JP2010080471A - Polishing method of sic single crystal substrate - Google Patents

Polishing method of sic single crystal substrate Download PDF

Info

Publication number
JP2010080471A
JP2010080471A JP2008243748A JP2008243748A JP2010080471A JP 2010080471 A JP2010080471 A JP 2010080471A JP 2008243748 A JP2008243748 A JP 2008243748A JP 2008243748 A JP2008243748 A JP 2008243748A JP 2010080471 A JP2010080471 A JP 2010080471A
Authority
JP
Japan
Prior art keywords
single crystal
polishing
sic single
substrate
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008243748A
Other languages
Japanese (ja)
Inventor
Naoyuki Ikenaka
直行 生中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008243748A priority Critical patent/JP2010080471A/en
Publication of JP2010080471A publication Critical patent/JP2010080471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method of an SiC single crystal substrate by which the presence of an affected layer can be grasped in a CMP (chemical mechanical polishing) process and the continuation and finish of the CMP process can be easily determined. <P>SOLUTION: The polishing method of the SiC single crystal substrate includes: a mechanical polishing process for mechanically polishing a monitor substrate which has a first region having a first impurity concentration and a second region having a second impurity concentration greater than the first impurity concentration, and is formed of a SiC single crystal, and the SiC single crystal substrate having an impurity concentration equal to the first impurity concentration; the CMP process for CMP-processing the monitor substrate and the SiC single crystal substrate after the mechanical polishing process; a step measurement process for measuring a step between the first region and the second region of the monitor substrate after the CMP process; and a polishing finish determination process for determining polishing finish when the measured step is within a predetermined range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体基板の製造方法に関し、特にSiC単結晶基板のCMP技術に関する。   The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly to a CMP technique for a SiC single crystal substrate.

半導体基板の製造プロセスは、結晶成長させたインゴット材料を基板化するスライス、基板形状、表面粗さを整える研磨の工程からなる。研磨は、複数の工程からなり、最終的には前工程までにできた加工変質層を取り除くためのCMP(化学的機械的研磨)工程を行い、基板最表面の状態を均質にする。   The manufacturing process of a semiconductor substrate includes a slicing step for forming a crystal-grown ingot material into a substrate, a polishing step for adjusting the substrate shape and surface roughness. The polishing is composed of a plurality of steps, and finally, a CMP (Chemical Mechanical Polishing) step for removing the work-affected layer formed up to the previous step is performed to make the state of the outermost surface of the substrate uniform.

従来、加工変質層を除去できたかどうかは、別途作製した加工変質層測定用サンプルを用いて測定対象物表面に付けた溝を直接観察する方法(例えば、特許文献1を参照。)、または加工終了後にエッチングを行い、エッチングレートの変化量やエッチピットの増加率、あるいはX線ロッキングカーブの半値幅の変化量により確認していた(例えば、特許文献2、特許文献3及び特許文献4を参照。)。
特開2001−296118号公報(第7頁、第6図) 特開平10−112485号公報(第1頁、第1図) 特許第2894154号公報(第4頁、第1図) 特開平5−288540号公報(第2頁)
Conventionally, whether or not the work-affected layer has been removed can be determined by a method of directly observing a groove formed on the surface of a measurement object using a separately prepared work-affected layer measurement sample (see, for example, Patent Document 1) or processing. Etching was performed after completion, and was confirmed by the change rate of the etching rate, the increase rate of the etch pits, or the change amount of the half width of the X-ray rocking curve (see, for example, Patent Document 2, Patent Document 3 and Patent Document 4) .)
JP 2001-296118 A (page 7, FIG. 6) JP-A-10-112485 (first page, FIG. 1) Japanese Patent No. 2894154 (page 4, FIG. 1) Japanese Patent Laid-Open No. 5-288540 (page 2)

しかしながら従来の方法では、CMP工程を行っているときに、加工変質層の厚みを測定できないため、適正なCMP加工量を加工中に知ることができなかった。そのためCMP工程での研磨量不足であれば加工変質層が残り、反対に研磨量が多すぎると前工程で研磨した基板形状が崩れてしまうという課題があった。   However, in the conventional method, since the thickness of the work-affected layer cannot be measured during the CMP process, an appropriate CMP processing amount cannot be known during the processing. For this reason, if the polishing amount in the CMP process is insufficient, the work-affected layer remains, and conversely, if the polishing amount is too large, the substrate shape polished in the previous process is destroyed.

本発明は、前記従来の課題を解決するもので、SiC単結晶基板のCMP工程において、加工変質層の有無を把握し、かつ適正な研磨終点を検出する方法を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a method for grasping the presence or absence of a work-affected layer and detecting an appropriate polishing end point in a CMP process of a SiC single crystal substrate.

前記従来の課題を解決するために、本発明のSiC単結晶基板の研磨方法は、第1の不純物濃度を持つ第1の領域と前記第1の不純物濃度よりも大きい第2の不純物濃度を持つ第2の領域とを持つSiC単結晶から成るモニター基板と前記第1の不純物濃度と同一の不純物濃度を持つSiC単結晶基板とを共に機械研磨加工する機械研磨工程と、前記機械研磨工程を経た前記モニター基板と前記SiC単結晶基板とを共にCMP加工するCMP工程と、前記CMP工程を経た前記モニター基板の前記第1の領域と前記第2の領域との段差を測定する段差測定工程と、前記測定された段差が所定の範囲で有れば研磨終了と判断する研磨終了判定工程と、からなることを特徴とする。   In order to solve the above-described conventional problems, a method for polishing a SiC single crystal substrate according to the present invention has a first region having a first impurity concentration and a second impurity concentration higher than the first impurity concentration. A mechanical polishing step of mechanically polishing a monitor substrate made of an SiC single crystal having a second region and an SiC single crystal substrate having the same impurity concentration as the first impurity concentration, and the mechanical polishing step A CMP process for performing CMP processing on both the monitor substrate and the SiC single crystal substrate; a step measurement process for measuring a step between the first region and the second region of the monitor substrate that has undergone the CMP step; A polishing end determination step of determining that polishing is ended if the measured level difference is within a predetermined range.

本発明のSiC単結晶基板の研磨方法によれば、CMPの途中であってもモニター基板上に形成される段差を測定することで非常に簡便に基板上の加工変質層の有無を知ることができる。   According to the method for polishing a SiC single crystal substrate of the present invention, it is possible to know the presence or absence of a work-affected layer on a substrate very easily by measuring a step formed on a monitor substrate even during CMP. it can.

またこの基板は通常の機械的な研磨加工で段差を消すことができ、再利用可能である。さらに所定の厚みがない等の理由でSiC単結晶基板として使用できないインゴット端部分を使用すれば基板取り数を減らすことなく利用することもできる。   In addition, the step can be removed by a normal mechanical polishing process and can be reused. Furthermore, if an ingot end portion that cannot be used as a SiC single crystal substrate is used because of a lack of a predetermined thickness, it can be used without reducing the number of substrates.

本発明のSiC単結晶基板の研磨方法の一例について、図面を用いて詳細に説明する。なお、本明細書における段差は、光干渉式表面粗さ測定装置によって測定された値を言う。   An example of the method for polishing a SiC single crystal substrate of the present invention will be described in detail with reference to the drawings. In addition, the level | step difference in this specification says the value measured by the optical interference type surface roughness measuring apparatus.

(実施の形態1)
本実施例では、4°のオフ角を持つ4H−n型3インチサイズのSiC単結晶基板を例に取り、その研磨終点を検出する方法について説明する。ここでオフ角とはSiC単結晶の<0001>面(on−axis面)から<11−20>方向への角度を示す。許容できるオフ角のバラツキは、およそ±0.5°である。
(Embodiment 1)
In this example, a 4H-n type 3-inch SiC single crystal substrate having an off angle of 4 ° is taken as an example, and a method for detecting the polishing end point will be described. Here, the off-angle indicates an angle from the <0001> plane (on-axis plane) of the SiC single crystal to the <11-20> direction. The allowable off-angle variation is approximately ± 0.5 °.

図1に、本実施例で使用するモニター基板1を示す。モニター基板1は、研磨終点を検出するSiC単結晶基板2と同じポリタイプ、オフ角、不純物を持つSiC単結晶基板2である。モニター基板1は、図1中にあるように一部に不純物濃度の異なる層Bを持っている。この層B以外の領域の不純物濃度は、研磨終点を検出するSiC単結晶基板2と同じである。Bの不純物濃度は、他の部分と比べて高い濃度である。   FIG. 1 shows a monitor substrate 1 used in this embodiment. The monitor substrate 1 is a SiC single crystal substrate 2 having the same polytype, off-angle, and impurities as the SiC single crystal substrate 2 that detects the polishing end point. As shown in FIG. 1, the monitor substrate 1 partially has a layer B having a different impurity concentration. The impurity concentration in the region other than this layer B is the same as that of the SiC single crystal substrate 2 for detecting the polishing end point. The impurity concentration of B is higher than other portions.

この不純物濃度の異なる層Bは、金属定盤とダイヤモンド砥粒を用いて行う機械研磨工程では他の部分と同じように研磨加工される。しかし、研磨パッドとコロイダルシリカを用いて行うCMP工程では、不純物濃度の異なる層Bの部分が他の部分よりも速く研磨加工されてしまうため、この層Bとの境界で段差が生じる。これは、不純物がより多く混合されている層Bは、不純物濃度が低い部分と比較すると機械的にも化学的にも不安定になり易いため、このような段差が生じ易いと考えられる。   The layer B having a different impurity concentration is polished in the same manner as other portions in a mechanical polishing process using a metal surface plate and diamond abrasive grains. However, in the CMP process performed using the polishing pad and colloidal silica, the portion of the layer B having a different impurity concentration is polished faster than the other portions, so that a step is generated at the boundary with the layer B. This is probably because the layer B in which more impurities are mixed tends to be unstable both mechanically and chemically compared to a portion having a low impurity concentration, and thus such a step is likely to occur.

CMPの目的は、機械研磨工程で生じる加工変質層を除去であるが、CMPをやりすぎた場合、機械研磨工程で修正された基板の形状を悪化させることになる。そのため、再度機械研磨工程で基板の形状を修正する必要がある。ところが、加工変質層の除去状態は、測定するのが極めて困難である。   The purpose of CMP is to remove the work-affected layer that occurs in the mechanical polishing process. However, if CMP is performed excessively, the shape of the substrate corrected in the mechanical polishing process is deteriorated. Therefore, it is necessary to correct the shape of the substrate again in the mechanical polishing process. However, the removal state of the work-affected layer is extremely difficult to measure.

そのため本発明では、図1に示したモニター基板1とモニター基板1と同一のポリタイプ、オフ角、不純物を持ち、モニター基板1の不純物濃度の低い方と同じ不純物濃度を持つSiC単結晶基板2とを同時に同条件で、機械研磨工程、CMP工程を行うことを特徴とする。このようにすることで、モニター基板1とSiC単結晶基板2との形成される加工変質層の厚みや基板形状の変化がほぼ同じとなることを利用し、事前にモニター基板1の段差に所定の範囲を決めておけば、容易にSiC単結晶基板2の研磨終点を検出することができる。また、CMP工程をやりすぎた場合でもモニター基板1は再度機械研磨工程に戻し機械研磨を行えば、CMP工程で形成された段差はなくなるため、再度CMP工程で使用することができる。   Therefore, in the present invention, the SiC single crystal substrate 2 having the same polytype, off-angle, and impurities as the monitor substrate 1 shown in FIG. And performing the mechanical polishing process and the CMP process under the same conditions at the same time. By making use of the fact that the change in thickness and substrate shape of the work-affected layer formed between the monitor substrate 1 and the SiC single crystal substrate 2 is substantially the same, a predetermined difference in level on the monitor substrate 1 is obtained in advance. If the range is determined, the polishing end point of the SiC single crystal substrate 2 can be easily detected. Further, even if the CMP process is performed excessively, if the monitor substrate 1 is returned to the mechanical polishing process and mechanical polishing is performed again, the step formed in the CMP process is eliminated, so that it can be used again in the CMP process.

適正なCMP加工量を示すモニター基板1での最小加工量は、X線ロッキングカーブの半値幅の変化量から求めることができる。X線ロッキングカーブの半値幅は単結晶の結晶品質を測定するのに使われる手法で、この値が低ければ結晶性がよく、逆にこの値が高ければ結晶性が悪い。X線ロッキングカーブの半値幅は結晶性が悪い場合、すなわちモニター基板1に加工変質層が残留する場合は、そうでない場合と比較してより大きな値となる。しかし、加工変質層がなくなった場合はより低い値となり、以後はCMPを行っても変化しなくなる。よってX線ロッキングカーブの半値幅が変化しなくなった最初の地点での段差が加工変質層のなくなった最小の状態であり、適正なCMP工程での最小加工量となる。一方、モニター基板1の適正なCMP工程の最大加工量は、基板形状の悪化具合から設定することができる。   The minimum processing amount on the monitor substrate 1 showing an appropriate CMP processing amount can be obtained from the amount of change in the half width of the X-ray rocking curve. The half width of the X-ray rocking curve is a technique used to measure the crystal quality of a single crystal. If this value is low, the crystallinity is good, and conversely if this value is high, the crystallinity is bad. The full width at half maximum of the X-ray rocking curve is a larger value when the crystallinity is poor, that is, when a work-affected layer remains on the monitor substrate 1 as compared with the case where it is not. However, when there is no work-affected layer, the value becomes lower, and after that, even if CMP is performed, it does not change. Therefore, the step at the first point where the half width of the X-ray rocking curve no longer changes is the minimum state in which the work-affected layer has disappeared, and is the minimum processing amount in an appropriate CMP process. On the other hand, the maximum processing amount of the appropriate CMP process for the monitor substrate 1 can be set based on the deterioration of the substrate shape.

以下にモニター基板1の作製方法について説明する。本実施例においては不純物に窒素を使用するが、n型であればリン、砒素、p型であればボロン、アルミニウムなど他の不純物を使用してもよい。   A method for manufacturing the monitor substrate 1 will be described below. In this embodiment, nitrogen is used as an impurity, but other impurities such as phosphorus and arsenic may be used for n-type, and boron and aluminum may be used for p-type.

図2は、本実施例で用いたSiC単結晶インゴット成長装置の概略図である。これを用いてモニター基板1を作製することが出来る。坩堝3内に炭化珪素原料4を収容し、蓋体5の種結晶支持部に固定した種結晶6を、炭化珪素原料4に対向するように配置する。種結晶支持部は直径75mmの円柱状で、種結晶6の口径は、種結晶支持部と同じく75mmとする。SiC単結晶インゴットは種結晶6の口径から少しずつ大きくなっていくので3インチの口径をSiC単結晶インゴットから取り出すことはできる。   FIG. 2 is a schematic view of the SiC single crystal ingot growth apparatus used in this example. Using this, the monitor substrate 1 can be manufactured. The silicon carbide raw material 4 is housed in the crucible 3, and the seed crystal 6 fixed to the seed crystal support portion of the lid 5 is arranged so as to face the silicon carbide raw material 4. The seed crystal support is a cylinder with a diameter of 75 mm, and the diameter of the seed crystal 6 is 75 mm, the same as the seed crystal support. Since the SiC single crystal ingot gradually increases from the diameter of the seed crystal 6, a 3 inch diameter can be taken out from the SiC single crystal ingot.

昇華再結晶法を用いた炭化珪素単結晶成長では、炭化珪素原料4を昇華させなければならないが、炭化珪素の昇華は、2000℃以上の高温が必要である。2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、坩堝3および蓋体5を断熱材7で覆う必要がある。この断熱材7で覆った坩堝3及び蓋体5を、石英製の反応管8内に配置する。この反応管8は、二重管構造になっており、結晶成長中には、冷却水9を流して冷却している。また反応管8の上部にガス導入口10が、下部にはガス排気口11が設けられている。   In silicon carbide single crystal growth using the sublimation recrystallization method, the silicon carbide raw material 4 must be sublimated, but the sublimation of silicon carbide requires a high temperature of 2000 ° C. or higher. At a high temperature of 2000 ° C. or higher, the radiant heat is lost in proportion to the fourth power of the temperature, so the crucible 3 and the lid 5 need to be covered with the heat insulating material 7. The crucible 3 and the lid 5 covered with the heat insulating material 7 are placed in a quartz reaction tube 8. The reaction tube 8 has a double tube structure, and is cooled by flowing cooling water 9 during crystal growth. A gas inlet 10 is provided at the upper part of the reaction tube 8, and a gas outlet 11 is provided at the lower part.

その後、反応管8内部を不活性ガスで置換するが、不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口20から反応管8内を高真空排気し、その後、ガス導入口10から不活性ガスを常圧まで充填する。ここでSiC単結晶インゴットに不純物を導入するため、窒素ガスを流す。それぞれアルゴンガスを30sccm、窒素ガスを20sccmの流量で導入する。   Thereafter, the inside of the reaction tube 8 is replaced with an inert gas. Argon (Ar) is suitable as the inert gas in terms of cost, purity, and the like. In this inert gas replacement, the inside of the reaction tube 8 is first evacuated to a high vacuum from the gas exhaust port 20 and then filled with an inert gas from the gas inlet 10 to normal pressure. Here, nitrogen gas is flowed to introduce impurities into the SiC single crystal ingot. Argon gas is introduced at a flow rate of 30 sccm and nitrogen gas is introduced at a flow rate of 20 sccm.

その後、反応管8の周囲にらせん状に巻かれたコイル12に高周波電流を流すことにより、坩堝3および蓋体5を高周波加熱し昇温する。昇温時には、反応管8内部は、数10kPa程度の圧力にしておく必要がある。これは、低温時(所望の結晶成長温度以下)における炭化珪素原料4の昇華を防ぎ、結晶成長を開始させないようにするためである。   Thereafter, the crucible 3 and the lid 5 are heated at a high frequency by causing a high frequency current to flow through the coil 12 spirally wound around the reaction tube 8 to raise the temperature. When raising the temperature, the inside of the reaction tube 8 needs to be kept at a pressure of about several tens of kPa. This is to prevent sublimation of the silicon carbide raw material 4 at low temperatures (below the desired crystal growth temperature) and prevent crystal growth from starting.

加熱時の温度制御は、反応管8上下部に設けられている石英製の温度測定用窓13、及び断熱材7の上下部に設けられた温度測定用の穴を通して、放射温度計14で、坩堝3下部、及び蓋体5上部の温度を測定し、高周波電源(図示せず)にフィードバックをかけ、コイル12に流す高周波電流を制御して行っている。このようにして、所望の温度まで昇温した後、徐々に圧力を下げて結晶成長を開始させる。本実施例では、坩堝4下部温度を2250℃、坩堝4上部の中心点の温度を2200℃、反応管8内部の圧力を0.133kPaとし、35時間保持して結晶成長を行う。   Temperature control at the time of heating is performed by a radiation thermometer 14 through a temperature measuring window 13 made of quartz provided in the upper and lower portions of the reaction tube 8 and a temperature measuring hole provided in the upper and lower portions of the heat insulating material 7. The temperature at the lower part of the crucible 3 and the upper part of the lid 5 is measured, feedback is applied to a high-frequency power source (not shown), and the high-frequency current flowing through the coil 12 is controlled. Thus, after raising the temperature to a desired temperature, the pressure is gradually reduced to start crystal growth. In this example, the temperature at the bottom of the crucible 4 is 2250 ° C., the temperature at the center of the top of the crucible 4 is 2200 ° C., the pressure inside the reaction tube 8 is 0.133 kPa, and crystal growth is performed for 35 hours.

その後、窒素濃度の高い層を形成するため窒素ガス流量を70sccmに変え、3分間保持した後、窒素ガスの流量を20sccmに戻し、5時間結晶成長を行う。結晶成長終了時は、成長開始時とは逆に、反応管8内部の圧力を80kPaまで1時間かけて昇圧して、炭化珪素原料4からの原料の昇華を止め、その後、常温までゆっくりと冷却する。   Thereafter, in order to form a layer having a high nitrogen concentration, the nitrogen gas flow rate is changed to 70 sccm and held for 3 minutes, after which the nitrogen gas flow rate is returned to 20 sccm and crystal growth is performed for 5 hours. At the end of crystal growth, contrary to the start of growth, the pressure inside the reaction tube 8 is increased to 80 kPa over 1 hour to stop the sublimation of the raw material from the silicon carbide raw material 4 and then slowly cooled to room temperature. To do.

以上の条件により作製したモニター基板1となる部分を含むSiC単結晶のインゴットをスライスし、モニター基板1および通常のSiC単結晶基板2を得る。各基板はスライス後、研磨加工を行うことになる。上記SiC単結晶成長方法により作製されたSiC単結晶インゴットは一部に窒素濃度の高い層を持つ状態となる。このSiC単結晶インゴットを4°の傾斜(4°のオフ角)を持ってワイヤーソーなどの切断装置にてスライスすると、スライスされたSiC単結晶基板2の一部は図1のように窒素濃度の異なる領域を持った状態のモニター基板1となる。   The SiC single crystal ingot including the portion to be the monitor substrate 1 manufactured under the above conditions is sliced to obtain the monitor substrate 1 and the normal SiC single crystal substrate 2. Each substrate is polished after being sliced. The SiC single crystal ingot produced by the SiC single crystal growth method is partially in a state having a high nitrogen concentration layer. When this SiC single crystal ingot is sliced with a cutting device such as a wire saw with an inclination of 4 ° (off angle of 4 °), a part of the sliced SiC single crystal substrate 2 has a nitrogen concentration as shown in FIG. Thus, the monitor substrate 1 has a different area.

なお窒素濃度の異なる領域を持たない大部分のSiC単結晶基板2は通常の基板として利用可能である。また前述のSiC単結晶インゴットの作製方法において窒素ガスの流量を変化させる箇所は本実施例のようにSiC単結晶インゴットの成長終盤でなく、成長の序盤でもよいが、成長中盤で変化させるとスライス後のSiC単結晶基板2の大部分がモニター基板1となってしまうのでモニター基板1が多量にほしい場合を除いては行わないほうがよい。   Note that most SiC single crystal substrates 2 that do not have regions with different nitrogen concentrations can be used as ordinary substrates. Further, in the above-described method for producing a SiC single crystal ingot, the portion where the flow rate of nitrogen gas is changed is not at the end of the growth of the SiC single crystal ingot as in this embodiment, but may be at the beginning of the growth. Since most of the subsequent SiC single crystal substrate 2 becomes the monitor substrate 1, it is better not to perform unless the monitor substrate 1 is desired in large quantities.

上記のSiC単結晶成長方法により作製されたSiC単結晶インゴット中の窒素濃度は窒素ガスの流量が20sccmの時はおよそ5×1018以上1×1019未満で、窒素濃度を70sccmにした場合にはおよそ2×1019以上で5×1019未満となる。このSiC単結晶インゴットをスライスしてSiC単結晶基板2とした場合、5×1018以上1×1019未満の窒素濃度を持つ。またモニター基板1の場合には5×1018以上1×1019未満の窒素濃度の部分に2×1019以上で5×1019未満の窒素濃度の層が入った状態となる。 The nitrogen concentration in the SiC single crystal ingot produced by the above SiC single crystal growth method is approximately 5 × 10 18 or more and less than 1 × 10 19 when the flow rate of nitrogen gas is 20 sccm, and the nitrogen concentration is 70 sccm. Is approximately 2 × 10 19 or more and less than 5 × 10 19 . When this SiC single crystal ingot is sliced into the SiC single crystal substrate 2, it has a nitrogen concentration of 5 × 10 18 or more and less than 1 × 10 19 . In the case of the monitor substrate 1, a layer having a nitrogen concentration of 2 × 10 19 or more and less than 5 × 10 19 is placed in a portion having a nitrogen concentration of 5 × 10 18 or more and less than 1 × 10 19 .

図3は本実施例おけるSiC単結晶基板の研磨方法のプロセス概略を示したフローチャートである。フローチャートはa)機械研磨工程(金属定盤とダイヤモンドを研磨砥粒として用いる1つまたは複数の工程)、b)CMP工程、c)段差測定工程からなる。   FIG. 3 is a flowchart showing an outline of the process of the method for polishing a SiC single crystal substrate in the present embodiment. The flowchart comprises a) a mechanical polishing step (one or more steps using a metal surface plate and diamond as polishing grains), b) a CMP step, and c) a step measurement step.

a)、b)の工程は前述のSiC単結晶からなるモニター基板1と通常のSiC単結晶基板2を同時に同条件で加工する。b)CMP工程では、モニター基板1には前述のように窒素濃度の異なる領域(図1に示した層B)が基板に形成されているので、この領域が他の部分より速く削れ、段差を形成する。c)の段差測定工程ではモニター基板1上の段差を測定し、測定結果によって適切なCMP加工量の有無を判断する。(研磨終了判定の工程)CMPによる加工量が適正であれば、段差は所定の範囲となり、CMP工程は終了する。CMPによる加工量が不足していた場合、即ち加工変質層が残留している場合は、段差は浅くなり、再度b)CMP工程を行う。   In the steps a) and b), the monitor substrate 1 made of the SiC single crystal and the normal SiC single crystal substrate 2 are simultaneously processed under the same conditions. b) In the CMP process, the monitor substrate 1 is formed with the region having the different nitrogen concentration (the layer B shown in FIG. 1) on the substrate as described above. Form. In step c), the step on the monitor substrate 1 is measured, and the presence or absence of an appropriate CMP processing amount is determined based on the measurement result. (Polishing end determination step) If the amount of processing by CMP is appropriate, the step becomes a predetermined range, and the CMP step ends. If the processing amount by CMP is insufficient, that is, if the work-affected layer remains, the step becomes shallow and b) the CMP process is performed again.

一方、CMPによる加工量が過剰だった場合はモニター基板1およびSiC単結晶基板2の形状が悪化するため、a)機械研磨工程まで戻り基板形状を平坦化させねばならない。モニター基板1はa)機械研磨工程に戻すことでb)CMP工程で形成されていた段差が消えるため再度同様の加工を行うことができ、再利用することが可能である。ここでb)CMP工程での研磨レートは研磨パッドの劣化等により加工レートが低下するため、単純に時間のみで加工変質層の有無を知ることができない。   On the other hand, if the amount of processing by CMP is excessive, the shapes of the monitor substrate 1 and the SiC single crystal substrate 2 are deteriorated. Therefore, the substrate shape must be flattened by returning to a) mechanical polishing step. By returning the monitor substrate 1 to a) the mechanical polishing step and b) the step formed in the CMP step disappears, the same processing can be performed again, and the monitor substrate 1 can be reused. Here, since the polishing rate in the b) CMP step is lowered due to deterioration of the polishing pad or the like, it is not possible to know the presence or absence of a work-affected layer simply by time alone.

a)機械研磨工程はモニター基板1と通常のSiC単結晶基板2を同時に同条件で金属定盤とダイヤモンド砥粒を用いて粗研磨および精密研磨加工を行う工程であり、モニター基板1およびSiC単結晶基板2を平坦化することを目的とする。   a) The mechanical polishing process is a process in which the monitor substrate 1 and the normal SiC single crystal substrate 2 are simultaneously subjected to rough polishing and precision polishing using a metal surface plate and diamond abrasive grains under the same conditions. The purpose is to flatten the crystal substrate 2.

図4Aは、本実施例で用いたa)機械研磨工程を行うための研磨装置の概略図である。また図4Bは図4A中の研磨ブロック3の拡大図であり、図4Cは図4Bの研磨ブロック3を構成する部材を示す斜視図である。研磨ブロック3は、図4Bに示すようにワークガイド4の上に加圧を行なうための重り5を載せた構造となっており、モニター基板1またはSiC単結晶基板2は、図4Cに示すように貼り付けジグ6の下面に取り付けられワークガイド4の中に格納されている。   FIG. 4A is a schematic diagram of a polishing apparatus for performing a) mechanical polishing process used in this example. 4B is an enlarged view of the polishing block 3 in FIG. 4A, and FIG. 4C is a perspective view showing members constituting the polishing block 3 in FIG. 4B. The polishing block 3 has a structure in which a weight 5 for applying pressure is placed on the work guide 4 as shown in FIG. 4B. The monitor substrate 1 or the SiC single crystal substrate 2 is as shown in FIG. 4C. Attached to the lower surface of the jig 6 and stored in the work guide 4.

図4Cにおいてモニター基板1およびSiC単結晶基板2は1枚ずつ貼り付けジグ6に取り付けられているが、同サイズの物を複数枚同時に貼り付けても良い。またモニター基板1およびSiC単結晶基板2は熱可溶性の接着剤で貼り付けジグ6に貼り付ければよい。このようにして組み立てられた研磨ブロック3を、研磨定盤7を回転させることでアーム8に支えられる形でモニター基板1またはSiC単結晶基板2、貼り付けジグ6、おもり5、ワークガイド4が研磨定盤7上を回転することで、モニター基板1またはSiC単結晶基板2の研磨を行う。   In FIG. 4C, the monitor substrate 1 and the SiC single crystal substrate 2 are attached to the attaching jig 6 one by one, but a plurality of the same size may be attached simultaneously. The monitor substrate 1 and the SiC single crystal substrate 2 may be attached to the attachment jig 6 with a heat-soluble adhesive. The polishing block 3 assembled in this manner is supported by the arm 8 by rotating the polishing surface plate 7, and the monitor substrate 1 or the SiC single crystal substrate 2, the attaching jig 6, the weight 5, and the work guide 4 are provided. The monitor substrate 1 or the SiC single crystal substrate 2 is polished by rotating on the polishing platen 7.

このときに、研磨剤9を定期的に研磨定盤7上に滴下することで研磨加工を行う。本実施例ではa)機械研磨工程の最後の工程では粒径が1μmのダイヤモンドを研磨剤9として用い、研磨定盤7には錫定盤を使用する。この時は重り5によるモニター基板1およびSiC単結晶基板2への加圧は面圧で100g/cm2程度、研磨定盤7の回転数は40rpm程度とする。b)CMP工程はSiC単結晶からなるモニター基板1と通常のSiC単結晶基板2を同時に同条件でコロイダルシリカ砥粒を用いてCMPを行う工程であり、モニター基板1およびSiC単結晶基板2の加工変質層を除去することを目的とする。   At this time, polishing is performed by dropping the polishing agent 9 periodically onto the polishing surface plate 7. In this embodiment, a) Diamond having a particle diameter of 1 μm is used as the abrasive 9 in the final step of the mechanical polishing step, and a tin surface plate is used as the polishing surface plate 7. At this time, the pressure applied to the monitor substrate 1 and the SiC single crystal substrate 2 by the weight 5 is about 100 g / cm 2 in terms of surface pressure, and the rotation speed of the polishing surface plate 7 is about 40 rpm. b) The CMP process is a process in which the monitor substrate 1 made of SiC single crystal and the normal SiC single crystal substrate 2 are simultaneously subjected to CMP using colloidal silica abrasive grains under the same conditions. The purpose is to remove the work-affected layer.

図5Aは本実施例で用いたb)CMP工程を行うための研磨装置の概略図である。図4Aのa)機械研磨工程を行うための研磨装置と似ているが研磨定盤7の上に研磨パッド10を貼っている点と研磨剤9がコロイダルシリカである点が異なる。研磨パッド10は不織布にウレタンを染み込ませたものなどがよい。またモニター基板1およびSiC単結晶基板2と貼り付けジグ6の間にパッキングフィルム11を入れ熱可溶性の接着剤を使用せずに各基板を固定している。この時は重り5によるモニター基板1およびSiC単結晶基板2への加圧は面圧で500g/cm2程度、研磨定盤7の回転数は40rpm程度とする。また本実施の形態では研磨パッドにはニッタハース社製のSuba400、コロイダルシリカにはフジミインコーポレーテッド社製のCompol80を使用した。   FIG. 5A is a schematic view of a polishing apparatus for performing the b) CMP step used in this example. 4A is similar to the polishing apparatus for performing the mechanical polishing step, but differs in that the polishing pad 10 is pasted on the polishing surface plate 7 and the polishing agent 9 is colloidal silica. The polishing pad 10 is preferably a nonwoven fabric soaked with urethane. Further, a packing film 11 is inserted between the monitor substrate 1 and the SiC single crystal substrate 2 and the attaching jig 6 to fix each substrate without using a heat-soluble adhesive. At this time, the pressure applied to the monitor substrate 1 and the SiC single crystal substrate 2 by the weight 5 is about 500 g / cm 2 in terms of surface pressure, and the rotation speed of the polishing surface plate 7 is about 40 rpm. Further, in this embodiment, Suba400 manufactured by Nitta Haas Co., Ltd. was used as the polishing pad, and Compol 80 manufactured by Fujimi Incorporated Co. was used as the colloidal silica.

c)段差測定工程では、モニター基板1上に形成された段差(図1に示した層Bの付近)を光干渉式表面粗さ測定装置で測定する。本実施例においてはZygo社製のNewView5032を用いて測定を行った。この段差測定により、加工変質層の有無を判断する。   c) In the step measurement step, the step formed on the monitor substrate 1 (in the vicinity of the layer B shown in FIG. 1) is measured with an optical interference type surface roughness measuring device. In the present Example, it measured using NewView5032 made from Zygo. The presence or absence of a work-affected layer is determined by this step measurement.

加工変質層の有無と段差の関係は、モニター基板1の2つの窒素濃度領域の濃度差により異なる。またモニター基板1、SiC単結晶基板2のオフ角によっても若干異なるためa)、b)各工程は同程度のオフ角、窒素濃度のモニター基板1とSiC単結晶基板2の組で加工しなければならない。また加工する基板のサイズも同じにしなければならない。   The relationship between the presence / absence of the work-affected layer and the step differs depending on the concentration difference between the two nitrogen concentration regions of the monitor substrate 1. In addition, since the process differs slightly depending on the off-angles of the monitor substrate 1 and the SiC single crystal substrate 2, a) and b) each process must be processed with the monitor substrate 1 and the SiC single crystal substrate 2 having the same off-angle and nitrogen concentration. I must. Also, the size of the substrate to be processed must be the same.

段差を測定して加工変質層の有無を判定するためには、a)とb)との両方の工程を経たモニター基板1の段差とX線ロッキングカーブとの半値幅の関係を予め測定する。b)CMP工程の研磨時間を増やすと段差が深くなるが、この段差が一定以上の深さになるとX線ロッキングカーブの半値幅が変化しなくなる。この段差深さが加工変質層の存在しない点である。すなわち、X線ロッキングカーブの半値幅が変化しなくなった最初の段差深さが加工変質層の消滅した点であり、これが前述した段差の設定値の最小値となる。   In order to determine the presence or absence of a work-affected layer by measuring the level difference, the relationship between the half width of the level difference of the monitor substrate 1 and the X-ray rocking curve after both steps a) and b) is measured in advance. b) When the polishing time in the CMP process is increased, the step becomes deeper. However, when this step becomes a certain depth or more, the half width of the X-ray rocking curve does not change. This step depth is a point where a work-affected layer does not exist. That is, the first step depth at which the half width of the X-ray rocking curve no longer changes is the point at which the work-affected layer has disappeared, and this is the minimum value of the step setting value described above.

次に段差の設定値の上限値の決め方を説明する。この上限値は、SiC単結晶基板2に許容される形状を示す値(SORIやTTV)の現状値と目標値との影響を受けるので、段差の設定値の最小値と近いほどよい。これはb)CMP工程の時間が長くなるとSORIやTTVが悪化するためである。   Next, how to determine the upper limit value of the step set value will be described. Since this upper limit value is affected by the current value of the value (SORI or TTV) indicating the shape allowed for SiC single crystal substrate 2 and the target value, it is better that the upper limit value is closer to the minimum value of the step set value. This is because b) SORI and TTV deteriorate as the time of the CMP process becomes longer.

モニター基板1はa)機械研磨工程に戻すことで再利用可能であり、また同条件の窒素濃度、オフ角のモニター基板1であれば加工変質層の有無と段差の関係は同じである。   The monitor substrate 1 can be reused by returning to the a) mechanical polishing step, and the relationship between the presence or absence of the work-affected layer and the step is the same as long as the monitor substrate 1 has the same nitrogen concentration and off angle.

上記の条件で作製したモニター基板1の段差とX線ロッキングカーブの半値幅の初期値からの変化量、基板形状の初期値からの変化量の関係を表1に示す。各条件で20回ずつ測定を行った表1に示す「段差」はb)CMP工程にてモニター基板1上に生じた段差の高さをZygo社製のNewView5032を用いて測定した。また、表1に示す「X線ロッキングカーブの半値幅の初期値からの変化量」は、a)機械研磨工程を終了後のモニター基板1のX線ロッキングカーブの半値幅を初期値とし、この初期値に対するb)CMP工程にて生じる「段差」に対応したモニター基板1のX線ロッキングカーブの半値幅の変化量を示したものである。次に、表1に示す「基板形状の初期値からの変化量」は、a)機械研磨工程終了後のSiC単結晶基板2のSORIを初期値とし、この初期値に対するb)CMP工程にて生じる「段差」に対応したモニター基板1SORIの変化量を示したものである。SORIはニデック社製のFT−17にて測定を行い、20回の測定中にSORIの変化量が1000nmを超える場合があれば×とし、500nm以上1000nm未満の場合は△、500nm未満の場合は○とした。500nm程度の差は測定装置の測定誤差に相当するためほとんどSORIは変化していないといえる。   Table 1 shows the relationship between the step of the monitor substrate 1 manufactured under the above conditions, the amount of change from the initial value of the half width of the X-ray rocking curve, and the amount of change from the initial value of the substrate shape. The “steps” shown in Table 1, which were measured 20 times under each condition, were measured using a NewView 5032 manufactured by Zygo Co., Ltd. b) The height of the step formed on the monitor substrate 1 in the CMP process. The “amount of change from the initial value of the half-value width of the X-ray rocking curve” shown in Table 1 is as follows: a) The half-value width of the X-ray rocking curve of the monitor substrate 1 after the mechanical polishing step is set as an initial value. B) The amount of change in the half width of the X-ray rocking curve of the monitor substrate 1 corresponding to the “step” generated in the CMP process with respect to the initial value. Next, “amount of change from the initial value of the substrate shape” shown in Table 1 is as follows: a) SORI of the SiC single crystal substrate 2 after completion of the mechanical polishing process is an initial value, and b) CMP process for this initial value. This shows the amount of change in the monitor substrate 1SORI corresponding to the "step" that occurs. SORI is measured with FT-17 manufactured by NIDEK Co., Ltd., and x when the change in SORI exceeds 1000 nm during 20 measurements, △ when less than 500 nm and less than 1000 nm, and when less than 500 nm ○. Since the difference of about 500 nm corresponds to the measurement error of the measuring apparatus, it can be said that the SORI has hardly changed.

Figure 2010080471
Figure 2010080471

表1の結果から5×1018以上1×1019未満の窒素濃度の部分に2×1019以上で5×1019未満の窒素濃度の層(層B)が設けられたモニター基板1の場合には、段差の設定値は60nm以上100nm以下であればよい。すなわち、表1中の「X線ロッキングカーブの半値幅の初期値からの変化量」は60nmの段差の時まで初期値から変化しているが、段差が60nm以上になった場合は変化しなくなっているので、段差が60nmになると(段差の設定値の最小値)、モニター基板1の加工変質層が除去されたと判断できる。また、「基板形状の初期値からの変化量」の結果から、段差の設定値の最大値は、100nmとなる。従って、モニター基板1の「段差」の高さが60nmから100nmの範囲になると、b)CMP工程を終了する判断とすれば良い。なお、「基板形状の初期値からの変化量」の結果から、SiC単結晶基板2のb)CMP工程前の形状がよければ、段差の設定値の最大値は200nmまで広げることが出来る。 In the case of the monitor substrate 1 in which a layer (layer B) having a nitrogen concentration of 2 × 10 19 or more and less than 5 × 10 19 is provided in a portion having a nitrogen concentration of 5 × 10 18 or more and less than 1 × 10 19 from the results of Table 1. For this, the set value of the step may be 60 nm or more and 100 nm or less. In other words, “the amount of change from the initial value of the half width of the X-ray rocking curve” in Table 1 changes from the initial value until the level difference of 60 nm, but does not change when the level difference exceeds 60 nm. Therefore, when the level difference is 60 nm (the minimum value of the level difference), it can be determined that the work-affected layer of the monitor substrate 1 has been removed. Further, from the result of “the amount of change from the initial value of the substrate shape”, the maximum value of the set value of the step is 100 nm. Therefore, when the height of the “step” of the monitor substrate 1 is in the range of 60 nm to 100 nm, it may be determined that b) the CMP process is finished. From the result of “amount of change from the initial value of the substrate shape”, if the shape of the SiC single crystal substrate 2 before the b) CMP process is good, the maximum value of the set value of the step can be increased to 200 nm.

本実施例においては特に3インチサイズで4°のオフ角を持つ4H−n型SiC単結晶基板の研磨終点を検出する方法について説明をしているが、他のオフ角やポリタイプ、不純物および不純物濃度であっても段差の設定値は変化するものの同様の方法でSiC単結晶基板の研磨終点を検出することができる。   In the present embodiment, a method for detecting the polishing end point of a 4H-n type SiC single crystal substrate having an off angle of 4 ° in a 3 inch size has been described, but other off angles, polytypes, impurities and Although the set value of the step changes even with the impurity concentration, the polishing end point of the SiC single crystal substrate can be detected by the same method.

以上のように、本発明では、まずSiC単結晶のインゴットを成長させる際、その一部に他の部分よりも不純物濃度が高くなる層を予め作る。この不純物濃度の高い層は通常の機械研磨では、他の部分と同様に加工されるが、CMPでは他の部分よりも加工レートが速くなり、加工レートの差により基板上に段差を形成する。この段差とX線ロッキングカーブの半値幅の相関を取ると、特許文献4にあるように加工変質層の有無はX線ロッキングカーブの半値幅の変化量により求めることができるので、X線ロッキングカーブの半値幅が変化しなくなった時点での段差が加工変質層の存在しなくなった箇所となる。そのため、予め前述の段差とX線ロッキングカーブの半値幅の相関を知っておけば、CMPの途中でも加工変質層の有無を知ることができる。この基板をモニター基板としてモニター基板と同じポリタイプ、オフ角、不純物濃度(モニター基板の不純物濃度の低い部分と同じ不純物濃度)を持つSiC単結晶基板と同時に同条件で加工することで、CMPの途中でも容易にSiC単結晶基板上の加工変質層の有無を判断できるので、SiC単結晶基板の研磨終点を検出することができる。また研磨パッドの劣化による加工レートの低下やその他の要因により加工レートが変化した場合でも容易に対応することができる。   As described above, in the present invention, when an SiC single crystal ingot is first grown, a layer having an impurity concentration higher than that of other portions is previously formed in a portion thereof. The layer having a high impurity concentration is processed in the same manner as other portions in normal mechanical polishing, but the processing rate is higher than that in other portions in CMP, and a step is formed on the substrate due to the difference in processing rates. If this step and the half-value width of the X-ray rocking curve are correlated, the presence or absence of a work-affected layer can be obtained from the amount of change in the half-value width of the X-ray rocking curve as disclosed in Patent Document 4. The level difference at the time when the half-value width of no longer changes becomes a place where the work-affected layer is no longer present. Therefore, if the correlation between the aforementioned step and the half width of the X-ray rocking curve is known in advance, the presence or absence of a work-affected layer can be known even during CMP. By using this substrate as a monitor substrate and processing it under the same conditions simultaneously with a SiC single crystal substrate having the same polytype, off-angle, and impurity concentration as the monitor substrate (the same impurity concentration as the portion of the monitor substrate where the impurity concentration is low), Since the presence or absence of a work-affected layer on the SiC single crystal substrate can be easily determined even in the middle, the polishing end point of the SiC single crystal substrate can be detected. Further, even when the processing rate is changed due to a decrease in the processing rate due to deterioration of the polishing pad or other factors, it is possible to easily cope with it.

本発明にかかるSiC単結晶基板の研磨方法によれば、SiC単結晶基板のCMP加工における研磨終点を簡便に検出することができ、また容易にモニター基板を再利用することができ、SiC単結晶基板の製造に関してCMP加工の際の研磨方法として有用である。   According to the method for polishing a SiC single crystal substrate according to the present invention, the polishing end point in CMP processing of the SiC single crystal substrate can be easily detected, and the monitor substrate can be easily reused. It is useful as a polishing method during CMP processing for manufacturing a substrate.

また本発明にかかるSiC単結晶基板の研磨方法によれば、単結晶材料基板のCMP研磨終点を簡便に検出することができ、また容易にモニター基板を再利用することができるので、SiC単結晶に限定せずに、結晶成長中に不純物濃度をコントロールできる他の単結晶材料の製造に関してのCMP加工の際の研磨方法としても有用である。   Further, according to the method for polishing a SiC single crystal substrate according to the present invention, the CMP polishing end point of the single crystal material substrate can be easily detected, and the monitor substrate can be easily reused. Without being limited to the above, it is also useful as a polishing method at the time of CMP processing for the production of other single crystal materials capable of controlling the impurity concentration during crystal growth.

モニター基板を示した図Diagram showing monitor board SiC単結晶インゴット成長装置を示す図The figure which shows a SiC single crystal ingot growth device 本発明のSiC単結晶基板の研磨方法のプロセス概略を示したフローチャートThe flowchart which showed the process outline of the grinding | polishing method of the SiC single crystal substrate of this invention 機械研磨工程を行うための研磨装置を示す図The figure which shows the polisher for performing a mechanical polishing process CMP工程を行うための研磨装置を示す図The figure which shows the polish device for performing CMP process

符号の説明Explanation of symbols

1 モニター基板
2 SiC単結晶基板
3 坩堝
4 炭化珪素原料
5 蓋体
6 種結晶
7 断熱材
8 反応管
9 冷却水
10 ガス導入口
11 ガス排気口
12 コイル
13 温度測定用窓
14 放射温度計
15 研磨ブロック
16 ワークガイド
17 重り
18 貼り付けジグ
19 研磨定盤
20 アーム
21 研磨剤
22 研磨パッド
23 パッキングフィルム
DESCRIPTION OF SYMBOLS 1 Monitor substrate 2 SiC single crystal substrate 3 Crucible 4 Silicon carbide raw material 5 Lid body 6 Seed crystal 7 Heat insulating material 8 Reaction tube 9 Cooling water 10 Gas inlet 11 Gas exhaust port 12 Coil 13 Temperature measurement window 14 Radiation thermometer 15 Polishing Block 16 Work guide 17 Weight 18 Sticking jig 19 Polishing surface plate 20 Arm 21 Abrasive agent 22 Polishing pad 23 Packing film

Claims (12)

第1の不純物濃度を持つ第1の領域と前記第1の不純物濃度よりも大きい第2の不純物濃度を持つ第2の領域とを持つSiC単結晶から成るモニター基板と前記第1の不純物濃度と同一の不純物濃度を持つSiC単結晶基板とを共に機械研磨加工する機械研磨工程と、
前記機械研磨工程を経た前記モニター基板と前記SiC単結晶基板とを共にCMP加工するCMP工程と、
前記CMP工程を経た前記モニター基板の前記第1の領域と前記第2の領域との段差を測定する段差測定工程と、
前記測定された段差が所定の範囲で有れば研磨終了と判断する研磨終了判定工程と、
からなるSiC単結晶基板の研磨方法。
A monitor substrate made of an SiC single crystal having a first region having a first impurity concentration and a second region having a second impurity concentration higher than the first impurity concentration; and the first impurity concentration; A mechanical polishing step of mechanically polishing together a SiC single crystal substrate having the same impurity concentration;
CMP process for CMP processing the monitor substrate and the SiC single crystal substrate that have undergone the mechanical polishing process;
A step measuring step for measuring a step between the first region and the second region of the monitor substrate that has undergone the CMP step;
Polishing end determination step of determining the end of polishing if the measured level difference is within a predetermined range;
A method for polishing a SiC single crystal substrate comprising:
前記研磨終了判定工程において、前記測定された段差が前記所定の範囲の最大値よりも大であれば前記モニター基板と前記SiC単結晶基板とを再び前記機械研磨工程に戻すことを判断する請求項1に記載のSiC単結晶基板の研磨方法。 2. The polishing end determination step, wherein the monitor substrate and the SiC single crystal substrate are determined to be returned to the mechanical polishing step again if the measured level difference is larger than a maximum value in the predetermined range. 2. The method for polishing an SiC single crystal substrate according to 1. 前記研磨終了判定工程において、前記測定された段差が前記所定の範囲の最小値よりも小であれば前記モニター基板と前記SiC単結晶基板とを再び前記CMP工程に戻すことを判断する請求項1に記載のSiC単結晶基板の研磨方法。 2. In the polishing end determination step, it is determined that the monitor substrate and the SiC single crystal substrate are returned to the CMP step again if the measured level difference is smaller than a minimum value in the predetermined range. The method for polishing a SiC single crystal substrate according to claim 1. 前記モニター基板は、4Hでn型のSiC単結晶である請求項1に記載のSiC単結晶基板の研磨方法。 The method for polishing a SiC single crystal substrate according to claim 1, wherein the monitor substrate is a 4H, n-type SiC single crystal. 前記モニター基板のオフ角は、3.5°以上4.5°以下である請求項4に記載のSiC単結晶基板の研磨方法。 The SiC single crystal substrate polishing method according to claim 4, wherein an off angle of the monitor substrate is 3.5 ° or more and 4.5 ° or less. 前記不純物は、窒素である請求項1に記載のSiC単結晶基板の研磨方法。 The method for polishing an SiC single crystal substrate according to claim 1, wherein the impurity is nitrogen. 前記第1の領域の窒素濃度が1×1019未満であり、前記第2領域の窒素濃度が2×10 19以上である請求項6に記載のSiC単結晶基板の研磨方法。 The method for polishing an SiC single crystal substrate according to claim 6, wherein the nitrogen concentration in the first region is less than 1 × 10 19 and the nitrogen concentration in the second region is 2 × 10 19 or more. 前記第1の領域の窒素濃度が5×1018以上1×1019未満であり、前記第2領域の窒素濃度が2×1019以上5×1019未満である請求項7に記載のSiC単結晶基板の研磨方法。 The nitrogen concentration of the first region is less than 5 × 10 18 or more 1 × 10 19, SiC single of claim 7 nitrogen concentration of the second region is less than 2 × 10 19 or more 5 × 10 19 A method for polishing a crystal substrate. 前記最大値は、略200nm以下であることを特徴とする請求項2に記載のSiC単結晶基板の研磨方法。 The method for polishing an SiC single crystal substrate according to claim 2, wherein the maximum value is approximately 200 nm or less. 前記最大値は、好ましくは略100nmであることを特徴とする請求項9に記載のSiC単結晶基板の研磨方法。 10. The method for polishing an SiC single crystal substrate according to claim 9, wherein the maximum value is preferably about 100 nm. 前記最小値は、前記CMP工程で加工された前記モニター基板表面のX線ロッキングカーブの半値幅が変化しなくなる所の前記段差である請求項3に記載のSiC単結晶基板の研磨方法。 4. The method for polishing a SiC single crystal substrate according to claim 3, wherein the minimum value is the step where the half-value width of the X-ray rocking curve of the monitor substrate surface processed in the CMP process does not change. 前記最小値は、略60nmである請求項3に記載のSiC単結晶基板の研磨方法。 The method for polishing an SiC single crystal substrate according to claim 3, wherein the minimum value is approximately 60 nm.
JP2008243748A 2008-09-24 2008-09-24 Polishing method of sic single crystal substrate Pending JP2010080471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243748A JP2010080471A (en) 2008-09-24 2008-09-24 Polishing method of sic single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243748A JP2010080471A (en) 2008-09-24 2008-09-24 Polishing method of sic single crystal substrate

Publications (1)

Publication Number Publication Date
JP2010080471A true JP2010080471A (en) 2010-04-08

Family

ID=42210622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243748A Pending JP2010080471A (en) 2008-09-24 2008-09-24 Polishing method of sic single crystal substrate

Country Status (1)

Country Link
JP (1) JP2010080471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135902A (en) * 2014-01-17 2015-07-27 旭ダイヤモンド工業株式会社 Method and device for manufacturing wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135902A (en) * 2014-01-17 2015-07-27 旭ダイヤモンド工業株式会社 Method and device for manufacturing wafer

Similar Documents

Publication Publication Date Title
TWI746468B (en) Method for manufacturing thin SiC wafer and thin SiC wafer
JP5014737B2 (en) Method for manufacturing SiC single crystal substrate
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
US7977219B2 (en) Manufacturing method for silicon wafer
JP5569112B2 (en) Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer obtained by this method
JP6579889B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP2007119273A (en) Method for growing silicon carbide single crystal
WO2017164233A1 (en) Manufacturing method for aluminum nitride single-crystal substrate
KR20170085085A (en) Etching method for sic substrate and holding container
US20160273129A1 (en) Silicon carbide substrate, silicon carbide ingot, and method of manufacturing the same
TW201629281A (en) Surface treatment method for sic substrate
JP4854936B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2024038313A (en) SiC wafer manufacturing method
JP4054243B2 (en) Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal wafer
JP4661204B2 (en) Method for producing single crystal, method for producing annealed wafer, and annealed wafer
TWI680512B (en) Polishing method for silicon wafer, manufacturing method for silicon wafer, and silicon wafer
US20130095294A1 (en) Silicon carbide ingot and silicon carbide substrate, and method of manufacturing the same
US20140030874A1 (en) Method for manufacturing silicon carbide substrate
WO2020059810A1 (en) Method for manufacturing device fabrication wafer
JP2010080471A (en) Polishing method of sic single crystal substrate
JP5135545B2 (en) Seed crystal for growing silicon carbide single crystal ingot and method for producing the same
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
US6211088B1 (en) Manufacturing method for semiconductor gas-phase epitaxial wafer
JP4092993B2 (en) Single crystal growth method