JP2010080169A - Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate obtained by using it, and polymer electrolyte fuel cell - Google Patents

Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate obtained by using it, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2010080169A
JP2010080169A JP2008245447A JP2008245447A JP2010080169A JP 2010080169 A JP2010080169 A JP 2010080169A JP 2008245447 A JP2008245447 A JP 2008245447A JP 2008245447 A JP2008245447 A JP 2008245447A JP 2010080169 A JP2010080169 A JP 2010080169A
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
film
electrolyte membrane
transfer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245447A
Other languages
Japanese (ja)
Other versions
JP5343485B2 (en
Inventor
Sakie Kurabayashi
咲枝 倉林
Hidenori Asai
秀紀 浅井
Hirotoshi Sakamoto
宏年 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008245447A priority Critical patent/JP5343485B2/en
Publication of JP2010080169A publication Critical patent/JP2010080169A/en
Application granted granted Critical
Publication of JP5343485B2 publication Critical patent/JP5343485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst transfer film for a polymer electrolyte fuel cell capable of manufacturing a catalyst layer-electrolyte membrane laminate free from distortion in uniform transferring property, and to provide a catalyst layer-electrolyte membrane laminate obtained by using this, and the polymer electrolyte fuel cell. <P>SOLUTION: The catalyst transfer film for the polymer electrolyte fuel cell is such that (1) a catalyst layer is formed on a film substrate; (2) at least two through holes are installed on the surface on the side not coming in contact with the catalyst layer of the film substrate; (3) the through hole has a diameter of 1-100 μm; and (4) the shortest distance between the through holes is 1 cm or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規な固体高分子形燃料電池用触媒転写フィルム並びにそれを用いて得られる触媒層−電解質膜積層体及び固体高分子形燃料電池に関する。   The present invention relates to a novel catalyst transfer film for a polymer electrolyte fuel cell, a catalyst layer-electrolyte membrane laminate obtained by using the catalyst transfer film, and a polymer electrolyte fuel cell.

固体高分子形燃料電池に使用される触媒層−電解質膜積層体は、基材フィルムに触媒層形成用組成物を塗工し、乾燥させた触媒転写フィルムと呼ばれるものを、水素伝導性高分子電解質膜の両面に配置し、熱プレスを行うことによって得られる。   The catalyst layer-electrolyte membrane laminate used in the polymer electrolyte fuel cell is a hydrogen conductive polymer obtained by applying a catalyst layer forming composition to a base film and drying it. It arrange | positions on both surfaces of an electrolyte membrane, and is obtained by performing a hot press.

しかしながら、上記の方法では、触媒転写フィルムを電解質膜上に転写する際、電解質膜と触媒層の間に空気や除去しきれていない溶剤等の気泡をかんでプレスする恐れがある。この結果、圧力が不均一にかかるため、触媒層を基材フィルムから剥がす際に転写不良が発生し、均一な触媒層面が得られない。また、気泡をかんでいるため、電解質膜と触媒層に均一な圧力が加わらないため、触媒層−電解質膜積層体にゆがみが生じる。   However, in the above method, when the catalyst transfer film is transferred onto the electrolyte membrane, there is a risk that air or bubbles such as a solvent that has not been completely removed are pressed between the electrolyte membrane and the catalyst layer. As a result, the pressure is applied non-uniformly, so that transfer failure occurs when the catalyst layer is peeled from the base film, and a uniform catalyst layer surface cannot be obtained. In addition, since air bubbles are trapped, uniform pressure is not applied to the electrolyte membrane and the catalyst layer, so that the catalyst layer-electrolyte membrane laminate is distorted.

触媒層−電解質膜積層体に転写不良やゆがみが生じた状態では、転写した触媒層面が不均一になる。そのため、続いて触媒層上に形成されるガス拡散層等その他の層との密着性が悪く、燃料電池の性能を低下させてしまう恐れがある。   In a state where transfer failure or distortion occurs in the catalyst layer-electrolyte membrane laminate, the transferred catalyst layer surface becomes non-uniform. For this reason, the adhesion with other layers such as a gas diffusion layer subsequently formed on the catalyst layer is poor, and the performance of the fuel cell may be deteriorated.

そのため、従来は、触媒転写フィルムと電解質膜を1枚1枚手で伸ばしながらプレスする手法や、ローラーで転写する手法(例えば、特許文献1参照)がとられてきた。しかしながら、前者の方法は時間がかなりすぎて大量生産には適さず、後者の方法は装置が大がかりになることが問題であった。
特開平10−64574号公報
Therefore, conventionally, a method of pressing the catalyst transfer film and the electrolyte membrane while stretching them one by one or a method of transferring with a roller (for example, see Patent Document 1) have been taken. However, the former method is too time-consuming and not suitable for mass production, and the latter method has a problem that the apparatus becomes large.
Japanese Patent Laid-Open No. 10-64574

本発明は、上記問題を解決するためになされたもので、均一な転写性で、ゆがみのない触媒層−電解質膜積層体を製造することができる固体高分子形燃料電池用触媒転写フィルム並びにそれを用いて得られる触媒層−電解質膜積層体及び固体高分子形燃料電池を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. A catalyst transfer film for a polymer electrolyte fuel cell capable of producing a catalyst layer-electrolyte membrane laminate with uniform transferability and no distortion, and the same An object of the present invention is to provide a catalyst layer-electrolyte membrane laminate and a polymer electrolyte fuel cell obtained by using the catalyst.

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、フィルム基材上に触媒層が形成された固体高分子形燃料電池用触媒転写フィルムにおいて、フィルム基材の触媒層と接していない側の表面に特定の貫通孔を形成することで、上記課題を解決した所望の触媒転写フィルムが得られることを見出した。本発明は、このような知見に基づき完成されたものである。   In order to solve the above-mentioned problems, the inventors of the present invention have made extensive studies and, as a result, in a catalyst transfer film for a polymer electrolyte fuel cell in which a catalyst layer is formed on a film substrate, It has been found that a desired catalyst transfer film that solves the above problems can be obtained by forming a specific through-hole on the surface that is not in contact. The present invention has been completed based on such findings.

すなわち、本発明は、以下の触媒転写フィルム、触媒層−電解質膜積層体及び固体高分子形燃料電池にかかる。   That is, the present invention relates to the following catalyst transfer film, catalyst layer-electrolyte membrane laminate, and polymer electrolyte fuel cell.

項1.(1)フィルム基材上に触媒層が設けられ、
(2)該フィルム基材の触媒層と接していない側の表面に2個以上の貫通孔が設けられ、
(3)該貫通孔は、直径1〜100μmであり、
(4)貫通孔同士の最短距離が1cm以下である、
固体高分子形燃料電池用触媒転写フィルム。
Item 1. (1) A catalyst layer is provided on the film substrate,
(2) Two or more through holes are provided on the surface of the film base that is not in contact with the catalyst layer,
(3) The through hole has a diameter of 1 to 100 μm,
(4) The shortest distance between the through holes is 1 cm or less.
Catalyst transfer film for polymer electrolyte fuel cells.

項2.貫通孔の深さが、フィルム基材の厚み以上であり、触媒転写フィルムの総厚み以下である、項1に記載の触媒転写フィルム。   Item 2. Item 2. The catalyst transfer film according to Item 1, wherein the depth of the through hole is not less than the thickness of the film substrate and not more than the total thickness of the catalyst transfer film.

項3.項1又は2に記載の触媒転写フィルムを用いて、電解質膜の片面又は両面に触媒層が設けられてなる、触媒層−電解質膜積層体。   Item 3. Item 3. A catalyst layer-electrolyte membrane laminate, wherein the catalyst transfer film according to Item 1 or 2 is used, and a catalyst layer is provided on one side or both sides of the electrolyte membrane.

項4.項3に記載の触媒層−電解質膜積層体を具備する、固体高分子形燃料電池。   Item 4. Item 6. A polymer electrolyte fuel cell comprising the catalyst layer-electrolyte membrane laminate according to Item 3.

1.触媒転写フィルム
本発明の固体高分子形燃料電池用触媒転写フィルムは、
(1)フィルム基材上に触媒層が設けられ、
(2)該フィルム基材の触媒層と接していない側の表面に2個以上の貫通孔が設けられ、
(3)該貫通孔は、直径1〜100μmであり、
(4)貫通孔同士の最短距離が1cm以下である、
ものである。
1. Catalyst transfer film The catalyst transfer film for a polymer electrolyte fuel cell of the present invention,
(1) A catalyst layer is provided on the film substrate,
(2) Two or more through holes are provided on the surface of the film base that is not in contact with the catalyst layer,
(3) The through hole has a diameter of 1 to 100 μm,
(4) The shortest distance between the through holes is 1 cm or less.
Is.

以下、各構成要件を説明する。   Hereinafter, each component will be described.

<フィルム基材>
フィルム基材は特に制限されず、公知又は市販のものを使用することができる。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂、環状ポリオレフィン樹脂、ポリアクリル樹脂、ポリイミド樹脂等の高分子フィルムを用いることができる。
<Film base>
The film substrate is not particularly limited, and known or commercially available materials can be used. For example, polymer films such as polyethylene resin, polypropylene resin, polyester resin, polyethylene terephthalate resin, polystyrene resin, cyclic polyolefin resin, polyacrylic resin, and polyimide resin can be used.

また、転写性を向上させるためにこれらの高分子フィルム上に離型処理を施しても良い。離型処理は、例えば、積層フィルム上に離型層を形成させるか、積層フィルム上に凹凸処理を施すことにより行われるものが挙げられる。離型層は、離型性に優れた材料を用いて形成される。好ましい離型層の一例を示せば、離型層は、熱可塑性樹脂又は熱硬化性樹脂にシリコーンオイル、シリコーンワックス、シリコーン樹脂、弗素樹脂等の離型性に優れた材料を添加して得られる混合物から形成されるものが挙げられる。またケイ素酸化物等の無機酸化物からなる薄膜を化学気相成長法(CVD)や物理気相成長法等からなる蒸着法により形成してもよい。   In order to improve transferability, a release treatment may be performed on these polymer films. Examples of the release treatment include those performed by forming a release layer on the laminated film or by performing an unevenness treatment on the laminated film. The release layer is formed using a material having excellent release properties. As an example of a preferable release layer, the release layer can be obtained by adding a material having excellent release properties such as silicone oil, silicone wax, silicone resin, and fluorine resin to a thermoplastic resin or a thermosetting resin. What is formed from a mixture is mentioned. A thin film made of an inorganic oxide such as silicon oxide may be formed by a vapor deposition method such as chemical vapor deposition (CVD) or physical vapor deposition.

また、高分子フィルム以外にも、アート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙等の紙であってもよい。そのほか、カーボンクロス、カーボンペーパー等の炭素繊維系シートであってもよい。これらの中でも、安価で入手が容易な高分子フィルムが好ましく、特にポリエチレンテレフタレート樹脂等が好ましい。   In addition to the polymer film, paper such as art paper, coated paper, coated paper such as lightweight coated paper, and non-coated paper such as notebook paper and copy paper may be used. In addition, carbon fiber sheets such as carbon cloth and carbon paper may be used. Among these, inexpensive and easily available polymer films are preferable, and polyethylene terephthalate resin and the like are particularly preferable.

フィルム基材の厚みは限定的でないが、例えば、取り扱い性及び経済性の観点からは、2.5μm〜200μm程度、好ましくは10μm〜150μm程度、さらには10μm〜100μm程度とすればよい。また、フィルム基材のサイズは、限定的ではないが、一般的に使用される大きさである10〜200mm×10〜200mm程度とすればよい。   Although the thickness of a film base material is not limited, For example, from a viewpoint of a handleability and economical efficiency, about 2.5 micrometers-200 micrometers, Preferably it is about 10 micrometers-150 micrometers, Furthermore, what is necessary is just to be about 10 micrometers-100 micrometers. The size of the film substrate is not limited, but may be about 10 to 200 mm × 10 to 200 mm, which is a generally used size.

<触媒層>
触媒層は、固体高分子形燃料電池の触媒層として使用できるものであればよく、一般的には、(1)触媒担持炭素粒子(触媒を担持させた炭素粒子)及び(2)水素イオン伝導性高分子電解質を必須成分とする。
<Catalyst layer>
The catalyst layer is not particularly limited as long as it can be used as a catalyst layer of a polymer electrolyte fuel cell. In general, (1) catalyst-carrying carbon particles (carbon particles carrying a catalyst) and (2) hydrogen ion conduction Essential polymer electrolyte.

触媒担持炭素粒子及び水素イオン伝導性高分子電解質は公知又は市販のものを使用することができる。   Known or commercially available catalyst-supporting carbon particles and hydrogen ion conductive polymer electrolytes can be used.

触媒としては、燃料電池の電池反応を生じさせるものであればよく、例えば、白金、白金合金、白金化合物等が挙げられる。白金合金の具体例としては、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群より選択される少なくとも1種の金属と白金との合金が挙げられる。   Any catalyst may be used as long as it causes a cell reaction of the fuel cell. Examples of the catalyst include platinum, a platinum alloy, and a platinum compound. Specific examples of the platinum alloy include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like.

水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、特に、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。このような電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。   Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, in particular, a perfluorocarbon sulfonic acid polymer (PFS-based) in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Polymer) and the like. Specific examples of such an electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., “Aciplex” (registered trademark) manufactured by Asahi Kasei Corporation, Examples include “Gore Select” (registered trademark) manufactured by Gore.

触媒層の厚みは限定的でなく、固体高分子形燃料電池の触媒層として一般的に採用されている範囲とすればよい。例えば10〜50μm、好ましくは15〜30μm程度とすればよい。また、触媒層のサイズは、限定的ではないが、フィルム基材と同じ大きさである10〜200mm×10〜200mm程度とすればよい。   The thickness of the catalyst layer is not limited and may be in a range generally adopted as a catalyst layer of a polymer electrolyte fuel cell. For example, the thickness may be about 10 to 50 μm, preferably about 15 to 30 μm. The size of the catalyst layer is not limited, but may be about 10 to 200 mm × 10 to 200 mm which is the same size as the film substrate.

触媒担持炭素粒子と水素イオン伝導性高分子電解質との含有割合は、前者1重量部に対して、後者を0.1〜5重量部程度、好ましくは0.2〜4重量部程度とすればよい。   The content ratio of the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte is about 0.1 to 5 parts by weight, preferably about 0.2 to 4 parts by weight with respect to 1 part by weight of the former. Good.

触媒層は、必要に応じて、炭素繊維、例えば気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンワイヤー等の公知の添加剤を含有していてもよい。   The catalyst layer may contain known additives such as carbon fibers, for example, vapor grown carbon fibers (VGCF), carbon nanotubes, and carbon wires, as necessary.

<貫通孔>
本発明の固体高分子形燃料電池用触媒転写フィルムは、フィルム基材の触媒層と接していない側の表面に2個以上の貫通孔が設けられている。
<Through hole>
In the catalyst transfer film for a polymer electrolyte fuel cell of the present invention, two or more through holes are provided on the surface of the film base that is not in contact with the catalyst layer.

この貫通孔は、フィルム基材を貫通する孔のことを意味し、この貫通孔は、フィルム基材のみに有していてもよいし、触媒層に達していてもよいし、フィルム基材と触媒層を貫通するものであってもよい。   This through hole means a hole penetrating the film substrate, and this through hole may be provided only in the film substrate, may reach the catalyst layer, It may penetrate the catalyst layer.

触媒転写フィルムの基材フィルム表面に貫通孔を形成する方法としては、特に制限はなく、例えば、加熱した針を押し付けるニードルパンチ法;エンボスロール、研摩ロール、砥石、研摩テープ等を使用して基材フィルムを溶融し、穿孔する熱溶融穿孔法;ナイフ、カッター、針、鋸刃、ミシン刃等を使用する物理的穿孔法;レーザー、ビーム加工、コロナ放電、プラズマ放電等の加工法;その他の方法等によって行うことができる。   The method for forming the through-holes on the surface of the base film of the catalyst transfer film is not particularly limited. For example, a needle punch method in which a heated needle is pressed; an embossing roll, an abrasive roll, a grindstone, an abrasive tape, etc. Hot melt drilling method to melt and punch material film; Physical drilling method using knife, cutter, needle, saw blade, sewing blade, etc .; Laser, beam processing, corona discharge, plasma discharge processing method, etc. It can be performed by a method or the like.

貫通孔の形状としては、ミシン目線状、丸穴状、四角状、三日月状、その他任意の形状でよい。   The shape of the through hole may be a perforated line shape, a round hole shape, a square shape, a crescent shape, or any other shape.

<触媒転写フィルム>
本発明の触媒転写フィルムは、
方法1:フィルム基材上に触媒層形成用組成物を塗布及び乾燥させることにより触媒層を形成し、次いで、フィルム基材側から2個以上の貫通孔を形成する方法、
方法2:フィルム基材の表面に2個以上の貫通孔を形成し、次いで、フィルム基材上に触媒層形成用組成物を塗布及び乾燥させることにより触媒層を形成する方法
のいずれでも作製することができる。
<Catalyst transfer film>
The catalyst transfer film of the present invention is
Method 1: A method of forming a catalyst layer by applying and drying a composition for forming a catalyst layer on a film substrate, and then forming two or more through holes from the film substrate side,
Method 2: Any of the methods of forming a catalyst layer by forming two or more through-holes on the surface of a film substrate and then applying and drying the catalyst layer forming composition on the film substrate. be able to.

方法1の場合
方法1では、フィルム基材上に触媒層形成用組成物を塗布及び乾燥させることにより触媒層を形成し、次いで、フィルム基材側から2個以上の貫通孔を形成する。
In Method 1 In Method 1, a catalyst layer is formed by applying and drying a catalyst layer forming composition on a film substrate, and then two or more through holes are formed from the film substrate side.

触媒層は、フィルム基材上に、触媒層形成用組成物を塗布及び乾燥させることにより得られる。   A catalyst layer is obtained by apply | coating and drying the composition for catalyst layer formation on a film base material.

触媒層形成用組成物は、上記触媒層を形成するための組成物であって、上記触媒担持炭素粒子及び水素イオン伝導性高分子電解質に加え、溶剤を必須とする。   The composition for forming a catalyst layer is a composition for forming the catalyst layer, and a solvent is essential in addition to the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte.

溶剤は、公知又は市販のものを使用することができ、例えば、各種アルコール、各種エーテル、各種ジアルキルスルホキシド、水又はこれらの混合物等が挙げられる。アルコールとしては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、s−ブタノール、t−ブタノール等の炭素数1〜4の一価アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、グリセリン等の多価アルコール等が挙げられる。これらの溶剤は1種単独で用いてもよいし、2種以上を混合して用いてもよい。   As the solvent, known or commercially available solvents can be used, and examples thereof include various alcohols, various ethers, various dialkyl sulfoxides, water, and mixtures thereof. Examples of the alcohol include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, and t-butanol, propylene glycol, ethylene glycol, diethylene glycol, Examples include polyhydric alcohols such as glycerin. These solvents may be used alone or in a combination of two or more.

触媒層形成用組成物には、触媒担持炭素粒子及び水素イオン伝導性高分子電解質が所定の割合となるように配合される。例えば、触媒担持炭素粒子1重量部に対して、水素イオン伝導性高分子電解質(固形分)が0.1〜5重量部(特に0.2〜4重量部)、溶剤が5〜50重量部(特に10〜30重量部)含まれているのがよく、残りが水である。水の割合は、通常、触媒担持炭素粒子に対して、等重量〜20倍重量である。   In the catalyst layer forming composition, the catalyst-supporting carbon particles and the hydrogen ion conductive polymer electrolyte are blended in a predetermined ratio. For example, 0.1 to 5 parts by weight (particularly 0.2 to 4 parts by weight) of a hydrogen ion conductive polymer electrolyte (solid content) and 5 to 50 parts by weight of a solvent with respect to 1 part by weight of catalyst-supporting carbon particles. (Especially 10 to 30 parts by weight) should be contained, with the remainder being water. The ratio of water is usually equal to 20 times the weight of the catalyst-supporting carbon particles.

触媒層形成用組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the composition for forming a catalyst layer is not particularly limited. For example, knife coater, bar coater, blade coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing. A general method such as can be applied.

触媒層形成用組成物を塗布した後、乾燥することにより触媒層が形成される。乾燥温度は、例えば、大気雰囲気中、通常40〜100℃、好ましくは60〜80℃である。乾燥時間は乾燥温度にもよるが、通常3分から2時間程度、好ましくは30〜60分である。   After applying the composition for forming a catalyst layer, the catalyst layer is formed by drying. A drying temperature is 40-100 degreeC normally in an atmospheric condition, for example, Preferably it is 60-80 degreeC. The drying time depends on the drying temperature, but is usually about 3 minutes to 2 hours, preferably 30 to 60 minutes.

次に、フィルム基材側から2個以上の貫通孔を形成する。貫通孔を形成する方法及び形状は上述したとおりである。   Next, two or more through holes are formed from the film substrate side. The method and shape for forming the through hole are as described above.

この場合の貫通孔の直径は、1〜100μm、好ましくは1〜30μmである。孔の直径が1μm未満では、触媒層−電解質膜積層体を作製する際に気泡等が抜けにくく、孔の直径が100μmをこえると、触媒層のクラックより大きな面積を有し、孔を形成する際に触媒層を剥がしてしまい、長期的な電池性能を低下させてしまう恐れがある。   The diameter of the through hole in this case is 1 to 100 μm, preferably 1 to 30 μm. When the hole diameter is less than 1 μm, bubbles or the like are difficult to escape when the catalyst layer-electrolyte membrane laminate is produced, and when the hole diameter exceeds 100 μm, the hole has a larger area than the crack of the catalyst layer. In some cases, the catalyst layer may be peeled off, and the long-term battery performance may be deteriorated.

また、孔同士の最短距離は、1cm以下、好ましくは2mm以下である。これは、触媒層−電解質膜積層体を作製する際に発生する気泡等は、通常1cm×1cm程度の大きさを有しているからである。   The shortest distance between the holes is 1 cm or less, preferably 2 mm or less. This is because bubbles or the like generated when the catalyst layer-electrolyte membrane laminate is produced usually have a size of about 1 cm × 1 cm.

貫通孔は、フィルム基材を貫通するものでもよいし、フィルム基材と触媒層を貫通するものでもよい。つまり、貫通孔の深さは、フィルム基材の厚み以上であり、触媒転写フィルムの総厚み以下である。具体的には、フィルム基材や触媒層の厚みにもよるが、貫通孔の深さは、フィルム基材の厚みと同程度である2.5μm〜200μm程度、好ましくは10μm〜150μm程度、さらには10μm〜100μm程度とすればよい。これは、小さすぎるとフィルム基材を貫通しないので空気が抜けない傾向があり、大きすぎると触媒層が剥がれやすい傾向があるからである。   The through hole may penetrate the film substrate, or may penetrate the film substrate and the catalyst layer. That is, the depth of the through hole is not less than the thickness of the film substrate and not more than the total thickness of the catalyst transfer film. Specifically, although depending on the thickness of the film substrate or the catalyst layer, the depth of the through hole is about 2.5 μm to 200 μm, preferably about 10 μm to 150 μm, which is the same as the thickness of the film substrate. May be about 10 μm to 100 μm. This is because if it is too small, it will not penetrate the film base material, so that air will not escape, and if it is too large, the catalyst layer will tend to peel off.

方法2の場合
方法2では、フィルム基材の表面に2個以上の貫通孔を形成し、次いで、フィルム基材上に触媒層形成用組成物を塗布及び乾燥させることにより触媒層を形成する。貫通孔を形成する方法及び形状は上述した通りである。
In the case of Method 2, in Method 2, two or more through holes are formed on the surface of the film substrate, and then the catalyst layer forming composition is applied and dried on the film substrate to form a catalyst layer. The method and shape for forming the through hole are as described above.

この場合の貫通孔の直径は、1〜100μm、好ましくは1〜60μmである。貫通孔の直径が1μm未満では、触媒層−電解質膜積層体を作製する際に気泡等が抜けにくく、貫通孔の直径が100μmをこえると、インキが裏打ちする。   In this case, the diameter of the through hole is 1 to 100 μm, preferably 1 to 60 μm. If the diameter of the through hole is less than 1 μm, bubbles or the like are difficult to escape when the catalyst layer-electrolyte membrane laminate is produced, and if the diameter of the through hole exceeds 100 μm, the ink is lined.

また、貫通孔同士の最短距離は、1cm以下、好ましくは5mm以下である。これは、触媒層−電解質膜積層体を作製する際に発生する気泡等は、通常1cm×1cm程度の大きさを有しているからである。   The shortest distance between the through holes is 1 cm or less, preferably 5 mm or less. This is because bubbles or the like generated when the catalyst layer-electrolyte membrane laminate is produced usually have a size of about 1 cm × 1 cm.

貫通孔は、フィルム基材を貫通するものである。具体的には、フィルム基材の厚みにもよるが、貫通孔の深さは、フィルム基材の厚みと同程度である2.5μm〜200μm程度、好ましくは10μm〜150μm程度、さらには10μm〜100μm程度とすればよい。これは、小さすぎるとフィルム基材を貫通しないので空気が抜けない傾向があり、大きすぎると触媒層が剥がれやすい傾向があるからである。   The through hole penetrates the film base material. Specifically, although depending on the thickness of the film substrate, the depth of the through hole is about 2.5 μm to 200 μm, preferably about 10 μm to 150 μm, more preferably about 10 μm to the thickness of the film substrate. What is necessary is just to be about 100 micrometers. This is because if it is too small, it will not penetrate the film base material, so that air will not escape, and if it is too large, the catalyst layer will tend to peel off.

次に、フィルム基材上に触媒層形成用組成物を塗布及び乾燥させることにより触媒層を形成する。   Next, a catalyst layer is formed by applying and drying the composition for forming a catalyst layer on a film substrate.

触媒層形成用組成物を塗布する面は、フィルム基材に形成される孔が貫通孔なので、フィルム基材のどちらの面でもよい。なお、触媒層形成用組成物の組成、塗布方法、乾燥温度等は方法1と同様でよい。   The surface on which the composition for forming a catalyst layer is applied may be either surface of the film substrate because the holes formed in the film substrate are through holes. The composition of the catalyst layer forming composition, the coating method, the drying temperature, and the like may be the same as in Method 1.

2.触媒層−電解質膜積層体
本発明の固体高分子形燃料電池用触媒層−電解質膜積層体は、本発明の触媒転写フィルムを用いて、固体高分子電解質膜の片面又は両面に触媒層が設けられてなるものである。
2. Catalyst layer-electrolyte membrane laminate The catalyst layer-electrolyte membrane laminate of the present invention for a polymer electrolyte fuel cell is provided with a catalyst layer on one or both sides of the solid polymer electrolyte membrane using the catalyst transfer film of the present invention. It is made.

<電解質膜>
電解質膜は、水素イオン伝導性のものであれば限定的ではなく、公知又は市販のものを使用できる。電解質膜の具体例としては、例えば、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「Gore Select」膜等が挙げられる。
<Electrolyte membrane>
The electrolyte membrane is not limited as long as it is hydrogen ion conductive, and a known or commercially available membrane can be used. Specific examples of the electrolyte membrane include, for example, “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd., and “Gore” manufactured by Gore. For example, “Select” film.

電解質膜の膜厚は、通常1〜250μm程度、好ましくは5〜80μm程度とすればよい。   The thickness of the electrolyte membrane is usually about 1 to 250 μm, preferably about 5 to 80 μm.

<触媒層の形成方法>
本発明の触媒層−電解質膜積層体は、電解質膜の片面又は両面に、本発明の触媒転写フィルムを転写して得られる。
<Method for forming catalyst layer>
The catalyst layer-electrolyte membrane laminate of the present invention is obtained by transferring the catalyst transfer film of the present invention to one or both surfaces of the electrolyte membrane.

転写方法は常法に従って行えばよく、例えば、高分子電解質膜と、触媒転写フィルムの触媒層とが対向するように配置し、加圧することにより行えばよい。   The transfer method may be performed according to a conventional method, for example, by placing the polymer electrolyte membrane and the catalyst layer of the catalyst transfer film so as to face each other and applying pressure.

加圧の程度は、転写不良を避けるために、通常5〜100kgf/cm程度、好ましくは10〜70kgf/cm程度がよい。また、加圧操作の際は、転写不良をより一段と避けるために、加圧面を加圧することが好ましい。加圧温度は、電解質膜の破損、変形等を避ける観点から、200℃以下程度、特に100〜150℃程度が好ましい。 The extent of pressurization, in order to avoid transfer failure, usually 5~100kgf / cm 2 or so, preferably from about 10~70kgf / cm 2. Further, during the pressurizing operation, it is preferable to pressurize the pressurizing surface in order to further prevent transfer defects. The pressurization temperature is preferably about 200 ° C. or less, particularly about 100 to 150 ° C. from the viewpoint of avoiding breakage, deformation and the like of the electrolyte membrane.

3.電解質膜−電極接合体
本発明で使用する固体高分子形燃料電池用電解質膜−電極接合体は、本発明の触媒層−電解質膜積層体の片面又は両面に、ガス拡散基材が、触媒層とガス拡散基材が接するように設けられたものである。
3. Electrolyte Membrane-Electrode Assembly The electrolyte membrane-electrode assembly for use in the present invention is a catalyst layer-electrolyte membrane laminate of the present invention, the gas diffusion base material is a catalyst layer on one side or both sides. And the gas diffusion base material are in contact with each other.

ガス拡散基材は限定的ではなく、例えば通気性のあるカーボン基材が挙げられ、具体的には、カーボンクロス、カーボンペーパー、カーボンフェルト等の公知のものを使用すればよい。   The gas diffusion base material is not limited, and examples thereof include a carbon base material having air permeability. Specifically, a known material such as carbon cloth, carbon paper, carbon felt may be used.

また、これらのカーボン基材は撥水処理されたものを用いてもよい。撥水処理は、例えば、カーボン基材をポリテトラフルオロエチレンエマルジョン液に含浸させた後、乾燥及び焼成することにより、行うことができる。   Further, those carbon substrates that have been subjected to water repellent treatment may be used. The water repellent treatment can be performed, for example, by impregnating a carbon base material with a polytetrafluoroethylene emulsion liquid, followed by drying and baking.

さらに、カーボン基材の面を平滑にするための処理(平滑処理)を施したものを使用してもよい。例えば、カーボンブラック、ポリテトラフルオロエチレン及び水等を主成分とするインクをカーボン基材に塗布及び乾燥することにより、平滑にすることができる。   Furthermore, you may use what performed the process (smooth process) for smooth | blunting the surface of a carbon base material. For example, it can be made smooth by applying and drying an ink mainly composed of carbon black, polytetrafluoroethylene and water on a carbon substrate.

ガス拡散基材の厚さは、通常20〜1000μm程度、好ましくは100〜400μm程度とすればよい。   The thickness of the gas diffusion substrate is usually about 20 to 1000 μm, preferably about 100 to 400 μm.

本発明で使用する固体高分子形燃料電池用電解質膜−電極接合体は、例えば、本発明の電解質膜−触媒層接合体の片面又は両面に、ガス拡散基材を、触媒層とガス拡散基材とが対面するように配置し、熱プレスすることにより、作製することができる。   The electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell used in the present invention includes, for example, a gas diffusion substrate, a catalyst layer and a gas diffusion group on one or both sides of the electrolyte membrane-catalyst layer assembly of the present invention. It arrange | positions so that a material may face and it can produce by hot-pressing.

熱プレスする際の加圧レベルは、通常1〜100kgf/cm程度、好ましくは5〜70kgf/cm程度がよい。また、この際の加熱温度は、通常120〜150℃程度でよい。 The pressure level at the time of hot pressing is usually about 1 to 100 kgf / cm 2 , preferably about 5 to 70 kgf / cm 2 . Moreover, the heating temperature in this case may be about 120-150 degreeC normally.

4.固体高分子形燃料電池
前記電解質膜−電極接合体に公知又は市販のセパレータを設けることにより、本発明の触媒層−電解質膜積層体を具備する、本発明の固体高分子形燃料電池を得ることができる。
4). Solid polymer fuel cell By providing a known or commercially available separator to the electrolyte membrane-electrode assembly, a solid polymer fuel cell of the present invention comprising the catalyst layer-electrolyte membrane laminate of the present invention is obtained. Can do.

本発明によれば、触媒転写フィルムを熱プレス等で電解質膜上に転写する際、触媒転写フィルムと電解質膜の間の気泡等が抜けやすくなることによって、転写した触媒層面の転写不良やゆがみを抑制することができ、平滑な触媒層−電解質膜積層体を製造できる触媒転写フィルムが得られる。また、これにより、伸ばす工程が不要になくなり、短時間で量産できるようになったり、高価な装置も不要であったりするという利点もある。   According to the present invention, when the catalyst transfer film is transferred onto the electrolyte membrane by a hot press or the like, bubbles and the like between the catalyst transfer film and the electrolyte membrane are easily removed, thereby causing transfer defects and distortions on the transferred catalyst layer surface. The catalyst transfer film which can suppress and can manufacture a smooth catalyst layer-electrolyte membrane laminated body is obtained. In addition, this eliminates the need for a stretching process, and there is an advantage that mass production can be performed in a short time and an expensive apparatus is not necessary.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。なお、以下の実施例において、貫通孔はすべて電子顕微鏡(日本電子(株)製)で観察した。   The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following embodiment. In the following examples, all through holes were observed with an electron microscope (manufactured by JEOL Ltd.).

実施例1
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に針を用いて、直径50〜100μmの大きさの貫通孔を複数形成し、基材フィルムを作製した。この際、貫通孔同士の最短距離を1cmとした。
Example 1
Using a needle in a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm), a plurality of through holes having a diameter of 50 to 100 μm were formed to prepare a base film. At this time, the shortest distance between the through holes was 1 cm.

このフィルムに白金担持触媒(田中貴金属工業(株)製)とNafion溶液(デュポン社製)とイソプロピルアルコールと水とを混合し、撹拌して得られた触媒層形成用組成物を塗工し、70℃で30分乾燥させて実施例1の触媒転写フィルムを得た(触媒層の厚み:20μm)。   A platinum-supported catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), a Nafion solution (manufactured by DuPont), isopropyl alcohol and water are mixed and stirred to form a catalyst layer forming composition. The catalyst transfer film of Example 1 was obtained by drying at 70 ° C. for 30 minutes (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例1の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 1.

実施例2
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)にエキシマレーザー((株)ジーエス・ユアサコーポレーション製)を用いて、直径1μmの大きさの貫通孔を複数形成し、基材フィルムを作製した。この際、貫通孔同士の最短距離を0.1mmとした。
Example 2
Using an excimer laser (manufactured by GS Yuasa Corporation) on a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm), a plurality of through-holes having a diameter of 1 μm are formed, and a base film is formed. Produced. At this time, the shortest distance between the through holes was set to 0.1 mm.

このフィルムに実施例1で用いた触媒層形成用組成物を塗工し、70℃で30分乾燥させて実施例2の触媒転写フィルムを得た(触媒層の厚み:20μm)。   The catalyst layer forming composition used in Example 1 was applied to this film and dried at 70 ° C. for 30 minutes to obtain a catalyst transfer film of Example 2 (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例2の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 2.

実施例3
粒度#60〜120の粒度分布を有するダイヤモンド粉を、エポキシ樹脂をバインダーとして、金属製ロールの外周面に塗布、乾燥、硬化させて砥石ロールを作製した。
Example 3
A diamond powder having a particle size distribution of particle size # 60 to 120 was applied to an outer peripheral surface of a metal roll using an epoxy resin as a binder, dried and cured to prepare a grindstone roll.

この砥石ロールと受けロールとの間にポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)を通して、該砥石ロールを圧接して粗面加工を施した。これにより、フィルムの全表面に5〜50μmの大きさの多数の貫通孔を有する粗面を形成した。この際、貫通孔同士の最短距離は0.1cmであった。   A polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) was passed between the grindstone roll and the receiving roll, and the grindstone roll was pressed and roughened. Thereby, the rough surface which has many through-holes of the magnitude | size of 5-50 micrometers in the whole surface of the film was formed. At this time, the shortest distance between the through holes was 0.1 cm.

このフィルムに実施例1で用いた触媒層形成用組成物を塗工し、70℃で30分乾燥させて実施例3の触媒転写フィルムを得た(触媒層の厚み:20μm)。   The catalyst layer forming composition used in Example 1 was applied to this film and dried at 70 ° C. for 30 minutes to obtain a catalyst transfer film of Example 3 (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例3の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 3.

実施例4
実施例1で用いた触媒層形成用組成物をポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に塗工し、70℃で30分乾燥させた(触媒層の厚み:20μm)。
Example 4
The composition for forming a catalyst layer used in Example 1 was applied to a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) and dried at 70 ° C. for 30 minutes (catalyst layer thickness: 20 μm). .

この触媒転写フィルムに、針を用いて、直径50〜100μmの大きさの貫通孔(深さ:25μm〜45μm)を複数形成し、実施例4の触媒転写フィルムを得た。この際、貫通孔同士の最短距離を1cmとした。   A plurality of through-holes (depth: 25 μm to 45 μm) having a diameter of 50 to 100 μm were formed on the catalyst transfer film using a needle to obtain a catalyst transfer film of Example 4. At this time, the shortest distance between the through holes was 1 cm.

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例4の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 4.

実施例5
実施例1で用いた触媒層形成用組成物をポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に塗工し、70℃で30分乾燥させた(触媒層の厚み:20μm)。
Example 5
The composition for forming a catalyst layer used in Example 1 was applied to a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) and dried at 70 ° C. for 30 minutes (catalyst layer thickness: 20 μm). .

この触媒転写フィルムに、エキシマレーザー((株)ジーエス・ユアサコーポレーション製)を用いて、直径1μmの大きさの貫通孔(深さ:25μm〜45μm)を複数形成し、実施例5の触媒転写フィルムを得た。この際、貫通孔同士の最短距離を0.1mmとした。   Using this excimer laser (manufactured by GS Yuasa Corporation), a plurality of through-holes having a diameter of 1 μm (depth: 25 μm to 45 μm) are formed on this catalyst transfer film. Got. At this time, the shortest distance between the through holes was set to 0.1 mm.

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例5の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 5.

実施例6
実施例1で用いた触媒層形成用組成物をポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に塗工し、70℃で30分乾燥させた(触媒層の厚み:20μm)。
Example 6
The composition for forming a catalyst layer used in Example 1 was applied to a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) and dried at 70 ° C. for 30 minutes (catalyst layer thickness: 20 μm). .

粒度#60〜120の粒度分布を有するダイヤモンド粉を、エポキシ樹脂をバインダーとして、金属製ロールの外周面に塗布、乾燥、硬化させて砥石ロールを作製した。   A diamond powder having a particle size distribution of particle size # 60 to 120 was applied to an outer peripheral surface of a metal roll using an epoxy resin as a binder, dried and cured to prepare a grindstone roll.

この触媒転写フィルムに、実施例3で用いた砥石ロールと受けロールとの間にポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)を通して、該砥石ロールを圧接して粗面加工を施した。これにより、フィルムの全表面に5〜50μmの大きさの多数の貫通孔(深さ:25μm〜45μm)を有する粗面を形成し、実施例6の触媒転写フィルムを得た。この際、貫通孔同士の最短距離は0.2cmであった。   Through this catalyst transfer film, a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) is passed between the grindstone roll and the receiving roll used in Example 3, and the grindstone roll is pressed to roughen the surface. gave. Thereby, the rough surface which has many through-holes (depth: 25 micrometers-45 micrometers) of a size of 5-50 micrometers on the whole surface of the film was formed, and the catalyst transfer film of Example 6 was obtained. At this time, the shortest distance between the through holes was 0.2 cm.

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、実施例6の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Example 6.

比較例1
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に細孔を設けず、実施例1で用いた触媒層形成用組成物を塗工し、70℃で30分乾燥させ、比較例1の触媒転写フィルムを得た(触媒層の厚み:20μm)。
Comparative Example 1
A polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) was not provided with pores, and the catalyst layer forming composition used in Example 1 was applied and dried at 70 ° C. for 30 minutes. 1 catalyst transfer film was obtained (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、比較例1の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Comparative Example 1.

比較例2
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に針を用いて、直径150〜200μmの大きさの貫通孔を複数形成し、基材フィルムを作製した。この際、貫通孔同士の最短距離を2mmとした。
Comparative Example 2
Using a needle in a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm), a plurality of through-holes having a diameter of 150 to 200 μm were formed to prepare a base film. At this time, the shortest distance between the through holes was set to 2 mm.

このフィルムに実施例1で用いた触媒層形成用組成物を塗工し、70℃で30分乾燥させて比較例2の触媒転写フィルムを得た(触媒層の厚み:20μm)。   The catalyst layer forming composition used in Example 1 was applied to this film and dried at 70 ° C. for 30 minutes to obtain a catalyst transfer film of Comparative Example 2 (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、比較例2の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Comparative Example 2.

比較例3
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に針を用いて、直径50〜100μmの大きさの貫通孔を複数形成し、基材フィルムを作製した。この際、貫通孔同士の最短距離を3cmとした。
Comparative Example 3
Using a needle in a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm), a plurality of through holes having a diameter of 50 to 100 μm were formed to prepare a base film. At this time, the shortest distance between the through holes was 3 cm.

このフィルムに実施例1で用いた触媒層形成用組成物を塗工し、70℃で30分乾燥させて比較例3の触媒転写フィルムを得た(触媒層の厚み:20μm)。   The catalyst layer forming composition used in Example 1 was applied to this film and dried at 70 ° C. for 30 minutes to obtain a catalyst transfer film of Comparative Example 3 (catalyst layer thickness: 20 μm).

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、比較例3の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Comparative Example 3.

比較例4
ポリエチレンテレフタラートフィルム(PET、東レ(株)製、厚み25μm)に実施例1で用いた触媒層形成用組成物を塗工し、95℃で10分乾燥させた(触媒層の厚み:20μm)。
Comparative Example 4
The composition for forming a catalyst layer used in Example 1 was applied to a polyethylene terephthalate film (PET, manufactured by Toray Industries, Inc., thickness 25 μm) and dried at 95 ° C. for 10 minutes (catalyst layer thickness: 20 μm). .

この触媒転写フィルムに針を用いて、直径200μmの大きさの貫通孔(深さ:25μm〜45μm)を複数形成し、比較例4の触媒転写フィルムを得た。この際、貫通孔同士の最短距離を2mmとした。   A plurality of through-holes (depth: 25 μm to 45 μm) having a diameter of 200 μm were formed on the catalyst transfer film using a needle to obtain a catalyst transfer film of Comparative Example 4. At this time, the shortest distance between the through holes was set to 2 mm.

この触媒転写フィルムを50mm×50mmにカットし、電解質膜(デュポン社製、Nafion)に熱プレスし、比較例4の触媒層−電解質膜積層体を作製した。   This catalyst transfer film was cut into 50 mm × 50 mm, and hot-pressed on an electrolyte membrane (manufactured by DuPont, Nafion) to produce a catalyst layer-electrolyte membrane laminate of Comparative Example 4.

実施例1〜6及び比較例1〜4のフィルムに形成する孔について、表1に示す。   It shows in Table 1 about the hole formed in the film of Examples 1-6 and Comparative Examples 1-4.

Figure 2010080169
Figure 2010080169

試験例1:泡がみ試験
実施例1〜6及び比較例1〜4の触媒層−電解質膜積層体の作製を5回行い、泡がみしているかどうかを評価した。なお、泡がみ率は、5回とも泡をかんだもの(気泡が混入したもの)を100%、1回もかまなかったものを0%として記載した。
Test Example 1: Foaming test The catalyst layer-electrolyte membrane laminates of Examples 1 to 6 and Comparative Examples 1 to 4 were prepared 5 times to evaluate whether or not foaming occurred. In addition, the foaming rate was described as 100% for those that bite bubbles 5 times (in which bubbles were mixed) and 0% for those that did not bite once.

結果を表2に示す   The results are shown in Table 2.

Figure 2010080169
Figure 2010080169

なお、実施例1〜6及び比較例1〜4について、触媒転写フィルムの大きさを100mm×100mmとして同様の試験をしたところ、泡がみ率、泡の大きさは変わらなかった。そのため、本発明によれば、触媒転写フィルムの大きさによらず、泡がみを抑えることができる。   In addition, about Examples 1-6 and Comparative Examples 1-4, when the same test was done by making the magnitude | size of a catalyst transfer film into 100 mm x 100 mm, the foaming rate and the foam size did not change. Therefore, according to the present invention, foaming can be suppressed regardless of the size of the catalyst transfer film.

Claims (4)

(1)フィルム基材上に触媒層が設けられ、
(2)該フィルム基材の触媒層と接していない側の表面に2個以上の貫通孔が設けられ、
(3)該貫通孔は、直径1〜100μmであり、
(4)貫通孔同士の最短距離が1cm以下である、
固体高分子形燃料電池用触媒転写フィルム。
(1) A catalyst layer is provided on the film substrate,
(2) Two or more through holes are provided on the surface of the film base that is not in contact with the catalyst layer,
(3) The through hole has a diameter of 1 to 100 μm,
(4) The shortest distance between the through holes is 1 cm or less.
Catalyst transfer film for polymer electrolyte fuel cells.
貫通孔の深さが、フィルム基材の厚み以上であり、触媒転写フィルムの総厚み以下である、請求項1に記載の触媒転写フィルム。 The catalyst transfer film according to claim 1, wherein the depth of the through hole is not less than the thickness of the film substrate and not more than the total thickness of the catalyst transfer film. 請求項1又は2に記載の触媒転写フィルムを用いて、電解質膜の片面又は両面に触媒層が設けられてなる、触媒層−電解質膜積層体。 A catalyst layer-electrolyte membrane laminate, wherein the catalyst transfer film according to claim 1 or 2 is used, and a catalyst layer is provided on one side or both sides of the electrolyte membrane. 請求項3に記載の触媒層−電解質膜積層体を具備する、固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the catalyst layer-electrolyte membrane laminate according to claim 3.
JP2008245447A 2008-09-25 2008-09-25 Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell obtained using the same Expired - Fee Related JP5343485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245447A JP5343485B2 (en) 2008-09-25 2008-09-25 Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell obtained using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245447A JP5343485B2 (en) 2008-09-25 2008-09-25 Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell obtained using the same

Publications (2)

Publication Number Publication Date
JP2010080169A true JP2010080169A (en) 2010-04-08
JP5343485B2 JP5343485B2 (en) 2013-11-13

Family

ID=42210375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245447A Expired - Fee Related JP5343485B2 (en) 2008-09-25 2008-09-25 Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell obtained using the same

Country Status (1)

Country Link
JP (1) JP5343485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072372A1 (en) * 2013-11-14 2015-05-21 株式会社ダイセル Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158014A (en) * 2000-11-17 2002-05-31 Asahi Glass Co Ltd Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP2005353541A (en) * 2004-06-14 2005-12-22 Hitachi Maxell Ltd Power generation element for liquid fuel cell, manufacturing method thereof and liquid fuel cell
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158014A (en) * 2000-11-17 2002-05-31 Asahi Glass Co Ltd Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP2005353541A (en) * 2004-06-14 2005-12-22 Hitachi Maxell Ltd Power generation element for liquid fuel cell, manufacturing method thereof and liquid fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072372A1 (en) * 2013-11-14 2015-05-21 株式会社ダイセル Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
JP2015118916A (en) * 2013-11-14 2015-06-25 株式会社ダイセル Mold releasing film, laminate, producing method thereof, and method for producing fuel battery
CN105722654A (en) * 2013-11-14 2016-06-29 株式会社大赛璐 Release film, laminate and method for manufacturing same, and method for manufacturing fuel cel
US10622658B2 (en) 2013-11-14 2020-04-14 Daicel Corporation Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP5343485B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4771979B2 (en) Method for producing a fuel cell element comprising a catalyst layer and a plurality of ionomer overcoat layers
KR101652572B1 (en) Conductive porous layer for batteries and fabrication method for same
US8507151B2 (en) Membrane electrode assembly having low surface ionomer concentration
KR101582018B1 (en) Membrane-electrode assembly for fuel cell, manufacturing method thereof, and polymer electrolyte fuel cell using membrane-electrode assembly
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
CA2983076C (en) Membrane electrode assembly manufacturing process
JP2009211869A (en) Catalyst layer for solid polymer fuel cell and its manufacturing method
JP5343298B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5967182B2 (en) Membrane-electrode assembly of fuel cell, transfer sheet for electrode production, and production method thereof
JP2011076907A (en) Catalyst transfer film and method of manufacturing the same as well as catalyst layer-electrolyte membrane laminate, membrane-electrode assembly, and solid polymer fuel cell manufactured with use of this transfer film
JP5343485B2 (en) Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate and polymer electrolyte fuel cell obtained using the same
JP5051203B2 (en) Membrane-electrode assembly of fuel cell, transfer sheet for electrode production, and production method thereof
JP6153465B2 (en) Catalyst layer transfer film
JP2005063832A (en) Catalyst layer-electrolyte film laminate and its manufacturing method
JP5277546B2 (en) Catalyst layer transfer film for fuel cell and method for producing catalyst layer-electrolyte membrane laminate
JP5790186B2 (en) Method for producing gas diffusion electrode substrate
JP2010033897A (en) Method of manufacturing catalyst layer of solid polymer fuel cell, and catalyst layer-electrolyte film laminate
JP5634013B2 (en) Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate
JP2017037716A (en) Membrane electrode assembly for battery and battery using the same
JP5200348B2 (en) Catalyst layer transfer film and catalyst layer-electrolyte membrane laminate
JP5481879B2 (en) Method for producing recycled electrolyte-coated catalyst
JP2010251033A (en) Method of manufacturing membrane-catalyst assembly, membrane-catalyst assembly, and fuel cell
JP5205730B2 (en) Catalyst transfer film for polymer electrolyte fuel cells
JP5470792B2 (en) Catalyst layer transfer film, and catalyst layer-electrolyte membrane laminate and membrane-electrode assembly obtained using the same
JP2008204700A (en) Catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees