JP2010075895A - Gas separator - Google Patents

Gas separator Download PDF

Info

Publication number
JP2010075895A
JP2010075895A JP2008250081A JP2008250081A JP2010075895A JP 2010075895 A JP2010075895 A JP 2010075895A JP 2008250081 A JP2008250081 A JP 2008250081A JP 2008250081 A JP2008250081 A JP 2008250081A JP 2010075895 A JP2010075895 A JP 2010075895A
Authority
JP
Japan
Prior art keywords
adsorption
tank
tanks
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008250081A
Other languages
Japanese (ja)
Other versions
JP4979664B2 (en
Inventor
Haruhiko Shinoda
治彦 信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008250081A priority Critical patent/JP4979664B2/en
Publication of JP2010075895A publication Critical patent/JP2010075895A/en
Application granted granted Critical
Publication of JP4979664B2 publication Critical patent/JP4979664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas separator capable of changing a discharge pressure and a set flow rate. <P>SOLUTION: A controller 20 is capable of switching a first control of performing an extraction process in a plurality of adsorption tubs simultaneously and a second control of performing the extraction process successively one tub by one tub by switching routes of compressed air to the plurality of adsorption tubs so that, when one or more adsorption tubs among at least four adsorption tubs 10A-10D provided are in the extraction process, the rest of the adsorption tubs are in a reproduction process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、気体分離装置に関する。   The present invention relates to a gas separation device.

内部に分子篩カーボンやゼオライト等の吸着剤が充填された吸着槽を有し、供給された圧縮空気のうちの一の気体を分離して他の気体を製品ガスとして取り出すPSA(Pressure Swing Adsorption)式の気体分離装置がある(例えば、特許文献1参照)。
特開平8−57241号公報
PSA (Pressure Swing Adsorption) type that has an adsorption tank filled with adsorbents such as molecular sieve carbon and zeolite inside, and separates one gas of the supplied compressed air and takes out another gas as product gas (For example, refer to Patent Document 1).
JP-A-8-57241

従来のPSA方式の気体分離装置においては、例え複数槽の吸着槽からなる吸着ユニットを備えていたとしても、吐出圧力および設定流量を変化させることはできなかった。   In the conventional PSA type gas separation apparatus, even if an adsorption unit comprising a plurality of adsorption tanks is provided, the discharge pressure and the set flow rate cannot be changed.

したがって、本発明は、吐出圧力および設定流量を変化させることができる気体分離装置の提供を目的とする。   Therefore, an object of the present invention is to provide a gas separation device capable of changing the discharge pressure and the set flow rate.

上記目的を達成するために、本発明は、制御装置が、少なくとも4槽設けられた吸着槽の内、いずれかの吸着槽が取出工程のとき、残りの吸着槽が再生工程となるように、圧縮空気の複数の前記吸着槽への経路を切り替えることで、同時に複数槽の前記吸着槽で前記取出工程を行う第1の制御と、1槽ずつ順次前記吸着槽で前記取出工程を行う第2の制御と、を切替制御可能とした。   In order to achieve the above object, the present invention provides a control device in which at least four of the adsorption tanks, when any one of the adsorption tanks is a removal process, the remaining adsorption tank is a regeneration process. By switching the route of the compressed air to the plurality of adsorption tanks, the first control for simultaneously performing the extraction process in the adsorption tanks of the plurality of tanks and the second control for sequentially performing the extraction process in the adsorption tanks one by one It is possible to switch between the control and the control.

本発明によれば、吐出圧力および設定流量を変化させることができる。   According to the present invention, the discharge pressure and the set flow rate can be changed.

本発明に係る一実施形態の気体分離装置を図面を参照して以下に説明する。
図1に示すように、本実施形態の気体分離装置1は、空気を圧縮する圧縮機2と、この圧縮機2により生成された圧縮空気を乾燥させる冷凍式のエアドライヤ4とを有している。
A gas separation device according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the gas separation device 1 according to the present embodiment includes a compressor 2 that compresses air and a refrigeration air dryer 4 that dries the compressed air generated by the compressor 2. .

また、気体分離装置1は、エアドライヤ4に接続される複数具体的には4つの電磁弁からなる供給開閉弁8A,8B,8C,8Dと、それぞれが一対一で設けられた供給開閉弁を介してエアドライヤ4に下部において接続される複数具体的には4槽の吸着槽10A,10B,10C,10Dとを有している。これらの吸着槽10A〜10Dは、PSA式のものであり、内部に分子篩カーボンやゼオライト等の吸着剤が充填され、供給された圧縮空気のうちの一の気体である酸素を分離して他の気体である窒素を製品ガスとして生成する吸着工程を行うものである。   Further, the gas separation device 1 is connected to the air dryer 4 through a plurality of, specifically, supply on / off valves 8A, 8B, 8C, 8D comprising four solenoid valves, and supply on / off valves provided one-on-one. A plurality of adsorption tanks 10A, 10B, 10C, and 10D connected to the air dryer 4 at the lower part are specifically provided. These adsorption tanks 10A to 10D are of the PSA type, and are filled with an adsorbent such as molecular sieve carbon or zeolite, and separate oxygen which is one gas of the supplied compressed air to obtain other An adsorption process for generating nitrogen as a product gas is performed.

また、気体分離装置1は、吸着槽10A〜10Dのそれぞれに一対一で設けられて対応する吸着槽の下部から気体を外気に排出する電磁弁からなる排気開閉弁11A,11B,11C,11Dと、吸着槽10A〜10Dのそれぞれに一対一で設けられて対応する他の一の吸着槽との下部同士の連通・遮断を切り替える電磁弁からなる下部連通開閉弁12AB,12BC,12CD,12DAと、吸着槽10A〜10Dのそれぞれに一対一で設けられて対応する上記と同じ他の一の吸着槽との上部同士の連通・遮断を切り替える電磁弁からなる上部連通開閉弁13AB,13BC,13CD,13DAと、吸着槽10A〜10Dのそれぞれに一対一で設けられて対応する吸着槽の上部から窒素ガスを取り出す電磁弁からなる取出開閉弁14A,14B,14C,14Dとを有している。なお、供給開閉弁8A〜8D、吸着槽10A〜10D、排気開閉弁11A〜11D、下部連通開閉弁12AB,12BC,12CD,12DA、上部連通開閉弁13AB,13BC,13CD,13DAおよび取出開閉弁14A〜14DがPSAユニット19を構成している。   In addition, the gas separation device 1 is provided on each of the adsorption tanks 10A to 10D on a one-to-one basis and has exhaust opening / closing valves 11A, 11B, 11C, and 11D that are made up of electromagnetic valves that discharge gas from the corresponding lower part of the adsorption tank to the outside air. Lower communication on-off valves 12AB, 12BC, 12CD, 12DA comprising electromagnetic valves that are provided one-on-one in each of the adsorption tanks 10A to 10D and switch the communication between the lower parts with the corresponding other adsorption tank; Upper communication open / close valves 13AB, 13BC, 13CD, 13DA comprising electromagnetic valves that are provided in one-to-one in each of the adsorption tanks 10A to 10D and switch the communication between the upper parts and the corresponding other adsorption tanks. And a take-off opening / closing valve 14A comprising a solenoid valve for taking out nitrogen gas from the upper part of the corresponding adsorption tank provided on a one-to-one basis in each of the adsorption tanks 10A to 10D. Has 4B, 14C, and 14D. The supply on / off valves 8A to 8D, the adsorption tanks 10A to 10D, the exhaust on / off valves 11A to 11D, the lower communication on / off valves 12AB, 12BC, 12CD, 12DA, the upper communication on / off valves 13AB, 13BC, 13CD, 13DA and the take-off on / off valve 14A ˜14D constitutes the PSA unit 19.

さらに、気体分離装置1は、取出開閉弁14A〜14Dを介してすべての吸着槽10A〜10Dに接続されて窒素ガスを貯留する1本の製品ガス槽15と、製品ガス槽15から2系統に分流する流路をそれぞれ開閉する電磁弁からなる開閉弁16a,16bと、これら開閉弁16a,16bのそれぞれに一対一で設けられたフィルタレギュレータ17a,17bと、これらフィルタレギュレータ17a,17bのそれぞれに一対一で設けられた低圧多風量用の流量調整弁18aおよび高圧少風量用の流量調整弁18bと、これらを制御する制御装置20と、操作者による切替入力を受け付ける外部スイッチ21とを有している。   Further, the gas separation device 1 is connected to all the adsorption tanks 10A to 10D via the extraction opening / closing valves 14A to 14D, and stores one product gas tank 15 for storing nitrogen gas, and the product gas tank 15 into two systems. On-off valves 16a and 16b, each of which is an electromagnetic valve that opens and closes a flow path to be divided, filter regulators 17a and 17b provided on a one-to-one basis on these on-off valves 16a and 16b, and filter regulators 17a and 17b, respectively. The flow adjustment valve 18a for low pressure and large air flow and the flow adjustment valve 18b for high pressure and small air flow provided on a one-to-one basis, a control device 20 for controlling them, and an external switch 21 for receiving a switching input by an operator ing.

次に、制御装置20による制御内容について説明する。
制御装置20では、低圧多風量制御と高圧少風量制御とが切替制御可能であり、外部スイッチ21より低圧多風量仕様が選択されている場合、制御装置20は、図2に示す工程による低圧多風量制御(第1の制御)を行う。なお、供給開閉弁8A〜8D、排気開閉弁11A〜11D、下部連通開閉弁12AB,12BC,12CD,12DA、上部連通開閉弁13AB,13BC,13CD,13DAおよび取出開閉弁14A,14B,14C,14Dは、すべて閉状態が待機状態となっている。
Next, the contents of control by the control device 20 will be described.
The control device 20 can switch between low pressure and high airflow control and high pressure and low airflow control. When the low pressure and high airflow specification is selected from the external switch 21, the control device 20 performs low pressure and high airflow control according to the process shown in FIG. Air volume control (first control) is performed. The supply on / off valves 8A to 8D, the exhaust on / off valves 11A to 11D, the lower communication on / off valves 12AB, 12BC, 12CD, 12DA, the upper communication on / off valves 13AB, 13BC, 13CD, 13DA and the take-off on / off valves 14A, 14B, 14C, 14D. Are all in the standby state.

低圧多風量制御を開始すると、制御装置20は、まず、待機状態から、2槽の吸着槽10A,10Cについて同時並行で吸着・還流工程(工程A−1&C−1)を行う。つまり、供給開閉弁8A,8Cを開いて、吸着槽10A,10Cに圧縮機2からエアドライヤ4を介して圧縮空気を下方から供給し、同時に取出開閉弁14A,14Cを開いて上方から製品ガス槽15の高純度の窒素ガスを還流させる(図3(a)参照)。これにより、吸着槽10A,10Cにおいては、下部で吸着が行われることになり、上部でガスの再吸着が行われることになる。   When the low pressure and high air flow control is started, the control device 20 first performs the adsorption / reflux process (steps A-1 & C-1) simultaneously in parallel on the two adsorption tanks 10A and 10C from the standby state. That is, the supply on / off valves 8A and 8C are opened, the compressed air is supplied from the compressor 2 to the adsorption tanks 10A and 10C through the air dryer 4, and at the same time the take-off valves 14A and 14C are opened and the product gas tank from above. 15 high-purity nitrogen gas is refluxed (see FIG. 3A). Thereby, in adsorption tank 10A, 10C, adsorption will be performed in the lower part, and gas re-adsorption will be performed in the upper part.

そして、吸着槽10A,10Cと製品ガス槽15との圧力が等しくなると、2槽の吸着槽10A,10Cについて吸着・取出工程(工程A−2&C−2)に移行する。つまり、窒素ガスが、吸着槽10A,10Cの上方から製品ガス槽15に供給される(図3(b)参照)。   And if the pressure of adsorption tank 10A, 10C and the product gas tank 15 becomes equal, it will transfer to adsorption / extraction process (process A-2 & C-2) about adsorption tank 10A, 10C of two tanks. That is, nitrogen gas is supplied to the product gas tank 15 from above the adsorption tanks 10A and 10C (see FIG. 3B).

上記した吸着・還流工程(工程A−1&C−1)および吸着・取出工程(工程A−2&C−2)の間、残り2槽の吸着槽10B,10Dについて並行して再生工程を行う。つまり、排気開閉弁11B,11Dを開いて、吸着槽10B,10Dの下方より前工程で吸着した酸素を排気させると同時に、取出開閉弁14B,14Dを開いて上方から製品ガス槽15の高純度の窒素ガスを吸着槽10B,10Dにパージさせて排気を促す(図3(a),(b)参照)。   During the adsorption / refluxing step (steps A-1 & C-1) and the adsorption / removal step (steps A-2 & C-2), the remaining two adsorption tanks 10B and 10D are regenerated in parallel. In other words, the exhaust on / off valves 11B and 11D are opened to exhaust the oxygen adsorbed in the previous step from below the adsorption tanks 10B and 10D, and at the same time, the extraction on / off valves 14B and 14D are opened to obtain the high purity of the product gas tank 15 from above. The nitrogen gas is purged into the adsorption tanks 10B and 10D to promote exhaustion (see FIGS. 3A and 3B).

その後、制御装置20は、次に吸着が行われる2槽の吸着槽10B,10Dについて、排気開閉弁11B,11Dを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程A−3&C−3)を行う(図3(c)参照)。   Thereafter, the control device 20 closes the exhaust on / off valves 11B and 11D and boosts the pressure by the purge of nitrogen gas from the product gas tank 15 in the two adsorption tanks 10B and 10D to be next adsorbed (process) A-3 & C-3) are performed (see FIG. 3C).

その後、制御装置20は、上部連通開閉弁13AB,13CDと下部連通開閉弁12AB,12CDを開く均圧工程(工程A−4&C−4)を行う。これにより、吸着が終わった吸着槽10Aと再生が終わった吸着槽10Bとを連通させるとともに、吸着が終わった吸着槽10Cと再生が終わった吸着槽10Dとを連通させて、次に吸着が行われる2槽の吸着槽10B,10Dについての吸着効率向上のための処理を行う(図3(d)参照)。そして、待機状態に戻る。   Then, the control apparatus 20 performs the pressure equalization process (process A-4 & C-4) which opens upper communication on-off valve 13AB, 13CD and lower communication on-off valve 12AB, 12CD. As a result, the adsorption tank 10A after the adsorption and the adsorption tank 10B after the regeneration are communicated, and the adsorption tank 10C after the adsorption and the adsorption tank 10D after the regeneration are communicated, and then the adsorption is performed. Processing for improving the adsorption efficiency of the two adsorption tanks 10B and 10D is performed (see FIG. 3D). And it returns to a standby state.

以上の吸着・取出工程(工程A−2&C−2)および昇圧工程(工程A−3&C−3)が、吸着槽10A,10Cにおいては、圧縮空気を供給し、吸着槽10A,10C内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10A,10Cから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程A−1&C−1)および吸着・取出工程(工程A−2&C−2)が、吸着槽10B,10Dにおいては、吸着槽10B,10D内の残存気体を排出させて吸着槽10B,10D内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process A-2 & C-2) and the pressure increasing process (process A-3 & C-3), the adsorption tanks 10A and 10C supply compressed air, and the adsorbents in the adsorption tanks 10A and 10C. This is a take-out process of taking out nitrogen gas as product gas separated and generated from the adsorption tanks 10A and 10C and filling the product gas tank 15 into the adsorption / reflux process (process A-1 & C-1) and the adsorption / removal process (process). A-2 & C-2) is a regeneration process in which the residual gas in the adsorption tanks 10B and 10D is discharged to regenerate the adsorbent in the adsorption tanks 10B and 10D in the adsorption tanks 10B and 10D.

次に、制御装置20は、2槽の吸着槽10B,10Dについて並行して吸着・還流工程(工程B−1&D−1)を行う。つまり、供給開閉弁8B,8Dを開いて吸着槽10B,10Dに圧縮機2からの圧縮空気を下方から供給し、同時に取出開閉弁14B,14Dを開いて上方から製品ガス槽15の高純度の窒素ガスを還流させる。これにより、吸着槽10B,10Dにおいては、下部で吸着が行われることになり、上部でガスの再吸着が行われることになる(図4(a)参照)。   Next, the control apparatus 20 performs an adsorption | suction and recirculation | reflux process (process B-1 & D-1) in parallel about 2 adsorption tanks 10B and 10D. That is, the supply on / off valves 8B and 8D are opened and the compressed air from the compressor 2 is supplied to the adsorption tanks 10B and 10D from below, and at the same time the take-off on / off valves 14B and 14D are opened and the high purity of the product gas tank 15 from above. Nitrogen gas is refluxed. Thereby, in adsorption tank 10B, 10D, adsorption | suction will be performed by the lower part, and gas re-adsorption | suction will be performed by the upper part (refer Fig.4 (a)).

そして、吸着槽10B,10Dと製品ガス槽15との圧力が等しくなると、2槽の吸着槽10B,10Dについて吸着・取出工程(工程B−2&D−2)に移行する。つまり、窒素ガスが吸着槽10B,10Dの上方から製品ガス槽15に供給される(図4(b)参照)。   And if the pressure of adsorption tank 10B, 10D and the product gas tank 15 becomes equal, it will transfer to adsorption | suction and extraction process (process B-2 & D-2) about adsorption tank 10B, 10D of 2 tanks. That is, nitrogen gas is supplied to the product gas tank 15 from above the adsorption tanks 10B and 10D (see FIG. 4B).

上記した吸着・還流工程(工程B−1&D−1)および吸着・取出工程(工程B−2&D−2)の間、残り2槽の吸着槽10A,10Cについて並行して再生工程を行う。つまり、排気開閉弁11A,11Cを開いて、吸着槽10A,10Cの下方より吸着した酸素を排気させると同時に、取出開閉弁14A,14Cを開いて上方から製品ガス槽15の高純度の窒素ガスを吸着槽10A,10Cにパージさせて排気を促す(図4(a),(b)参照)。   During the adsorption / reflux process (process B-1 & D-1) and the adsorption / removal process (process B-2 & D-2) described above, the regeneration process is performed in parallel for the remaining two adsorption tanks 10A and 10C. That is, the exhaust on / off valves 11A and 11C are opened to exhaust oxygen adsorbed from below the adsorption tanks 10A and 10C, and at the same time, the take-off on / off valves 14A and 14C are opened and the high purity nitrogen gas in the product gas tank 15 from above. Is purged into the adsorption tanks 10A and 10C to facilitate exhaustion (see FIGS. 4A and 4B).

その後、制御装置20は、次に吸着が行われる2槽の吸着槽10A,10Cについて、排気開閉弁11A,11Cを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程B−3&D−3)を行う(図4(c)参照)。   Thereafter, the control device 20 closes the exhaust on-off valves 11A and 11C and boosts the pressure by the nitrogen gas purge from the product gas tank 15 for the two adsorption tanks 10A and 10C to be adsorbed next (process) B-3 & D-3) are performed (see FIG. 4C).

その後、制御装置20は、上部連通開閉弁13BC,13DAと下部連通開閉弁12BC,12DAを開く均圧工程(工程B−4&D−4)を行う。これにより、吸着が終わった吸着槽10Dと再生が終わった吸着槽10Aとを連通させるとともに、吸着が終わった吸着槽10Bと再生が終わった吸着槽10Cとを連通させて、次に吸着が行われる2槽の吸着槽10A,10Cについての吸着効率向上のための処理を行う(図4(d)参照)。そして、待機状態に戻る。なお、この均圧工程(工程B−4&D−4)において、制御装置20は、上部連通開閉弁13AB,13CDと下部連通開閉弁12AB,12CDとを開いて、吸着が終わった吸着槽10Bと再生が終わった吸着槽10Aとを連通させるとともに、吸着が終わった吸着槽10Dと再生が終わった吸着槽10Cとを連通させても良い。   Then, the control apparatus 20 performs the pressure equalization process (process B-4 & D-4) which opens upper communication on-off valve 13BC, 13DA and lower communication on-off valve 12BC, 12DA. As a result, the adsorption tank 10D after the adsorption and the adsorption tank 10A after the regeneration are communicated, and the adsorption tank 10B after the adsorption and the adsorption tank 10C after the regeneration are communicated, and then the adsorption is performed. A process for improving the adsorption efficiency of the two adsorption tanks 10A and 10C is performed (see FIG. 4D). And it returns to a standby state. In this pressure equalization step (steps B-4 & D-4), the control device 20 opens the upper communication opening / closing valves 13AB, 13CD and the lower communication opening / closing valves 12AB, 12CD, and regenerates the adsorption tank 10B after the adsorption is completed. The adsorbing tank 10A that has finished the adsorption may be communicated, and the adsorbing tank 10D that has been adsorbed and the adsorption tank 10C that has been regenerated may be communicated.

以上の吸着・取出工程(工程B−2&D−2)および昇圧工程(工程B−3&D−3)が、吸着槽10B,10Dにおいては、圧縮空気を供給し、吸着槽10B,10D内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10B,10Dから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程B−1&D−1)および吸着・取出工程(工程B−2&D−2)が、吸着槽10A,10Cにおいては、吸着槽10A,10C内の残存気体を排出させて吸着槽10A,10C内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process B-2 & D-2) and the pressure increasing process (process B-3 & D-3), in the adsorption tanks 10B and 10D, compressed air is supplied, and the adsorbent in the adsorption tanks 10B and 10D. This is a take-out process of taking out nitrogen gas as product gas separated and produced from the adsorption tanks 10B and 10D and filling the product gas tank 15 into the adsorption / reflux process (process B-1 & D-1) and the adsorption / removal process (process). B-2 & D-2) is a regeneration process in which the residual gas in the adsorption tanks 10A and 10C is discharged to regenerate the adsorbent in the adsorption tanks 10A and 10C in the adsorption tanks 10A and 10C.

次に、吸着・還流工程(工程A−1&C−1)を開始することになり、上記を繰り返すことになる。   Next, the adsorption / refluxing step (steps A-1 & C-1) is started, and the above is repeated.

以上により、低圧多風量制御では、4槽設けられた吸着槽10A〜10Dの内、いずれか2槽の吸着槽が取出工程のとき、残りの吸着槽が再生工程となるように、圧縮空気の複数の吸着槽10A〜10Dへの経路を切り替えることで、同時に複数槽の吸着槽で取出工程を行うことになる。低圧多風量仕様が選択されている場合、製品ガスを使用する際に、制御装置20は開閉弁16a,16bのうち開閉弁16aのみを開いて、フィルタレギュレータ17aおよび流量調整弁18aを介して製品ガスを供給先に送る。   As described above, in the low pressure and large air volume control, when any two of the four adsorption tanks 10A to 10D are the extraction process, the remaining adsorption tank is used as a regeneration process so that the remaining adsorption tanks become the regeneration process. By switching the route to the plurality of adsorption tanks 10A to 10D, the extraction process is performed simultaneously in the adsorption tanks of a plurality of tanks. When the low pressure and high airflow specification is selected, when using the product gas, the control device 20 opens only the on / off valve 16a among the on / off valves 16a and 16b, and the product is passed through the filter regulator 17a and the flow rate adjusting valve 18a. Send gas to the supplier.

一方、外部スイッチ21より高圧少風量仕様が選択されている場合、制御装置20は、図5に示す工程による高圧少風量制御(第2の制御)を行う。   On the other hand, when the high pressure and low airflow specification is selected from the external switch 21, the control device 20 performs high pressure and low airflow control (second control) by the process shown in FIG.

高圧少風量制御を開始すると、制御装置20は、まず、待機状態から、1槽の吸着槽10Aについて吸着・還流工程(工程A−1)を行う。つまり、供給開閉弁8Aを開いて吸着槽10Aに圧縮機2からの圧縮空気を下方から供給し、同時に取出開閉弁14Aを開いて上方から製品ガス槽15の高純度の窒素ガスを還流させる。これにより、吸着槽10Aにおいては、下部で吸着が行われ、上部でガスの再吸着が行われる(図6(a)参照)。   When the high pressure and small air volume control is started, the control device 20 first performs an adsorption / reflux process (process A-1) for one adsorption tank 10A from a standby state. That is, the supply on / off valve 8A is opened to supply compressed air from the compressor 2 to the adsorption tank 10A from below, and at the same time, the take-off on / off valve 14A is opened to recirculate high purity nitrogen gas in the product gas tank 15 from above. Thereby, in adsorption tank 10A, adsorption is performed in the lower part and gas re-adsorption is performed in the upper part (refer to Drawing 6 (a)).

そして、吸着槽10Aと製品ガス槽15との圧力が等しくなると、吸着槽10Aについて吸着・取出工程(工程A−2)に移行する。つまり、窒素ガスが吸着槽10Aの上方から製品ガス槽15に供給される(図6(b)参照)。   Then, when the pressures in the adsorption tank 10A and the product gas tank 15 become equal, the adsorption tank 10A shifts to the adsorption / removal process (process A-2). That is, nitrogen gas is supplied to the product gas tank 15 from above the adsorption tank 10A (see FIG. 6B).

上記した吸着・還流工程(工程A−1)および吸着・取出工程(工程A−2)の間、残り3槽の吸着槽10B〜10Dについて並行して再生工程を行う。つまり、排気開閉弁11B〜11Dを開いて、吸着槽10B〜10Dの下方より吸着した酸素を排気させると同時に、取出開閉弁14B〜14Dを開いて上方から製品ガス槽15の高純度の窒素ガスを吸着槽10B〜10Dにパージさせて排気を促す(図6(a),(b)参照)。   During the adsorption / refluxing step (step A-1) and the adsorption / removal step (step A-2) described above, the regeneration steps are performed in parallel for the remaining three adsorption vessels 10B to 10D. That is, the exhaust on / off valves 11B to 11D are opened to exhaust the oxygen adsorbed from below the adsorption tanks 10B to 10D, and at the same time, the extraction on / off valves 14B to 14D are opened to high purity nitrogen gas in the product gas tank 15 from above. Is purged to the adsorption tanks 10B to 10D to facilitate exhaustion (see FIGS. 6A and 6B).

その後、制御装置20は、次に吸着が行われる1槽の吸着槽10Bについて、排気開閉弁11Bを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程A−3)を行う(図6(c)参照)。   Thereafter, the control device 20 closes the exhaust opening / closing valve 11B of the one adsorption tank 10B to be adsorbed next and raises the pressure by purging nitrogen gas from the product gas tank 15 (step A-3). (See FIG. 6C).

その後、制御装置20は、上部連通開閉弁13ABと下部連通開閉弁12ABを開く均圧工程(工程A−4)を行う。これにより、吸着が終わった吸着槽10Aと再生が終わった吸着槽10Bとを連通させて、次に吸着が行われる1槽の吸着槽10Bについての吸着効率向上のための処理を行う(図6(d)参照)。そして、待機状態に戻る。   Then, the control apparatus 20 performs the pressure equalization process (process A-4) which opens upper communication on-off valve 13AB and lower communication on-off valve 12AB. As a result, the adsorption tank 10A after the adsorption is communicated with the adsorption tank 10B after the regeneration, and a process for improving the adsorption efficiency of the one adsorption tank 10B in which the adsorption is performed next is performed (FIG. 6). (See (d)). And it returns to a standby state.

以上の吸着・取出工程(工程A−2)および昇圧工程(工程A−3)が、吸着槽10Aにおいては、圧縮空気を供給し、吸着槽10A内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10Aから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程A−1)および吸着・取出工程(工程A−2)が、吸着槽10Bにおいては、吸着槽10B内の残存気体を排出させて吸着槽10B内の吸着剤を再生する再生工程となり、吸着・還流工程(工程A−1)、吸着・取出工程(工程A−2)、昇圧工程(工程A−3)および均圧工程(工程A−4)が、吸着槽10C,10Dにおいては、吸着槽10C,10D内の残存気体を排出させて吸着槽10C,10D内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process A-2) and the pressure increasing process (process A-3), in the adsorption tank 10A, compressed air is supplied, and the product gas separated and generated by the adsorbent in the adsorption tank 10A is used. The nitrogen gas is taken out from the adsorption tank 10A and filled into the product gas tank 15, and the adsorption / reflux process (process A-1) and the adsorption / removal process (process A-2) are performed in the adsorption tank 10B. It becomes a regeneration process in which the residual gas in the adsorption tank 10B is exhausted to regenerate the adsorbent in the adsorption tank 10B. The adsorption / reflux process (process A-1), the adsorption / removal process (process A-2), and the pressurization process ( Step A-3) and pressure equalization step (step A-4) in the adsorption tanks 10C and 10D, exhaust the residual gas in the adsorption tanks 10C and 10D to regenerate the adsorbent in the adsorption tanks 10C and 10D. It becomes a regeneration process.

次に、制御装置20は、1槽の吸着槽10Bについて吸着・還流工程(工程B−1)を行う。つまり、供給開閉弁8Bを開いて吸着槽10Bに圧縮機2からの圧縮空気を下方から供給し、同時に取出開閉弁14Bを開いて上方から製品ガス槽15の高純度の窒素ガスを還流させる。これにより、吸着槽10Bでは下部で吸着が行われ、上部ではガスの再吸着が行われる(図7(a)参照)。   Next, the control apparatus 20 performs an adsorption | suction and reflux process (process B-1) about 1 adsorption tank 10B. That is, the supply on / off valve 8B is opened to supply compressed air from the compressor 2 to the adsorption tank 10B from below, and at the same time, the take-off on / off valve 14B is opened to recirculate high purity nitrogen gas in the product gas tank 15 from above. Thereby, adsorption | suction is performed in the lower part in adsorption tank 10B, and gas re-adsorption is performed in the upper part (refer Fig.7 (a)).

そして、吸着槽10Bと製品ガス槽15との圧力が等しくなると、吸着槽10Bについて吸着・取出工程(工程B−2)に移行する。つまり、窒素ガスが吸着槽10Bの上方から製品ガス槽15に供給される(図7(b)参照)。   And if the pressure of adsorption tank 10B and product gas tank 15 becomes equal, about adsorption tank 10B, it will transfer to an adsorption and extraction process (process B-2). That is, nitrogen gas is supplied to the product gas tank 15 from above the adsorption tank 10B (see FIG. 7B).

上記した吸着・還流工程(工程B−1)および吸着・取出工程(工程B−2)の間、残り3槽の吸着槽10A,10C,10Dについて並行して再生工程を行う。つまり、排気開閉弁11A,11C,11Dを開いて、吸着槽10A,10C,10Dの下方より吸着した酸素を排気させると同時に、取出開閉弁14A,14C,14Dを開いて上方から製品ガス槽15の高純度の窒素ガスを吸着槽10A,10C,10Dにパージさせて排気を促す(図7(a),(b)参照)。   During the above-described adsorption / reflux process (process B-1) and adsorption / removal process (process B-2), the remaining three adsorption tanks 10A, 10C, and 10D are regenerated in parallel. That is, the exhaust on / off valves 11A, 11C, and 11D are opened to exhaust oxygen adsorbed from below the adsorption tanks 10A, 10C, and 10D, and at the same time, the take-off on / off valves 14A, 14C, and 14D are opened and the product gas tank 15 from above. The high purity nitrogen gas is purged into the adsorption tanks 10A, 10C, and 10D to facilitate exhaustion (see FIGS. 7A and 7B).

その後、制御装置20は、次に吸着が行われる1槽の吸着槽10Cについて、排気開閉弁11Cを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程B−3)を行う(図7(c)参照)。   Thereafter, the control device 20 closes the exhaust on-off valve 11C for one adsorption tank 10C to be adsorbed next, and raises the pressure by purging nitrogen gas from the product gas tank 15 (step B-3). (See FIG. 7C).

その後、制御装置20は、上部連通開閉弁13BCと下部連通開閉弁12BCとを開く均圧工程(工程B−4)を行う。これにより、吸着が終わった吸着槽10Bと再生が終わった吸着槽10Cとを連通させて、次に吸着が行われる1槽の吸着槽10Cについての吸着効率向上のための処理を行う(図7(d)参照)。そして、待機状態に戻る。   Then, the control apparatus 20 performs the pressure equalization process (process B-4) which opens upper communication on-off valve 13BC and lower communication on-off valve 12BC. As a result, the adsorption tank 10B after the adsorption is communicated with the adsorption tank 10C after the regeneration, and a process for improving the adsorption efficiency of the one adsorption tank 10C in which the adsorption is performed next is performed (FIG. 7). (See (d)). And it returns to a standby state.

以上の吸着・取出工程(工程B−2)および昇圧工程(工程B−3)が、吸着槽10Bにおいては、圧縮空気を供給し、吸着槽10B内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10Bから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程B−1)および吸着・取出工程(工程B−2)が、吸着槽10Cにおいては、吸着槽10C内の残存気体を排出させて吸着槽10C内の吸着剤を再生する再生工程となり、吸着・還流工程(工程B−1)、吸着・取出工程(工程B−2)、昇圧工程(工程B−3)および均圧工程(工程B−4)が、吸着槽10A,10Dにおいては、吸着槽10A,10D内の残存気体を排出させて吸着槽10A,10D内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process B-2) and the pressurization process (process B-3), in the adsorption tank 10B, compressed air is supplied and the product gas separated and generated by the adsorbent in the adsorption tank 10B is used. The nitrogen gas is taken out from the adsorption tank 10B and filled into the product gas tank 15, and the adsorption / reflux process (process B-1) and the adsorption / removal process (process B-2) are performed in the adsorption tank 10C. It becomes a regeneration process in which the residual gas in the adsorption tank 10C is exhausted to regenerate the adsorbent in the adsorption tank 10C, and the adsorption / reflux process (process B-1), the adsorption / removal process (process B-2), and the pressure increasing process ( In step B-3) and pressure equalization step (step B-4), in the adsorption tanks 10A and 10D, the residual gas in the adsorption tanks 10A and 10D is discharged to regenerate the adsorbent in the adsorption tanks 10A and 10D. It becomes a regeneration process.

次に、制御装置20は、吸着槽10Cに対して、供給開閉弁8Cを開いて圧縮空気を供給すると同時に取出開閉弁14Cを開いて製品ガス槽15の窒素ガスを還流させる吸着・還流工程(工程C−1)を行い(図8(a)参照)、その後、窒素ガスを吸着槽10Cから製品ガス槽15に送る吸着・取出工程(工程C−2)を行う(図8(b)参照)。   Next, the control device 20 opens the supply opening / closing valve 8C and supplies compressed air to the adsorption tank 10C, and simultaneously opens the take-off opening / closing valve 14C to recirculate the nitrogen gas in the product gas tank 15 ( Step C-1) is performed (see FIG. 8A), and then an adsorption / removal step (step C-2) for sending nitrogen gas from the adsorption tank 10C to the product gas tank 15 is performed (see FIG. 8B). ).

上記した吸着・還流工程(工程C−1)および吸着・取出工程(工程C−2)の間、残り3槽の吸着槽10A,10B,10Dについては、排気開閉弁11A,11B,11Dを開いて、吸着槽10A,10B,10Dから吸着した酸素を排気させると同時に、取出開閉弁14A,14B,14Dを開いて上方から製品ガス槽15の窒素ガスを吸着槽10A,10B,10Dにパージさせて排気を促す(図8(a),(b)参照)。   During the adsorption / reflux process (process C-1) and the adsorption / removal process (process C-2), the exhaust on / off valves 11A, 11B, and 11D are opened for the remaining three adsorption tanks 10A, 10B, and 10D. The oxygen adsorbed from the adsorption tanks 10A, 10B, and 10D is exhausted, and at the same time, the extraction open / close valves 14A, 14B, and 14D are opened, and the nitrogen gas in the product gas tank 15 is purged into the adsorption tanks 10A, 10B, and 10D from above. To prompt exhaust (see FIGS. 8A and 8B).

その後、制御装置20は、次に吸着が行われる1槽の吸着槽10Dについて、排気開閉弁11Dを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程C−3)を行い(図8(c)参照)、続いて、吸着が終わった吸着槽10Cと再生が終わり次に吸着が行われる吸着槽10Dとを連通させるべく上部連通開閉弁13CDと下部連通開閉弁12CDとを開く均圧工程(工程C−4)を行う(図8(d)参照)。そして、待機状態に戻る。   Thereafter, the control device 20 closes the exhaust on-off valve 11D and boosts the pressure by performing the purge of nitrogen gas from the product gas tank 15 (step C-3) for one adsorption tank 10D in which adsorption is performed next. (See FIG. 8 (c)). Subsequently, the upper communication on-off valve 13CD and the lower communication on-off valve 12CD are connected so that the adsorption tank 10C after the adsorption is completed and the adsorption tank 10D where the adsorption is completed next are communicated. A pressure equalizing step (step C-4) is performed (see FIG. 8D). And it returns to a standby state.

以上の吸着・取出工程(工程C−2)および昇圧工程(工程C−3)が、吸着槽10Cにおいては、圧縮空気を供給し、吸着槽10C内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10Cから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程C−1)および吸着・取出工程(工程C−2)が、吸着槽10Dにおいては、吸着槽10D内の残存気体を排出させて吸着槽10D内の吸着剤を再生する再生工程となり、吸着・還流工程(工程C−1)、吸着・取出工程(工程C−2)、昇圧工程(工程C−3)および均圧工程(工程C−4)が、吸着槽10A,10Bにおいては、吸着槽10A,10B内の残存気体を排出させて吸着槽10A,10B内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process C-2) and the pressurization process (process C-3), in the adsorption tank 10C, compressed air is supplied and the product gas separated and generated by the adsorbent in the adsorption tank 10C is used. The nitrogen gas is taken out from the adsorption tank 10C and filled into the product gas tank 15, and the adsorption / reflux process (process C-1) and the adsorption / removal process (process C-2) are performed in the adsorption tank 10D. It becomes a regeneration process in which the residual gas in the adsorption tank 10D is exhausted to regenerate the adsorbent in the adsorption tank 10D, and the adsorption / reflux process (process C-1), the adsorption / removal process (process C-2), and the pressure increasing process ( In step C-3) and pressure equalization step (step C-4), in the adsorption tanks 10A and 10B, the residual gas in the adsorption tanks 10A and 10B is discharged to regenerate the adsorbent in the adsorption tanks 10A and 10B. It becomes a regeneration process.

次に、制御装置20は、吸着槽10Dに対して、供給開閉弁8Dを開いて圧縮空気を供給すると同時に取出開閉弁14Dを開いて製品ガス槽15の窒素ガスを還流させる吸着・還流工程(工程D−1)を行い(図9(a)参照)、その後、窒素ガスを吸着槽10Dから製品ガス槽15に送る吸着・取出工程(工程D−2)を行う(図9(b)参照)。   Next, the control device 20 opens the supply opening / closing valve 8D and supplies the compressed air to the adsorption tank 10D, and simultaneously opens the extraction opening / closing valve 14D to recirculate the nitrogen gas in the product gas tank 15 ( Step D-1) is performed (see FIG. 9A), and then an adsorption / removal step (step D-2) for sending nitrogen gas from the adsorption tank 10D to the product gas tank 15 is performed (see FIG. 9B). ).

上記した吸着・還流工程(工程D−1)および吸着・取出工程(工程D−2)の間、残り3槽の吸着槽10A〜10Cについては、排気開閉弁11A〜11Cを開いて、吸着槽10A〜10Cから吸着した酸素を排気させると同時に、取出開閉弁14A〜14Cを開いて上方から製品ガス槽15の窒素ガスを吸着槽10A〜10Cにパージさせて排気を促す(図9(a),(b)参照)。   During the above-described adsorption / reflux process (process D-1) and adsorption / removal process (process D-2), for the remaining three adsorption tanks 10A to 10C, the exhaust on-off valves 11A to 11C are opened, and the adsorption tank At the same time as the oxygen adsorbed from 10A to 10C is exhausted, the extraction on-off valves 14A to 14C are opened, and the nitrogen gas in the product gas tank 15 is purged into the adsorption tanks 10A to 10C from above to promote exhaustion (FIG. 9 (a)). , (B)).

その後、制御装置20は、次に吸着が行われる1槽の吸着槽10Aについて、排気開閉弁11Aを閉じて、製品ガス槽15からの窒素ガスのパージにより昇圧させる昇圧工程(工程D−3)を行い(図9(c)参照)、続いて、吸着が終わった吸着槽10Dと再生が終わり次に吸着が行われる吸着槽10Aとを連通させるべく上部連通開閉弁13ADと下部連通開閉弁12ADとを開く均圧工程(工程D−4)を行う(図9(d)参照)。そして、待機状態に戻る。   Thereafter, the control device 20 closes the exhaust on-off valve 11A for one adsorption tank 10A to be adsorbed next, and raises the pressure by purging nitrogen gas from the product gas tank 15 (process D-3). (See FIG. 9 (c)). Subsequently, the upper communication on-off valve 13AD and the lower communication on-off valve 12AD are connected so that the adsorption tank 10D that has completed the adsorption and the adsorption tank 10A to which the adsorption is performed next are communicated. A pressure equalization step (step D-4) is performed (see FIG. 9D). And it returns to a standby state.

以上の吸着・取出工程(工程D−2)および昇圧工程(工程D−3)が、吸着槽10Dにおいては、圧縮空気を供給し、吸着槽10D内の吸着剤により分離生成された製品ガスとしての窒素ガスを吸着槽10Dから取り出して製品ガス槽15に充填する取出工程となり、吸着・還流工程(工程D−1)および吸着・取出工程(工程D−2)が、吸着槽10Aにおいては、吸着槽10A内の残存気体を排出させて吸着槽10A内の吸着剤を再生する再生工程となり、吸着・還流工程(工程D−1)、吸着・取出工程(工程D−2)、昇圧工程(工程D−3)および均圧工程(工程D−4)が、吸着槽10B,10Cにおいては、吸着槽10B,10C内の残存気体を排出させて吸着槽10B,10C内の吸着剤を再生する再生工程となる。   In the adsorption / removal process (process D-2) and the pressure increasing process (process D-3), in the adsorption tank 10D, compressed air is supplied, and the product gas separated and generated by the adsorbent in the adsorption tank 10D is used. The nitrogen gas is taken out from the adsorption tank 10D and filled into the product gas tank 15, and the adsorption / reflux process (process D-1) and the adsorption / removal process (process D-2) are performed in the adsorption tank 10A. It becomes a regeneration process in which the residual gas in the adsorption tank 10A is exhausted to regenerate the adsorbent in the adsorption tank 10A. The adsorption / reflux process (process D-1), the adsorption / removal process (process D-2), and the pressure increasing process ( In the adsorption tanks 10B and 10C, the process D-3) and the pressure equalization process (process D-4) discharge the residual gas in the adsorption tanks 10B and 10C to regenerate the adsorbent in the adsorption tanks 10B and 10C. It becomes a regeneration process.

次に、吸着・還流工程(工程A−1)を開始することになり、上記を繰り返すことになる。   Next, the adsorption / refluxing step (step A-1) is started, and the above is repeated.

以上により、高圧少風量制御では、4槽設けられた吸着槽10A〜10Dの内、いずれか1槽の吸着槽が取出工程のとき、残りの吸着槽が再生工程となるように、圧縮空気の複数の吸着槽10A〜10Dへの経路を切り替えることで、1槽ずつ順次取出工程を行うことになる。高圧少風量仕様が選択されている場合、製品ガスを使用する際に、制御装置20は開閉弁16a,16bのうち開閉弁16bのみを開いて、フィルタレギュレータ17bおよび流量調整弁18bを介して製品ガスを供給先に送る。   As described above, in the high pressure and small air volume control, when any one of the four adsorption tanks 10A to 10D is the extraction process, the remaining adsorption tank is used as a regeneration process. By switching the route to the plurality of adsorption tanks 10A to 10D, the extraction process is sequentially performed one tank at a time. When the high pressure and low air flow specification is selected, when using the product gas, the control device 20 opens only the on / off valve 16b of the on / off valves 16a and 16b, and the product is passed through the filter regulator 17b and the flow rate adjusting valve 18b. Send gas to the supplier.

なお、圧縮機2は常時一定量の圧縮空気量を供給しており、よって、高圧少風量制御は、低圧多風量制御と比べた場合、供給される吸着槽の容積としては半分(つまり1/2)となり、吸着槽内の圧力を低圧多風量制御での規定値まで上昇させる時間は半分(つまり1/2)となる。そして、昇圧させる吸着槽内の圧力を低圧多風量制御よりも高い位置で保持し、短いサイクルタイム(切り替えを行う設定時間)で順次1槽ずつ切り替えていくことで、高圧の製品ガスを生成することができる。   Note that the compressor 2 always supplies a constant amount of compressed air, and therefore, the high pressure and small air volume control is half the volume of the adsorption tank to be supplied (that is, 1 / 2), and the time for increasing the pressure in the adsorption tank to the specified value in the low-pressure, high-volume control is halved (that is, ½). Then, the pressure in the adsorption tank to be increased is maintained at a position higher than that of the low pressure multi-air flow control, and the high pressure product gas is generated by switching one tank at a time with a short cycle time (set time for switching). be able to.

以上に述べた本実施形態の気体分離装置1によれば、制御装置20は、4槽設けられた吸着槽10A〜10Dの内、いずれか1槽または2槽の吸着槽が取出工程のとき、残りの吸着槽が再生工程となるように、圧縮空気の複数の吸着槽への経路を切り替えることで、同時に複数槽の吸着槽で取出工程を行う低圧多風量制御と、1槽ずつ順次吸着槽で取出工程を行う高圧低風量制御とを切替制御可能としたため、吐出圧力および設定流量を変化させることができる。   According to the gas separation device 1 of the present embodiment described above, the control device 20 is one of the four adsorption tanks 10A to 10D, and when any one or two adsorption tanks are in the extraction process, Low pressure and high air volume control that performs extraction process in multiple adsorption tanks at the same time by switching the route of compressed air to multiple adsorption tanks so that the remaining adsorption tanks are in the regeneration process, and the adsorption tanks sequentially one by one Since the high pressure and low air flow control for performing the extraction step can be switched, the discharge pressure and the set flow rate can be changed.

このように1機種で、低圧多風量仕様および高圧低風量仕様を切り替えできるため、1機種を異なる要望の顧客に対して納入することができ、2機種生産する場合と比べてコストを低減することができる。また、納入後の仕様変更に対しても容易に対応できる。また、省スペース化が図れる。   In this way, one model can be switched between low pressure, high airflow specification and high pressure, low airflow specification, so that one model can be delivered to customers with different demands, reducing costs compared with the case of producing two models. Can do. In addition, it can easily cope with specification changes after delivery. In addition, space saving can be achieved.

製品ガスの生産量に応じて仕様を切り替えることができるため、例えば、使用量が多い昼間は低圧多風量制御で大量に製造し、使用量が少なくなる夜間に高圧低風量制御で高い圧力で製品ガス槽15に溜めておけば、翌朝には圧力・流量・濃度ともに余裕を持って稼働できる。つまり、通常、運転開始してから製品ガスが吐出するまでには時間がかかるが、上記のように製品ガスを高い圧力で製品ガス槽15に溜めておけば、時間がかからずに製品ガスを吐出できることになる。   Because the specifications can be switched according to the production volume of product gas, for example, a large amount is manufactured with low pressure and high air volume control during daytime when the usage volume is high, and a product with high pressure and low air volume control is used at night when usage volume is low. If it is stored in the gas tank 15, it can be operated in the next morning with sufficient pressure, flow rate and concentration. In other words, it usually takes time from the start of operation until the product gas is discharged, but if the product gas is stored in the product gas tank 15 at a high pressure as described above, the product gas will not take much time. Can be discharged.

吸着槽10A〜10Dをローテーションさせて運転しているので、吸着剤の状態も良い状態に保つことができ、低圧多風量制御から高圧低風量制御に切り替えてもすぐに製品ガスを発生させることができる。また、吸着剤の状態を良くする予備運転を廃止できるので省エネルギにもなる。   Since the adsorption tanks 10A to 10D are rotated and operated, the state of the adsorbent can be maintained in a good state, and product gas can be generated immediately even when switching from the low pressure and high air volume control to the high pressure and low air volume control. it can. Moreover, since the preliminary operation for improving the state of the adsorbent can be eliminated, energy saving can be achieved.

また、低圧多風量制御および高圧低風量制御の切替制御は、外部スイッチ21により制御されるため、簡単に切り替えることができる。   In addition, the switching control between the low pressure and high air volume control and the high pressure and low air volume control is controlled by the external switch 21 and can be easily switched.

以上の実施形態においては、吸着槽が4槽ある場合を例にとり説明したが、少なくとも4槽あれば良く、5槽以上であっても良い。例えば、6槽ある場合には、3槽が取出工程のとき、残り3槽が再生工程となるように切り替えたり、2槽が取出工程のとき、残り4槽が再生工程となるように切り替えたり、1槽が取出工程のとき、残り5槽が再生工程となるように切り替えたりすることができる。つまり、少なくとも4槽設けられた吸着槽の内、いずれかの吸着槽が取出工程のとき、残りの吸着槽が再生工程となるように、圧縮空気の複数の吸着槽への経路を切り替えることで、同時に複数槽の吸着槽で取出工程を行う低圧多風量制御と、1槽ずつ順次吸着槽で取出工程を行う高圧低風量制御とを切替制御可能であれば良い。   In the above embodiment, the case where there are four adsorption tanks has been described as an example. However, at least four tanks may be used, and five or more tanks may be used. For example, when there are 6 tanks, when 3 tanks are the extraction process, the remaining 3 tanks are switched to be the regeneration process, and when 2 tanks are the extraction process, the remaining 4 tanks are switched to be the regeneration process. When one tank is an extraction process, the remaining five tanks can be switched to a regeneration process. That is, by switching the route of compressed air to a plurality of adsorption tanks so that the remaining adsorption tanks are in the regeneration process when any of the adsorption tanks provided in at least four tanks is in the extraction process. In addition, it is only necessary to be able to switch between low pressure and high air volume control in which the extraction process is performed in a plurality of adsorption tanks simultaneously and high pressure and low air volume control in which the extraction processes are sequentially performed in the adsorption tank one by one.

本発明に係る一実施形態の気体分離装置を示す構成図である。It is a lineblock diagram showing the gas separation device of one embodiment concerning the present invention. 本発明に係る一実施形態の気体分離装置における低圧多風量制御の各工程を示す図表である。It is a chart which shows each process of low-pressure multi-air volume control in the gas separation device of one embodiment concerning the present invention. 本発明に係る一実施形態の気体分離装置における低圧多風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the low voltage | pressure high air volume control in the gas separation apparatus of one Embodiment which concerns on this invention. 本発明に係る一実施形態の気体分離装置における低圧多風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the low voltage | pressure high air volume control in the gas separation apparatus of one Embodiment which concerns on this invention. 本発明に係る一実施形態の気体分離装置における高圧少風量制御の各工程を示す図表である。It is a chart which shows each process of high pressure small air volume control in a gas separation device of one embodiment concerning the present invention. 本発明に係る一実施形態の気体分離装置における高圧少風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the high voltage | pressure small air volume control in the gas separation apparatus of one Embodiment which concerns on this invention. 本発明に係る一実施形態の気体分離装置における高圧少風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the high voltage | pressure small air volume control in the gas separation apparatus of one Embodiment which concerns on this invention. 本発明に係る一実施形態の気体分離装置における高圧少風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the high voltage | pressure small air volume control in the gas separation apparatus of one Embodiment which concerns on this invention. 本発明に係る一実施形態の気体分離装置における高圧少風量制御の各吸着槽の状態を示す図である。It is a figure which shows the state of each adsorption tank of the high voltage | pressure small air volume control in the gas separation apparatus of one Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 気体分離装置
2 圧縮機
10A,10B,10C,10D 吸着槽
15 製品ガス槽
20 制御装置
21 外部スイッチ
DESCRIPTION OF SYMBOLS 1 Gas separation apparatus 2 Compressor 10A, 10B, 10C, 10D Adsorption tank 15 Product gas tank 20 Control apparatus 21 External switch

Claims (2)

吸着剤が充填された複数の吸着槽を有し、
該吸着槽に圧縮空気を供給し、該吸着槽内の吸着剤により分離生成された製品ガスを該吸着槽から取り出して製品ガス槽に充填する取出工程と、前記吸着槽内の残存気体を排出させて該吸着槽内の吸着剤を再生する再生工程と、を行なうよう制御する制御装置を有する気体分離装置において、
前記制御装置は、
少なくとも4槽設けられた前記吸着槽の内、いずれかの吸着槽が前記取出工程のとき、残りの吸着槽が前記再生工程となるように、前記圧縮空気の複数の前記吸着槽への経路を切り替えることで、
同時に複数槽の前記吸着槽で前記取出工程を行う第1の制御と、
1槽ずつ順次前記吸着槽で前記取出工程を行う第2の制御と、を切替制御可能としたことを特徴とする気体分離装置。
Having a plurality of adsorption tanks filled with adsorbent,
Supplying compressed air to the adsorption tank, taking out the product gas separated and generated by the adsorbent in the adsorption tank from the adsorption tank and filling the product gas tank, and discharging the residual gas in the adsorption tank In the gas separation device having a control device that controls to perform the regeneration step of regenerating the adsorbent in the adsorption tank,
The control device includes:
When any of the adsorption tanks provided in at least four tanks is in the take-out process, a route of the compressed air to the plurality of adsorption tanks is set so that the remaining adsorption tank is in the regeneration process. By switching
A first control for simultaneously performing the extraction step in a plurality of adsorption tanks;
A gas separation device characterized in that switching control can be performed between the second control in which the extraction step is sequentially performed in the adsorption tank one by one.
前記切替制御は、外部スイッチにより制御されることを特徴とする請求項1に記載の気体分離装置。   The gas separation device according to claim 1, wherein the switching control is controlled by an external switch.
JP2008250081A 2008-09-29 2008-09-29 Gas separation device Expired - Fee Related JP4979664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250081A JP4979664B2 (en) 2008-09-29 2008-09-29 Gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250081A JP4979664B2 (en) 2008-09-29 2008-09-29 Gas separation device

Publications (2)

Publication Number Publication Date
JP2010075895A true JP2010075895A (en) 2010-04-08
JP4979664B2 JP4979664B2 (en) 2012-07-18

Family

ID=42206962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250081A Expired - Fee Related JP4979664B2 (en) 2008-09-29 2008-09-29 Gas separation device

Country Status (1)

Country Link
JP (1) JP4979664B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502507A (en) * 2000-07-11 2004-01-29 ハニーウェル・ノーマレア−ギャレット(ホールディングス)リミテッド Life support system
JP2005081258A (en) * 2003-09-09 2005-03-31 Teijin Ltd Oxygen enricher
JP2005199270A (en) * 2003-12-23 2005-07-28 Praxair Technol Inc Indexing rotary dual valve for pressure swing adsorption system
JP2008155168A (en) * 2006-12-26 2008-07-10 Advan Riken:Kk Pressure swing adsorption type gas generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502507A (en) * 2000-07-11 2004-01-29 ハニーウェル・ノーマレア−ギャレット(ホールディングス)リミテッド Life support system
JP2005081258A (en) * 2003-09-09 2005-03-31 Teijin Ltd Oxygen enricher
JP2005199270A (en) * 2003-12-23 2005-07-28 Praxair Technol Inc Indexing rotary dual valve for pressure swing adsorption system
JP2008155168A (en) * 2006-12-26 2008-07-10 Advan Riken:Kk Pressure swing adsorption type gas generator

Also Published As

Publication number Publication date
JP4979664B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CA2516989C (en) Off-gas feed method and target gas purification system
US9675927B2 (en) Method for hydrogen production by pressure swing adsorption
CA2255526C (en) Psa process and system using simultaneous top and bottom evacuation of adsorbent bed
JPH0929044A (en) Reflux in pressure swing type suction method
EP3597592B1 (en) Pressure swing adsorption hydrogen manufacturing apparatus
JP4979664B2 (en) Gas separation device
JP5814145B2 (en) Gas separation device
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP5554649B2 (en) Gas generation method and gas generation apparatus
CN107438474B (en) Process for producing oxygen by VPSA comprising four adsorbers
JP4673440B1 (en) Target gas separation and recovery method
JP5939917B2 (en) Gas separation device
CN113015572A (en) Gas separation device and gas separation method
JP4589049B2 (en) Pressure swing adsorption type oxygen gas production method and apparatus used therefor
JP6837375B2 (en) Hydrogen gas purification equipment and operation method of hydrogen gas purification equipment
JP7388731B2 (en) Pressure swing adsorption device and gas generation method
JP7149573B2 (en) Pressure swing adsorption device
JPH09141038A (en) Gas separator
KR100698168B1 (en) Oxygen Generator
JP2005262000A (en) Method for producing nitrogen gas
JPH06154536A (en) Gas separation device
JP6823979B2 (en) Gas separator
JP2022014270A (en) Pressure swing adsorption device and method for controlling pressure swing adsorption device
JPH0731825A (en) Gas separator
JP2023103541A (en) Operation method of nitrogen gas manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees