JP2010078845A - Bias controller of light intensity modulator - Google Patents

Bias controller of light intensity modulator Download PDF

Info

Publication number
JP2010078845A
JP2010078845A JP2008246450A JP2008246450A JP2010078845A JP 2010078845 A JP2010078845 A JP 2010078845A JP 2008246450 A JP2008246450 A JP 2008246450A JP 2008246450 A JP2008246450 A JP 2008246450A JP 2010078845 A JP2010078845 A JP 2010078845A
Authority
JP
Japan
Prior art keywords
light
intensity modulator
light intensity
emitted
mach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246450A
Other languages
Japanese (ja)
Other versions
JP5001245B2 (en
Inventor
Katsuhito Mure
勝仁 牟禮
Masahide Miyaji
正英 宮地
Tokuichi Miyazaki
徳一 宮崎
Toshio Kataoka
利夫 片岡
Kaoru Hikuma
薫 日隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008246450A priority Critical patent/JP5001245B2/en
Publication of JP2010078845A publication Critical patent/JP2010078845A/en
Application granted granted Critical
Publication of JP5001245B2 publication Critical patent/JP5001245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bias controller of a light intensity modulator, which causes little deterioration in signal of modulated light, accurately controls a bias point and has the suppressed cost as the whole of the controller. <P>SOLUTION: The bias controller of the light intensity modulator includes: the light intensity modulator 4 having a Mach-Zehnder type optical waveguide 5; and a direct current bias control means 28 which controls direct current bias voltage applied to the light intensity modulator, the bias controller further includes: a re-incidence means which makes a portion of a light wave radiated or emitted from the exit side of the Mach-Zehnder type optical waveguide re-incident on the exit waveguide of the Mach-Zehnder type optical waveguide; a detection means 24 which detects the light wave radiated or emitted from the entrance side of the Mach-Zehnder type optical waveguide; a clock voltage application means which applies a clock voltage together with the direct current bias voltage to the light intensity modulator; and a bias control means which controls the direct current bias voltage on the basis of the detection result of the detection means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光強度変調器のバイアス制御装置に関し、特に、マッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に印加する直流バイアス電圧を制御する直流バイアス制御手段とを有する光強度変調器のバイアス制御装置に関する。   The present invention relates to a bias control apparatus for an optical intensity modulator, and in particular, includes an optical intensity modulator having a Mach-Zehnder type optical waveguide and DC bias control means for controlling a DC bias voltage applied to the optical intensity modulator. The present invention relates to a bias control apparatus for a light intensity modulator.

現在の光伝送システムにおいては、伝送速度10Gbpsが主流である。しかし、近年のインターネット利用者の増加に伴い、伝送容量の大容量化及び伝送距離の長距離化が要求されている。このような状況で、伝送速度40Gbpsの伝送システムへの移行が期待されている。   In the current optical transmission system, a transmission rate of 10 Gbps is mainstream. However, with the recent increase in Internet users, there is a demand for an increase in transmission capacity and an increase in transmission distance. Under such circumstances, a shift to a transmission system with a transmission rate of 40 Gbps is expected.

40Gbps伝送システムなどの高速伝送の場合、長距離伝送を阻害する一番の要因に、波長分散がある。この問題を解決するため、特許文献1などに示される、キャリア抑圧RZ(Carrier-Suppressed Return-to-Zero,以下CS−RZという)変調方式が提案されている。
特開2003−279912号公報
In the case of high-speed transmission such as a 40 Gbps transmission system, wavelength dispersion is the main factor that hinders long-distance transmission. In order to solve this problem, a carrier-suppressed RZ (Carrier-Suppressed Return-to-Zero, hereinafter referred to as CS-RZ) modulation method proposed in Patent Document 1 and the like has been proposed.
JP 2003-279912 A

CS−RZは、通常のRZ変調方式に比べ、波長分散に対する耐性に優れているが、光強度変調器のバイアス点を変調曲線のボトムに常に制御することが不可欠である。もし、このようなバイアス制御ができない場合には、変調出力光にノイズが発生するなど、信号品質が著しく劣化するという問題があった。   CS-RZ is superior in resistance to chromatic dispersion compared to a normal RZ modulation method, but it is essential to always control the bias point of the light intensity modulator to the bottom of the modulation curve. If such bias control is not possible, there is a problem that the signal quality is remarkably deteriorated, for example, noise is generated in the modulated output light.

光強度変調器のバイアス点を制御する方法としては、特許文献2などに示される、主信号である変調信号に低周波信号を重畳し、変調後の低周波信号に対応するスペクトルからバイアス点を決定し制御を行う方法がある。
特開昭49−42365号公報
As a method for controlling the bias point of the light intensity modulator, a low frequency signal is superimposed on the modulation signal which is the main signal, as shown in Patent Document 2, and the bias point is determined from the spectrum corresponding to the modulated low frequency signal. There are ways to determine and control.
JP 49-42365 A

しかしながら、上述の方法では、低周波信号に対応する信号を取り出すフィルタが高価であり、また、低周波信号に対応したスペクトルを測定するスペクトラムアナライザなど高価な装置が必要となる。しかも、主信号に低周波信号を重畳することで信号品質自体が低下するという問題があった。   However, in the above method, a filter for extracting a signal corresponding to a low frequency signal is expensive, and an expensive device such as a spectrum analyzer for measuring a spectrum corresponding to the low frequency signal is required. In addition, there is a problem that the signal quality itself is deteriorated by superimposing the low frequency signal on the main signal.

他方、特許文献3及び4のように、光強度変調器内を伝搬する変調光の進行方向に対して逆方向に進む光波を、該変調器に入射し、該変調器を通過した逆方向の光波の状態を検出し、バイアス制御を行うことが開示されている。
特開平4−116618号公報 特開平4−263525号公報
On the other hand, as in Patent Documents 3 and 4, a light wave traveling in the opposite direction to the traveling direction of the modulated light propagating in the light intensity modulator is incident on the modulator and travels in the reverse direction that has passed through the modulator. It is disclosed to detect the state of the light wave and perform bias control.
Japanese Patent Laid-Open No. 4-116618 JP-A-4-263525

しかしながら、特許文献3又は4に開示される方法では、変調光を発生させる変調信号からマーク率を検出する検出回路や、光波を検出した検出信号を平滑化する回路が必要であり、回路が複雑化する上、装置全体が高価なものとなる。   However, the method disclosed in Patent Document 3 or 4 requires a detection circuit that detects a mark rate from a modulation signal that generates modulated light, and a circuit that smoothes a detection signal that detects a light wave, and the circuit is complicated. In addition, the entire apparatus becomes expensive.

本発明が解決しようとする課題は、上述したような問題を解決し、変調光の信号劣化が少なく、バイアス点の制御を正確に行うことが可能であり、しかも、装置全体のコストを抑制した光強度変調器のバイアス制御装置を提供することである。   The problem to be solved by the present invention is to solve the above-described problems, reduce the signal degradation of the modulated light, accurately control the bias point, and reduce the cost of the entire apparatus. A bias control device for a light intensity modulator is provided.

請求項1に係る発明は、マッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に印加する直流バイアス電圧を制御する直流バイアス制御手段とを有する光強度変調器のバイアス制御装置において、該マッハツェンダー型光導波路の出口側から出射又は放出される光波の一部を、該マッハツェンダー型光導波路の出口導波路に再入射する再入射手段と、該マッハツェンダー型光導波路の入口側から出射又は放出される光波を検知する検知手段と、周波数が該光強度変調器を駆動する伝送信号の符号速度の略1/2で、振幅が該光強度変調器の半波長電圧の略2倍となるクロック電圧を、該直流バイアス電圧と合わせて該光強度変調器に印加するクロック電圧印加手段と、該検知手段の検知結果に基づき、該直流バイアス電圧を制御するバイアス調整手段とを有することを特徴とする。   The invention according to claim 1 comprises a light intensity modulator having a Mach-Zehnder type optical waveguide and a direct current bias control means for controlling a direct current bias voltage applied to the light intensity modulator. A re-incident means for re-injecting part of the light wave emitted or emitted from the exit side of the Mach-Zehnder type optical waveguide into the exit waveguide of the Mach-Zehnder type optical waveguide, and the entrance of the Mach-Zehnder type optical waveguide Detection means for detecting a light wave emitted or emitted from the side, and a frequency is approximately half of a code speed of a transmission signal that drives the light intensity modulator, and an amplitude is approximately the half-wave voltage of the light intensity modulator. A clock voltage applying means for applying a doubled clock voltage to the light intensity modulator in combination with the DC bias voltage, and the DC bias voltage based on the detection result of the detecting means. And having Gosuru a bias adjustment means.

本発明における「略1/2」や「略2倍」の意味は、正確な1/2や2を掛けた値で制御するだけでなく、本発明の目的を達成できる範囲において、1/2や2の数値からある程度のズレを許容することができることを意味している。   The meaning of “substantially ½” or “substantially double” in the present invention is not limited to a value that is multiplied by an exact ½ or 2, but is within a range where the object of the present invention can be achieved. This means that a certain amount of deviation can be allowed from the numerical values of 2 and 2.

請求項2に係る発明は、請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上に設けられた反射手段であることを特徴とする。   According to a second aspect of the present invention, in the bias control apparatus for a light intensity modulator according to the first aspect, the re-incident means is provided on the optical path of the outgoing light emitted from the exit waveguide of the Mach-Zehnder optical waveguide. It is characterized by the said reflection means.

請求項3に係る発明は、請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の出口導波路から出射する出射光の一部を分岐する分岐手段と、該分岐した分岐光を該出射光の光路上で該出射光の伝搬方向とは逆方向に導入する分岐光導入手段を有することを特徴とする。   According to a third aspect of the present invention, in the bias control apparatus for a light intensity modulator according to the first aspect, the re-injection means branches a part of the outgoing light emitted from the exit waveguide of the Mach-Zehnder type optical waveguide. And branching light introducing means for introducing the branched branched light in the direction opposite to the propagation direction of the outgoing light on the optical path of the outgoing light.

請求項4に係る発明は、請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の合波点から放出される放射光を、該マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上で該出射光の伝搬方向とは逆方向に導入する放射光導入手段を有することを特徴とする。   According to a fourth aspect of the present invention, in the bias control apparatus for a light intensity modulator according to the first aspect, the re-incident means converts the emitted light emitted from the multiplexing point of the Mach-Zehnder type optical waveguide into the Mach-Zehnder optical waveguide. It is characterized by having a radiated light introducing means for introducing light in the direction opposite to the propagation direction of the emitted light on the optical path of the emitted light emitted from the exit waveguide of the Zehnder type optical waveguide.

請求項5に係る発明は、請求項1乃至4のいずれかに記載の光強度変調器のバイアス制御装置において、該マッハツェンダー型光導波路の入口導波路から逆向きに出射する光波を、該マッハツェンダー型光導波路へ該入口導波路から入射される光波の光路上から分離するための分離手段と、該分離された分離光を該検知手段で検知することを特徴とする。   According to a fifth aspect of the present invention, there is provided the bias control apparatus for an optical intensity modulator according to any one of the first to fourth aspects, wherein the light wave emitted in the reverse direction from the entrance waveguide of the Mach-Zehnder optical waveguide is Separating means for separating the light wave incident from the entrance waveguide into the zender-type optical waveguide from the optical path, and the separated separated light are detected by the detecting means.

請求項6に係る発明は、請求項1乃至4のいずれかに記載の光強度変調器のバイアス制御装置において、該検知手段は、該マッハツェンダー型光導波路の入口側のY分岐点から放出される放射光を検知することを特徴とする。   According to a sixth aspect of the present invention, in the bias control apparatus for an optical intensity modulator according to any one of the first to fourth aspects, the detection means is emitted from a Y branch point on the entrance side of the Mach-Zehnder type optical waveguide. It is characterized by detecting radiated light.

請求項7に係る発明は、請求項1乃至6のいずれかに記載の光強度変調器のバイアス制御装置において、該光強度変調器は、キャリア抑圧RZ変調方式に用いられる光強度変調器であることを特徴とする。   According to a seventh aspect of the present invention, in the bias control apparatus for an optical intensity modulator according to any one of the first to sixth aspects, the optical intensity modulator is an optical intensity modulator used for a carrier suppression RZ modulation method. It is characterized by that.

請求項1に係る発明により、マッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に印加する直流バイアス電圧を制御する直流バイアス制御手段とを有する光強度変調器のバイアス制御装置において、該マッハツェンダー型光導波路の出口側から出射又は放出される光波の一部を、該マッハツェンダー型光導波路の出口導波路に再入射する再入射手段と、該マッハツェンダー型光導波路の入口側から出射又は放出される光波を検知する検知手段と、周波数が該光強度変調器を駆動する伝送信号の符号速度の略1/2で、振幅が該光強度変調器の半波長電圧の略2倍となるクロック電圧を、該直流バイアス電圧と合わせて該光強度変調器に印加するクロック電圧印加手段と、該検知手段の検知結果に基づき、該直流バイアス電圧を制御するバイアス調整手段とを有するため、スペクトラムアナライザなどの高価な部品を使用せず、光強度変調器のバイアス点の状態を容易に判断することが可能となる。   According to the first aspect of the present invention, there is provided a light intensity modulator bias control apparatus comprising: a light intensity modulator having a Mach-Zehnder type optical waveguide; and a DC bias control means for controlling a DC bias voltage applied to the light intensity modulator. A re-incident means for re-injecting part of the light wave emitted or emitted from the exit side of the Mach-Zehnder type optical waveguide into the exit waveguide of the Mach-Zehnder type optical waveguide, and the entrance of the Mach-Zehnder type optical waveguide Detection means for detecting a light wave emitted or emitted from the side, and a frequency is approximately half of a code speed of a transmission signal that drives the light intensity modulator, and an amplitude is approximately the half-wave voltage of the light intensity modulator. Clock voltage application means for applying a doubled clock voltage to the light intensity modulator in combination with the DC bias voltage, and the DC bias voltage based on the detection result of the detection means. Because having a bias adjustment means for controlling the, without using expensive parts such as a spectrum analyzer, and the state of the bias point of the optical intensity modulator can be easily determined.

請求項2に係る発明により、再入射手段は、マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上に設けられた反射手段であるため、極めて簡便に再入射手段を構成することが可能となる。また、反射手段の反射率と透過率を調整することにより、信号光の光量低下を抑制しながら、バイアス制御に必要な検出光の光量を確保するよう調整することも可能となる。   According to the second aspect of the present invention, the re-incident means is a reflecting means provided on the optical path of the outgoing light emitted from the exit waveguide of the Mach-Zehnder type optical waveguide. Is possible. Further, by adjusting the reflectance and transmittance of the reflecting means, it is possible to make adjustment so as to ensure the amount of detection light necessary for bias control while suppressing a decrease in the amount of signal light.

請求項3に係る発明により、再入射手段は、マッハツェンダー型光導波路の出口導波路から出射する出射光の一部を分岐する分岐手段と、該分岐した分岐光を該出射光の光路上で該出射光の伝搬方向とは逆方向に導入する分岐光導入手段を有するため、信号光である出射光の一部のみを効果的に抽出することが可能となるため、信号光の劣化を抑制することが可能となる。   According to the invention of claim 3, the re-incident means includes a branching means for branching a part of the outgoing light emitted from the exit waveguide of the Mach-Zehnder optical waveguide, and the branched branched light on the optical path of the outgoing light. Since it has branching light introduction means that introduces light in the direction opposite to the direction of propagation of the emitted light, it is possible to effectively extract only a part of the emitted light that is signal light, thereby suppressing degradation of the signal light. It becomes possible to do.

請求項4に係る発明により、再入射手段は、マッハツェンダー型光導波路の合波点から放出される放射光を、該マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上で該出射光の伝搬方向とは逆方向に導入する放射光導入手段を有するため、信号光である光強度変調器からの出射光を利用することが無いため、信号光の損失劣化が発生しない。しかも、光カプラーなどの出射光の一部を抽出するための光学系も不要となり、装置全体の構造をより簡素化することも可能となる。   According to the invention of claim 4, the re-incident means is configured to cause the light emitted from the combining point of the Mach-Zehnder type optical waveguide to be emitted on the optical path of the outgoing light emitted from the exit waveguide of the Mach-Zehnder type optical waveguide. Since there is a radiated light introducing means that introduces the emitted light in a direction opposite to the propagation direction of the emitted light, the emitted light from the light intensity modulator that is the signal light is not used, and therefore loss of signal light does not deteriorate. In addition, an optical system for extracting a part of the emitted light such as an optical coupler is not necessary, and the structure of the entire apparatus can be further simplified.

請求項5に係る発明により、マッハツェンダー型光導波路の入口導波路から逆向きに出射する光波を、該マッハツェンダー型光導波路へ該入口導波路から入射される光波の光路上から分離するための分離手段と、該分離された分離光を該検知手段で検知するため、入口導波路から入射する光波と逆向きに出射する光波とを効果的に分離でき、バイアス制御に必要な逆向きの光波のみをより正確に検出することが可能となる。また、逆向きの光波が、光強度変調器を含む光路上を逆走し、半導体レーザー光源に再入射してレーザー発振を不安定化するなど、他の光学システムに多様な影響を与えることを防止することもできる。   According to the fifth aspect of the present invention, the light wave emitted in the reverse direction from the entrance waveguide of the Mach-Zehnder type optical waveguide is separated from the optical path of the light wave incident from the entrance waveguide to the Mach-Zehnder type optical waveguide. Since the separation means and the separated separated light are detected by the detection means, the light wave incident from the entrance waveguide and the light wave emitted in the reverse direction can be effectively separated, and the reverse light wave necessary for bias control is obtained. It becomes possible to detect only more accurately. In addition, reverse light waves run back on the optical path including the light intensity modulator and re-enter the semiconductor laser light source to destabilize the laser oscillation. It can also be prevented.

請求項6に係る発明により、検知手段は、マッハツェンダー型光導波路の入口側のY分岐点から放出される放射光を検知するため、光強度変調器を逆向きに出射する光波の一部を、容易に抽出することが可能となる。しかも、サーキュレータなどの光波の一部を抽出するための光学系も不要となり、装置全体の構造をより簡素化することも可能となる。   According to the invention of claim 6, the detecting means detects a part of the light wave emitted in the reverse direction from the light intensity modulator in order to detect the emitted light emitted from the Y branch point on the entrance side of the Mach-Zehnder type optical waveguide. It can be easily extracted. In addition, an optical system for extracting a part of the light wave such as a circulator becomes unnecessary, and the structure of the entire apparatus can be further simplified.

請求項7に係る発明により、光強度変調器は、キャリア抑圧RZ変調方式に用いられる光強度変調器であるため、変調光の信号劣化が少なく、バイアス点の制御をより正確に行うことが可能であり、キャリア抑圧RZ変調方式に適した光強度変調器のバイアス制御を実現することが可能となる。   According to the invention of claim 7, since the light intensity modulator is an optical intensity modulator used in the carrier suppression RZ modulation method, there is little signal deterioration of the modulated light, and the bias point can be controlled more accurately. Thus, it is possible to realize bias control of the light intensity modulator suitable for the carrier suppression RZ modulation method.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、図1乃至4に示すように、マッハツェンダー型光導波路5を有する光強度変調器4と、該光強度変調器に印加する直流バイアス電圧を制御する直流バイアス制御手段23とを有する光強度変調器のバイアス制御装置において、該マッハツェンダー型光導波路の出口側から出射又は放出される光波の一部を、該マッハツェンダー型光導波路の出口導波路に再入射する再入射手段と、該マッハツェンダー型光導波路の入口側から出射又は放出される光波を検知する検知手段24と、周波数が該光強度変調器を駆動する伝送信号の符号速度の略1/2で、振幅が該光強度変調器の半波長電圧の略2倍となるクロック電圧を、該直流バイアス電圧と合わせて該光強度変調器に印加するクロック電圧印加手段と、該検知手段の検知結果に基づき、該直流バイアス電圧を制御するバイアス調整手段とを有することを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
As shown in FIGS. 1 to 4, the present invention has a light intensity modulator 4 having a Mach-Zehnder type optical waveguide 5 and a DC bias control means 23 for controlling a DC bias voltage applied to the light intensity modulator. In the bias control device of the light intensity modulator, re-incident means for re-entering the exit waveguide of the Mach-Zehnder optical waveguide part of the light wave emitted or emitted from the exit side of the Mach-Zehnder optical waveguide; Detection means 24 for detecting a light wave emitted or emitted from the entrance side of the Mach-Zehnder type optical waveguide, and a frequency is approximately ½ of a code speed of a transmission signal for driving the light intensity modulator, and an amplitude is the light. Based on the detection result of the clock voltage applying means for applying a clock voltage that is approximately twice the half-wave voltage of the intensity modulator to the light intensity modulator together with the DC bias voltage. , And having a bias adjustment means for controlling the DC bias voltage.

図1に示す実施例1においては、再入射手段は、マッハツェンダー型光導波路の出口導波路から出射する出射光bの光路上(7,9)に設けられた反射手段8であるため、極めて簡便に再入射手段を構成することが可能となる。また、必要に応じて、反射手段8の反射率と透過率を調整することで、信号光の光量低下を抑制しながら、バイアス制御に必要な検出光の光量を確保するよう調整することも可能となる。   In the first embodiment shown in FIG. 1, the re-incident means is the reflecting means 8 provided on the optical path (7, 9) of the outgoing light b emitted from the exit waveguide of the Mach-Zehnder optical waveguide. It becomes possible to construct the re-incident means simply. In addition, if necessary, it is possible to adjust the reflectance and transmittance of the reflecting means 8 so as to secure a sufficient amount of detection light necessary for bias control while suppressing a decrease in the amount of signal light. It becomes.

図1において、符号1,3は入射光を光強度変調器に導く光ファイバーなどの光導波路、符号6はマッハツェンダー型光導波路に直流バイアスを印加する際に使用される電極、符号7,9は光強度変調器から出射する光波を導く光ファイバーなどの光導波路、符号2は光強度変調器を逆向きに進行する光波を分離するための分離手段であるサーキュレータを示す。また、矢印a〜dは光波(又は光波の一部)の進行方向を示す。   In FIG. 1, reference numerals 1 and 3 are optical waveguides such as optical fibers for guiding incident light to a light intensity modulator, reference numeral 6 is an electrode used when applying a DC bias to a Mach-Zehnder optical waveguide, and reference numerals 7 and 9 are An optical waveguide such as an optical fiber for guiding a light wave emitted from the light intensity modulator. Reference numeral 2 denotes a circulator which is a separating means for separating the light wave traveling in the reverse direction through the light intensity modulator. Arrows a to d indicate the traveling direction of the light wave (or part of the light wave).

さらに、符号20は、光強度変調器に印加される伝送信号の符号速度の略1/2で発振するクロック信号発生器、符号21はクロック信号の電圧振幅を光強度変調器4の半波長電圧(特に、制御対象であるマッハツェンダー型光導波路5における半波長電圧)の略2倍とするための増幅器、符号22は、バイアス制御装置23から出力される直流バイアス電圧にクロック信号電圧を加える合成手段である。   Further, reference numeral 20 denotes a clock signal generator that oscillates at approximately half of the code rate of the transmission signal applied to the light intensity modulator, and reference numeral 21 denotes a half-wave voltage of the light intensity modulator 4 for the voltage amplitude of the clock signal. In particular, an amplifier 22 for making the voltage approximately half the half-wave voltage in the Mach-Zehnder type optical waveguide 5 to be controlled, the reference numeral 22, is a synthesis for adding the clock signal voltage to the DC bias voltage output from the bias controller 23. Means.

本発明の光強度変調器のバイアス制御装置の動作について説明する。
図1に示すように、光導波路1から入射した光波は、矢印aの方向に進み、光導波路3を経て、光強度変調器4のマッハツェンダー型光導波路5に入射する。入射した光波は光強度変調器に印加される変調信号(伝送信号)に応じて強度変調を受ける。なお、光強度変調器には、後述のクロック信号電圧を加えたバイアス電圧が印加されているが、矢印c方向に進む光波は、このクロック信号電圧の影響を受けることがない。
The operation of the bias control apparatus for the light intensity modulator of the present invention will be described.
As shown in FIG. 1, the light wave incident from the optical waveguide 1 travels in the direction of arrow a, passes through the optical waveguide 3, and enters the Mach-Zehnder optical waveguide 5 of the light intensity modulator 4. The incident light wave undergoes intensity modulation according to a modulation signal (transmission signal) applied to the light intensity modulator. Note that a bias voltage obtained by adding a clock signal voltage, which will be described later, is applied to the light intensity modulator, but the light wave traveling in the direction of the arrow c is not affected by the clock signal voltage.

光強度変調器4から出射した光波は、光導波路7を経て、ハーフミラーなどの反射手段8に至る。反射手段8では、光波の大部分は透過し、矢印bのように光導波路9に入射する。反射手段8で反射された光波の一部は、矢印cのように、矢印bとは逆方向に進み、光強度変調器4に再入射する。   The light wave emitted from the light intensity modulator 4 passes through the optical waveguide 7 and reaches the reflecting means 8 such as a half mirror. In the reflecting means 8, most of the light wave is transmitted and enters the optical waveguide 9 as indicated by an arrow b. A part of the light wave reflected by the reflecting means 8 travels in the direction opposite to the arrow b as indicated by the arrow c and reenters the light intensity modulator 4.

光強度変調器4を逆方向に進む光波は、クロック信号発生器20と増幅器21とにより得られるクロック信号電圧の影響は受けず、バイアス制御装置23から出力される直流バイアス電圧の影響を受けて、光強度変調器の入口側から出射する。   The light wave traveling in the reverse direction through the light intensity modulator 4 is not affected by the clock signal voltage obtained by the clock signal generator 20 and the amplifier 21 but affected by the DC bias voltage output from the bias controller 23. The light is emitted from the entrance side of the light intensity modulator.

光強度変調器4を出射した光波は、サーキュレータなどの分離手段2により、逆走する光波のみを矢印dの方向に分離し、光導波路10に偏向させる。光導波路1から出射した光波は、受光素子などの光検出手段24に入射し、光強度が検出される。   The light wave emitted from the light intensity modulator 4 is separated in the direction of the arrow d by the separating means 2 such as a circulator, and deflected to the optical waveguide 10. The light wave emitted from the optical waveguide 1 enters the light detection means 24 such as a light receiving element, and the light intensity is detected.

光検出手段24から検出信号は、バイアス制御手段23に入射され、バイアス制御手段が光強度変調器に印加するバイアス電圧を制御する。   The detection signal from the light detection means 24 is incident on the bias control means 23, and the bias control means controls the bias voltage applied to the light intensity modulator.

バイアス制御方法としては、例えば、バイアス制御手段23から出力するバイアス電圧を連続的又は段階的に変化させ、光検出手段24で検出する値が、最低値又は最大値を取るようにバイアス電圧を設定する。特に、CS−RZ変調方式の場合には、光検出手段24の検出値が最低値となるように設定される。また、バイアス制御手段においては、光検出手段からの検出値を、予め設定された値と比較し、検出値が設定値と一致するようバイアス電圧を制御することも可能である。   As a bias control method, for example, the bias voltage output from the bias control means 23 is changed continuously or stepwise, and the bias voltage is set so that the value detected by the light detection means 24 takes the minimum value or the maximum value. To do. In particular, in the case of the CS-RZ modulation method, the detection value of the light detection unit 24 is set to be the lowest value. In the bias control means, the detection value from the light detection means can be compared with a preset value, and the bias voltage can be controlled so that the detection value matches the set value.

図2に示される実施例2では、再入射手段として他の実施例を開示している。
具体的には、光強度変調器の出口側の光導波路7から出射する出射光の一部を分岐するため、光カプラーなどの分岐手段32を利用している。
In the second embodiment shown in FIG. 2, another embodiment is disclosed as the re-incident means.
Specifically, branching means 32 such as an optical coupler is used to branch a part of the outgoing light emitted from the optical waveguide 7 on the exit side of the light intensity modulator.

分岐手段32を通過し、大部分の光波は、矢印gの方向に進み、信号光として光導波路9に入射する。また、一部の光波は、矢印hの方向に分岐し、光導波路33を経て、サーキュレータなどの分岐光導入手段30に至る。分岐光は矢印i方向に進み、光強度変調器4に再入射する。なお、光強度変調器の入口側から出射する光波の取扱いやバイアス制御方法については、実施例1と同様であるため、説明は省略する。   Most of the light waves that pass through the branching means 32 travel in the direction of the arrow g and enter the optical waveguide 9 as signal light. Also, some of the light waves branch in the direction of the arrow h and pass through the optical waveguide 33 to the branched light introducing means 30 such as a circulator. The branched light travels in the direction of arrow i and reenters the light intensity modulator 4. The handling of the light wave emitted from the entrance side of the light intensity modulator and the bias control method are the same as those in the first embodiment, and thus the description thereof is omitted.

図3に示される実施例3では、光強度変調器から出射される信号光の代わりに、マッハツェンダー型光導波路5の合波点から放出される放射光kを利用する。   In the third embodiment shown in FIG. 3, radiated light k emitted from the multiplexing point of the Mach-Zehnder type optical waveguide 5 is used instead of the signal light emitted from the light intensity modulator.

マッハツェンダー型光導波路5から出射した光波は、光導波路40に入射し、出射側の光導波路7に設けられたサーキュレータなどの放射光導入手段30に至る。放射光導入手段で放射光は、矢印l方向に進み、光導波路7を逆方向に進み、光強度変調器4に再入射する。このように、実施例3では、信号光である光強度変調器4からの出射光を利用することが無いため、信号光の損失劣化が発生しない。しかも、光カプラーなどの出射光の一部を抽出するための光学系も不要となり、装置全体の構造をより簡素化することも可能となる。   The light wave emitted from the Mach-Zehnder type optical waveguide 5 enters the optical waveguide 40 and reaches the radiated light introducing means 30 such as a circulator provided in the optical waveguide 7 on the emission side. The radiated light from the radiated light introducing means travels in the direction of arrow l, travels in the reverse direction of the optical waveguide 7, and reenters the light intensity modulator 4. Thus, in Example 3, since the emitted light from the light intensity modulator 4 which is signal light is not used, loss degradation of the signal light does not occur. In addition, an optical system for extracting a part of the emitted light such as an optical coupler is not necessary, and the structure of the entire apparatus can be further simplified.

また、光強度変調器4から放射される放射光は、図3のように変調器4からは離れた位置にある光ファイバーなどの光学手段に、レンズ等を用いて入射させても良いが、変調器4を構成する基板に光ファイバーを直接接続することも可能である。   The emitted light emitted from the light intensity modulator 4 may be incident on optical means such as an optical fiber located away from the modulator 4 as shown in FIG. It is also possible to directly connect an optical fiber to the substrate constituting the vessel 4.

図4に示される実施例4は、マッハツェンダー型光導波路5の入口側のY分岐点から放出される放射光eを利用する。   The fourth embodiment shown in FIG. 4 uses the radiated light e emitted from the Y branch point on the entrance side of the Mach-Zehnder type optical waveguide 5.

図1では、再入射手段として、実施例1に示す反射手段8を利用しているが、これに限らず、実施例2又は3に示されるような再入射手段を用いることも可能である。   In FIG. 1, the reflecting means 8 shown in the first embodiment is used as the re-incident means. However, the present invention is not limited to this, and the re-incident means shown in the second or third embodiment can be used.

放射光eは、光検出手段24に入射し、検出手段から出力される信号は、実施例1で説明したように、バイアス制御手段23に入力され、バイアス制御に利用される。ただし、光導波路1を逆方向に進行する光波と、放射光eとは光強度が逆の関係となるため、CS−RZ変調方式のバイアス制御を行う場合には、放射光eの光強度が最大値となるように、バイアス電圧を制御する。   The radiated light e enters the light detection means 24, and the signal output from the detection means is input to the bias control means 23 and used for bias control as described in the first embodiment. However, since the light wave propagating through the optical waveguide 1 in the reverse direction and the emitted light e have a light intensity opposite to each other, when the bias control of the CS-RZ modulation method is performed, the light intensity of the emitted light e is The bias voltage is controlled so as to be the maximum value.

以上説明したように、本発明によれば、変調光の信号劣化が少なく、バイアス点の制御を正確に行うことが可能であり、しかも、装置全体のコストを抑制した光強度変調器のバイアス制御装置を提供することが可能となる。   As described above, according to the present invention, it is possible to accurately control the bias point with little signal degradation of the modulated light, and to control the bias of the light intensity modulator that suppresses the cost of the entire apparatus. An apparatus can be provided.

本発明に係る光強度変調器のバイアス制御装置の実施例1を示す概略図である。It is the schematic which shows Example 1 of the bias control apparatus of the light intensity modulator which concerns on this invention. 本発明に係る光強度変調器のバイアス制御装置の実施例2を示す概略図である。It is the schematic which shows Example 2 of the bias control apparatus of the light intensity modulator which concerns on this invention. 本発明に係る光強度変調器のバイアス制御装置の実施例3を示す概略図である。It is the schematic which shows Example 3 of the bias control apparatus of the optical intensity modulator which concerns on this invention. 本発明に係る光強度変調器のバイアス制御装置の実施例4を示す概略図である。It is the schematic which shows Example 4 of the bias control apparatus of the optical intensity modulator which concerns on this invention.

符号の説明Explanation of symbols

1,3,7,9,10,31,33,40 光導波路(光ファイバー)
2,30 サーキュレータ
4 光強度変調器
5 マッハツェンダー型光導波路
6 制御電極
8 反射手段(ハーフミラー)
20 クロック信号発生器
21 増幅器
22 電圧加算手段
23 バイアス制御手段
24 光検出手段
32 光分離手段(光カプラー)
1, 3, 7, 9, 10, 31, 33, 40 Optical waveguide (optical fiber)
2,30 Circulator 4 Light intensity modulator 5 Mach-Zehnder type optical waveguide 6 Control electrode 8 Reflecting means (half mirror)
20 clock signal generator 21 amplifier 22 voltage addition means 23 bias control means 24 light detection means 32 light separation means (optical coupler)

Claims (7)

マッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に印加する直流バイアス電圧を制御する直流バイアス制御手段とを有する光強度変調器のバイアス制御装置において、
該マッハツェンダー型光導波路の出口側から出射又は放出される光波の一部を、該マッハツェンダー型光導波路の出口導波路に再入射する再入射手段と、
該マッハツェンダー型光導波路の入口側から出射又は放出される光波を検知する検知手段と、
周波数が該光強度変調器を駆動する伝送信号の符号速度の略1/2で、振幅が該光強度変調器の半波長電圧の略2倍となるクロック電圧を、該直流バイアス電圧と合わせて該光強度変調器に印加するクロック電圧印加手段と、
該検知手段の検知結果に基づき、該直流バイアス電圧を制御するバイアス調整手段とを有することを特徴とする光強度変調器のバイアス制御装置。
In a light intensity modulator bias control device comprising: a light intensity modulator having a Mach-Zehnder type optical waveguide; and a DC bias control means for controlling a DC bias voltage applied to the light intensity modulator.
Re-incident means for re-entering a part of the light wave emitted or emitted from the exit side of the Mach-Zehnder type optical waveguide into the exit waveguide of the Mach-Zehnder type optical waveguide;
Detecting means for detecting a light wave emitted or emitted from the entrance side of the Mach-Zehnder type optical waveguide;
A clock voltage whose frequency is approximately ½ of the code rate of the transmission signal driving the light intensity modulator and whose amplitude is approximately twice the half wavelength voltage of the light intensity modulator is combined with the DC bias voltage. Clock voltage applying means for applying to the light intensity modulator;
A bias control apparatus for a light intensity modulator, comprising: a bias adjustment unit that controls the DC bias voltage based on a detection result of the detection unit.
請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上に設けられた反射手段であることを特徴とする光強度変調器のバイアス制御装置。   The bias control apparatus for a light intensity modulator according to claim 1, wherein the re-incident means is a reflecting means provided on an optical path of outgoing light emitted from an exit waveguide of the Mach-Zehnder optical waveguide. A bias control device for a light intensity modulator. 請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の出口導波路から出射する出射光の一部を分岐する分岐手段と、該分岐した分岐光を該出射光の光路上で該出射光の伝搬方向とは逆方向に導入する分岐光導入手段を有することを特徴とする光強度変調器のバイアス制御装置。   2. The bias control apparatus for a light intensity modulator according to claim 1, wherein the re-incident means includes a branching means for branching a part of outgoing light emitted from an exit waveguide of the Mach-Zehnder optical waveguide, and the branched light. A bias control device for a light intensity modulator, comprising: branched light introducing means for introducing the branched light in a direction opposite to the propagation direction of the emitted light on the optical path of the emitted light. 請求項1に記載の光強度変調器のバイアス制御装置において、該再入射手段は、該マッハツェンダー型光導波路の合波点から放出される放射光を、該マッハツェンダー型光導波路の出口導波路から出射する出射光の光路上で該出射光の伝搬方向とは逆方向に導入する放射光導入手段を有することを特徴とする光強度変調器のバイアス制御装置。   2. The bias control apparatus for a light intensity modulator according to claim 1, wherein the re-incident means converts the emitted light emitted from the multiplexing point of the Mach-Zehnder type optical waveguide into an exit waveguide of the Mach-Zehnder type optical waveguide. A bias control device for a light intensity modulator, comprising: a radiated light introducing means for introducing light in a direction opposite to a propagation direction of the emitted light on an optical path of the emitted light emitted from the light intensity modulator. 請求項1乃至4のいずれかに記載の光強度変調器のバイアス制御装置において、該マッハツェンダー型光導波路の入口導波路から逆向きに出射する光波を、該マッハツェンダー型光導波路へ該入口導波路から入射される光波の光路上から分離するための分離手段と、該分離された分離光を該検知手段で検知することを特徴とする光強度変調器のバイアス制御装置。   5. The bias control device for an optical intensity modulator according to claim 1, wherein a light wave emitted in a reverse direction from an entrance waveguide of the Mach-Zehnder optical waveguide is guided to the Mach-Zehnder optical waveguide. A bias control apparatus for a light intensity modulator, characterized by separating means for separating light waves incident from a waveguide from an optical path, and detecting the separated separated light by the detecting means. 請求項1乃至4のいずれかに記載の光強度変調器のバイアス制御装置において、該検知手段は、該マッハツェンダー型光導波路の入口側のY分岐点から放出される放射光を検知することを特徴とする光強度変調器のバイアス制御装置。   5. The bias control apparatus for a light intensity modulator according to claim 1, wherein the detecting means detects radiated light emitted from a Y branch point on an entrance side of the Mach-Zehnder optical waveguide. A bias control device for a light intensity modulator. 請求項1乃至6のいずれかに記載の光強度変調器のバイアス制御装置において、該光強度変調器は、キャリア抑圧RZ変調方式に用いられる光強度変調器であることを特徴とする光強度変調器のバイアス制御装置。   7. The light intensity modulator according to claim 1, wherein the light intensity modulator is a light intensity modulator used in a carrier suppression RZ modulation method. Device bias control device.
JP2008246450A 2008-09-25 2008-09-25 Bias control device for light intensity modulator Expired - Fee Related JP5001245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246450A JP5001245B2 (en) 2008-09-25 2008-09-25 Bias control device for light intensity modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246450A JP5001245B2 (en) 2008-09-25 2008-09-25 Bias control device for light intensity modulator

Publications (2)

Publication Number Publication Date
JP2010078845A true JP2010078845A (en) 2010-04-08
JP5001245B2 JP5001245B2 (en) 2012-08-15

Family

ID=42209386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246450A Expired - Fee Related JP5001245B2 (en) 2008-09-25 2008-09-25 Bias control device for light intensity modulator

Country Status (1)

Country Link
JP (1) JP5001245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498457B2 (en) 2011-09-30 2019-12-03 Sumitomo Osaka Cement Co., Ltd. Optical carrier-suppressed signal generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263525A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2000089176A (en) * 1998-09-11 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generator
JP2003139688A (en) * 2001-11-05 2003-05-14 Olympus Optical Co Ltd Light imaging apparatus
JP2003279912A (en) * 2002-03-26 2003-10-02 Fujitsu Ltd Controller for optical modulator
WO2006090863A1 (en) * 2005-02-22 2006-08-31 Ngk Insulators, Ltd. Optical modulator
JP2007171548A (en) * 2005-12-22 2007-07-05 Hitachi Communication Technologies Ltd Optical modulator, optical transmitter and optical transmitting device
JP2009086261A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Optical modulation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263525A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2000089176A (en) * 1998-09-11 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generator
JP2003139688A (en) * 2001-11-05 2003-05-14 Olympus Optical Co Ltd Light imaging apparatus
JP2003279912A (en) * 2002-03-26 2003-10-02 Fujitsu Ltd Controller for optical modulator
WO2006090863A1 (en) * 2005-02-22 2006-08-31 Ngk Insulators, Ltd. Optical modulator
JP2007171548A (en) * 2005-12-22 2007-07-05 Hitachi Communication Technologies Ltd Optical modulator, optical transmitter and optical transmitting device
JP2009086261A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Optical modulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498457B2 (en) 2011-09-30 2019-12-03 Sumitomo Osaka Cement Co., Ltd. Optical carrier-suppressed signal generator

Also Published As

Publication number Publication date
JP5001245B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5853386B2 (en) Light modulation device and light modulation control method
JP4083657B2 (en) Bias control method and apparatus for optical modulator
US9450677B2 (en) Optical transmitter and control apparatus of optical modulator
JP4893637B2 (en) Optical transmitter and control method thereof
US8184355B2 (en) Light modulation device
US8000612B2 (en) Optical transmission device
JP6661913B2 (en) Optical module and optical transmitter using the same
US10498457B2 (en) Optical carrier-suppressed signal generator
JP2010217427A (en) Optical device
JP2010008763A (en) Optical modulation device and optical semiconductor device
JP2012257164A (en) Drive controller of semiconductor optical modulator
US20180088359A1 (en) Optical module that includes optical modulator and bias control method for optical modulator
US20120087617A1 (en) Optical modulator and optical modulating method
JP2006121368A (en) Optical transmission device
JP2008141476A (en) Driving device for external modulator
JP2007206380A (en) Light-modulation device
JPH05142504A (en) Optical transmitter
JP6446803B2 (en) Optical transceiver
JP5001245B2 (en) Bias control device for light intensity modulator
JP5061817B2 (en) Light modulator
JP4694521B2 (en) Optical wavelength converter
US20120082467A1 (en) Optical transmitter, optical transmission device, and method of controlling optical transmitter
JPWO2017164037A1 (en) Light source device
JPH02165117A (en) Operation stabilizing method for waveguide type optical modulator
JP5986519B2 (en) Optical transmitter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees