JP2010079015A - Dispersion for electrophotographic photoreceptor, and method for manufacturing electrophotographic photoreceptor - Google Patents

Dispersion for electrophotographic photoreceptor, and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2010079015A
JP2010079015A JP2008248211A JP2008248211A JP2010079015A JP 2010079015 A JP2010079015 A JP 2010079015A JP 2008248211 A JP2008248211 A JP 2008248211A JP 2008248211 A JP2008248211 A JP 2008248211A JP 2010079015 A JP2010079015 A JP 2010079015A
Authority
JP
Japan
Prior art keywords
dispersion
parts
polyamide resin
gelled
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008248211A
Other languages
Japanese (ja)
Other versions
JP2010079015A5 (en
JP5349882B2 (en
Inventor
Kenichi Kako
賢一 加来
Takehiko Endo
健彦 遠藤
Masaki Nonaka
正樹 野中
Masato Tanaka
正人 田中
Junji Fujii
淳史 藤井
Yuka Ishizuka
由香 石塚
Mai Murakami
舞 村上
Shunkai Sako
春海 酒匂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008248211A priority Critical patent/JP5349882B2/en
Publication of JP2010079015A publication Critical patent/JP2010079015A/en
Publication of JP2010079015A5 publication Critical patent/JP2010079015A5/ja
Application granted granted Critical
Publication of JP5349882B2 publication Critical patent/JP5349882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion capable of suppressing the dispersion from turning into unstable or the membrane of an undercoat layer from becoming uneven caused by aggregation of pigment even when the undercoat layer is applied while a support body is heated, and to provide a method for manufacturing an electrophotographic photoreceptor using the dispersion for the electrophotographic photoreceptor. <P>SOLUTION: The dispersion for the electrophotographic photoreceptor is obtained by dispersing an organic pigment and a gelled polyamide resin in a solvent, wherein the gelled polyamide resin includes a gelled N-methoxymethylated nylon or a quaternary nylon copolymer of nylon 6-66-610-12, and the dispersion for an electrophotographic photoreceptor contains a secondary alcohol having an ether group. The method for manufacturing an electrophotographic photoreceptor is characterized by forming a photoreceptor by using the above dispersion for an electrophotographic photoreceptor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機顔料、特定のゲル化ポリアミド樹脂、及び特定の溶剤を用いて調製される電子写真感光体用分散液及びその分散液を用いた電子写真感光体の製造方法に関する。   The present invention relates to a dispersion for an electrophotographic photoreceptor prepared using an organic pigment, a specific gelled polyamide resin, and a specific solvent, and a method for producing an electrophotographic photoreceptor using the dispersion.

電子写真感光体は、帯電及び光を用いた露光により静電潜像を形成する感光層と、その感光層を設けるための支持部材としての支持体からなる。一般的に、支持体上に直接感光層を形成した場合、支持体表面の汚れ、形状や性状の不均一等によって、感光層ムラが生じる。その結果、得られる画像には、白抜け、黒点、濃度ムラ等の画像欠陥が発生したり、支持体から感光層が剥離する、という課題が発生したりすることがある。   An electrophotographic photoreceptor includes a photosensitive layer that forms an electrostatic latent image by charging and exposure using light, and a support as a support member for providing the photosensitive layer. In general, when a photosensitive layer is directly formed on a support, unevenness of the photosensitive layer is caused by contamination of the surface of the support, uneven shape and properties, and the like. As a result, the obtained image may have image defects such as white spots, black spots, density unevenness, and a problem that the photosensitive layer is peeled off from the support.

これまでに、支持体との密着性確保、感光層の電気的破壊の保護、支持体から感光層への電荷注入性改良等を目的とし、支持体と感光層の間に下引き層を設けることが行われている。この下引き層は、上記の長所を有する反面、支持体と感光層間の電荷移動を抑制するため、電荷が蓄積され易いという短所も併せ持ち、低湿環境下の連続プリント時における残留電位の上昇等の電位変動が起こり、画像濃度低下等の不具合が発生する場合がある。特に近年、プリンター及び複写機の高画質化及び高速化が進む中で、電子写真感光体の品質に対する要求も更に厳しなっており、使用環境の変動や連続使用時においても電位変動等の変化を起こさない電子写真感光体が強く望まれてきている。   Up to now, an undercoat layer has been provided between the support and the photosensitive layer for the purpose of securing adhesion to the support, protecting electrical breakdown of the photosensitive layer, and improving charge injection from the support to the photosensitive layer. Things have been done. While this undercoat layer has the above-mentioned advantages, it also has the disadvantage that charges are likely to be accumulated in order to suppress charge transfer between the support and the photosensitive layer, such as an increase in residual potential during continuous printing in a low humidity environment. Potential fluctuations may occur and problems such as image density reduction may occur. Particularly in recent years, as the quality and speed of printers and copiers have increased, the requirements for the quality of electrophotographic photoreceptors have become stricter, and changes in usage environment and changes in potential fluctuations even during continuous use. There has been a strong demand for an electrophotographic photosensitive member that does not occur.

このような不具合を抑制するべく、下引き層中に金属酸化物顔料や有機顔料を含有させる方法が提案されている(特許文献1、2参照)。これらの提案は、アルコール可溶性ポリアミド樹脂のアルコール溶液中に有機顔料や金属酸化物顔料を分散した分散液を支持体上に塗布して下引き層を得るというものである。
国際公開第2005/116777号パンフレット 特開2000−221701号公報
In order to suppress such inconveniences, methods for containing a metal oxide pigment or an organic pigment in the undercoat layer have been proposed (see Patent Documents 1 and 2). In these proposals, an undercoat layer is obtained by applying a dispersion in which an organic pigment or a metal oxide pigment is dispersed in an alcohol solution of an alcohol-soluble polyamide resin on a support.
International Publication No. 2005/116777 Pamphlet Japanese Patent Laid-Open No. 2000-221701

しかしながら、工場生産時等において、支持体は超音波洗浄や他の導電層塗布時の加熱乾燥等により加温された状態となり、下引き層はその加温された支持体上に塗布されることが多い。従って、下引き層用分散液は多数の加温された支持体と接触し、分散液の温度が上昇して顔料の凝集を起こして分散液の安定性を悪化させたり、下引き層の膜ムラを生じさせたりする場合がある。   However, during factory production, etc., the support is heated by ultrasonic cleaning or heat drying during application of other conductive layers, and the undercoat layer is applied onto the heated support. There are many. Accordingly, the dispersion for the undercoat layer comes into contact with a large number of heated supports, and the temperature of the dispersion rises to cause the aggregation of the pigment, thereby deteriorating the stability of the dispersion liquid. It may cause unevenness.

本発明の目的は、上記の課題を鑑み、支持体が加温された状態で下引き層を塗布した際にも、顔料の凝集による分散液の不安定化及び下引き層の膜ムラ発生を抑制できる分散液、及び該電子写真感光体用分散液を用いた電子写真感光体の製造方法を提供することにある。   In view of the above problems, the object of the present invention is to destabilize the dispersion due to the aggregation of the pigment and to generate film unevenness in the undercoat layer even when the undercoat layer is applied with the support heated. An object of the present invention is to provide a dispersion that can be suppressed and a method for producing an electrophotographic photosensitive member using the dispersion for an electrophotographic photosensitive member.

本発明に従って、有機顔料とゲル化ポリアミド樹脂とを溶剤中に分散させて得られる電子写真感光体用分散液であって、
該ゲル化ポリアミド樹脂が、ゲル化させたN−メトキシメチル化ナイロン又はゲル化させたナイロン6−66−610−12の4元ナイロン共重合体であり、
該電子写真感光体用分散液が、エーテル基を有する第2級アルコールを含有する
ことを特徴とする電子写真感光体用分散液が提供される。
According to the present invention, a dispersion for an electrophotographic photoreceptor obtained by dispersing an organic pigment and a gelled polyamide resin in a solvent,
The gelled polyamide resin is a quaternary nylon copolymer of gelled N-methoxymethylated nylon or gelled nylon 6-66-610-12,
There is provided a dispersion for an electrophotographic photoreceptor, wherein the dispersion for an electrophotographic photoreceptor contains a secondary alcohol having an ether group.

また、本発明に従って、支持体上に下引き層及び感光層をこの順に形成して電子写真感光体を製造する方法において、
該下引き層を上記電子写真感光体用分散液を用いて形成することを特徴とする電子写真感光体の製造方法が提供される。
According to the present invention, in the method for producing an electrophotographic photoreceptor by forming an undercoat layer and a photosensitive layer in this order on a support,
There is provided a method for producing an electrophotographic photosensitive member, wherein the undercoat layer is formed using the electrophotographic photosensitive member dispersion.

本発明の電子写真感光体用分散液及び該電子写真感光体用分散液を用いた電子写真感光体の製造方法は、ゲル化ポリアミド樹脂と有機顔料とエーテル基を有する第2級アルコールとを用いて作製した分散液を使用する。これにより、加温された支持体上に前記分散液を用いて下引き層を作製した場合でも、有機顔料の凝集による分散液の不安定化や、下引き層の膜ムラを抑制可能な電子写真感光体用分散液及び電子写真感光体用分散液を用いた電子写真感光体の製造方法を提供できる。   The electrophotographic photoreceptor dispersion of the present invention and the method for producing an electrophotographic photoreceptor using the electrophotographic photoreceptor dispersion use a gelled polyamide resin, an organic pigment, and a secondary alcohol having an ether group. The dispersion prepared in this way is used. As a result, even when an undercoat layer is produced on the heated support using the dispersion liquid, it is possible to suppress the destabilization of the dispersion liquid due to the aggregation of the organic pigment and the film unevenness of the undercoat layer. A method for producing an electrophotographic photoreceptor using the dispersion for a photographic photoreceptor and the dispersion for an electrophotographic photoreceptor can be provided.

以下に、本発明の形態を詳細に述べる。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の分散液は、溶剤中に、有機顔料及びゲル化ポリアミド樹脂を分散することで製造される分散液である。   The dispersion liquid of the present invention is a dispersion liquid produced by dispersing an organic pigment and a gelled polyamide resin in a solvent.

ここで述べる「ゲル化ポリアミド樹脂」とは、ASTM D4359−90規格に従って固体−液体判定試験を行い、固体状態であると判断できるポリアミド樹脂溶液を意味する。   The “gelled polyamide resin” described here means a polyamide resin solution that can be determined to be in a solid state by performing a solid-liquid determination test in accordance with ASTM D4359-90 standard.

ゲル化ポリアミド樹脂は、ポリアミド樹脂単体、又はポリアミド樹脂を溶媒に加熱溶解させた後、次の条件を組み合わせて調製することができる。   The gelled polyamide resin can be prepared by combining the following conditions after the polyamide resin alone or the polyamide resin is dissolved by heating in a solvent.

(1)ポリアミド樹脂の種類:ポリアミド樹脂の種類はポリアミド樹脂をゲル化させる溶剤への溶解性、ポリアミド樹脂のゲル化のし易さを考慮して決定される。ポリアミド樹脂の種類としては、N−メトキシメチル化6ナイロンやN−メトキシメチル化12ナイロンに代表されるN−アルコキシアルキル化ナイロン、ナイロン6−66−610−12の4元ナイロン共重合体に代表されるナイロン共重合体等がより好ましい。最も好ましくは、N−メトキシメチル化6ナイロン又はナイロン6−66−610−12の4元ナイロン共重合体である。1種類又は2種類以上のポリアミド樹脂を組み合わせて用いることもできる。少なくともN−メトキシメチル化ナイロンが含まれる場合には、そのN−メトキシメチル化率が20%以上45%以下のN−メトキシメチル化ナイロンが含まれることが更に好ましい。なお、N−メトキシメチル化率はNMRにて以下に示す方法にて測定した。N−メトキシメチル化ナイロンはN−メトキシメチル化率が20%より低いと溶剤への溶解性が低下し、ゲル化ポリアミド樹脂の調製が難しくなることがある。N−メトキシメチル化率が45%より高いと溶剤への溶解性が上がり、ゲル化ポリアミド樹脂の安定性が悪化することがある。   (1) Type of polyamide resin: The type of polyamide resin is determined in consideration of solubility in a solvent for gelling the polyamide resin and ease of gelation of the polyamide resin. As the types of polyamide resins, N-alkoxyalkylated nylon typified by N-methoxymethylated 6 nylon and N-methoxymethylated 12 nylon, and quaternary nylon copolymer of nylon 6-66-610-12 Nylon copolymer is more preferable. Most preferred is a quaternary nylon copolymer of N-methoxymethylated 6 nylon or nylon 6-66-610-12. One type or two or more types of polyamide resins can be used in combination. When at least N-methoxymethylated nylon is included, it is more preferable that N-methoxymethylated nylon having an N-methoxymethylation rate of 20% to 45% is included. In addition, N-methoxymethylation rate was measured by the method shown below by NMR. When N-methoxymethylated nylon has a N-methoxymethylation rate lower than 20%, solubility in a solvent may be lowered, and it may be difficult to prepare a gelled polyamide resin. When the N-methoxymethylation rate is higher than 45%, the solubility in a solvent increases, and the stability of the gelled polyamide resin may deteriorate.

<N−メトキシメチル化率の測定方法>
装置:
測定装置:FT NMR装置 JNM−EX400(日本電子社製)
測定周波数:400MHz
パルス条件:5.0μS
データポイント:32768
周波数範囲:10500Hz
積算回数:32回
測定温度:25℃
試料:
N−メトキシメチル化ナイロン 25mg
メタノール−D4(99.8atom%D)アルドリッチ製 0.75ml
テトラメチルシラン(内部標準物質) メタノール−D4に対し0.05質量%
計算方法:
A:N−メトキシメチル化されているアミド基のカルボニル部分隣のメチレンプロトン(ca.2.4ppm)の積分値
B:N−メトキシメチル化されていないアミド基のカルボニル部分隣のメチレンプロトン(ca.2.2ppm)の積分値
N−メトキシメチル化率(%)=A/(A+B)×100
<Measurement method of N-methoxymethylation rate>
apparatus:
Measuring apparatus: FT NMR apparatus JNM-EX400 (manufactured by JEOL Ltd.)
Measurement frequency: 400MHz
Pulse condition: 5.0 μS
Data points: 32768
Frequency range: 10500Hz
Integration count: 32 times Measurement temperature: 25 ° C
sample:
N-methoxymethylated nylon 25mg
0.75 ml of methanol-D4 (99.8 atom% D) made by Aldrich
Tetramethylsilane (internal standard) 0.05% by mass with respect to methanol-D4
Method of calculation:
A: Integral value of methylene proton (ca.2.4 ppm) adjacent to the carbonyl portion of the amide group which is N-methoxymethylated B: Methylene proton (ca) adjacent to the carbonyl portion of the amide group which is not N-methoxymethylated 2.2 ppm) N-methoxymethylation rate (%) = A / (A + B) × 100

(2)ポリアミド樹脂をゲル化させる温度:所望のゲル化ポリアミド樹脂ができればポリアミド樹脂をゲル化させる温度は特に限定されない。安定してゲル化ポリアミド樹脂を得るためには、溶剤にある濃度以上で加熱溶解させたポリアミド樹脂を冷却することが好ましく、30℃以下に冷却することがより好ましい。   (2) Temperature at which the polyamide resin is gelled: The temperature at which the polyamide resin is gelled is not particularly limited as long as the desired gelled polyamide resin can be obtained. In order to obtain a gelled polyamide resin stably, it is preferable to cool the polyamide resin heated and dissolved at a certain concentration or higher in the solvent, and more preferably to 30 ° C. or lower.

(3)ポリアミド樹脂をゲル化させる溶剤:所望のゲル化ポリアミド樹脂を調製することができれば溶剤の有無や種類は特に限定されないが、好ましくはアルコールである。また、溶剤はポリアミド樹脂の溶解性とゲル化ポリアミド樹脂の調製のし易さを加味して、1種類又は2種類以上の溶剤を組み合わせてもよい。   (3) Solvent for gelling the polyamide resin: The presence or type of the solvent is not particularly limited as long as the desired gelled polyamide resin can be prepared, but is preferably alcohol. In addition, the solvent may be combined with one or more solvents in consideration of the solubility of the polyamide resin and the ease of preparation of the gelled polyamide resin.

前記アルコールとしては、炭素数が1乃至6の直鎖又は分岐鎖をもつアルコールがより好ましく、エタノール、n−プロパノール、n−ブタノールのいずれかを含有することが特に好ましい。   The alcohol is more preferably a linear or branched alcohol having 1 to 6 carbon atoms, and particularly preferably contains any one of ethanol, n-propanol, and n-butanol.

(4)ゲル化ポリアミド樹脂のポリアミド樹脂固形分:所望のゲル化ポリアミド樹脂を調製することができればゲル化ポリアミド樹脂のポリアミド樹脂固形分は特に限定されない。ゲル化ポリアミド樹脂の安定性を考慮すれば、ポリアミド樹脂の固形分は好ましくは質量%で2.0%以上であり、最も好ましくは5.0%以上30.0%以下の範囲である。ポリアミド樹脂の固形分が低過ぎるとゲル化ポリアミド樹脂が調製できない場合があり、高過ぎると溶解させることができない場合がある。   (4) Polyamide resin solid content of gelled polyamide resin: If a desired gelled polyamide resin can be prepared, the polyamide resin solid content of the gelled polyamide resin is not particularly limited. Considering the stability of the gelled polyamide resin, the solid content of the polyamide resin is preferably 2.0% or more by mass%, and most preferably in the range of 5.0% or more and 30.0% or less. If the solid content of the polyamide resin is too low, the gelled polyamide resin may not be prepared, and if it is too high, it may not be dissolved.

(5)ゲル化ポリアミド樹脂の形状:所望の分散液を調製することができればゲル化ポリアミド樹脂の形状は特に限定されない。分散操作における作業性を考慮すれば、分散を行う前にゲル化ポリアミド樹脂を0.5mm以上10mm以下の塊に破砕しておくことが好ましい。ゲル化ポリアミド樹脂塊が0.5mmより小さいと破砕したゲル化ポリアミド樹脂同士が付着易くなり、作業性が悪化する場合がある。ゲル化ポリアミド樹脂塊が10mmより大きいと、分散終了後にゲル化ポリアミド樹脂の未分散成分が残ることがある。ゲル化ポリアミド樹脂の破砕には、ペイントシェーカー、ボールミル、サンドミル、超音波分散機、高圧ホモジナイザー、スターラー、ミキサー、撹拌機、ロールミル、乳化分散機、メッシュ、篩、ミンサー等を用いる。   (5) Shape of gelled polyamide resin: The shape of the gelled polyamide resin is not particularly limited as long as a desired dispersion can be prepared. Considering workability in the dispersion operation, it is preferable to crush the gelled polyamide resin into a mass of 0.5 mm or more and 10 mm or less before dispersion. If the gelled polyamide resin mass is smaller than 0.5 mm, the crushed gelled polyamide resins are likely to adhere to each other, and workability may be deteriorated. If the gelled polyamide resin mass is larger than 10 mm, an undispersed component of the gelled polyamide resin may remain after the dispersion is completed. For crushing the gelled polyamide resin, a paint shaker, a ball mill, a sand mill, an ultrasonic disperser, a high-pressure homogenizer, a stirrer, a mixer, a stirrer, a roll mill, an emulsion disperser, a mesh, a sieve, a mincer, or the like is used.

前記有機顔料は、モノアゾ、ビスアゾ、トリスアゾ及びテトラキスアゾ等のアゾ顔料、ガリウムフタロシアニン及びチタニルフタロシアニン等のフタロシアニン系顔料、ペリレン系顔料等の従来公知のものを用いることができ、特に限定されない。中でも、アゾ顔料が、ポリアミド樹脂のアミド結合に水素結合によって相互作用できる点で、特に好ましい。また、有機顔料はこれらを2種類以上組み合わせて使用することが出来る。   As the organic pigment, conventionally known pigments such as azo pigments such as monoazo, bisazo, trisazo, and tetrakisazo, phthalocyanine pigments such as gallium phthalocyanine and titanyl phthalocyanine, and perylene pigments can be used. Among these, azo pigments are particularly preferable because they can interact with the amide bond of the polyamide resin through hydrogen bonds. Moreover, these organic pigments can be used in combination of two or more thereof.

前記アゾ顔料としては、下記一般式(1)で示されるビスアゾ顔料が最も好ましい。最も好ましい理由としては、詳細は定かではないが、ゲル化ポリアミド樹脂に親和するアミド結合と、アルコールに親和する水酸基を同時に有するため、良好な分散状態を維持することができると推察している。   As the azo pigment, a bisazo pigment represented by the following general formula (1) is most preferable. Although the details are not clear as the most preferable reason, it is presumed that a good dispersion state can be maintained because the amide bond having affinity for the gelled polyamide resin and the hydroxyl group having affinity for alcohol are simultaneously present.

一般式(1)中、Ar及びArはそれぞれ独立に置換もしくは無置換のアリール基を示す。Xはビニレン基又はp−フェニレン基を示す。nは0又は1を示す。 In general formula (1), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group. X 1 represents a vinylene group or a p-phenylene group. n represents 0 or 1.

分散液は溶剤中に上述のゲル化ポリアミド樹脂と有機顔料を分散して製造する。分散液の分散性を考慮すれば、ゲル化ポリアミド樹脂と有機顔料を分散する場合は、溶剤を加えて、分散中の分散液の流動性をある程度上げることが好ましい。溶剤、有機顔料とゲル化ポリアミド樹脂を同時に分散してもよいし、また、有機顔料だけを予め溶剤中で分散した後に、ゲル化ポリアミド樹脂を加えて分散してもよい。   The dispersion is produced by dispersing the gelled polyamide resin and the organic pigment in a solvent. Considering the dispersibility of the dispersion, when the gelled polyamide resin and the organic pigment are dispersed, it is preferable to add a solvent to increase the fluidity of the dispersion during dispersion to some extent. The solvent, the organic pigment and the gelled polyamide resin may be dispersed simultaneously, or only the organic pigment may be dispersed in advance in the solvent, and then the gelled polyamide resin may be added and dispersed.

分散方法としては、既知の方法、例えばペイントシェーカー、ボールミル、サンドミル、超音波分散機、高圧ホモジナイザー、スターラー、ミキサー、撹拌機、ロールミル、乳化分散機等の分散装置を用いて分散する方法を用いることができる。   As a dispersion method, a known method, for example, a method using a dispersion device such as a paint shaker, a ball mill, a sand mill, an ultrasonic disperser, a high-pressure homogenizer, a stirrer, a mixer, a stirrer, a roll mill, or an emulsifying disperser is used. Can do.

また、前記分散液は、エーテル基を有する第2級アルコールを含有する。前記第2級アルコールは、有機顔料及びゲル化ポリアミド樹脂の分散時に用いる溶剤に含有させてもよく、分散終了後の分散液を希釈する段階で含有させてもよい。更に、分散時に使用する溶剤の少なくも一種は、エタノール、n−プロパノール、n−ブタノールのいずれかであることが特に好ましい。   The dispersion contains a secondary alcohol having an ether group. The secondary alcohol may be contained in a solvent used at the time of dispersing the organic pigment and the gelled polyamide resin, or may be contained at the stage of diluting the dispersion after completion of the dispersion. Furthermore, it is particularly preferred that at least one of the solvents used during dispersion is ethanol, n-propanol, or n-butanol.

前記エーテル基を有する第2級アルコールの含有量は、前記電子写真感光体用分散液の全質量に対して10質量%以上70質量%以下であることが好ましい。エーテル基を有する第2級アルコールの含有量が10質量%より少ないと有機顔料の凝集が起こり易くなり、70質量%より多いと分散液の粘度が増大し、分散液の安定性が悪化する場合がある。   The content of the secondary alcohol having an ether group is preferably 10% by mass or more and 70% by mass or less with respect to the total mass of the electrophotographic photoreceptor dispersion. When the content of the secondary alcohol having an ether group is less than 10% by mass, the organic pigment tends to aggregate, and when it exceeds 70% by mass, the viscosity of the dispersion increases and the stability of the dispersion deteriorates. There is.

前記エーテル基を有する第2級アルコールとしては、グリコールエーテル系化合物が好ましく、プロピレングリコールモノアルキルエーテル化合物であることが好ましい。中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルから選択されることが好ましい。最も好ましくはプロピレングリコールモノメチルエーテルである。   As the secondary alcohol having an ether group, a glycol ether compound is preferable, and a propylene glycol monoalkyl ether compound is preferable. Among these, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether are preferably selected. Most preferred is propylene glycol monomethyl ether.

我々は、鋭意検討の末、上記ゲル化ポリアミド樹脂と上記エーテル基を有する第2級アルコールを組み合わせることでより顕著に分散液の安定性向上効果を発現できることを見出した。その理由は定かではないが、次のようなことが考えられる。エーテル基を有する第2級アルコールがポリアミド樹脂に対しては溶解性の低い溶媒であり、かつ、アルコールには容易に親和、混合する性質を持つものである。従って、この性質が、顔料と共に分散されたゲル化ポリアミド樹脂が様々な環境において溶解あるいは縮小することを抑制するため、安定した分散状態が維持できるものと推察している。   As a result of intensive studies, we have found that the effect of improving the stability of the dispersion can be exhibited more significantly by combining the gelled polyamide resin and the secondary alcohol having an ether group. The reason is not clear, but the following can be considered. The secondary alcohol having an ether group is a solvent having low solubility in the polyamide resin, and has a property of easily affinity and mixing with the alcohol. Therefore, this property is presumed that a stable dispersion state can be maintained because the gelled polyamide resin dispersed together with the pigment is prevented from dissolving or shrinking in various environments.

電子写真感光体用分散液中に含まれる有機顔料の質量(P)とゲル化ポリアミド樹脂の質量(B)との質量比(P/B)は、分散液の液安定性と分散液を用いて形成された電子写真感光体の連続プリント時における電位変動の抑制効果を考慮して決定される。好ましくは分散液に含まれる有機顔料の質量(P)とゲル化ポリアミド樹脂の質量(B)との質量比(P/B)が1/1000以上3/1以下である。更に好ましくは分散液に含まれる有機顔料の質量(P)とゲル化ポリアミド樹脂の質量(B)との質量比(P/B)が1/100以上2/1以下である。分散液に含まれる有機顔料とゲル化ポリアミド樹脂の質量比が3/1よりも高い場合、顔料の分散性が悪化して分散液の液安定性が劣ることがある。また、分散液に含まれる有機顔料とゲル化ポリアミド樹脂の質量比が1/1000よりも低いと電子写真感光体での連続プリント時における電位変動の抑制効果が劣ることもある。   The mass ratio (P / B) of the mass (P) of the organic pigment contained in the electrophotographic photoreceptor dispersion and the mass (B) of the gelled polyamide resin is determined using the liquid stability of the dispersion and the dispersion. It is determined in consideration of the effect of suppressing potential fluctuations during continuous printing of the electrophotographic photosensitive member formed in this manner. Preferably, the mass ratio (P / B) of the mass (P) of the organic pigment contained in the dispersion and the mass (B) of the gelled polyamide resin is 1/1000 or more and 3/1 or less. More preferably, the mass ratio (P / B) of the mass (P) of the organic pigment contained in the dispersion and the mass (B) of the gelled polyamide resin is from 1/100 to 2/1. When the mass ratio of the organic pigment and the gelled polyamide resin contained in the dispersion is higher than 3/1, the dispersibility of the pigment may deteriorate and the liquid stability of the dispersion may deteriorate. Further, if the mass ratio of the organic pigment and the gelled polyamide resin contained in the dispersion is lower than 1/1000, the effect of suppressing potential fluctuations during continuous printing on the electrophotographic photosensitive member may be inferior.

分散液の固形分は分散液の安定性、塗工性を考慮して決定され、好ましくは質量%で1.0%以上20.0%以下であり、更に好ましくは1.5%以上5.0%以下である。分散液の固形分が20.0%より高いと分散液の流動性が失われたり、分散性が悪くなり分散液の液安定性が低下したりすることがある。また、分散液の固形分が1%より低いと分散液を用いた電子写真感光体の塗布ムラ、膜ダレ等による画像濃度ムラや画像欠陥が悪化することもある。   The solid content of the dispersion is determined in consideration of the stability and coating properties of the dispersion, and is preferably 1.0% or more and 20.0% or less, and more preferably 1.5% or more and 5.5% by mass. 0% or less. When the solid content of the dispersion is higher than 20.0%, the fluidity of the dispersion may be lost, or the dispersibility may be deteriorated and the liquid stability of the dispersion may be lowered. On the other hand, if the solid content of the dispersion is lower than 1%, uneven application of the electrophotographic photosensitive member using the dispersion, image density unevenness due to film sagging, and the like may be deteriorated.

次に、本発明の分散液を用いて形成される電子写真感光体の製造方法について説明する。   Next, a method for producing an electrophotographic photoreceptor formed using the dispersion of the present invention will be described.

電子写真感光体は、導電性支持体上に少なくとも下引き層と感光層を積層して形成される。前記感光層は、電荷輸送材料と電荷発生材料を同一の層に含有する単層型感光層(図1(a))であっても、電荷発生材料を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層とに分離した積層型(機能分離型)感光層(図1(b))であってもよいが、電子写真特性の観点からは積層型感光層が好ましい。なお、図1(a)及び(b)中、101は支持体、102は下引き層、103は感光層、104は電荷発生層、105は電荷輸送層を示す。以下では、積層型(機能分離型)感光層を含有する電子写真感光体について詳細に述べる。   The electrophotographic photoreceptor is formed by laminating at least an undercoat layer and a photosensitive layer on a conductive support. Even if the photosensitive layer is a single-layer type photosensitive layer (FIG. 1A) containing the charge transport material and the charge generation material in the same layer, the charge generation layer and the charge transport material containing the charge generation material are used. Although it may be a laminated type (functionally separated type) photosensitive layer (FIG. 1B) separated into the contained charge transport layer, a laminated type photosensitive layer is preferred from the viewpoint of electrophotographic characteristics. 1A and 1B, reference numeral 101 denotes a support, 102 denotes an undercoat layer, 103 denotes a photosensitive layer, 104 denotes a charge generation layer, and 105 denotes a charge transport layer. In the following, an electrophotographic photoreceptor containing a laminated (functionally separated type) photosensitive layer will be described in detail.

導電性支持体は導電性を有するものであればよく、アルミニウム、ステンレス及びニッケル等の金属、又は導電層を設けた金属、プラスチック及び紙等が挙げられ、形状としては円筒状及びフィルム状等が挙げられる。特に円筒状のアルミニウムが機械強度、電子写真特性及びコストの点で優れている。これらの導電性支持体は素管のまま用いてもよいが、切削及びホーニング等の物理処理、陽極酸化処理又は酸等を用いた化学処理を施した物を用いてよい。その中でも切削又はホーニング等の物理処理を行うことにより、表面粗さをRz値で0.1μm以上3.0μm以下に処理することで、干渉縞防止機能を持たせることができる。   The conductive support only needs to have conductivity, and examples thereof include metals such as aluminum, stainless steel, and nickel, or metals provided with a conductive layer, plastics, paper, and the like. Can be mentioned. In particular, cylindrical aluminum is excellent in terms of mechanical strength, electrophotographic characteristics, and cost. These conductive supports may be used as they are, but those subjected to physical treatment such as cutting and honing, anodizing treatment, or chemical treatment using acid or the like may be used. Among them, by performing physical processing such as cutting or honing, the surface roughness is processed to be 0.1 μm or more and 3.0 μm or less in terms of Rz value, thereby providing an interference fringe prevention function.

導電性支持体と下引き層との間に干渉縞防止層(図1中不図示)を設けることもできる。干渉縞防止層は、支持体自身に干渉縞防止機能を持たせた場合は必要ないが、導電性支持体を素管のまま用い、これに塗工により干渉縞防止層を形成することにより、簡便な方法により導電性支持体に干渉縞防止機能を付与できる。このため、生産性、コストの面から非常に有用である。干渉縞防止層は、酸化スズ、酸化インジウム、酸化チタン、硫酸バリウム等の無機粒子をフェノール樹脂等の硬化性樹脂と共に適当な溶剤に分散して塗布液を作製し、支持体上に塗工した後、加熱乾燥することで形成される。干渉縞防止層の膜厚は1μm以上40μm以下であることが好ましく、干渉縞防止能、支持体上の欠陥の被覆といった観点から、10μm以上30μm以下が更に好ましい。   An interference fringe preventing layer (not shown in FIG. 1) may be provided between the conductive support and the undercoat layer. The interference fringe prevention layer is not necessary when the support itself has an interference fringe prevention function, but by using the conductive support as it is and forming an interference fringe prevention layer by coating on it, An interference fringe preventing function can be imparted to the conductive support by a simple method. For this reason, it is very useful in terms of productivity and cost. The interference fringe prevention layer was prepared by dispersing inorganic particles such as tin oxide, indium oxide, titanium oxide, and barium sulfate in a suitable solvent together with a curable resin such as a phenol resin, and coating the resultant on a support. Thereafter, it is formed by heating and drying. The film thickness of the interference fringe prevention layer is preferably 1 μm or more and 40 μm or less, and more preferably 10 μm or more and 30 μm or less from the viewpoint of interference fringe prevention ability and coating of defects on the support.

支持体上もしくは干渉縞防止層上には、支持体との密着性確保、感光層の電気的破壊の保護、感光層のキャリア注入性の改良等のために下引き層が必要である。   On the support or the interference fringe preventing layer, an undercoat layer is necessary for securing adhesion to the support, protecting the photosensitive layer from electrical breakdown, improving the carrier injection property of the photosensitive layer, and the like.

下引き層は、有機顔料とゲル化ポリアミド樹脂からなる前記分散液を支持体もしくは干渉縞防止層上に塗工することにより形成される。その膜厚は好ましくは0.01μm以上10μm以下であり、更に好ましくは0.1μm以上5μm以下である。有機顔料を下引き層に含有させることにより、連続プリント時における電位変動を抑制することができる。   The undercoat layer is formed by coating the dispersion composed of an organic pigment and a gelled polyamide resin on a support or an interference fringe prevention layer. The film thickness is preferably 0.01 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less. By including an organic pigment in the undercoat layer, potential fluctuations during continuous printing can be suppressed.

積層型感光層は、電荷発生層、電荷輸送層をこの順に下引き層上に積層したものであることが好ましい。   The laminated photosensitive layer is preferably a layer in which a charge generation layer and a charge transport layer are laminated on an undercoat layer in this order.

電荷発生層に含有される電荷発生材料としては、モノアゾ、ビスアゾ、トリスアゾ及びテトラキスアゾ等のアゾ顔料、ガリウムフタロシアニン及びチタニルフタロシアニン等のフタロシアニン系顔料、ペリレン系顔料等を用いることができる。環境変動時の特性安定性の観点から、ガリウムフタロシアニン顔料が好ましい。更に好ましくは、高感度の観点から、CuKα特性X線回折におけるブラッグ角2θ=7.4°±0.3°及び2θ=28.2°±0.3°の位置に強いピークを有する結晶型のヒドロキシガリウムフタロシアニンである。   As the charge generation material contained in the charge generation layer, azo pigments such as monoazo, bisazo, trisazo and tetrakisazo, phthalocyanine pigments such as gallium phthalocyanine and titanyl phthalocyanine, and perylene pigments can be used. A gallium phthalocyanine pigment is preferable from the viewpoint of characteristic stability during environmental changes. More preferably, from the viewpoint of high sensitivity, a crystal type having strong peaks at Bragg angles 2θ = 7.4 ° ± 0.3 ° and 2θ = 28.2 ° ± 0.3 ° in CuKα characteristic X-ray diffraction. Of hydroxygallium phthalocyanine.

電荷発生層の塗工液は、前記電荷発生材料を適当な溶剤を溶媒として上述の既知の分散方法にて調製される。適当な溶剤としては、例えばテトラヒドロフラン、シクロヘキサノン、メチルエチルケトン、酢酸エチル、メタノール、メチルセルソルブ、アセトン、ジオキサン及びN,N−ジメチルホルムアミド等が挙げられる。この時に結着剤として高分子物質を一緒に加えてもよいし、顔料と溶媒だけで予め分散した後、結着剤を加えてもよい。   The coating solution for the charge generation layer is prepared by the known dispersion method described above using the charge generation material as a suitable solvent. Suitable solvents include, for example, tetrahydrofuran, cyclohexanone, methyl ethyl ketone, ethyl acetate, methanol, methyl cellosolve, acetone, dioxane and N, N-dimethylformamide. At this time, a polymer substance may be added together as a binder, or the binder may be added after predispersing only with a pigment and a solvent.

結着剤としては広範な絶縁性樹脂から選択でき、またポリ−N−ビニルカルバゾール、ポリビニルアントラセンやポリビニルポレン等の有機光導電性ポリマーからも選択できる。好ましくは、ポリビニルブチラール、ポリアリレート(ビスフェノールAとフタル酸の縮重合体等)、ポリカーボネート、ポリエステル、フェノキシ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリアクリルアミド樹脂等の絶縁性樹脂を挙げることができる。また、ポリアミド、ポリビニルピリジン、セルロース系樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等の絶縁性樹脂を挙げることができる。   The binder can be selected from a wide range of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinyl anthracene, and polyvinyl porene. Preferable examples include insulating resins such as polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, and polyacrylamide resin. In addition, insulating resins such as polyamide, polyvinyl pyridine, cellulose resin, urethane resin, epoxy resin, casein, polyvinyl alcohol, and polyvinyl pyrrolidone can be given.

電荷発生層は上記の様な物質を含有する分散液を下引き層上に塗布後、加熱乾燥することによって形成され、その膜厚は5μm以下が好ましく、特には0.05μm以上1μm以下が好ましい。   The charge generation layer is formed by applying a dispersion containing the above substances on the undercoat layer and then drying by heating. The thickness of the charge generation layer is preferably 5 μm or less, particularly preferably 0.05 μm or more and 1 μm or less. .

電荷輸送層は主として電荷輸送材料と結着剤とを溶剤中に溶解させた塗料を塗工後、加熱乾燥して形成する。   The charge transport layer is formed by applying a paint in which a charge transport material and a binder are dissolved in a solvent, followed by heating and drying.

用いられる電荷輸送材料としては各種のトリアリールアミン系化合物、ヒドラゾン系化合物、スチルベン系化合物、ピラゾリン系化合物、オキサゾール系化合物、チアゾール系化合物、トリアリルメタン系化合物等が挙げられる。電荷輸送材料と溶媒だけで予め分散溶解した後、結着剤を加えてもよい。また、結着剤としては上述したものを用いることができる。   Examples of the charge transport material used include various triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, triallylmethane compounds, and the like. A binder may be added after preliminarily dispersing and dissolving only with the charge transport material and the solvent. Moreover, what was mentioned above can be used as a binder.

電荷輸送層の膜厚は好ましくは5μm以上40μm以下であり、更に好ましくは10μm以上30μm以下である。   The thickness of the charge transport layer is preferably 5 μm or more and 40 μm or less, and more preferably 10 μm or more and 30 μm or less.

電荷輸送層が単一層の場合も上述したような物質を用いて同様に形成することができ、その膜厚は5μm以上40μm以下が好ましく、特には10μm以上30μm以下が好ましい。   When the charge transport layer is a single layer, it can be formed similarly using the above-described substances, and the film thickness is preferably 5 μm or more and 40 μm or less, and particularly preferably 10 μm or more and 30 μm or less.

また、本発明においては電荷輸送層上には耐久性、転写性及びクリーニング性の向上を目的として、保護層を設けてもよい(図1中不図示)。   In the present invention, a protective layer may be provided on the charge transport layer for the purpose of improving durability, transferability and cleaning properties (not shown in FIG. 1).

保護層は、樹脂を有機溶剤によって溶解して得られる保護層用塗布液を塗布し、乾燥することによって形成することができる。樹脂としては、ポリビニルブチラール、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアリレート、ポリウレタン、スチレン−ブタジエンコポリマー、スチレン−アクリル酸コポリマー及びスチレン−アクリロニトリルコポリマー等が挙げられる。   The protective layer can be formed by applying and drying a protective layer coating solution obtained by dissolving a resin in an organic solvent. Examples of the resin include polyvinyl butyral, polyester, polycarbonate, polyamide, polyimide, polyarylate, polyurethane, styrene-butadiene copolymer, styrene-acrylic acid copolymer, and styrene-acrylonitrile copolymer.

また、保護層に電荷輸送能を併せ持たせるために、電荷輸送能を有するモノマー材料や高分子型の電荷輸送材料を種々の架橋反応を用いて硬化させることによって保護層を形成してもよい。硬化させる反応としては、ラジカル重合、イオン重合、熱重合、光重合、放射線重合(電子線重合)、プラズマCVD法、光CVD法等が挙げられる。   Further, in order to provide the protective layer with the charge transport ability, the protective layer may be formed by curing a monomer material having a charge transport ability or a polymer type charge transport material using various crosslinking reactions. . Examples of the curing reaction include radical polymerization, ionic polymerization, thermal polymerization, photopolymerization, radiation polymerization (electron beam polymerization), plasma CVD method, and photo CVD method.

更に、保護層中に導電性粒子や紫外線吸収剤、及び耐摩耗性改良剤等を含ませてもよい。導電性粒子としては、例えば、酸化錫粒子等の金属酸化物が好ましい。耐摩耗性改良剤としてはフッ素系樹脂微粉末、アルミナ、シリカ等が好ましい。   Furthermore, you may include electroconductive particle, a ultraviolet absorber, an abrasion resistance improving agent, etc. in a protective layer. As the conductive particles, for example, metal oxides such as tin oxide particles are preferable. As the wear resistance improver, fluorine resin fine powder, alumina, silica and the like are preferable.

保護層の膜厚は0.5μm以上20μm以下であることが好ましく、特には1μm以上10μm以下であることが好ましい。   The thickness of the protective layer is preferably 0.5 μm or more and 20 μm or less, and particularly preferably 1 μm or more and 10 μm or less.

これら各種層の塗布方法としては、ディッピング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ブレードコーティング法及びビームコーティング法等を用いることができる。   As a coating method for these various layers, a dipping method, a spray coating method, a spinner coating method, a bead coating method, a blade coating method, a beam coating method, and the like can be used.

以下に、具体的な実施例を挙げて本発明を更に詳細に説明する。ただし、本発明の実施の形態は、これらにのみ限定されるものではない。なお、実施例中の「部」は、それぞれ「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, embodiments of the present invention are not limited to these. In the examples, “parts” means “parts by mass”.

まず、本発明の分散液の製造法について述べる。   First, a method for producing the dispersion of the present invention will be described.

<ゲル化ポリアミド樹脂の製造例1>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)22.5部を、エタノール(キシダ化学製、特級)127.5部に60℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−1を得た。
<Production Example 1 of Gelled Polyamide Resin>
22.5 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation, degree of polymerization 420, methoxymethylation rate 36.8%), ethanol (made by Kishida Chemical, special grade) The mixture was dissolved in 127.5 parts while stirring in a 60 ° C. hot water bath. Next, the solution was allowed to stand in an environment having a temperature of 23 ° C. and a relative humidity of 50% for 12 hours to obtain a gelled polyamide resin GA-1.

<ゲル化ポリアミド樹脂の製造例2>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)15.0部を、n−ブタノール(キシダ化学製、特級)135.0部に70℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−2を得た。
<Production Example 2 of Gelled Polyamide Resin>
15.0 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corp., degree of polymerization 420, methoxymethylation rate 36.8%) was added to n-butanol (manufactured by Kishida Chemical, Special grade) 135.0 parts were dissolved with stirring in a 70 ° C hot water bath. The solution was then allowed to stand for 12 hours in an environment having a temperature of 23 ° C. and a relative humidity of 50% to obtain a gelled polyamide resin GA-2.

<ゲル化ポリアミド樹脂の製造例3>
ナイロン6−66−610−12四元ナイロン共重合体樹脂(商品名:CM8000、東レ社製)22.5部を、イソブタノール(キシダ化学製、特級)127.5部に70℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−3を得た。
<Production Example 3 of Gelled Polyamide Resin>
Nylon 6-66-610-12 Quaternary nylon copolymer resin (trade name: CM8000, manufactured by Toray Industries, Inc.) 22.5 parts, isobutanol (manufactured by Kishida Chemical, special grade) 127.5 parts, 70 ° C. hot water bath The solution was stirred and dissolved with heating. Next, the solution was allowed to stand in an environment having a temperature of 23 ° C. and a relative humidity of 50% for 12 hours to obtain a gelled polyamide resin GA-3.

<ゲル化ポリアミド樹脂の製造例4>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)15.0部を、2−プロパノール(キシダ化学製、特級)135.0部に70℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−4を得た。
<Production Example 4 of Gelled Polyamide Resin>
15.0 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation, degree of polymerization 420, methoxymethylation rate 36.8%) was added to 2-propanol (manufactured by Kishida Chemical, Special grade) 135.0 parts were dissolved with stirring in a 70 ° C hot water bath. Next, the solution was allowed to stand in an environment having a temperature of 23 ° C. and a relative humidity of 50% for 12 hours to obtain a gelled polyamide resin GA-4.

<ゲル化ポリアミド樹脂の製造例5>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)15.0部を、2−ブタノール(キシダ化学製、特級)135.0部に70℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−5を得た。
<Production Example 5 of Gelled Polyamide Resin>
15.0 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation, degree of polymerization 420, methoxymethylation rate 36.8%), 2-butanol (manufactured by Kishida Chemical, Special grade) 135.0 parts were dissolved with stirring in a 70 ° C hot water bath. The solution was then allowed to stand for 12 hours in an environment having a temperature of 23 ° C. and a relative humidity of 50% to obtain a gelled polyamide resin GA-5.

<ゲル化ポリアミド樹脂の製造例6>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)15.0部を、n−プロパノール(キシダ化学製、特級)135.0部に70℃の湯浴で加熱しながら攪拌溶解させた。次いでその溶液を温度23℃、相対湿度50%の環境に12時間静置し、ゲル化ポリアミド樹脂GA−6を得た。
<Production Example 6 of Gelled Polyamide Resin>
15.0 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation, degree of polymerization 420, methoxymethylation rate 36.8%) was added to n-propanol (manufactured by Kishida Chemical, Special grade) 135.0 parts were dissolved with stirring in a 70 ° C hot water bath. The solution was then allowed to stand for 12 hours in an environment having a temperature of 23 ° C. and a relative humidity of 50% to obtain a gelled polyamide resin GA-6.

次に、分散液作製に関する実施例を示す。   Next, examples relating to the preparation of the dispersion are shown.

<実施例1>
前記ゲル化ポリアミド樹脂GA−3の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、
イソブタノール(キシダ化学製、特級) 50.0部
下記式(2)で示されるヒドロキシガリウムフタロシアニン顔料 0.098部
(CuKα特性X線回折におけるフラッグ角2θ=7.4°±0.3°及び2θ=28.2°±0.3°の位置に強いピークを有する結晶型のガリウムフタロシアニン(特許第3639691号公報に記載のもの))
<Example 1>
130.0 parts of the gelled polyamide resin GA-3 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). to this,
Isobutanol (manufactured by Kishida Chemical Co., Ltd., special grade) 50.0 parts 0.098 parts of a hydroxygallium phthalocyanine pigment represented by the following formula (2) (flag angle 2θ = 7.4 ° ± 0.3 ° in CuKα characteristic X-ray diffraction) Crystalline gallium phthalocyanine having a strong peak at a position of 2θ = 28.2 ° ± 0.3 ° (as described in Japanese Patent No. 3639691))

を加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液1−1を得た。分散液1−1に、イソブタノール(キシダ化学製、特級)441.5部、プロピレングリコールモノプロピルエーテル(東邦化学工業製)31.7部を加えて希釈し、分散液1−Aを得た。 Was added to obtain a mixed solution before dispersion. This mixed liquid was dispersed using a vertical sand mill, using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotational speed of 1500 rpm (circumferential speed 5.5 m / s) for 4 hours. A liquid 1-1 was obtained. To dispersion 1-1, 441.5 parts of isobutanol (manufactured by Kishida Chemical, special grade) and 31.7 parts of propylene glycol monopropyl ether (manufactured by Toho Chemical Industry) were added and diluted to obtain dispersion 1-A. .

遠心沈降式粒度分布測定装置 CAPA−700(堀場製作所製)を用いて、下記測定条件のもとに、前記分散液1−Aの室温状態(23℃)の平均粒径(メジアン径)を測定した。また、分散液1−Aを40℃の恒温槽に1時間保管後、同様にして粒径を測定した。結果を表1に示す。   Using a centrifugal sedimentation type particle size distribution analyzer CAPA-700 (manufactured by Horiba Seisakusho), the average particle size (median diameter) of the dispersion 1-A at room temperature (23 ° C.) is measured under the following measurement conditions. did. Further, after the dispersion 1-A was stored in a constant temperature bath at 40 ° C. for 1 hour, the particle size was measured in the same manner. The results are shown in Table 1.

<分散液粒径の測定条件>
(粒径算出条件)
演算方法:体積基準
沈降距離:ΔX=10mm
吸光係数補正:補正なし
(測定条件)
溶媒 エタノール
DISP.VISC. 1.20mPa・s
DISP.DENS. 0.79g/cc
SAMP.DENS. 1.20g/cc
D(MAX) 1.00μm
D(MIN) 0.10μm
D(DIV) 0.05μm
SPEED 7000rpm
<Measurement conditions of dispersion particle size>
(Particle size calculation conditions)
Calculation method: Volume-based settling distance: ΔX = 10 mm
Absorption coefficient correction: No correction (measurement conditions)
Solvent Ethanol DISP. VISC. 1.20 mPa · s
DISP. DENS. 0.79g / cc
SAMP. DENS. 1.20g / cc
D (MAX) 1.00μm
D (MIN) 0.10 μm
D (DIV) 0.05 μm
SPEED 7000rpm

<実施例2>
前記ゲル化ポリアミド樹脂としてGA−4、イソブタノールの代わりに2−プロパノ−ル(キシダ化学製、特級)、プロピレングリコールモノプロピルエーテルの代わりにプロピレングリコールモノエチルエーテル(東邦化学工業製)を用いた。それ以外は、実施例1と同様にして分散及び希釈を実施し、分散液2−Aを得た。分散液2−Aに対して、上述の粒径測定を行なった。結果を表1に示す。
<Example 2>
As the gelled polyamide resin, GA-4, 2-propanol (made by Kishida Chemical, special grade) was used instead of isobutanol, and propylene glycol monoethyl ether (made by Toho Chemical Industry) was used instead of propylene glycol monopropyl ether. . Otherwise, dispersion and dilution were performed in the same manner as in Example 1 to obtain dispersion 2-A. The above particle size measurement was performed on the dispersion 2-A. The results are shown in Table 1.

<実施例3>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を16.2部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液3−1を得た。
<Example 3>
130.0 parts of the gelled polyamide resin GA-1 was crushed into a size of 1 mm or less by crushing while crushing with a sieve (aperture opening 0.5 mm). To this, 16.2 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 3-1 was obtained.

分散液3−1に、エタノール(キシダ化学製、特級)459.8部、プロピレングリコールモノエチルエーテル(キシダ化学製)32.7部を加えて希釈し、分散液3−Aを得た。分散液3−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 3-1, 459.8 parts of ethanol (made by Kishida Chemical, special grade) and 32.7 parts of propylene glycol monoethyl ether (made by Kishida Chemical) were added and diluted to obtain dispersion 3-A. The above particle size measurement was performed on the dispersion 3-A. The results are shown in Table 1.

<実施例4>
前記ゲル化ポリアミド樹脂GA−5の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、2−ブタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液4−1を得た。
<Example 4>
130.0 parts of the gelled polyamide resin GA-5 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (aperture opening 0.5 mm). To this, 50.0 parts of 2-butanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 4-1 was obtained.

分散液4−1に、2−ブタノール(キシダ化学製、特級)213.2部、プロピレングリコールモノエチルエーテル(キシダ化学製)42.2部を加えて希釈し、分散液4−Aを得た。分散液4−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 4-1, 213.2 parts of 2-butanol (manufactured by Kishida Chemical, special grade) and 42.2 parts of propylene glycol monoethyl ether (product of Kishida Chemical) were added and diluted to obtain dispersion 4-A. . The above particle size measurement was performed on the dispersion 4-A. The results are shown in Table 1.

<実施例5>
前記ゲル化ポリアミド樹脂GA−5の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、2−ブタノール(キシダ化学製、特級)を9.7部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.065部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液5−1を得た。
<Example 5>
130.0 parts of the gelled polyamide resin GA-5 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (aperture opening 0.5 mm). To this, 9.7 parts of 2-butanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 0.065 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 5-1 was obtained.

分散液5−1に、プロピレングリコールモノエチルエーテル(キシダ化学製)295.7部を加えて希釈し、分散液5−Aを得た。分散液5−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   295.7 parts of propylene glycol monoethyl ether (manufactured by Kishida Chemical Co., Ltd.) was added to the dispersion 5-1, and diluted to obtain dispersion 5-A. The above particle size measurement was performed on the dispersion 5-A. The results are shown in Table 1.

<実施例6>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液6−1を得た。
<Example 6>
130.0 parts of the gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). To this, 50.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 6-1 was obtained.

分散液6−1に、エタノール(キシダ化学製、特級)219.7部、プロピレングリコールモノブチルエーテル(東邦化学工業製)253.5部を加えて希釈し、分散液6−Aを得た。分散液6−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 6-1, 219.7 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 253.5 parts of propylene glycol monobutyl ether (manufactured by Toho Chemical Industry) were added and diluted to obtain dispersion 6-A. The above particle size measurement was performed on the dispersion 6-A. The results are shown in Table 1.

<実施例7>
前記ゲル化ポリアミド樹脂GA−5の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、2−ブタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.065部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液7−1を得た。
<Example 7>
130.0 parts of the gelled polyamide resin GA-5 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (aperture opening 0.5 mm). To this, 50.0 parts of 2-butanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 0.065 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 7-1 was obtained.

分散液7−1に、2−ブタノール(キシダ化学製、特級)170.9部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)84.5部を加えて希釈し、分散液7−Aを得た。分散液7−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 7-1, 170.9 parts of 2-butanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 84.5 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) were added and diluted to prepare dispersion 7-A. Obtained. The above particle size measurement was performed on the dispersion 7-A. The results are shown in Table 1.

<実施例8>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液8−1を得た。
<Example 8>
130.0 parts of the gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). To this, 50.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 8-1 was obtained.

分散液8−1に、エタノール(キシダ化学製、特級)346.4部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)126.7部を加えて希釈し、分散液8−Aを得た。分散液8−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   346.4 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 126.7 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) were added to the dispersion 8-1 and diluted to obtain a dispersion 8-A. . The above particle size measurement was performed on the dispersion 8-A. The results are shown in Table 1.

<実施例9>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液9−1を得た。
<Example 9>
130.0 parts of the gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). To this, 50.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 9-1 was obtained.

分散液9−1に、エタノール(キシダ化学製、特級)219.7部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)253.5部を加えて希釈し、分散液9−Aを得た。分散液9−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 9-1, 219.7 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 253.5 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) were added and diluted to obtain dispersion 9-A. . The above particle diameter measurement was performed on the dispersion 9-A. The results are shown in Table 1.

<実施例10>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液10−1を得た。
<Example 10>
130.0 parts of the gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). To this, 50.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 0.098 parts of hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 10-1 was obtained.

分散液10−1に、エタノール(キシダ化学製、特級)93.0部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)380.2部を加えて希釈し、分散液10−Aを得た。分散液10−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 10-1, 93.0 parts of ethanol (manufactured by Kishida Chemical, special grade) and 380.2 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical, first grade) were added and diluted to obtain dispersion 10-A. . The above particle size measurement was performed on the dispersion 10-A. The results are shown in Table 1.

<実施例11>
前記ゲル化ポリアミド樹脂GA−6の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、n−プロパノール(キシダ化学製、特級)を50.0部、上記式(2)で示されるヒドロキシガリウムフタロシアニン顔料を0.098部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液11−1を得た。
<Example 11>
130.0 parts of the gelled polyamide resin GA-6 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (aperture opening 0.5 mm). To this, 50.0 parts of n-propanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 0.098 parts of a hydroxygallium phthalocyanine pigment represented by the above formula (2) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 11-1 was obtained.

分散液11−1に、n−プロパノール(キシダ化学製、特級)170.9部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)84.5部を加えて希釈し、分散液11−Aを得た。分散液11−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 11-1, 170.9 parts of n-propanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 84.5 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) are added and diluted to prepare dispersion 11-A. Obtained. The above particle size measurement was performed on the dispersion 11-A. The results are shown in Table 1.

<実施例12>
前記ゲル化ポリアミド樹脂としてGA−2、n−プロパノールの代わりにn−ブタノール(キシダ化学製、特級)、を用いた以外は、実施例11と同様にして分散及び希釈を実施し、分散液12−Aを得た。分散液12−Aに対して、上述の粒径測定を行なった。結果を表1に示す。
<Example 12>
Dispersion and dilution were carried out in the same manner as in Example 11 except that n-butanol (manufactured by Kishida Chemical Co., Ltd., special grade) was used as the gelling polyamide resin instead of GA-2 and n-propanol. -A was obtained. The above particle size measurement was performed on the dispersion 12-A. The results are shown in Table 1.

<実施例13>
前記ゲル化ポリアミド樹脂GA−1の130.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、
エタノール(キシダ化学製、特級) 50.0部
下記式(3)で示されるジアゾ化合物 0.130部
<Example 13>
130.0 parts of the gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by crushing while crushing with a sieve (mesh opening 0.5 mm). to this,
Ethanol (manufactured by Kishida Chemical, special grade) 50.0 parts 0.130 parts of diazo compound represented by the following formula (3)

とを加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液13−1を得た。 Were added to obtain a mixed solution before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 13-1 was obtained.

分散液13−1に、エタノール(キシダ化学製、特級)220.3部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)253.9部を加えて希釈し、分散液13−Aを得た。分散液13−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 13-1, 220.3 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 253.9 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) 253.9 parts were added and diluted to obtain dispersion 13-A. . The above particle diameter measurement was performed on the dispersion 13-A. The results are shown in Table 1.

<実施例14>
上記式(3)で示されるジアゾ化合物を0.195部、分散後の希釈溶剤として、エタノール(キシダ化学製、特級)221.6部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)254.7部を用いた。それ以外は、実施例13と同様にして分散及び希釈を実施し、分散液14−Aを得た。結果を表1に示す。
<Example 14>
0.195 parts of the diazo compound represented by the above formula (3), 221.6 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade), propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) 254. Seven parts were used. Otherwise, dispersion and dilution were carried out in the same manner as in Example 13 to obtain dispersion 14-A. The results are shown in Table 1.

<実施例15>
上記式(3)で示されるジアゾ化合物を6.50部、分散後の希釈溶剤として、エタノール(キシダ化学製、特級)343.9部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)336.3部を用いた。それ以外は、実施例13と同様にして分散及び希釈を実施し、分散液15−Aを得た。結果を表1に示す。
<Example 15>
6.50 parts of the diazo compound represented by the above formula (3), 343.9 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade), and propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) 336. Three parts were used. Otherwise, dispersion and dilution were carried out in the same manner as in Example 13 to obtain dispersion 15-A. The results are shown in Table 1.

<実施例16>
上記式(3)で示されるジアゾ化合物を6.50部、分散後の希釈溶剤として、エタノール(キシダ化学製、特級)91.7部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)588.5部を用いた。それ以外は、実施例13と同様にして分散及び希釈を実施し、分散液16−Aを得た。結果を表1に示す。
<Example 16>
6.50 parts of the diazo compound represented by the above formula (3), 91.7 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) as a dilution solvent after dispersion, 588. Five parts were used. Otherwise, dispersion and dilution were carried out in the same manner as in Example 13 to obtain dispersion 16-A. The results are shown in Table 1.

<実施例17>
上記式(3)で示されるジアゾ化合物を6.50部、分散後の希釈溶剤として、エタノール(キシダ化学製、特級)596.1部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)84.1部を用いた。それ以外は、実施例13と同様にして分散及び希釈を実施し、分散液17−Aを得た。結果を表1に示す。
<Example 17>
6.50 parts of the diazo compound represented by the above formula (3), 596.1 parts of ethanol (manufactured by Kishida Chemical, special grade) as a diluent solvent after dispersion, 84. propylene glycol monomethyl ether (manufactured by Kishida Chemical, first grade) 84. One part was used. Other than that was disperse | distributed and diluted like Example 13, and dispersion liquid 17-A was obtained. The results are shown in Table 1.

<実施例18>
前記ゲル化ポリアミド樹脂GA−1の80.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を100.0部、上記式(3)で示されるジアゾ化合物を12.0部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液18−1を得た。
<Example 18>
The gelled polyamide resin GA-1 was crushed to a size of 1 mm or less by filtering while crushing 80.0 parts of the gelled polyamide resin GA-1 with a sieve (aperture opening 0.5 mm). To this, 100.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 12.0 parts of a diazo compound represented by the above formula (3) were added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 18-1 was obtained.

分散液18−1に、エタノール(キシダ化学製、特級)530.4部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)253.9部を加えて希釈し、分散液18−Aを得た。分散液18−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 18-1, 530.4 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 253.9 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) 253.9 parts were diluted to obtain dispersion 18-A. . The above particle diameter measurement was performed on the dispersion 18-A. The results are shown in Table 1.

<実施例19>
前記ゲル化ポリアミド樹脂GA−1の60.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を150.0部、上記式(3)で示されるジアゾ化合物を18.0部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液19−1を得た。
<Example 19>
By crushing 60.0 parts of the gelled polyamide resin GA-1 with a sieve (a sieve opening of 0.5 mm), the powder was crushed to a size of 1 mm or less. 150.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 18.0 parts of the diazo compound represented by the above formula (3) were added thereto to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 19-1 was obtained.

分散液19−1に、エタノール(キシダ化学製、特級)322.8部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)349.2部を加えて希釈し、分散液19−Aを得た。分散液19−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 19-1, 322.8 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 349.2 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) were added and diluted to obtain dispersion liquid 19-A. . The above particle size measurement was performed on the dispersion 19-A. The results are shown in Table 1.

<実施例20>
前記ゲル化ポリアミド樹脂GA−1の40.0部を篩(篩目開き0.5mm)にて押しつぶしながら濾すことで1mm以下の大きさに破砕した。これに、エタノール(キシダ化学製、特級)を150.0部、上記式(3)で示されるジアゾ化合物を18.0部加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液20−1を得た。
<Example 20>
The gelled polyamide resin GA-1 was crushed into a size of 1 mm or less by filtering while crushing 40.0 parts of the gelled polyamide resin GA-1 with a sieve (aperture opening 0.5 mm). 150.0 parts of ethanol (manufactured by Kishida Chemical Co., Ltd.) and 18.0 parts of the diazo compound represented by the above formula (3) were added thereto to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). A liquid 20-1 was obtained.

分散液20−1に、エタノール(キシダ化学製、特級)281.6部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)310.4部を加えて希釈し、分散液20−Aを得た。分散液20−Aに対して、上述の粒径測定を行なった。結果を表1に示す。   To dispersion 20-1, 281.6 parts of ethanol (manufactured by Kishida Chemical, special grade) and 310.4 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical, first grade) were added and diluted to obtain dispersion 20-A. . The above particle diameter measurement was performed on the dispersion 20-A. The results are shown in Table 1.

<実施例21>
上記式(3)で示されるジアゾ化合物の代わりに、下記式(4)で示されるジアゾ化合物を用いた以外は、実施例13と同様にして分散及び希釈を実施し、分散液21−Aを得た。分散液21−Aに対して、上述の粒径測定を行なった。結果を表1に示す。
<Example 21>
Dispersion and dilution were carried out in the same manner as in Example 13 except that a diazo compound represented by the following formula (4) was used instead of the diazo compound represented by the above formula (3). Obtained. The above particle diameter measurement was performed on the dispersion liquid 21-A. The results are shown in Table 1.

<比較例1>
プロピレングリコールモノメチルエーテルの代わりに、プロピレングリコールジメチルエーテルを用いた以外は、実施例8と同様にして分散及び希釈を実施し、分散液1−Xを得た。結果を表1に示す。
<Comparative Example 1>
Dispersion and dilution were carried out in the same manner as in Example 8 except that propylene glycol dimethyl ether was used instead of propylene glycol monomethyl ether to obtain dispersion 1-X. The results are shown in Table 1.

<比較例2>
プロピレングリコールモノメチルエーテルの代わりに、エチレングリコールモノメチルエーテルを用いた以外は、実施例8と同様にして分散及び希釈を実施し、分散液2−Xを得た。分散液2−Xに対して、上述の粒径測定を行なった。結果を表1に示す。
<Comparative example 2>
Dispersion and dilution were carried out in the same manner as in Example 8 except that ethylene glycol monomethyl ether was used instead of propylene glycol monomethyl ether to obtain dispersion 2-X. The above particle size measurement was performed on the dispersion 2-X. The results are shown in Table 1.

<比較例3>
N−メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス社製、重合度420、メトキシメチル化率36.8%)19.5部を、エタノール(キシダ化学製、特級)370.5部に60℃の湯浴で加熱しながら攪拌溶解させた。その後、放冷し、ポリアミド樹脂エタノール溶液を得た。これに、上記式(3)で示されるジアゾ化合物6.5部を加え、分散前の混合液を得た。この混合液を、縦型サンドミルを用いて、分散媒体として平均粒径φ1.0mmのガラスビーズを500部使用し、回転数1500rpm(周速5.5m/s)で4時間分散して、分散液3−11を得た。分散液3−11に、エタノール(キシダ化学製、特級)301.9部、プロピレングリコールモノメチルエーテル(キシダ化学製、1級)168.1部を加えて希釈し、分散液3−Xを得た。分散液3−Xに対して、上述の粒径測定を行なった。結果を表1に示す。
<Comparative Example 3>
19.5 parts of N-methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Nagase ChemteX Corporation, degree of polymerization 420, methoxymethylation rate 36.8%), ethanol (made by Kishida Chemical, special grade) The mixture was dissolved with stirring in 370.5 parts while heating in a 60 ° C. hot water bath. Then, it stood to cool and obtained the polyamide resin ethanol solution. To this, 6.5 parts of the diazo compound represented by the above formula (3) was added to obtain a mixed liquid before dispersion. Using a vertical sand mill, this mixed solution was dispersed for 4 hours using 500 parts of glass beads having an average particle diameter of 1.0 mm as a dispersion medium at a rotation speed of 1500 rpm (circumferential speed 5.5 m / s). Liquid 3-11 was obtained. Dispersion 3-11 was diluted by adding 301.9 parts of ethanol (manufactured by Kishida Chemical Co., Ltd., special grade) and 168.1 parts of propylene glycol monomethyl ether (manufactured by Kishida Chemical Co., Ltd., first grade) to obtain dispersion 3-X. . The above particle size measurement was performed on the dispersion 3-X. The results are shown in Table 1.

更に次いで、上記で得られた分散液1−A乃至20−A、及び1−X、2−X、3−Xを用いて、電子写真感光体を作製した。   Next, an electrophotographic photoreceptor was produced using the dispersions 1-A to 20-A obtained above and 1-X, 2-X, 3-X.

<電子写真感光体の作製実施例22>
酸化スズで被覆した酸化チタン粉体 50部
(商品名クロノスECT−62、チタン工業社製)
レゾール型フェノール樹脂 25部
メチルセロソルブ 20部
球状シリコーン樹脂粉末 3.8部
(商品名トスパール120、東芝シリコーン社製)
メタノール 5部
シリコーンオイル 0.002部
(ポリジメチルシロキサン・ポリオキシアルキレン共重合体、平均分子量3000)
上記構成で、直径0.8mmのガラスビーズを用いたサンドミル装置で2時間分散して、干渉縞防止層用塗布液を調製した。導電性支持体としてのアルミニウムシリンダー(直径30mm、引き抜き管)上に、この塗布液を浸漬塗布し、140℃で30分間乾燥させ、膜厚が15μmの干渉縞防止層を形成した。
<Embodiment 22 of electrophotographic photosensitive member>
50 parts of titanium oxide powder coated with tin oxide (trade name Kronos ECT-62, manufactured by Titanium Industry Co., Ltd.)
Resol type phenolic resin 25 parts Methyl cellosolve 20 parts Spherical silicone resin powder 3.8 parts (trade name Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.)
Methanol 5 parts Silicone oil 0.002 parts (polydimethylsiloxane / polyoxyalkylene copolymer, average molecular weight 3000)
With the above configuration, the coating solution for interference fringe prevention layer was prepared by dispersing for 2 hours in a sand mill using glass beads having a diameter of 0.8 mm. This coating solution was dip-coated on an aluminum cylinder (diameter 30 mm, drawn tube) as a conductive support and dried at 140 ° C. for 30 minutes to form an interference fringe preventing layer having a thickness of 15 μm.

得られた干渉縞防止層上に前記分散液1−Aを浸漬塗布し、100℃で10分間乾燥して、膜厚が0.5μmの下引き層を形成し、下引き層塗布シリンダC−1を得た。この浸漬塗布の干渉縞防止層が形成されたアルミニウムシリンダーの温度は、40℃であった。   The dispersion 1-A is dip-coated on the obtained interference fringe prevention layer and dried at 100 ° C. for 10 minutes to form an undercoat layer having a film thickness of 0.5 μm. 1 was obtained. The temperature of the aluminum cylinder on which the interference fringe preventing layer of this dip coating was formed was 40 ° C.

次に、
上記式(2)で示されるヒドロキシガリウムフタロシアニン 10部
下記式(5)で示される化合物 0.1部
next,
10 parts of hydroxygallium phthalocyanine represented by the above formula (2) 0.1 part of a compound represented by the following formula (5)

とポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)5部をシクロヘキサノン250部に添加し、直径0.8mmのガラスビーズを用いたサンドミル装置で3時間分散した。CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.5°、9.9°、16.3°、18.6°、25.1°及び28.3°の位置に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン分散液を得た。これにシクロヘキサノン100部と酢酸エチル450部を更に加えて希釈して電荷発生層用塗布液を得た。得られた塗布液を下引き層上に浸漬塗布し、100℃で10分間乾燥することにより、膜厚が0.18μmの電荷発生層を形成した。 And 5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) were added to 250 parts of cyclohexanone and dispersed in a sand mill apparatus using glass beads having a diameter of 0.8 mm for 3 hours. Strong at Bragg angles (2θ ± 0.2 °) of 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 ° in CuKα characteristic X-ray diffraction A crystalline form of hydroxygallium phthalocyanine dispersion having a peak was obtained. To this, 100 parts of cyclohexanone and 450 parts of ethyl acetate were further added and diluted to obtain a coating solution for charge generation layer. The obtained coating solution was dip-coated on the undercoat layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.18 μm.

次に、下記式(6)で示される電荷輸送材料10部、   Next, 10 parts of a charge transport material represented by the following formula (6),

ポリカーボネート樹脂(商品名:ユーピロンZ−200、三菱エンジニアリングプラスチックス社製)10部をモノクロロベンゼン70部に溶解した。得られた溶液を電荷発生層上に浸漬塗布し、110℃で1時間乾燥することにより、膜厚25μmの電荷輸送層を形成し、電子写真感光体D−1を作製した。 10 parts of a polycarbonate resin (trade name: Iupilon Z-200, manufactured by Mitsubishi Engineering Plastics) was dissolved in 70 parts of monochlorobenzene. The obtained solution was dip-coated on the charge generation layer and dried at 110 ° C. for 1 hour to form a charge transport layer having a thickness of 25 μm, thereby producing an electrophotographic photosensitive member D-1.

<電子写真感光体の作製実施例23乃至42>
得られた干渉縞防止層上に塗布する分散液を、1−Aから2−A乃至21−Aに変えた以外は電子写真感光体の作製例1と同様にして、下引き層塗布シリンダC−2乃至C−21、電子写真感光体D−2乃至D−21を作製した。
<Electrophotographic photoconductor production examples 23 to 42>
Undercoating layer coating cylinder C in the same manner as in Production Example 1 of the electrophotographic photosensitive member, except that the dispersion applied on the interference fringe prevention layer was changed from 1-A to 2-A to 21-A. -2 to C-21 and electrophotographic photoreceptors D-2 to D-21 were prepared.

<電子写真感光体の作製比較例4乃至6>
得られた干渉縞防止層上に塗布する分散液を、1−Aから1−X、2−X、3−Xに変えた以外は電子写真感光体の作製実施例1と同様にして下引き層塗布シリンダ1−Y、2−Y、3−Y、電子写真感光体1−Z、2−Z、3−Zを作製した。
<Production Comparative Examples 4 to 6 of electrophotographic photoreceptor>
Undercoating is performed in the same manner as in Production Example 1 of the electrophotographic photosensitive member, except that the dispersion applied on the obtained interference fringe prevention layer is changed from 1-A to 1-X, 2-X, 3-X. Layer coating cylinders 1-Y, 2-Y, 3-Y and electrophotographic photoreceptors 1-Z, 2-Z, 3-Z were prepared.

(下引き層ムラ評価例)
<実施例22乃至42>
上記で作製した下引き層塗布シリンダC−1乃至C−21に対して、下引き層塗布面を目視することにより、下引き層膜ムラ有無を評価した。目視評価結果は、下記判断基準のもと行なった。結果を表2に示す。
(下引き層膜ムラ判断基準)
1・・・ムラなし
2・・・約2mm幅未満の長軸方向の薄いムラが1箇所
3・・・約2mm幅の長軸方向の薄いムラが1箇所以上
4・・・3mm以上幅の長軸方向のムラ
(Undercoat layer unevenness evaluation example)
<Examples 22 to 42>
The undercoat layer coating cylinders C-1 to C-21 prepared above were evaluated for the presence or absence of the undercoat layer film by visually observing the undercoat layer application surface. The visual evaluation results were performed based on the following criteria. The results are shown in Table 2.
(Undercoating layer film unevenness judgment criteria)
1 ... no unevenness 2 ... thin unevenness in the major axis direction less than about 2 mm wide 3 ... one or more thin unevenness in the major axis direction about 2 mm wide 4 or more 3 mm width or more Long-axis unevenness

<比較例4乃至6>
上記で作製した下引き層塗布シリンダ1−Y、2−Y、3−Yに対して、下引き層塗布面を目視することにより、下引き層膜ムラ有無を評価した。評価結果の判定は、上述の実施例22乃至42と同等とした。結果を表2に示す。
<Comparative Examples 4 to 6>
The undercoat layer coating cylinders 1-Y, 2-Y, and 3-Y produced above were evaluated by visually observing the undercoat layer application surface for the presence or absence of the undercoat layer film. The determination of the evaluation result was the same as in Examples 22 to 42 described above. The results are shown in Table 2.

(感光体ムラ評価例)
<実施例22乃至42>
次に、キヤノン(株)製デジタル複写機IR−400に作製した電子写真感光体D−1乃至D−21を装着して画像評価を行なった。
(Example of photoreceptor unevenness evaluation)
<Examples 22 to 42>
Next, the electrophotographic photoreceptors D-1 to D-21 prepared in a digital copying machine IR-400 manufactured by Canon Inc. were mounted and image evaluation was performed.

評価結果は、画像上にムラが全く認められないものを「ムラ無し」、画像上にムラが認められるものを「一部ムラ有り」、画像上にムラが認められるものを「全面ムラ有り」とした。結果を表2に示す。   The evaluation results are “no unevenness” when no unevenness is observed on the image, “some unevenness” when unevenness is recognized on the image, and “all unevenness” when unevenness is recognized on the image. It was. The results are shown in Table 2.

<比較例4乃至6>
実施例22と同様に、キヤノン(株)製デジタル複写機IR−400に作製した電子写真感光体1−Z、2−Z、3−Zを装着して画像評価を行なった。評価結果の判定は、実施例22乃至42と同等とした。結果を表2に示す。
<Comparative Examples 4 to 6>
In the same manner as in Example 22, the electrophotographic photosensitive members 1-Z, 2-Z, and 3-Z prepared in a digital copying machine IR-400 manufactured by Canon Inc. were mounted and image evaluation was performed. The determination of the evaluation result was the same as in Examples 22 to 42. The results are shown in Table 2.

表1から明らかなように、有機顔料とゲル化ポリアミド樹脂と溶剤とで調製され、かつ、エーテル基を有する第2級アルコールを含有させて得られる分散液の実施例1乃至21は、有機顔料及びゲル化していないポリアミド樹脂を分散して得られる分散液を用いた電子写真感光体の比較例3、及びエーテル基を有する第2級アルコールではないアルコールを含有する比較例1、2と比べて、室温、加温時における分散液の安定性に優れることが判る。   As can be seen from Table 1, Examples 1 to 21 of dispersions prepared with an organic pigment, a gelled polyamide resin, and a solvent and containing a secondary alcohol having an ether group are organic pigments. And Comparative Example 3 of an electrophotographic photosensitive member using a dispersion obtained by dispersing a non-gelling polyamide resin, and Comparative Examples 1 and 2 containing an alcohol that is not a secondary alcohol having an ether group It can be seen that the dispersion is excellent in stability at room temperature and warming.

また、表2から明らかなように、有機顔料とゲル化ポリアミド樹脂と溶剤とで調製され、かつ、エーテル基を有する第2級アルコールを含有させて得られる分散液の実施例22乃至42は、有機顔料及びゲル化していないポリアミド樹脂を分散して得られる分散液を用いた電子写真感光体の比較例6、及びエーテル基を有する第2級アルコールではないアルコールを含有する比較例4、5と比べて、下引き層シリンダ及び電子写真感光体の目視確認結果において塗工膜ムラが抑制されていることが判る。   Further, as is apparent from Table 2, Examples 22 to 42 of dispersions prepared with an organic pigment, a gelled polyamide resin and a solvent and obtained by containing a secondary alcohol having an ether group, Comparative Example 6 of an electrophotographic photosensitive member using a dispersion obtained by dispersing an organic pigment and a non-gelled polyamide resin, and Comparative Examples 4, 5 containing an alcohol that is not a secondary alcohol having an ether group Compared with the results of visual confirmation of the undercoat cylinder and the electrophotographic photoreceptor, it can be seen that coating film unevenness is suppressed.

感光層の構成を示す図である。It is a figure which shows the structure of a photosensitive layer. 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention.

符号の説明Explanation of symbols

101 支持体
102 下引き層
103 感光層
104 電荷発生層
105 電荷輸送層
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段
DESCRIPTION OF SYMBOLS 101 Support body 102 Undercoat layer 103 Photosensitive layer 104 Charge generation layer 105 Charge transport layer 1 Electrophotographic photosensitive member 2 Axis 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Fixing means 9 Cleaning means 10 Pre-exposure light 11 Process cartridge 12 Guide means

Claims (7)

有機顔料とゲル化ポリアミド樹脂とを溶剤中に分散させて得られる電子写真感光体用分散液であって、
該ゲル化ポリアミド樹脂が、ゲル化させたN−メトキシメチル化6ナイロン又はゲル化させたナイロン6−66−610−12の4元ナイロン共重合体であり、
該電子写真感光体用分散液が、エーテル基を有する第2級アルコールを含有する
ことを特徴とする電子写真感光体用分散液。
A dispersion for an electrophotographic photoreceptor obtained by dispersing an organic pigment and a gelled polyamide resin in a solvent,
The gelled polyamide resin is a quaternary nylon copolymer of gelled N-methoxymethylated 6 nylon or gelled nylon 6-66-610-12,
The dispersion for electrophotographic photoreceptors, wherein the dispersion for electrophotographic photoreceptors contains a secondary alcohol having an ether group.
前記エーテル基を有する第2級アルコールの含有量が、前記電子写真感光体用分散液の全質量に対して10質量%以上70質量%以下である請求項1に記載の電子写真感光体用分散液。   The dispersion for an electrophotographic photosensitive member according to claim 1, wherein the content of the secondary alcohol having an ether group is 10% by mass or more and 70% by mass or less based on the total mass of the dispersion for the electrophotographic photosensitive member. liquid. 前記エーテル基を有する第2級アルコールが、プロピレングリコールモノメチルエーテルである請求項1又は2に記載の電子写真感光体用分散液。   The electrophotographic photosensitive member dispersion according to claim 1, wherein the secondary alcohol having an ether group is propylene glycol monomethyl ether. 前記溶剤の少なくとも一種が、エタノール、n−プロパノール又はn−ブタノールである請求項1乃至3のいずれかに記載の電子写真感光体用分散液。   4. The electrophotographic photosensitive member dispersion according to claim 1, wherein at least one of the solvents is ethanol, n-propanol, or n-butanol. 前記有機顔料が、下記一般式(1)で示されるアゾ顔料である請求項1乃至4のいずれかに記載の電子写真感光体用分散液。

〔一般式(1)中、Ar及びArはそれぞれ独立に置換もしくは無置換のアリール基を示す。Xはビニレン基又はp−フェニレン基を示す。nは0又は1を示す。〕
The dispersion for an electrophotographic photosensitive member according to claim 1, wherein the organic pigment is an azo pigment represented by the following general formula (1).

[In General Formula (1), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group. X 1 represents a vinylene group or a p-phenylene group. n represents 0 or 1. ]
前記電子写真感光体用分散液中の前記有機顔料の質量(P)と前記ゲル化ポリアミド樹脂の質量(B)との質量比(P/B)が、1/100以上2/1以下である請求項1乃至5のいずれかに記載の電子写真感光体用分散液。   The mass ratio (P / B) of the mass (P) of the organic pigment and the mass (B) of the gelled polyamide resin in the dispersion for the electrophotographic photoreceptor is 1/100 or more and 2/1 or less. The electrophotographic photosensitive member dispersion according to any one of claims 1 to 5. 支持体上に下引き層及び感光層をこの順に形成して電子写真感光体を製造する方法において、
該下引き層を請求項1乃至6のいずれかに記載の電子写真感光体用分散液を用いて形成することを特徴とする電子写真感光体の製造方法。
In a method for producing an electrophotographic photoreceptor by forming an undercoat layer and a photosensitive layer in this order on a support,
A method for producing an electrophotographic photosensitive member, wherein the undercoat layer is formed using the dispersion for an electrophotographic photosensitive member according to any one of claims 1 to 6.
JP2008248211A 2008-09-26 2008-09-26 Dispersion liquid for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member Active JP5349882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248211A JP5349882B2 (en) 2008-09-26 2008-09-26 Dispersion liquid for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248211A JP5349882B2 (en) 2008-09-26 2008-09-26 Dispersion liquid for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2010079015A true JP2010079015A (en) 2010-04-08
JP2010079015A5 JP2010079015A5 (en) 2011-11-10
JP5349882B2 JP5349882B2 (en) 2013-11-20

Family

ID=42209525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248211A Active JP5349882B2 (en) 2008-09-26 2008-09-26 Dispersion liquid for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5349882B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123740A (en) * 1996-01-18 1998-05-15 Fuji Xerox Co Ltd Electrophotographic photoreceptor
JPH10301317A (en) * 1997-04-30 1998-11-13 Minolta Co Ltd Electrophotographic photoreceptor
JP2002091044A (en) * 2000-09-12 2002-03-27 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP2006330273A (en) * 2005-05-25 2006-12-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006330048A (en) * 2005-05-23 2006-12-07 Kyocera Mita Corp Multilayer electrophotographic photoreceptor and method for manufacturing multilayer electrophotographic photoreceptor
JP2008026481A (en) * 2006-07-19 2008-02-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008139372A (en) * 2006-11-30 2008-06-19 Kyocera Mita Corp Laminate type electrophotographic photoreceptor and image forming device
JP2010032714A (en) * 2008-07-28 2010-02-12 Canon Inc Method for producing application liquid for electrophotographic photoreceptor
JP2010032715A (en) * 2008-07-28 2010-02-12 Canon Inc Method for producing application liquid for electrophotographic photoreceptor
JP2010078667A (en) * 2008-09-24 2010-04-08 Canon Inc Electrophotographic device and process cartridge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123740A (en) * 1996-01-18 1998-05-15 Fuji Xerox Co Ltd Electrophotographic photoreceptor
JPH10301317A (en) * 1997-04-30 1998-11-13 Minolta Co Ltd Electrophotographic photoreceptor
JP2002091044A (en) * 2000-09-12 2002-03-27 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP2006330048A (en) * 2005-05-23 2006-12-07 Kyocera Mita Corp Multilayer electrophotographic photoreceptor and method for manufacturing multilayer electrophotographic photoreceptor
JP2006330273A (en) * 2005-05-25 2006-12-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008026481A (en) * 2006-07-19 2008-02-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008139372A (en) * 2006-11-30 2008-06-19 Kyocera Mita Corp Laminate type electrophotographic photoreceptor and image forming device
JP2010032714A (en) * 2008-07-28 2010-02-12 Canon Inc Method for producing application liquid for electrophotographic photoreceptor
JP2010032715A (en) * 2008-07-28 2010-02-12 Canon Inc Method for producing application liquid for electrophotographic photoreceptor
JP2010078667A (en) * 2008-09-24 2010-04-08 Canon Inc Electrophotographic device and process cartridge

Also Published As

Publication number Publication date
JP5349882B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5054238B1 (en) Method for producing electrophotographic photosensitive member
JP4743921B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013083909A (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP2014160224A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic device, and manufacturing method of electrophotographic photoreceptor
JP2016148845A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4505513B2 (en) Electrophotographic photosensitive member undercoat coating liquid, electrophotographic photosensitive member, and image forming apparatus
JP2012032458A (en) Aqueous coating liquid, method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
JP4891010B2 (en) Multilayer electrophotographic photoreceptor, method for producing the same, and undercoat layer coating solution
JP6370072B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5349882B2 (en) Dispersion liquid for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6995588B2 (en) Electrophotographic photosensitive members, process cartridges and electrophotographic equipment
JP3714838B2 (en) Coating liquid for undercoat layer of electrophotographic photosensitive member, method for producing electrophotographic photosensitive member using the same, and electrophotographic photosensitive member
US10921723B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5268475B2 (en) Method for preparing coating solution for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP2017161718A (en) Electrophotographic photoreceptor, image forming apparatus, and cartridge
JP5435917B2 (en) Method for preparing dispersion for electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member
JP5534786B2 (en) Method for producing electrophotographic photosensitive member
JP5268474B2 (en) Method for preparing coating solution for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
US9964868B2 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP3072674B2 (en) Electrophotographic photoreceptor
JP2002148826A (en) Electrophotographic photoreceptor, coating liquid for electrophotographic photoreceptor and its manufacturing method, and image forming device using the same
JP5483849B2 (en) Method for producing coating liquid for electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member
JPH10148959A (en) Electrophotographic photoreceptor and its manufacture and coating liquid for forming undercoat layer
JP4839413B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2009009037A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R151 Written notification of patent or utility model registration

Ref document number: 5349882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151