 ms). Obtained in the form of the energy spectrum of the incident photons. When the representative energy of the N energy windows is E N , the projection count data is C (ρ, θ, E). Here, θ is an angle in the gantry rotation direction at which the center of the detector panel 4 can be considered to be localized within a short period of time. For simplification, ρ is a value after parallel beam conversion. Focusing on an arbitrary slice, the body axis direction z is not considered, and the fluctuation of μ is treated as a sufficiently small constant value within the energy window. Does not affect the nature of

ここで再構成の手順は大きく分けて、重み付け平均操作51,カウント→μ線積分変換操作52,μ→HU値変換操作53,画像再構成操作54(線積分→マップ)がある。重み付け平均操作51は不可逆(=情報の一部を失う)である。カウント→μ線積分変換操作52,μ→HU値変換操作53は可逆だが非線形である。画像再構成操作54は離散化誤差を無視すれば可逆かつ線形である。これら処理は画像処理計算装置8のCPUにより実行され、画像処理計算装置8の変換操作部,重み付け平均化部,規格化部,画像再構成部を構成する。尚、これら変換操作部,重み付け平均化部,規格化部,画像再構成部をソフトウェア処理ではなく回路により構成することもできる。   Here, the reconstruction procedure is roughly divided into a weighted average operation 51, count → μ-line integral conversion operation 52, μ → HU value conversion operation 53, and image reconstruction operation 54 (line integral → map). The weighted average operation 51 is irreversible (= losing part of the information). The count → μ line integral conversion operation 52 and the μ → HU value conversion operation 53 are reversible but non-linear. The image reconstruction operation 54 is reversible and linear if the discretization error is ignored. These processes are executed by the CPU of the image processing calculation device 8, and constitute a conversion operation unit, a weighted averaging unit, a normalization unit, and an image reconstruction unit of the image processing calculation device 8. The conversion operation unit, weighted averaging unit, normalization unit, and image reconstruction unit can be configured by a circuit instead of software processing.

また図内では煩雑さを避けるために文字数を減らした表記法として以下を採用した。   In the figure, the following is adopted as a notation with a reduced number of characters to avoid complications.

投影C(ρ,θ,E)×Nウィンドウ:C×N
再構成画像μ(x,y,E)×Nウィンドウ:μ−map×N
重み付け平均:変数の上に横線
CT装置の画像再構成対象値であるX線の線減弱係数(以下μ)[単位長さ-1]はエネルギー依存性を持ち、MeV以下のエネルギー領域では吸収端の例外を除いてエネルギーが大きいほどμは小さくなる、すなわち透過距離あたりの透過確率が高くなる。従って、連続(非単色)エネルギーに分布するX線光子群を考えたとき、透過させる物質が厚いほど、残ビーム内での存在割合は高エネルギー側に偏る。X線では高エネルギー側をハード、低エネルギー側をソフトと形容するため、この現象を一般にビームハードニングという。
Projection C (ρ, θ, E) × N window: C × N
Reconstructed image μ (x, y, E) × N window: μ-map × N
Weighted average: Horizontal line on variable X-ray line attenuation coefficient (μ) [unit length -1 ], which is the image reconstruction target value of the CT device, is energy-dependent, and has an absorption edge in the energy region below MeV With the exception of (1), μ increases as the energy increases, that is, the transmission probability per transmission distance increases. Accordingly, when considering an X-ray photon group distributed in continuous (non-monochromatic) energy, the thicker the material to be transmitted, the more the existence ratio in the remaining beam is biased toward the higher energy side. In X-rays, the high energy side is described as hard and the low energy side is described as soft, and this phenomenon is generally called beam hardening.

従来市販されているCT装置で用いられている放射線検出手法は電流モードである。電流モードで得られる信号Iは入射光子のエネルギーEと個数Cの積の合計に比例する出力であり、個別の光子のエネルギー情報は失われる。CをEの関数とすれば、
I∝∫(E・C(E))dE …式(1)
である。
The radiation detection method used in CT apparatuses that are commercially available in the past is the current mode. The signal I obtained in the current mode is an output proportional to the sum of the product of the incident photon energy E and the number C, and the energy information of the individual photons is lost. If C is a function of E,
I∝∫ (E · C (E)) dE (1)
It is.

単色X線が線減弱係数μ(ξ)の物質をξ方向に透過したときの線減弱係数の線積分を∫μ(ξ)dξとする(以下∫μ)。初期光子数がC0であれば、∫μ透過後の光子数はC=C0exp(−∫μ)であるから、測定値CとC0から∫μは
∫μ=log(C0/C) …式(2)
として求めることができる。CTではあるxy平面内で、この∫μを幅ρ(ξはρに直交)、全周θにわたり∫μ(ρ,θ)を取得し、ラドン逆変換∫μ(ρ,θ)→μ(x,y)でxy平面上の画像再構成μ値分布、すなわち断層像を得る。
The line integral of the linear attenuation coefficient when the monochromatic X-ray passes through the substance having the linear attenuation coefficient μ (ξ) in the ξ direction is defined as ∫μ (ξ) dξ (hereinafter referred to as ∫μ). If the initial number of photons is C 0 , the number of photons after 透過 μ transmission is C = C 0 exp (−∫μ), and from the measured values C and C 0 ∫μ is ∫μ = log (C 0 / C) Formula (2)
Can be obtained as In CT, in a certain xy plane, this ∫μ is obtained as a width ρ (ξ is orthogonal to ρ), ∫μ (ρ, θ) is obtained over the entire circumference θ, and Radon inverse transformation ∫μ (ρ, θ) → μ ( An image reconstruction μ value distribution on the xy plane, that is, a tomographic image is obtained by x, y).

従来のCT装置では線源が非単色なX線管であるが、
∫μ電流=log(I0/I)=log((∫E・C0(E)dE)/(∫E・C(E)dE))
…式(3)
と単色と同じ形で∫μを求めようとしているため、ビームハードニングの影響を受ける。具体的には厚い透過経路であるほどビームはハード側に偏り、ビーム残量である分母が大きくなり、得られる単位長さあたりの∫μは極限的に薄い同物質を透過したときの単位長さあたりの∫μよりも小さい値となる。
In a conventional CT apparatus, the radiation source is a non-monochromatic X-ray tube,
∫μ current = log (I 0 / I) = log ((∫E · C 0 (E) dE) / (∫E · C (E) dE))
... Formula (3)
Because it is trying to find ∫μ in the same form as a single color, it is affected by beam hardening. Specifically, the thicker the transmission path, the more the beam is biased toward the hard side, the denominator of the remaining amount of the beam becomes larger, and ∫μ per unit length obtained is the unit length when passing through the extremely thin same material The value is smaller than ∫μ per unit.

平坦なμ分布の円筒を撮像すれば、外周に近い経路ほど∫μ電流が大きく、中心に近い点を通る経路ほど∫μ電流が小さいため、外周の画像再構成μ値が大きく、中心部のμが小さく見える結果となる。これは現実の構造を反映しないアーチファクト(偽構造)であり、カッピングエフェクトと呼ばれる代表的なビームハードニングアーチファクトである。他にも、ビームハードニングは人体内の骨のような不均一なμ分布を考えれば、骨を通る経路で特に∫μが不足し、骨と骨の隙間では再構成μ値が低く見えるなど、さまざまなアーチファクトの原因となっている。 If a flat μ-distributed cylinder is imaged, the path closer to the outer periphery has a larger ∫μ current and the path closer to the center has a smaller ∫μ current . As a result, μ appears to be small. This is an artifact (false structure) that does not reflect the actual structure, and is a typical beam hardening artifact called a cupping effect. In addition, considering the uneven μ distribution like the bone in the human body, beam hardening is especially lacking ∫μ in the path through the bone, and the reconstructed μ value appears to be low in the gap between the bone and bone. , Causing various artifacts.

更に局所的なアーチファクトでないビームハードニング影響として、再構成値の非再現性がある。式(3)では例えば水を再構成したμ値は撮像対象の大きさに依存し、一意に定まらない。水のμ値を基準とするHounsfield unit値への変換もファントム実測の水のμ値などを用いており、そのHU値には普遍性がなかった。更に個別の撮像においても患者サイズの違いなどによって、同一μの物質が再構成値では異なる値を示すこととなる。   Further, the non-reproducibility of the reconstruction value is a beam hardening effect that is not a local artifact. In Expression (3), for example, the μ value obtained by reconstructing water depends on the size of the imaging target and is not uniquely determined. Conversion to Hounsfield unit values based on μ values of water also uses μ values of water measured by phantoms, and the HU values were not universal. Furthermore, even in individual imaging, substances with the same μ will show different values in the reconstructed value due to differences in patient size and the like.

これに対し、電流モードでなくパルスモード計測、特にエネルギー情報を得るスペクトル測定型のCT開発が行われている。カウントをエネルギービンごとに得るまではスペクトル測定の一般的な処理であり、その後にカウント値の任意の重み付け平均(加算)処理を行うことが特徴的である。単に単色に近い狭い範囲のエネルギーだけ用いて画像を得てもビームハードニングの影響を除去できるが、これは狭いウィンドウではカウントが減り、統計誤差が大きくなるため現状のX線管性能では実現できず、ウィンドウごとのデータを何らかの形で加算(平均化)する必要がある。   On the other hand, instead of current mode, pulse mode measurement, in particular, spectrum measurement type CT that obtains energy information is being developed. Until the count is obtained for each energy bin, it is a general process of spectrum measurement, and thereafter, an arbitrary weighted average (addition) process of the count value is performed. The effect of beam hardening can be eliminated even if an image is obtained using only a narrow range of energy close to a single color, but this is not possible with the current X-ray tube performance because the count is reduced in a narrow window and the statistical error is increased. However, it is necessary to add (average) the data for each window in some form.

しかし、カウントの時点で重み付け平均を行っても、ビームハードニングを顕著に抑制するためには狭いエネルギー部分のみの重み付け関数を高くする、すなわち統計ノイズの影響を大きくする副作用が伴う。また、重み付け平均のための重み付け関数は恣意性が高く、広く一般で共用するための最適化指針は得られていない。   However, even if weighted averaging is performed at the time of counting, there is a side effect of increasing the weighting function only for a narrow energy portion, that is, increasing the influence of statistical noise, in order to significantly suppress beam hardening. In addition, the weighting function for weighted averaging is highly arbitrary, and no optimization guideline has been obtained for common use in general.

従って従来のCT装置では電流モード型でもスペクトル測定型でも得られるHounsfield unit値は現実の物質との対応を一意に決められず、密度変化などの定量的な診断には問題があった。   Therefore, in the conventional CT apparatus, the Hounsfield unit value obtained by both the current mode type and the spectrum measurement type cannot uniquely determine the correspondence with the actual substance, and there is a problem in quantitative diagnosis such as density change.

また、重み付け加算を画像再構成の後におけば、計算コストの大きい画像再構成がウィンドウ数NのときN倍となり、面内方向,断層方向,時間方向に高分解能が求められる場面では大きな問題となりうる。   Further, if weighted addition is performed after image reconstruction, image reconstruction with a high calculation cost is N times when the number of windows is N, and this is a big problem in scenes where high resolution is required in the in-plane direction, tomographic direction, and time direction. sell.

連続X線のエネルギーがコンプトン散乱が優位な領域を超えて対生成が優位な領域まで高くなる場合にはエネルギーが高い側でμが大きくなるため、ビームハードニングの語は適切ではなくなるが、μのエネルギー依存性は変わらず存在する。すなわちMeV以上の高エネルギーを用いる産業用X線CTにおいても、上記の議論は同様に問題となる。   When the energy of continuous X-rays exceeds the region where Compton scattering is dominant and the pair generation is high, μ becomes larger on the higher energy side, so the term of beam hardening is not appropriate. There is no change in energy dependence. In other words, the above discussion is similarly problematic in industrial X-ray CT using high energy of MeV or higher.

比較例として、電流モード型CT(積分モード)で取得する電流測定値は、スペクトル測定での重み付け関数W(E)がW(E)=Eを持つ重み付け平均操作51が第一操作としてなされていることを示す。   As a comparative example, the current measurement value obtained in the current mode type CT (integration mode) is obtained by using a weighted average operation 51 having a weighting function W (E) in spectrum measurement as W (E) = E as a first operation. Indicates that

非線形操作であるカウント(または電流)から∫μへの変換、不可逆操作(=情報の一部が失われる)である重み付け平均を行う順序に着目した。重み付け平均により各エネルギーウィンドウ単体の情報では統計量が足りないことを解決する。   We paid attention to the order of conversion from count (or current), which is a nonlinear operation, to ∫μ, and weighted average, which is an irreversible operation (= a part of information is lost). Solves the fact that the statistics are insufficient for the information of each energy window alone by weighted averaging.

各エネルギーウィンドウ,各投影データにおいて、重み付け平均をカウントの時点ではなく、カウントから∫μへの変換後に行うことで、画像再構成後のビームハードニングアーチファクトを除去または強く抑制する。このとき、重み付け関数を狭い範囲に偏らせることは不要であり、統計ノイズが増える副作用は特に発生しない。   In each energy window and each projection data, the weighted average is not performed at the time of counting but after conversion from counting to ∫μ, thereby removing or strongly suppressing beam hardening artifacts after image reconstruction. At this time, it is not necessary to bias the weighting function to a narrow range, and there is no particular side effect of increasing statistical noise.

更に、重み付け平均前にHounsfield unit値変換を行うかどうかでHU値には大きく2系統が存在し、片方が普遍性の点で優位であることを発見した。これを新たなHU値の実現法として定義し、各投影データにおいて(1)カウントから∫μ、(2)∫μから∫HU、(3)重み付け平均化、(4)画像再構成の各操作順序をスペクトル測定CT特有の画像再構成手法とする。   Furthermore, it has been found that there are two major HU values depending on whether Hounsfield unit value conversion is performed before weighted averaging, and one is superior in terms of universality. This is defined as a method for realizing a new HU value. In each projection data, (1) count to ∫μ, (2) ∫μ to ∫HU, (3) weighted averaging, and (4) image reconstruction operations The order is the image reconstruction technique unique to the spectrum measurement CT.

特殊な場合として単純加算平均(平坦な重み付け関数)を考えることで、従来の電流計測HU値との比較標準として好適な、一意に定まるHU値を与えることができる。   By considering a simple addition average (flat weighting function) as a special case, a uniquely determined HU value suitable as a standard for comparison with a conventional current measurement HU value can be provided.

この比較標準条件を準備すれば、任意の重み付け関数(例えば低エネルギー成分の強調,統計ノイズ最小化など)での高画質画像と普遍的な(定量的な)HU値の両方を得ることができる。両者は高画質画像側でのセグメンテーション処理などで対応づけることが可能である。   By preparing this comparative standard condition, it is possible to obtain both a high-quality image and a universal (quantitative) HU value with an arbitrary weighting function (for example, enhancement of low energy components, minimization of statistical noise, etc.). . Both can be associated by segmentation processing on the high-quality image side.

ビームハードニングアーチファクトのない、または顕著に抑制された、統計ノイズが従来程度に抑えられた良好な再構成画像を、複数のエネルギーウィンドウに対しても単一の画像再構成回数で得る。更に再構成HU値につき、普遍性があり比較基準として好適な画像を得られ、低エネルギー成分強調などの高コントラスト画像を定量的に管理できる。   A good reconstructed image with no statistically reduced statistical noise, with no or no beam hardening artifacts, is obtained with a single number of image reconstructions for multiple energy windows. Furthermore, with respect to the reconstructed HU value, an image that is universal and suitable as a comparison reference can be obtained, and a high-contrast image such as low-energy component enhancement can be managed quantitatively.

ただし、画像再構成操作54はカウント→μ線積分変換操作52以降に行い、μ→HU値変換操作53はカウント→μ線積分変換操作52以降に行う前提である。この操作群の組み合わせ順序により、得られる画像再構成結果に大きな違いがあることを発見し、操作コストを加味した好適な画像再構成手法を提供する。光子のエネルギー情報を得る手段を持つ、スペクトル測定型の放射線検出器を画素として持つX線Computed Tomography装置において、データ収集系は複数のエネルギーウィンドウを持ち、投影画像取得時に各エネルギーウィンドウで得られたカウント計測値に対し、各エネルギーウィンドウごとに事前に取得した無減衰(空気透過)カウント計測値との比の対数を用いてX線線減弱係数の線積分に変換した後に、水のX線線減弱係数を用いた規格化,画像再構成,重み付け平均化を行う画像再構成手法を説明する。   However, it is assumed that the image reconstruction operation 54 is performed after the count → μ line integral conversion operation 52 and the μ → HU value conversion operation 53 is performed after the count → μ line integral conversion operation 52. It is found that there is a large difference in the obtained image reconstruction results depending on the combination order of the operation groups, and a suitable image reconstruction technique that takes the operation cost into consideration is provided. In an X-ray computed tomography system that has a means of obtaining photon energy information and has a spectrum measurement type radiation detector as a pixel, the data acquisition system has a plurality of energy windows. The X-ray of water is converted to the X-ray attenuation coefficient line integral using the logarithm of the ratio of the count measurement value to the non-attenuated (air transmission) count measurement value acquired in advance for each energy window. An image reconstruction method that performs normalization using the attenuation coefficient, image reconstruction, and weighted averaging will be described.

カウント→μ線積分変換操作52は単色光子(各エネルギーウィンドウ内光子とみなす)で光子数の減衰が指数関数的に起こる自然現象を利用しており、「カウント→μ線積分変換操作52の前のカウントの時点での重み付け平均操作51」の操作順序によって透過距離と重み付けカウントの間の関係が指数関数の関係から崩れることがビームハードニングアーチファクトの原因である。ここで、ビームハードニング影響と呼んでいるものが大きく分けて
(BH 1) μがエネルギーに依存する
(BH 2) ((BH 1)の条件下で)∫μが透過経路長に依存する
の混合であることを理解すれば、第一操作をカウント→μ線積分変換操作52に確定することで(BH 2)の影響を除去できることがわかる。すなわち従来の電流計測およびカウント時の重み付け平均では、或る再構成値から周辺の(透過経路を共有する)画素に拡散する、問題の大きいビームハードニングアーチファクトを完全に除去できる。
The count → μ-line integral conversion operation 52 uses a natural phenomenon in which the decay of the number of photons occurs exponentially with monochromatic photons (considered as photons in each energy window). The cause of the beam hardening artifact is that the relationship between the transmission distance and the weighted count collapses from the exponential relationship depending on the operation order of the weighted average operation 51 at the time of counting. Here, what is called beam hardening effect is roughly divided. (BH 1) μ depends on energy (BH 2) (Under (BH 1)) ∫ μ depends on the transmission path length If it understands that it is mixing, it turns out that the influence of (BH2) can be removed by confirming a 1st operation to count-> micro-integral conversion operation 52. FIG. In other words, the conventional current measurement and weighted average at the time of counting can completely eliminate a problematic beam hardening artifact that diffuses from a certain reconstruction value to surrounding pixels (sharing the transmission path).

上述したように、カウント→μ線積分変換操作52の後、重み付け平均操作51を行えばよく、画像再構成処理全体の中でμ→HU変換操作53と画像再構成操作54はどの順序でも良い。   As described above, the weighting average operation 51 may be performed after the count → μ-line integral conversion operation 52, and the μ → HU conversion operation 53 and the image reconstruction operation 54 may be performed in any order in the entire image reconstruction process. .

また、複数のエネルギーウィンドウで得られたカウント計測値に対し、X線線減弱係数の線積分に変換した後に、重み付け平均化を行うX線CT装置の画像再構成手法により、ビームハードニングアーチファクトのない、または顕著に抑制された、統計ノイズが従来程度に抑えられた良好な再構成画像を得ることができる。   Furthermore, the beam measurement artifacts can be reduced by the image reconstruction method of the X-ray CT apparatus that performs weighted averaging after converting the count measurement values obtained in a plurality of energy windows into the line integral of the X-ray attenuation coefficient. A good reconstructed image in which statistical noise is suppressed to a conventional level without or significantly suppressed can be obtained.

また、被検体を載せるベッドと、ベッドの周囲で放射線を放射する線源と、放射線を検出する検出器と、検出器からの検出信号に基づいて画像を生成する画像処理計算装置を有し、画像処理計算装置は、検出信号に基づき、複数のエネルギーウィンドウで得られたカウント計測値に対し、X線線減弱係数の線積分に変換する変換操作部と、X線線源弱係数の線積分に重み付け平均化を行う重み付け平均化部とを有するX線CT装置により、ビームハードニングアーチファクトのない、または顕著に抑制された、統計ノイズが従来程度に抑えられた良好な再構成画像を得ることができる。   In addition, a bed on which the subject is placed, a radiation source that emits radiation around the bed, a detector that detects the radiation, and an image processing calculation device that generates an image based on a detection signal from the detector, The image processing calculation device includes a conversion operation unit that converts the count measurement values obtained in a plurality of energy windows into a line integral of an X-ray attenuation coefficient based on a detection signal, and a line integral of an X-ray source weak coefficient. By using an X-ray CT apparatus having a weighted averaging unit that performs weighted averaging, a reconstructed image having no statistically reduced statistical noise and no beam hardening artifacts can be obtained. Can do.

実施例1と同様に図2を用いて説明する。   The description will be made with reference to FIG. 2 as in the first embodiment.

投影データとして存在する、X線線減弱係数の線積分データに対し、各エネルギーウィンドウごとに既知である水のX線線減弱係数を用いて規格化し、水規格化X線線減弱係数の線積分に変換した後に、重み付け平均化を行う画像再構成手法を説明する。重み付け平均操作51の前にμ→HU値変換操作53を行うかどうかについて論ずる。スペクトル測定型CTではエネルギーごとに既知である水μを用いた普遍的なHU値がウィンドウごとに得られる。更にウィンドウ間の重み付け平均を考えれば大きく2系統の実現が可能となる。それぞれ、Eをウィンドウ内エネルギー代表値、W(E)を重み付け関数、Σをウィンドウ数Nの総和として
HU値(A)=(ΣW(E)・μ(E))/(ΣW(E)・水μ(E)) …式(4)
HU値(B)=Σ(W(E)・μ(E)/(W(E)・水μ(E)))/ΣW(E) …式(5)
である。HU値(A)が重み付け平均操作51後にμ→HU値変換操作53を行ったもの、HU値(B)がμ→HU値変換操作53後に重み付け平均操作51を行ったものにあたる。μ(E)/水μ(E)は一般にエネルギー依存性を持つためHU値(A)とHU値(B)は同値ではない。
The X-ray attenuation coefficient line integral data existing as projection data is normalized using the water X-ray attenuation coefficient known for each energy window, and the water-integrated X-ray attenuation coefficient line integral is obtained. An image reconstruction technique for performing weighted averaging after conversion into the above will be described. Whether or not the μ → HU value conversion operation 53 is performed before the weighted average operation 51 will be discussed. In the spectrum measurement type CT, a universal HU value using water μ known for each energy is obtained for each window. Furthermore, considering the weighted average between windows, two systems can be realized. Respectively, E is the energy value in the window, W (E) is the weighting function, Σ is the sum of the number of windows N, and HU value (A) = (ΣW (E) · μ (E)) / (ΣW (E) · Water μ (E)) ... Formula (4)
HU value (B) = Σ (W (E) · μ (E) / (W (E) · water μ (E))) / ΣW (E) (5)
It is. The HU value (A) corresponds to the value obtained by performing the μ → HU value conversion operation 53 after the weighted average operation 51, and the HU value (B) corresponds to the value obtained by performing the weighted average operation 51 after the μ → HU value conversion operation 53. Since μ (E) / water μ (E) generally has energy dependence, the HU value (A) and the HU value (B) are not the same value.

本実施例においては、HU値(B)がウィンドウ幅の概念を使わずに定義できるエネルギーごとのHU値=μ(E)/水(E)をベースとした重み付け平均となり直感的であること、HU値(A)ではμに対する重み付け関数(例えば統計ノイズ補正)に水μの影響を打ち消すための補正項を導入する無駄な必要性があるが、HU値(B)でのHU値に対する重み付け関数には必要ないことから、HU値(A)に対し普遍性の点で優位であることを発見した。   In this embodiment, the HU value (B) is a weighted average based on HU value = μ (E) / water (E) for each energy that can be defined without using the concept of window width, and is intuitive. In the HU value (A), there is a wasteful need to introduce a correction term for canceling the influence of the water μ to the weighting function (for example, statistical noise correction) for μ, but the weighting function for the HU value in the HU value (B). Is not necessary for the HU value (A), it has been found that it is superior in terms of universality.

上述した様に、X線線減弱係数の線積分のデータに対し、各エネルギーウィンドウごとに既知である水のX線線減弱係数を用いて規格化し、水規格化X線線減弱係数の線積分に変換した後に、重み付け平均化を行うことにより、μに対する重み付け関数に水μの影響を打ち消すための補正項を導入する無駄を省くことができる。   As described above, the X-ray attenuation coefficient line integral data is normalized using the known water X-ray attenuation coefficient for each energy window, and the water normalized X-ray attenuation coefficient line integral is obtained. By performing weighted averaging after conversion to, waste of introducing a correction term for canceling the influence of water μ on the weighting function for μ can be eliminated.

また、画像処理計算装置は、変換操作部の出力であるX線線減弱係数の線積分に対し、各エネルギーウィンドウごとに既知である水のX線線減弱係数を用いて規格化し、水規格化X線線減弱係数の線積分に変換する変換部と、水規格化X線線源弱係数の線積分に重み付け平均化を行う重み付け平均化部を有するX線CT装置により、μに対する重み付け関数に水μの影響を打ち消すための補正項を導入する無駄を省くことができる。   Further, the image processing calculation apparatus standardizes the line integral of the X-ray attenuation coefficient, which is the output of the conversion operation unit, using a known water X-ray attenuation coefficient for each energy window, and normalizes the water. An X-ray CT apparatus having a conversion unit for converting to an X-ray attenuation coefficient line integral and a weighted averaging unit for performing weighted averaging on the line integral of a water-standardized X-ray source weak coefficient is used as a weighting function for μ. The waste of introducing a correction term for canceling the influence of water μ can be eliminated.

実施例1,2と同様に図2を用いて説明する。   This will be described with reference to FIG.

重み付け平均化を行った後に画像再構成を行う画像再構成手法について説明する。   An image reconstruction method for performing image reconstruction after performing weighted averaging will be described.

実施例2で説明したHU(B)を新たなHU値の実現法として定義し、各投影データに対し
(1)カウント→μ線積分変換操作52
(2)μ→HU値変換操作53
(3)重み付け平均操作51
(4)画像再構成操作54
の各操作順序をスペクトル測定CT特有の画像再構成手法とする。これは図2の実線で表された順序であるが、これによると画像再構成操作54の処理は1回で良く、実施例1と実施例2の効果も奏する。
The HU (B) described in the second embodiment is defined as a method for realizing a new HU value. (1) Count → μ-line integral conversion operation 52 for each projection data
(2) μ → HU value conversion operation 53
(3) Weighted average operation 51
(4) Image reconstruction operation 54
Each of the operation orders is used as an image reconstruction technique specific to the spectrum measurement CT. This is the order indicated by the solid line in FIG. 2, but according to this, the image reconstruction operation 54 needs to be performed only once, and the effects of the first and second embodiments are also achieved.

また、HU(B)に限らず、HU(A)においても、カウント→μ線積分変換操作52の後、重み付け平均操作51し、この重み付け平均操作51を行った後に画像再構成操作54を行うことでも、画像再構成の処理を1回でよく、実施例1の効果も奏する。尚、重み付け平均操作51の後に画像再構成操作54を行えば良く、μ→HU値変換操作53は画像再構成操作54の前でも後でも良い。   Further, not only for HU (B), but also for HU (A), after count → μ-line integral conversion operation 52, weighted average operation 51 is performed, and after this weighted average operation 51 is performed, image reconstruction operation 54 is performed. In fact, the image reconstruction process may be performed once, and the effects of the first embodiment are also achieved. The image reconstruction operation 54 may be performed after the weighted average operation 51, and the μ → HU value conversion operation 53 may be performed before or after the image reconstruction operation 54.

実施例1,2,3と同様に図2を用いて説明する。   This will be described with reference to FIG.

特に平坦な重み付け関数を用いた画像再構成で得られた水規格化X線線減弱係数値断層画像を恒基準水規格化X線線減弱係数として貯蔵し、
重み付け関数の変化に依存する水規格化X線線減弱係数群の代表値とする画像再構成手法を説明する。
In particular, the water normalized X-ray attenuation coefficient value tomographic image obtained by image reconstruction using a flat weighting function is stored as a constant reference water normalized X-ray attenuation coefficient,
An image reconstruction method using a representative value of a water standardized X-ray attenuation coefficient group depending on a change in the weighting function will be described.

ここでビームハードニング影響(BH 1)について考える。従来は(BH 2)の影響が混合していたためμ(E)(またはμ(E)/水μ(E))は、照射スペクトル分布、撮像対象サイズおよび形状など複雑な入力条件に依存していたため物質に一対一で決まるHU値を定義できていなかったが、前節までにおいて物質に対するHU値は大きくHU値(A)とHU値(B)の2系統にまで絞られ、更にHU値(B)を選択した。残る自由度は、或る関数から代表1数値を得るために用いている重み付け関数のみである。   Now consider the beam hardening effect (BH 1). Conventionally, the influence of (BH 2) was mixed, so μ (E) (or μ (E) / water μ (E)) depends on complicated input conditions such as irradiation spectrum distribution, imaging target size and shape. Therefore, the HU value determined on a one-to-one basis could not be defined for the substance, but until the previous section, the HU value for the substance was greatly reduced to two systems of HU value (A) and HU value (B). ) Was selected. The remaining degree of freedom is only the weighting function used to obtain one representative numerical value from a certain function.

最も単純な場合として単純加算平均(平坦な重み付け関数)を選択すれば、従来の電流計測HU値との比較標準として好適な、物質(原子番号,密度,混合比)ごとに一意に定まるHU値を与えることができる。   If the simple addition average (flat weighting function) is selected as the simplest case, the HU value uniquely determined for each substance (atomic number, density, mixing ratio) suitable as a standard for comparison with the conventional current measurement HU value Can be given.

この比較標準条件を準備すれば、高画質画像を得るため重み付け関数の調整(例えば低エネルギー成分の強調,統計ノイズ最小化など)を行うときにHU値が変化しても、重み付け関数を調整した高画質側の画像でセグメンテーションを行い、比較標準画像でセグメンテーションで決めた領域内平均のHU値を得る、などの方法で普遍的な(定量的な)HU値を管理することができる。   If this comparative standard condition is prepared, the weighting function was adjusted even if the HU value changed when adjusting the weighting function (for example, emphasizing low energy components, minimizing statistical noise, etc.) to obtain a high-quality image. A universal (quantitative) HU value can be managed by a method such as performing segmentation with an image on the high image quality side and obtaining an average HU value within a region determined by segmentation with a comparative standard image.

これは或る一装置に限らず、同一手法を用いるCT装置群で共有できる普遍的なHU値基準として用いることが可能である。   This is not limited to a certain apparatus, and can be used as a universal HU value standard that can be shared by CT apparatus groups using the same method.

上述した様に、連続X線を発する線源とエネルギー依存性を持つX線線減弱係数を用いることにより、CT再構成画像に発生するビームハードニングアーチファクトを除去し、従来為しえなかった物質(原子番号,密度,混合比)と再構成値との一対一再現性を得ることができる。   As mentioned above, by using a radiation source that emits continuous X-rays and an energy-dependent X-ray attenuation coefficient, beam hardening artifacts that occur in CT reconstructed images are eliminated, and materials that could not be achieved in the past One-to-one reproducibility of (atomic number, density, mixing ratio) and reconstruction value can be obtained.

また、再構成操作群を、カウントからμ線積分値への変換を重み付け平均化の前に行うことでビームハードニング影響を1画素に局在化する。HU化の手法としてHU化も重み付け平均化,画像再構成の前に行うことを定め、更に重み付け関数を平坦化したものを基準とすることで残るエネルギー依存性を管理し、物質と再構成値の一対一再現性を得ることができる。   Further, the reconstruction operation group performs the conversion from the count to the μ-line integral value before the weighted averaging, thereby localizing the beam hardening effect to one pixel. As a method of HU, it is determined that HU is also performed before weighted averaging and image reconstruction, and the remaining energy dependency is managed by using a flattened weighting function as a reference, and the substance and reconstruction value. 1 to 1 reproducibility can be obtained.

X線CT装置概略。Outline of X-ray CT apparatus. スペクトル測定型CT画像再構成手順。Spectral measurement type CT image reconstruction procedure.

符号の説明Explanation of symbols

1 X線CT装置
2 ガントリ
3 X線管
4 検出器パネル
6 ベッド
7 操作パネル
8 画像処理計算装置
9 入力・操作装置
10 表示装置
20 被験者
51 重み付け平均操作
52 カウント→μ線積分変換操作
53 μ→HU値変換操作
54 画像再構成操作
DESCRIPTION OF SYMBOLS 1 X-ray CT apparatus 2 Gantry 3 X-ray tube 4 Detector panel 6 Bed 7 Operation panel 8 Image processing calculation apparatus 9 Input / operation apparatus 10 Display apparatus 20 Subject 51 Weighted average operation 52 Count → μ-ray integral conversion operation 53 μ → HU value conversion operation 54 Image reconstruction operation

Claims (10)

複数のエネルギーウィンドウで得られたカウント計測値に対し、X線線減弱係数の線積分に変換した後に、
重み付け平均化を行うことを特徴とするX線CT装置の画像再構成手法。
After converting the count measurement value obtained in multiple energy windows to the line integral of the X-ray attenuation coefficient,
An image reconstruction method for an X-ray CT apparatus, characterized by performing weighted averaging.
請求項1に記載の画像再構成方法において、
前記X線線減弱係数の線積分のデータに対し、各エネルギーウィンドウごとに既知である水のX線線減弱係数を用いて規格化し、水規格化X線線減弱係数の線積分に変換した後に、
前記重み付け平均化を行うことを特徴とする画像再構成手法。
The image reconstruction method according to claim 1,
After the line integral data of the X-ray attenuation coefficient is normalized using a known water X-ray attenuation coefficient for each energy window, and converted to a water-integrated X-ray attenuation coefficient line integral. ,
An image reconstruction method characterized by performing the weighted averaging.
請求項1に記載の画像再構成方法において、
前記重み付け平均化を行った後に、
画像再構成を行うことを特徴とする画像再構成手法。
The image reconstruction method according to claim 1,
After performing the weighted averaging,
An image reconstruction method characterized by performing image reconstruction.
請求項2に記載の画像再構成方法において、
前記重み付け平均化を行った後に、
画像再構成を行うことを特徴とする画像再構成手法。
The image reconstruction method according to claim 2,
After performing the weighted averaging,
An image reconstruction method characterized by performing image reconstruction.
前記請求項2において、平坦な重み付け関数を用いた画像再構成で得られた水規格化X線線減弱係数値断層画像を恒基準水規格化X線線減弱係数として記録し、
重み付け関数の変化に依存する水規格化X線線減弱係数群の代表値とすることを特徴とする画像再構成手法。
In claim 2, the water standardized X-ray attenuation coefficient value tomographic image obtained by image reconstruction using a flat weighting function is recorded as a constant reference water standardized X-ray attenuation coefficient,
An image reconstruction method characterized in that a representative value of a water normalized X-ray attenuation coefficient group depending on a change in a weighting function is used.
被検体を載せるベッドと、
前記ベッドの周囲で放射線を放射する線源と、
前記放射線を検出する検出器と、
前記検出器からの検出信号に基づいて画像を生成する画像処理計算装置を有し、
前記画像処理計算装置は、
前記検出信号に基づき、複数のエネルギーウィンドウで得られたカウント計測値に対し、X線線減弱係数の線積分に変換する変換操作部と、
前記X線線源弱係数の線積分に重み付け平均化を行う重み付け平均化部とを有することを特徴とするX線CT装置。
A bed on which the subject is placed;
A radiation source emitting radiation around the bed;
A detector for detecting the radiation;
An image processing calculation device for generating an image based on a detection signal from the detector;
The image processing calculation device comprises:
Based on the detection signal, a conversion operation unit that converts a count measurement value obtained in a plurality of energy windows into a line integral of an X-ray attenuation coefficient;
An X-ray CT apparatus comprising: a weighted averaging unit that performs weighted averaging on a line integral of the X-ray source weak coefficient.
請求項6に記載のX線CT装置において、
前記画像処理計算装置は、
前記変換操作部の出力である前記X線線減弱係数の線積分に対し、各エネルギーウィンドウごとに既知である水のX線線減弱係数を用いて規格化し、水規格化X線線減弱係数の線積分に変換する規格化部を有し、
前記重み付け平均化部は前記水規格化X線線源弱係数の線積分に重み付け平均化を行うことを特徴とするX線CT装置。
The X-ray CT apparatus according to claim 6,
The image processing calculation device comprises:
With respect to the line integral of the X-ray attenuation coefficient that is the output of the conversion operation unit, normalization is performed using a known water X-ray attenuation coefficient for each energy window, and the water normalized X-ray attenuation coefficient is calculated. It has a normalization part that converts to line integrals,
The X-ray CT apparatus, wherein the weighted averaging unit performs weighted averaging on a line integral of the water normalized X-ray source weak coefficient.
請求項6に記載のX線CT装置において、
前記重み付け平均化部の出力を用いて、画像再構成を行う画像再構成部を有することを特徴とするX線CT装置。
The X-ray CT apparatus according to claim 6,
An X-ray CT apparatus comprising an image reconstruction unit that performs image reconstruction using an output of the weighted averaging unit.
請求項7に記載のX線CT装置において、
前記重み付け平均化部の出力を用いて、画像再構成を行う画像再構成部を有することを特徴とするX線CT装置。
The X-ray CT apparatus according to claim 7,
An X-ray CT apparatus comprising an image reconstruction unit that performs image reconstruction using an output of the weighted averaging unit.
請求項7に記載のX線CT装置において、
平坦な重み付け関数を用いた画像再構成で得られた水規格化X線線減弱係数値断層画像を恒基準水規格化X線線減弱係数として記録する記録部を有することを特徴とするX線CT装置。
The X-ray CT apparatus according to claim 7,
An X-ray comprising a recording unit for recording a water-standardized X-ray attenuation coefficient value tomographic image obtained by image reconstruction using a flat weighting function as a constant reference water-normalized X-ray attenuation coefficient CT device.
JP2008252139A 2008-09-30 2008-09-30 X-ray CT image reconstruction method using energy information Expired - Fee Related JP5049937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252139A JP5049937B2 (en) 2008-09-30 2008-09-30 X-ray CT image reconstruction method using energy information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252139A JP5049937B2 (en) 2008-09-30 2008-09-30 X-ray CT image reconstruction method using energy information

Publications (2)

Publication Number Publication Date
JP2010082031A true JP2010082031A (en) 2010-04-15
JP5049937B2 JP5049937B2 (en) 2012-10-17

Family

ID=42246592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252139A Expired - Fee Related JP5049937B2 (en) 2008-09-30 2008-09-30 X-ray CT image reconstruction method using energy information

Country Status (1)

Country Link
JP (1) JP5049937B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147004A1 (en) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Multi-energy imaging
KR101605896B1 (en) * 2014-01-24 2016-03-23 기초과학연구원 Apparatus and method for computerized tomography image processing
JP2016052349A (en) * 2014-09-02 2016-04-14 株式会社東芝 X-ray ct apparatus, image processing apparatus and image processing program
US9349494B2 (en) 2012-03-07 2016-05-24 Koninklijke Philips N.V. X-ray beam shaper
WO2017069286A1 (en) * 2015-10-23 2017-04-27 株式会社ジョブ X-ray device, data processing device, and data processing method
US9747704B2 (en) 2013-01-07 2017-08-29 Toshiba Medical Systems Corporation X-ray computed tomography apparatus and medical image processing apparatus
CN107345923A (en) * 2016-05-05 2017-11-14 清华大学 X-ray detection method and X-ray detector
WO2017221673A1 (en) * 2016-06-21 2017-12-28 株式会社日立製作所 X-ray ct image reconstruction apparatus, x-ray ct image reconstruction method, and x-ray ct apparatus
WO2018021652A1 (en) * 2016-07-28 2018-02-01 가톨릭대학교 산학협력단 Radiation dose estimating method of mri-based composite image using lookup table
US10182775B2 (en) 2013-04-04 2019-01-22 Toshiba Medical Systems Corporation X-ray computed tomography apparatus including a first X-ray detector and a second X-ray detector for counting X-ray photons

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210142A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Energy differential image processing method
JP2006101926A (en) * 2004-09-30 2006-04-20 M & C:Kk Radiation detector, radiation image diagnostic device and generation method of radiation image
US20060109949A1 (en) * 2004-11-24 2006-05-25 Tkaczyk J E System and method for acquisition and reconstruction of contrast-enhanced, artifact-reduced ct images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210142A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Energy differential image processing method
JP2006101926A (en) * 2004-09-30 2006-04-20 M & C:Kk Radiation detector, radiation image diagnostic device and generation method of radiation image
US20060109949A1 (en) * 2004-11-24 2006-05-25 Tkaczyk J E System and method for acquisition and reconstruction of contrast-enhanced, artifact-reduced ct images

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2702563B1 (en) * 2011-04-28 2019-11-27 Koninklijke Philips N.V. Multi-energy imaging
WO2012147004A1 (en) * 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Multi-energy imaging
US9324142B2 (en) 2011-04-28 2016-04-26 Koninklijke Philips N.V. Multi-energy imaging
US9349494B2 (en) 2012-03-07 2016-05-24 Koninklijke Philips N.V. X-ray beam shaper
US9747704B2 (en) 2013-01-07 2017-08-29 Toshiba Medical Systems Corporation X-ray computed tomography apparatus and medical image processing apparatus
US10182775B2 (en) 2013-04-04 2019-01-22 Toshiba Medical Systems Corporation X-ray computed tomography apparatus including a first X-ray detector and a second X-ray detector for counting X-ray photons
KR101605896B1 (en) * 2014-01-24 2016-03-23 기초과학연구원 Apparatus and method for computerized tomography image processing
JP2016052349A (en) * 2014-09-02 2016-04-14 株式会社東芝 X-ray ct apparatus, image processing apparatus and image processing program
WO2017069286A1 (en) * 2015-10-23 2017-04-27 株式会社ジョブ X-ray device, data processing device, and data processing method
CN107345923A (en) * 2016-05-05 2017-11-14 清华大学 X-ray detection method and X-ray detector
US10724969B2 (en) 2016-05-05 2020-07-28 Nuctech Company Limited X-ray detection method and X-ray detector
WO2017221673A1 (en) * 2016-06-21 2017-12-28 株式会社日立製作所 X-ray ct image reconstruction apparatus, x-ray ct image reconstruction method, and x-ray ct apparatus
US10363002B2 (en) 2016-06-21 2019-07-30 Hitachi, Ltd. X-ray CT image reconstruction device, X-ray CT image reconstruction method, and X-ray CT apparatus
WO2018021652A1 (en) * 2016-07-28 2018-02-01 가톨릭대학교 산학협력단 Radiation dose estimating method of mri-based composite image using lookup table
US10602956B2 (en) 2016-07-28 2020-03-31 Catholic University Industry-Academic Cooperation Foundation Radiation dose estimating method of MRI based composite image using lookup table

Also Published As

Publication number Publication date
JP5049937B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5049937B2 (en) X-ray CT image reconstruction method using energy information
Siewerdsen et al. The influence of antiscatter grids on soft‐tissue detectability in cone‐beam computed tomography with flat‐panel detectors: antiscatter grids in cone‐beam CT
Manduca et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT
Zhao et al. Experimental validation of a three‐dimensional linear system model for breast tomosynthesis
Geleijns et al. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality
US7760848B2 (en) Method and system for generating a multi-spectral image of an object
Graham et al. Compensators for dose and scatter management in cone‐beam computed tomography
Prakash et al. Task‐based modeling and optimization of a cone‐beam CT scanner for musculoskeletal imaging
Rajagopal et al. Comparison of low dose performance of photon-counting and energy integrating CT
Yu et al. How low can we go in radiation dose for the data-completion scan on a research whole-body photon-counting computed tomography system
US10573028B2 (en) Guided filter for multiple level energy computed tomography (CT)
US9254110B2 (en) Automatically obtaining optimized output data
Yang et al. Noise power properties of a cone‐beam CT system for breast cancer detection
Gay et al. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT
Wang et al. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan
Manson et al. Image noise in radiography and tomography: Causes, effects and reduction techniques
Higuchi et al. Detection of ground-glass opacities by use of hybrid iterative reconstruction (iDose) and low-dose 256-section computed tomography: a phantom study
Li et al. Implementation of dual‐energy technique for virtual monochromatic and linearly mixed CBCTs
Hara et al. Image quality dependence on in-plane positions and directions for MDCT images
Elhamiasl et al. Low-dose x-ray CT simulation from an available higher-dose scan
Imai et al. Statistical characteristics of streak artifacts on CT images: Relationship between streak artifacts and mA s values
Steidel et al. Dose reduction potential in diagnostic single energy CT through patient‐specific prefilters and a wider range of tube voltages
CN111818851A (en) Non-spectral Computed Tomography (CT) scanner configured to generate spectral volumetric image data
Yang Characterization of scattered X-ray photons in dental cone-beam computed tomography
Li et al. Estimation of signal and noise for a whole-body research photon-counting CT system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees