JP2010071916A - Drop detection device, magnetic disk drive, and mobile electronic device - Google Patents

Drop detection device, magnetic disk drive, and mobile electronic device Download PDF

Info

Publication number
JP2010071916A
JP2010071916A JP2008242169A JP2008242169A JP2010071916A JP 2010071916 A JP2010071916 A JP 2010071916A JP 2008242169 A JP2008242169 A JP 2008242169A JP 2008242169 A JP2008242169 A JP 2008242169A JP 2010071916 A JP2010071916 A JP 2010071916A
Authority
JP
Japan
Prior art keywords
condition
value
acceleration
threshold value
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008242169A
Other languages
Japanese (ja)
Other versions
JP5024250B2 (en
Inventor
Tetsuaki Okuda
哲聡 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008242169A priority Critical patent/JP5024250B2/en
Publication of JP2010071916A publication Critical patent/JP2010071916A/en
Application granted granted Critical
Publication of JP5024250B2 publication Critical patent/JP5024250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drop detection device for preventing drop of an acceleration sensor from not being sensed, suppressing malfunction and achieving compactness and cost reduction by solving problems of characteristic irregularities of the acceleration sensor, and to provide a magnetic disk drive provided with it and a mobile electronic device. <P>SOLUTION: The drop detection device includes: obtaining absolute values of acceleration change amounts in each of three-axes directions; determining whether they satisfy a condition indicating values between first thresholds Ax1_min and second thresholds Ax1_mid higher than the first thresholds; determining whether the absolute values of the acceleration change amounts satisfy a condition reaching third thresholds Ax1_max higher than the second thresholds after satisfying the condition; and regarding them as drop start when the absolute values of the acceleration change amounts are lower than fourth thresholds Ax2 lower than the third thresholds Ax1_max after further satisfying the condition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、装置の落下を、加速度を基に検知する落下検知装置、それを備えた磁気ディスク装置および携帯電子機器に関するものである。   The present invention relates to a fall detection device that detects the fall of a device based on acceleration, a magnetic disk device including the fall detection device, and a portable electronic device.

従来、装置の落下を検知する装置として特許文献1が開示されている。
図1は、特許文献1のZ軸方向の加速度センサの出力が1からほぼ0に変化する様子を示している。特許文献1には、加速度センサの出力信号から加速度の大きさを算出する演算回路と、加速度の大きさが0付近の値になったか否かを比較する比較回路と、加速度がほぼ0になって所定時間継続したか否かを判定する継続判定回路を備えていて、(X軸,Y軸,Z軸)の全ての加速度がほぼ0となる状態が基準継続時間の間継続したか否かによって、例えば磁気ディスク装置が自由落下しているか否かを判別する。
Conventionally, patent document 1 is disclosed as an apparatus which detects the fall of an apparatus.
FIG. 1 shows how the output of the acceleration sensor in the Z-axis direction of Patent Document 1 changes from 1 to almost 0. In Patent Document 1, an arithmetic circuit that calculates the magnitude of acceleration from an output signal of an acceleration sensor, a comparison circuit that compares whether or not the magnitude of acceleration is a value close to 0, and the acceleration are almost zero. Whether or not a state in which all the accelerations in the (X-axis, Y-axis, Z-axis) are substantially zero continues for the reference duration. For example, it is determined whether or not the magnetic disk device is free-falling.

このように判定回路は、3軸全ての出力が基準時間以上ほぼ0となった場合を「落下」と判定する。
特許第3441668号公報
As described above, the determination circuit determines that “fall” is obtained when the output of all three axes becomes approximately 0 for the reference time or more.
Japanese Patent No. 3441668

ところが、上述の特許文献1に示されている落下検知の方法では、3軸の加速度センサの出力がほぼ0となる状態が各軸の無重力状態と対応していなければならず、落下中の無重力状態で出力が必ず0となる加速度センサが必要である。   However, in the fall detection method shown in the above-mentioned Patent Document 1, the state where the output of the three-axis acceleration sensor is almost zero must correspond to the zero-gravity state of each axis. An acceleration sensor whose output is always 0 in a state is necessary.

しかし、加速度センサは、その製造のバラツキや、温度変化・経時変化等による特性のバラツキがあるため、上述の判定方法では次のような問題が生じる。   However, since the acceleration sensor has manufacturing variations and variations in characteristics due to changes in temperature and changes with time, the following problems occur in the above-described determination method.

(1)加速度センサの特性バラツキが或るしきい値を超えると落下判定が不能になる。   (1) If the variation in characteristics of the acceleration sensor exceeds a certain threshold value, the fall determination becomes impossible.

(2)加速度センサの特性バラツキを考慮して上記しきい値を予め大きめに設定すると、落下していないにも拘わらず「落下中」と誤判定するといった誤動作が増すことになる。   (2) If the threshold value is set to a large value in consideration of variations in the characteristics of the acceleration sensor, malfunctions such as erroneous determination of “falling” even though the vehicle is not falling will increase.

(3)加速度センサの特性バラツキは幾つかの方法で校正(補正)可能であるが、そのために補正用回路が別途必要となり、小型化・低コスト化を阻む要因となる。   (3) The variation in the characteristics of the acceleration sensor can be calibrated (corrected) by several methods. For this reason, a correction circuit is separately required, which is a factor that hinders downsizing and cost reduction.

そこで、この発明の目的は、加速度センサの特性バラツキの問題を解消して落下検知不能になるのを防止し、誤動作を抑えて、小型低コスト化を図った落下検知装置、それを備えた磁気ディスク装置、及び携帯電子機器を提供することにある。   Therefore, an object of the present invention is to eliminate the problem of variation in the characteristics of the acceleration sensor to prevent the drop detection from becoming impossible, to suppress a malfunction, and to achieve a small and low cost drop detection device, and a magnetic device equipped with the fall detection device. To provide a disk device and a portable electronic device.

前記課題を解決するために、この発明は次のように構成する。
(1)加速度センサの出力信号を基に落下検知を行う落下検知装置であって、
直交3軸方向の加速度に応じた検出値を求める加速度検出手段と、
前記3軸方向のそれぞれについて、前記検出値の時間経過に伴う加速度の変化量を求めるとともに、当該加速度変化量の絶対値が第1のしきい値(Ax1_min)と、第1のしきい値より高い第2のしきい値(Ax1_mid)との間の値を採る条件を満たすか否かを判定する第1の条件判定手段と、
第1の条件を満足した後に、前記加速度変化量の絶対値が第2のしきい値以上の第3のしきい値(Ax1_max)に達する条件を満たすか否かを判定する第2の条件判定手段と、
第2の条件を満足した後に、前記加速度変化量の絶対値が第3のしきい値Ax1_maxより低い第4のしきい値Ax2を下回る条件を満たすか否かを判定する第3の条件判定手段と、
前記3軸方向のうち少なくとも1つが前記第3の条件を満たすとき、前記3軸方向のうち異なった軸方向の検出値間の差分値に基づいて、落下中状態であるか否かの判定を行う落下中状態判定手段と、を設ける。
In order to solve the above problems, the present invention is configured as follows.
(1) A fall detection device that detects fall based on an output signal of an acceleration sensor,
Acceleration detecting means for obtaining a detection value corresponding to acceleration in three orthogonal directions;
For each of the three axis directions, the amount of change in acceleration with the passage of time of the detected value is obtained, and the absolute value of the amount of change in acceleration is determined from the first threshold value (Ax1_min) and the first threshold value. First condition determination means for determining whether or not a condition for taking a value between the high second threshold value (Ax1_mid) is satisfied;
After satisfying the first condition, a second condition determination is made to determine whether or not a condition for the absolute value of the acceleration change amount to reach a third threshold value (Ax1_max) equal to or greater than a second threshold value is satisfied. Means,
Third condition determining means for determining whether or not the absolute value of the acceleration change amount satisfies a condition that is lower than a fourth threshold value Ax2 lower than a third threshold value Ax1_max after satisfying the second condition. When,
When at least one of the three axial directions satisfies the third condition, it is determined whether or not the vehicle is in a falling state based on a difference value between detection values in different axial directions of the three axial directions. And a falling state determination means to perform.

このように、各軸方向の加速度検出値の時間経過に伴う変化量を観測することで、落下に起因しない単なる衝撃と落下の開始との判別ができ、落下が開始されたものと見なした後は、3軸方向のうち異なった軸方向の検出値間の差分値に基づいて、落下中であるか否かの判定を行うので、加速度センサの検出値が0Gに相当する状態であるか否かを差分値で検出できる。すなわち、従来必要とされた加速度センサの各軸出力の合成ベクトルの絶対値を求める必要がなく、乗算器を必要としない。これにより、演算処理プログラムの簡略化及び演算処理時間の短縮化が図れる。   In this way, by observing the amount of change with time in the acceleration detection value in each axis direction, it was possible to discriminate between a simple impact not caused by a fall and the start of the fall, and it was assumed that the fall started After that, since it is determined whether or not the vehicle is falling based on the difference value between the detected values in the three axial directions, whether the detected value of the acceleration sensor is equivalent to 0G. Whether or not can be detected by the difference value. In other words, it is not necessary to obtain the absolute value of the combined vector of the outputs of the axes of the acceleration sensor, which is conventionally required, and no multiplier is required. As a result, the arithmetic processing program can be simplified and the arithmetic processing time can be shortened.

(2)前記第1の条件を満たしてから前記第2の条件を満たすまでの時間、または前記第2の条件を満たしてから前記第3の条件を満たすまでの時間が規定値以内であることを判定する第4の条件判定手段を設ける。 (2) The time from when the first condition is satisfied until the second condition is satisfied, or the time from when the second condition is satisfied until the third condition is satisfied is within a specified value. Fourth condition determining means for determining

これにより、何らかの衝撃など、落下開始以外の加速度の変化を誤って落下開始状態と見なす誤判定を更に抑制できる。   As a result, it is possible to further suppress an erroneous determination such that some change in acceleration other than the start of dropping, such as some impact, is erroneously regarded as a falling start state.

(3)前記加速度検出手段により検出された3軸方向の検出値のうち、異なった軸方向の検出値の差の絶対値の和が、重力加速度状態で得られる値より所定量高く設定されたしきい値を超えるか否かによって、落下開始と衝撃との判別を行う手段を設ける。 (3) Of the detected values in the three axial directions detected by the acceleration detecting means, the sum of the absolute values of the differences between the detected values in the different axial directions is set higher by a predetermined amount than the value obtained in the gravitational acceleration state. Means is provided for discriminating between a drop start and an impact depending on whether or not the threshold is exceeded.

例えば,X軸方向に衝撃を受けた場合、X軸方向の加速度検出値axが大きく変動するので、その変化量の絶対値は落下時と同様の挙動を示す場合がある。3軸方向の検出値のうち、異なった軸方向の検出値間の差の絶対値|ax−ay|,|ay−az|,|az−ax|の値は、静止時には一定値(重力加速度の約2倍の値)である。したがって、3軸方向の検出値のうち、異なった軸方向の検出値間の差の絶対値の和が、1G(重力加速度)状態で得られる値より所定量高く設定することによって、落下以外の単なる衝撃と落下とを見分けることが可能となる。   For example, when an impact is applied in the X-axis direction, the detected acceleration value ax in the X-axis direction fluctuates greatly, and the absolute value of the change amount may behave in the same manner as when dropped. Among the detected values in the three axial directions, the absolute values | ax−ay |, | ay−az |, | az−ax | of the differences between the detected values in the different axial directions are constant values (gravitational acceleration) About twice the value). Therefore, among the detected values in the three axial directions, the sum of the absolute values of the differences between the detected values in the different axial directions is set higher by a predetermined amount than the value obtained in the 1G (gravity acceleration) state. It is possible to distinguish between a simple impact and a fall.

(4)前記落下検知装置を備えた磁気ディスク装置であって、磁気ディスクに対してデータの記録または読み出しを行うヘッドと、前記落下検知装置が前記落下中状態と判定したとき、前記ヘッドを退避領域に退避させるヘッド退避手段とを備える。 (4) A magnetic disk device including the drop detection device, wherein the head for recording or reading data on the magnetic disk, and the head is retracted when the drop detection device determines that the device is falling. Head retracting means for retracting to the area.

これにより落下に対してその磁気ディスク装置を保護することができる。   As a result, the magnetic disk device can be protected against dropping.

(5)前記落下検知装置と、衝撃対策処理可能なデバイスとを備えた携帯電子機器であって、前記落下検知装置が前記落下中状態と判定したとき、前記デバイスに対して前記衝撃対策処理を施す衝撃対策処理手段とを備える。 (5) A portable electronic device including the fall detection device and a device capable of handling an impact, and when the fall detection device determines that the device is falling, the impact countermeasure processing is performed on the device. Impact countermeasure processing means to be applied.

これにより、衝撃対策処理可能なデバイスを有効に制御されて携帯電子機器の安全性が高められる。   Thereby, the device capable of handling the impact countermeasure is effectively controlled, and the safety of the portable electronic device is enhanced.

この発明によれば、加速度センサの出力信号にオフセットなどの定常的な誤差が含まれていても、落下判定が可能となる。また単なる衝撃と落下との判別も可能となる。   According to the present invention, even if a steady error such as an offset is included in the output signal of the acceleration sensor, the fall determination can be performed. It is also possible to distinguish between simple impact and fall.

《第1の実施形態》
図2は第1の実施形態に係る落下検知装置の構成を示すブロック図である。落下検知装置100は、加速度を検出して加速度に対応したアナログ電圧信号を出力する加速度センサ60、加速度センサ60の出力電圧をディジタルデータに変換するA/Dコンバータ72、およびA/Dコンバータ72の出力データを基にして落下検知を行い、検知結果を外部(ホスト装置)へ出力する制御部74を備えている。ここで加速度センサ60はこの発明に係る「加速度検出手段」に相当する。
<< First Embodiment >>
FIG. 2 is a block diagram showing the configuration of the fall detection device according to the first embodiment. The fall detection device 100 includes an acceleration sensor 60 that detects acceleration and outputs an analog voltage signal corresponding to the acceleration, an A / D converter 72 that converts the output voltage of the acceleration sensor 60 into digital data, and an A / D converter 72. A control unit 74 is provided that performs drop detection based on the output data and outputs the detection result to the outside (host device). Here, the acceleration sensor 60 corresponds to “acceleration detecting means” according to the present invention.

落下方向がどの向きであるか不定である場合にも、その落下を検知するために、3次元方向の加速度を検出して、それらを基にして落下検知を行う。加速度センサ60は互いに直交するX軸方向,Y軸方向およびZ軸方向の加速度をそれぞれ検出する3つの加速度センサで構成し、A/Dコンバータ72は各加速度センサの出力電圧をそれぞれディジタルデータに変換し、それらを各軸方向の加速度の検出値ax,ay,azとして出力する。制御部74は、後述する処理によって落下判定を行う。   Even when the falling direction is uncertain, in order to detect the falling, the acceleration in the three-dimensional direction is detected, and the falling is detected based on the detected acceleration. The acceleration sensor 60 includes three acceleration sensors that detect accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction that are orthogonal to each other. The A / D converter 72 converts the output voltage of each acceleration sensor into digital data. These are output as detected values ax, ay, az of accelerations in the respective axial directions. The control unit 74 performs the fall determination by a process described later.

加速度センサ60としては、圧電型、ピエゾ抵抗型、容量型など各種形式の加速度センサを用いることができる。   As the acceleration sensor 60, various types of acceleration sensors such as a piezoelectric type, a piezoresistive type, and a capacitive type can be used.

図3は、落下開始前後において前記加速度センサ60の各軸のうちX軸について、その加速度検出値及び加速度変化量の時間経過の例を示している。ここで縦軸は最大値1.65Vを11ビットで表した加速度検出値を10進で表した値である。横軸は経過時間t[ms]である。   FIG. 3 shows an example of the elapsed time of the acceleration detection value and the acceleration change amount for the X axis among the axes of the acceleration sensor 60 before and after the start of dropping. Here, the vertical axis represents the acceleration detection value in decimal representing the maximum value of 1.65 V in 11 bits. The horizontal axis represents the elapsed time t [ms].

時刻t0以前の1G状態すなわちまだ落下を開始していない定常状態では、加速度検出値は所定値(約450)を保つ。
加速度センサ60を搭載した電子機器が落下を開始すれば、図中破線で示す加速度検出値が0に向かって低下するとともに、図中実線で示す加速度変化量の絶対値が上昇し始める。この加速度変化量の絶対値が第1のしきい値Ax1_minと、第2のしきい値Ax1_midとの間を採るとき(時刻t0)、第1段階ST1となる。
In the 1G state before time t0, that is, in the steady state where the drop has not yet started, the acceleration detection value maintains a predetermined value (about 450).
When the electronic device equipped with the acceleration sensor 60 starts to fall, the acceleration detection value indicated by the broken line in the figure decreases toward 0 and the absolute value of the acceleration change amount indicated by the solid line in the figure starts to increase. When the absolute value of the acceleration change amount is between the first threshold value Ax1_min and the second threshold value Ax1_mid (time t0), the first stage ST1 is entered.

その後、上記加速度変化量の絶対値が第3のしきい値(Ax1_max)(この例ではAx1_max=Ax1_midの関係としている。)に達したとき(時刻t1)、第2段階ST2となる。
さらにその後、上記加速度変化量の絶対値が第3のしきい値Ax1_maxより低い第4のしきい値Ax2を下回ったとき(時刻t2)、第3段階ST3となる。この第3段階が落下中状態と見なす段階である。
Thereafter, when the absolute value of the acceleration change amount reaches the third threshold value (Ax1_max) (in this example, the relationship of Ax1_max = Ax1_mid) (time t1), the second stage ST2 is entered.
Thereafter, when the absolute value of the acceleration change amount falls below the fourth threshold value Ax2 lower than the third threshold value Ax1_max (time t2), the third stage ST3 is entered. This third stage is a stage regarded as a falling state.

なお、第3のしきい値Ax1_maxは第2のしきい値Ax1_mid以上であればよく、第3のしきい値Ax1_max=第2のしきい値Ax1_midに限らない。   Note that the third threshold value Ax1_max may be equal to or greater than the second threshold value Ax1_mid, and is not limited to the third threshold value Ax1_max = the second threshold value Ax1_mid.

図3に示した例では、その後の時刻t3で床や地面に対する衝突によって加速度検出値及び加速度変化量が大きく変化し、バウンドによる変化が何度か繰り返されている。   In the example shown in FIG. 3, the acceleration detection value and the acceleration change amount change greatly due to a collision with the floor or the ground at time t3 thereafter, and the change due to the bounce is repeated several times.

図4は、図3に示したものと同じ加速度検出値を基にして、落下中状態と衝撃との判別を行うための値Axyzを求めた例である。この値Axyzは、3軸方向の検出値のうち異なった二つの軸方向の加速度検出値の差の絶対値の和であり、次式で表される。   FIG. 4 is an example in which a value Axyz for determining a falling state and an impact is obtained based on the same acceleration detection value as that shown in FIG. This value Axyz is the sum of the absolute values of the differences between the detected acceleration values in two different axial directions among the detected values in the three axial directions, and is expressed by the following equation.

Axyz=|ax−ay|+|ay−az|+|az−ax|
加速度センサを搭載した電子機器が落下しなくても、その電子機器に対して何らかの衝撃が加わると上記Axyzの値は増大する。このときの上記Axyzの値は1G(重力加速度)状態での値より大きくなる場合が多い。そこで、図4に示すように、しきい値Athを1G状態で得られるAxyz値より所定量高く設定しておき、Axyzがしきい値Athを超えれば落下ではなく衝撃が加わったものと見なす。
Axyz = | ax-ay | + | ay-az | + | az-ax |
Even if the electronic device on which the acceleration sensor is mounted does not fall, the value of Axyz increases if any impact is applied to the electronic device. At this time, the value of Axyz is often larger than the value in the 1G (gravity acceleration) state. Therefore, as shown in FIG. 4, the threshold value Ath is set higher by a predetermined amount than the Axyz value obtained in the 1G state, and if Axyz exceeds the threshold value Ath, it is considered that an impact has been applied instead of dropping.

なお、図4では上記Axyzが演算可能なビット数を超えるおそれがあることを考慮して1/4の値として求めている。すなわち2ビット分下位側へシフトした値である。   In FIG. 4, the value Axyz is obtained as a ¼ value in consideration of the possibility that the above Axyz may exceed the number of bits that can be calculated. That is, a value shifted to the lower side by 2 bits.

図5〜図7は、図2に示した制御部74がA/Dコンバータ72の出力値を基にして落下検知を行う処理手順を表すフローチャートである。図5は前述の第1段階での処理、図6は前述の第2段階での処理、図7は前述の第3段階での処理である。   5 to 7 are flowcharts showing a processing procedure in which the control unit 74 shown in FIG. 2 performs the fall detection based on the output value of the A / D converter 72. FIG. 5 shows the process in the first stage, FIG. 6 shows the process in the second stage, and FIG. 7 shows the process in the third stage.

第1段階での判定処理では、図5に示すように、まずAxyzと各軸方向の加速度検出値の時間経過に伴う変化量の絶対値|ax0−ax2|,|ay0−ay2|,|az0−az2|をそれぞれ算出する。また、前記Axyzの値を求める(S11)。ここで、ax0,ay0,az0はそれぞれの軸方向についての現在の(直近の)加速度検出値、ax2,ay2,az2はそれぞれの軸方向についての2回分過去の加速度検出値である。加速度検出値の読み取り及び演算の周期は例えば6.5msであるので、13msの時間差離れたタイミングでの加速度検出値の差分の絶対値を6.5ms毎に求めることになる。   In the determination process in the first stage, as shown in FIG. 5, first, absolute values of the change amounts with time of Axyz and the detected acceleration values in the respective axial directions | ax0−ax2 |, | ay0−ay2 |, | az0. -Az2 | is calculated respectively. Further, the value of Axyz is obtained (S11). Here, ax0, ay0, and az0 are the current (most recent) detected acceleration values for the respective axial directions, and ax2, ay2, and az2 are the past two detected acceleration values for the respective axial directions. Since the period of reading and calculating the acceleration detection value is, for example, 6.5 ms, the absolute value of the difference between the acceleration detection values at a timing that is 13 ms apart is obtained every 6.5 ms.

そして上記Axyzが前記しきい値Ath未満であることを確認する(S12)。もしAxyzがAth以上であれば、1G状態から落下中状態に至るまでの加速度変化を超える大きな加速度変化があったことになり、単なる衝撃があったものと見なして先頭へ戻る(S12→S11)。   Then, it is confirmed that the Axyz is less than the threshold value Ath (S12). If Axyz is greater than or equal to Ath, it means that there has been a large acceleration change exceeding the acceleration change from the 1G state to the falling state, and it is assumed that there was a simple impact and the process returns to the top (S12 → S11). .

Axyz<Athであれば、X軸方向について加速度の変化の絶対値|ax0−ax2|が第1のしきい値Ax1_minと第2のしきい値Ax1_midとの範囲内に存在するか否かを判定する(S13)。また、Y軸方向について加速度の変化の絶対値|ay0−ay2|が第1のしきい値Ay1_minと第2のしきい値Ay1_midとの範囲内に存在するか否かを判定する(S14)。また、Z軸方向について加速度の変化の絶対値|ax0−ax2|が第3のしきい値Az1_minと第2のしきい値Az1_midとの範囲内に存在するか否かを判定する(S15)。   If Axyz <Ath, it is determined whether or not the absolute value | ax0−ax2 | of the change in acceleration in the X-axis direction is within the range between the first threshold value Ax1_min and the second threshold value Ax1_mid. (S13). Further, it is determined whether or not the absolute value | ay0-ay2 | of the change in acceleration in the Y-axis direction is within the range between the first threshold value Ay1_min and the second threshold value Ay1_mid (S14). Further, it is determined whether or not the absolute value | ax0−ax2 | of acceleration change in the Z-axis direction is within the range between the third threshold value Az1_min and the second threshold value Az1_mid (S15).

3つの軸について、何れもこの条件を満たしていなければ先頭へ戻る(S13→S14→S15→S11)。   If all three axes do not satisfy this condition, the process returns to the top (S13 → S14 → S15 → S11).

もしX軸方向について上記条件を満たせば、第1段階ST1に達したものと見なしてフラグFx1をセットする(S13→S16)。また、Y軸方向について上記条件を満たせば、第1段階ST1に達したものと見なしてフラグFy1をセットする(S14→S17)。同様に、Z軸方向について上記条件を満たせば、第1段階ST1に達したものと見なしてフラグFz1をセットする(S15→S18)。   If the above condition is satisfied in the X-axis direction, the flag Fx1 is set assuming that the first stage ST1 has been reached (S13 → S16). If the above condition is satisfied in the Y-axis direction, the flag Fy1 is set assuming that the first stage ST1 has been reached (S14 → S17). Similarly, if the above condition is satisfied in the Z-axis direction, the flag Fz1 is set assuming that the first stage ST1 has been reached (S15 → S18).

上記ステップS13,S14,S15の判定が本発明に係る「第1の条件判定手段」に相当する。このステップS13,S14,S15の判定で、いずれかが上記条件を満たすまでステップS11〜S15の処理を繰り返す。   The determinations in steps S13, S14, and S15 correspond to the “first condition determination unit” according to the present invention. The processes in steps S11 to S15 are repeated until any one of the determinations in steps S13, S14, and S15 satisfies the above conditions.

第1段階での判定処理では、図6に示すように、まずタイマをスタートし(S20)、各軸方向の加速度の変化量の絶対値|ax0−ax2|,|ay0−ay2|,|az0−az2|を求める(S21)。但し、第2段階に入った軸だけについてこの値を求めてもよい。   In the determination process in the first stage, as shown in FIG. 6, first, a timer is started (S20), and the absolute value of the change in acceleration in each axis direction | ax0-ax2 |, | ay0-ay2 |, | az0 -Az2 | is obtained (S21). However, this value may be obtained only for the axis that has entered the second stage.

そして、フラグFx1がセット状態であれば、すなわちX軸方向について第2段階になったのであれば、|ax0−ax2|が第3のしきい値Ax1_maxと上限Ax1_max2との範囲内に入ったか否かを判定する(S22→S24)。この条件を満たせば、第2段階に達したことを示すフラグFx2をセットする(S25)。   If the flag Fx1 is in the set state, that is, if it is in the second stage in the X-axis direction, whether or not | ax0−ax2 | is within the range between the third threshold value Ax1_max and the upper limit Ax1_max2. Is determined (S22 → S24). If this condition is satisfied, a flag Fx2 indicating that the second stage has been reached is set (S25).

また、フラグFy1がセット状態であれば、すなわちY軸方向について第2段階になったのであれば、|ay0−ay2|が第3のしきい値Ay1_maxと上限Ay1_max2との範囲内に入ったか否かを判定する(S23→S26)。この条件を満たせば、第2段階に達したことを示すフラグFy2をセットする(S27)。   If the flag Fy1 is in the set state, that is, if the second stage is reached in the Y-axis direction, whether | ay0-ay2 | is within the range between the third threshold value Ay1_max and the upper limit Ay1_max2. (S23 → S26). If this condition is satisfied, a flag Fy2 indicating that the second stage has been reached is set (S27).

同様に、フラグFz1がセット状態であれば、すなわちZ軸方向について第2段階になったのであれば、|az0−az2|が第3のしきい値Az1_maxと上限Az1_max2との範囲内に入ったか否かを判定する(S28)。この条件を満たせば、第2段階に達したことを示すフラグFz2をセットする(S29)。   Similarly, if the flag Fz1 is in the set state, that is, if it is in the second stage in the Z-axis direction, is | az0−az2 | within the range between the third threshold value Az1_max and the upper limit Az1_max2? It is determined whether or not (S28). If this condition is satisfied, a flag Fz2 indicating that the second stage has been reached is set (S29).

以上のように、上限Ax1_max2,Ay1_max2,Az1_max2を定めたことにより、ノイズや衝撃の影響を受けて誤判定するのを防止できる。すなわち、ノイズや衝撃によって|ax0−ax2|,|ay0−ay2|,|az0−az2|が見かけ上急激に変化した場合、これらの値がAx1_max2,Ay1_max2,Az1_max2を超えるので、(超える確率が高いので、)このようなノイズや衝撃を落下開始状態と見なす誤判定を抑制できる。   As described above, by setting the upper limits Ax1_max2, Ay1_max2, and Az1_max2, it is possible to prevent erroneous determination due to the influence of noise and impact. That is, when | ax0-ax2 |, | ay0-ay2 |, and | az0-az2 | appear to change suddenly due to noise or impact, these values exceed Ax1_max2, Ay1_max2, Az1_max2, and thus (the probability of exceeding is high). Therefore, it is possible to suppress erroneous determination that regards such noise and impact as a fall start state.

上記ステップS24,S26,S28の判定が本発明に係る「第2の条件判定手段」に相当する。このステップS24,S26,S28で示す条件を所定時間経過しても満たさなければ、図5の先頭へ戻る(S30→S11)。このステップS30が本発明に係る「第4の条件判定手段」に相当する。   The determinations in steps S24, S26, and S28 correspond to the “second condition determination unit” according to the present invention. If the conditions shown in steps S24, S26, and S28 are not satisfied even after a predetermined time has elapsed, the process returns to the top of FIG. 5 (S30 → S11). This step S30 corresponds to the “fourth condition determining means” according to the present invention.

第3段階での判定処理では、図7に示すように、まずタイマをスタートし(S31)、各軸方向の加速度の変化量の絶対値|ax0−ax2|,|ay0−ay2|,|az0−az2|を求める(S32)。但し、第3段階に入った軸だけについてこの値を求めてもよい。   In the determination process in the third stage, as shown in FIG. 7, a timer is first started (S31), and the absolute value of the amount of change in acceleration in each axis direction | ax0-ax2 |, | ay0-ay2 |, | az0 -Az2 | is obtained (S32). However, this value may be obtained only for the axis that has entered the third stage.

そして、フラグFx2がセット状態であれば、すなわちX軸方向について第3段階になったのであれば、|ax0−ax2|が第4のしきい値Ax2を下回ったか否かを判定する(S33→S35)。この条件を満たせば、第3段階に達したものと見なし、すなわち落下が開始したものと見なして、次に落下中判定を行う(S38)。   If the flag Fx2 is in the set state, that is, if it is in the third stage in the X-axis direction, it is determined whether or not | ax0−ax2 | has fallen below the fourth threshold value Ax2 (S33 → S35). If this condition is satisfied, it is regarded that the third stage has been reached, that is, it is regarded that the fall has started, and then the fall determination is performed (S38).

また、フラグFy2がセット状態であれば、すなわちY軸方向について第3段階になったのであれば、|ay0−ay2|が第4のしきい値Ay2を下回ったか否かを判定する(S34→S36)。この条件を満たせば、落下が開始したものと見なして、落下中判定を行う(S38)。   If the flag Fy2 is in the set state, that is, if the third stage is reached in the Y-axis direction, it is determined whether or not | ay0−ay2 | has fallen below the fourth threshold value Ay2 (S34 → S36). If this condition is satisfied, it is considered that the fall has started, and the fall determination is performed (S38).

同様に、フラグFz2がセット状態であれば、すなわちZ軸方向について第3段階になったのであれば、|az0−az2|が第4のしきい値Az2を下回ったか否かを判定する(S37)。この条件を満たせば、落下が開始したものと見なして、落下中判定を行う(S38)。   Similarly, if the flag Fz2 is in the set state, that is, if it is in the third stage in the Z-axis direction, it is determined whether or not | az0−az2 | has fallen below the fourth threshold value Az2 (S37). ). If this condition is satisfied, it is considered that the fall has started, and the fall determination is performed (S38).

上記ステップS35,S36,S37の判定が本発明に係る「第3の条件判定手段」に相当する。このステップS35,S36,S37で示す条件を所定時間経過しても満たさなければ、図5の先頭へ戻る(S39→S11)。このステップS39が、本発明に係る「第4の条件判定手段」に相当する。   The determinations in steps S35, S36, and S37 correspond to the “third condition determination unit” according to the present invention. If the conditions shown in steps S35, S36, and S37 are not satisfied even after a predetermined time has elapsed, the process returns to the top of FIG. 5 (S39 → S11). This step S39 corresponds to the “fourth condition determining means” according to the present invention.

なお、以上に示した例では、X軸,Y軸,Z軸のそれぞれについて個別に、第1・第2・第3・第4のしきい値を定めたが、各軸方向の加速度センサの特性が揃っていて、各軸についての第1・第2・第3・第4のしきい値が近似する値であれば、X軸,Y軸,Z軸についてそれぞれ共通に第1・第2・第3・第4のしきい値を定めてもよい。   In the example described above, the first, second, third, and fourth threshold values are individually determined for each of the X axis, the Y axis, and the Z axis. If the characteristics are uniform and the first, second, third, and fourth threshold values for each axis are approximate, the first and second axes are common to the X, Y, and Z axes, respectively. -You may define the 3rd and 4th threshold value.

図8は、落下開始前後において前記加速度センサ60の各軸の出力電圧Vx,Vy,Vzおよび検出値az,ay,azの時間経過の例を示している。ここで縦軸と横軸の関係は図3・図4と同様である。   FIG. 8 shows an example of the passage of time of the output voltages Vx, Vy, Vz and detected values az, ay, az of the respective axes of the acceleration sensor 60 before and after the start of dropping. Here, the relationship between the vertical axis and the horizontal axis is the same as in FIGS.

この図8に示すように、1G状態、すなわちまだ落下を開始していない定常状態では、加速度センサ60の各軸の検出値(電圧)は所定値を保つ。ある時点で落下中状態(0G)となれば、加速度センサ60の各軸の検出値(電圧)は0Gに応じた値を維持する。その後、床や地面に衝突することによって加速度センサ60の各軸の出力は大きく変動することになる。   As shown in FIG. 8, in the 1G state, that is, in the steady state where the drop has not yet started, the detected value (voltage) of each axis of the acceleration sensor 60 maintains a predetermined value. If it is in a falling state (0G) at a certain time, the detected value (voltage) of each axis of the acceleration sensor 60 maintains a value corresponding to 0G. Thereafter, the output of each axis of the acceleration sensor 60 greatly fluctuates by colliding with the floor or the ground.

図9は、上記ステップS38の処理(落下中判定)の処理手順をフローチャートとして表したものである。この図9に示す処理が本発明に係る「落下中状態判定手段」に相当する。   FIG. 9 is a flowchart showing the processing procedure of step S38 (decision of falling). The processing shown in FIG. 9 corresponds to the “falling state determination means” according to the present invention.

図中axはx軸方向の加速度を検出する加速度センサの検出値(加速度センサの出力電圧をA/D変換した値)、ayはy軸方向の加速度を検出する加速度センサの検出値、同様にazはz軸方向の加速度を検出する加速度センサの検出値である。   In the figure, ax is a detection value of an acceleration sensor that detects acceleration in the x-axis direction (A / D converted value of the output voltage of the acceleration sensor), ay is a detection value of an acceleration sensor that detects acceleration in the y-axis direction, and similarly az is a detection value of an acceleration sensor that detects acceleration in the z-axis direction.

まずタイマをスタートし(S41)、加速度センサ60の検出値ax,ay,azを読み込む(S42)。
次にayを基準として、ayに対するaxの差分の絶対値dxyを求め、またayに対するazの差分の絶対値dzyを求める(S43)。続いて、この2つの差分値の絶対値dxy,dzyが、後述するδxy±αの範囲内およびδzy±αの範囲内に収まっているか否かの判定を行う(S44,S45)。
First, a timer is started (S41), and detection values ax, ay, and az of the acceleration sensor 60 are read (S42).
Next, the absolute value dxy of the difference of ax with respect to ay is obtained on the basis of ay, and the absolute value dzy of the difference of az with respect to ay is obtained (S43). Subsequently, it is determined whether or not the absolute values dxy and dzy of the two difference values are within a range of δxy ± α and a range of δzy ± α, which will be described later (S44, S45).

図8に示したように上記dxy,dzyが安定していれば、ステップS44,S45はいずれも“Yes”となって、この状態が所定の持続時間Tに達するまで上記ステップS42〜S46の処理を繰り返す(S46→S42→・・・)。
そしてタイマの値が上記Tに達した時、落下中状態信号を出力する(S47)。
If dxy and dzy are stable as shown in FIG. 8, steps S44 and S45 are both “Yes”, and the processing of steps S42 to S46 is performed until this state reaches a predetermined duration T. Is repeated (S46 → S42 →...).
When the timer value reaches T, a falling state signal is output (S47).

上記加速度センサによる検出値(ax,ay,az)は、実際の加速度(gx,gy,gz)に対して(gx+δx,gy+δy,gz+δz)の関係にある。ここでδはセンサ素子固有の無重力状態での出力バラツキである。すなわち,
(ax,ay,az)=(gx+δx,gy+δy,gz+δz)
で表される。
The detected value (ax, ay, az) by the acceleration sensor has a relationship of (gx + δx, gy + δy, gz + δz) with respect to the actual acceleration (gx, gy, gz). Here, δ is the output variation in the weightless state inherent to the sensor element. That is,
(Ax, ay, az) = (gx + δx, gy + δy, gz + δz)
It is represented by

無重力状態(gx=gy=gz=0)でも,センサ出力は(δx,δy,δz)となるため,従来技術ではこれらがしきい値より大きくなると,無重力状態でも落下中と見なされない。または、これらをゼロにするための補正回路が必要になる。   Even in the weightless state (gx = gy = gz = 0), the sensor output is (δx, δy, δz). Therefore, if these are larger than the threshold value, they are not regarded as falling even in the weightless state. Or, a correction circuit for making them zero is required.

この第1の実施形態では、|ax−ay|,|az−ay|を判定値とし、
|δx−δy|−α < |ax−ay| < |δx−δy|+α (α>0)
且つ
|δz−δy|−α < |az−ay| < |δz−δy|+α
の状態が所定の持続時間以上持続した場合に落下中と判定するので、無重力状態では、理論上上記判定値はそれぞれ|δx−δy|,|δz−δy|となることを利用している。
In the first embodiment, | ax-ay |, | az-ay |
| Δx−δy | −α <| ax−ay | <| δx−δy | + α (α> 0)
And | δz−δy | −α <| az−ay | <| δz−δy | + α
When the state is maintained for a predetermined duration or longer, it is determined that the vehicle is falling. Therefore, in the weightless state, the above determination values are theoretically | δx−δy | and | δz−δy |, respectively.

この|δx−δy|が図9中のδxyであり、|δz−δy|が図9中のδzyである。   This | δx−δy | is δxy in FIG. 9, and | δz−δy | is δzy in FIG.

加速度センサの0Gにおける各軸の出力値(δx,δy,δz)は、各軸の加速度センサ毎に加速度検出軸を水平に保った状態で事前に求めることができるので、その値を基にして上記|δx−δy|および|δz−δy|を事前に定めればよい。   The output value (δx, δy, δz) of each axis at 0G of the acceleration sensor can be obtained in advance with the acceleration detection axis kept horizontal for each acceleration sensor of each axis, and based on that value The above | δx−δy | and | δz−δy | may be determined in advance.

従来は、落下方向の加速度を求めるために、X,Y,Zの各軸の加速度検出値の二乗和の平方根を演算していた。そのため、加速度の時間経過に伴う変化量を求める際にも、(ax0-ax2),(ay0-ay2),(az0-az2)それぞれの二乗和の平方根を求める必要があった。これに対して、本願では各軸の加速度検出値の変化量(|ax0-ax2|,|ay0-ay2|,|az0-az2|)を求めることのみで落下判定ができる。これにより乗算や根号演算を行う必要がなくなり、演算処理速度の向上及び回路の簡略化が図れる.
《第2の実施形態》
図10はハードディスクドライブ装置等の磁気ディスク装置の構成を示すブロック図である。ここで、読み書き回路202はヘッド201を用いて磁気ディスク上のトラックに、書き込まれているデータの読み取りまたは書き込みを行う。制御回路200は読み書き回路202を介してデータの読み書き制御を行い、この読み書きデータを、インタフェース205を介してホスト装置との間で通信する。また制御回路200はスピンドルモータ204を制御し、ボイスコイルモータ203を制御する。落下検知装置100の構成は第1〜第4の実施形態で示したとおりである。また制御回路200は落下検知装置100による落下検知信号を読み取って、落下中状態の時、ボイスコイルモータ203を制御してヘッド201を退避領域に退避させる。これにより、たとえば、ハードディスク装置が搭載された携帯機器を落下させた際に、携帯機器が床や地面に衝突するまでにヘッドを磁気ディスクの領域から退避領域へ退避させるので、ヘッド201の磁気ディスクの記録面に対する接触による損傷が防止できる。
Conventionally, in order to obtain the acceleration in the falling direction, the square root of the square sum of the acceleration detection values of the X, Y, and Z axes has been calculated. For this reason, it is necessary to obtain the square root of the sum of squares of each of (ax0-ax2), (ay0-ay2), and (az0-az2) when obtaining the amount of change with time of acceleration. In contrast, in the present application, the fall determination can be performed only by obtaining the change amount (| ax0-ax2 |, | ay0-ay2 |, | az0-az2 |) of the acceleration detection value of each axis. This eliminates the need for multiplication and root sign operations, improving the processing speed and simplifying the circuit.
<< Second Embodiment >>
FIG. 10 is a block diagram showing the configuration of a magnetic disk device such as a hard disk drive device. Here, the read / write circuit 202 uses the head 201 to read or write data written on a track on the magnetic disk. The control circuit 200 performs data read / write control via the read / write circuit 202 and communicates this read / write data with the host device via the interface 205. The control circuit 200 controls the spindle motor 204 and controls the voice coil motor 203. The configuration of the drop detection device 100 is as shown in the first to fourth embodiments. Further, the control circuit 200 reads the fall detection signal from the fall detection device 100, and controls the voice coil motor 203 to retract the head 201 to the retract area when it is falling. As a result, for example, when a portable device on which a hard disk device is mounted is dropped, the head is retreated from the magnetic disk area to the retraction area until the portable device collides with the floor or the ground. Damage due to contact with the recording surface can be prevented.

《第3の実施形態》
図11は、ハードディスクドライブ装置を内蔵したノートパソコンや音楽・映像再生装置等の携帯電子機器の構成を示すブロック図である。ここで落下検知装置100の構成は第1・第2の実施形態で示したとおりである。デバイス301は落下時の衝突による衝撃から保護する必要のあるデバイスであり、且つそのための衝撃対策処理可能なデバイスである。例えばハードディスクドライブ装置である。制御回路300は落下検知装置100の出力信号を基にしてデバイス301を制御する。例えば落下検知装置100から落下中状態信号を受け取ったなら、デバイス301に対して落下時の衝撃に備えた制御を行う。
<< Third Embodiment >>
FIG. 11 is a block diagram showing the configuration of a portable electronic device such as a notebook computer or a music / video playback device with a built-in hard disk drive device. Here, the configuration of the fall detection device 100 is as shown in the first and second embodiments. The device 301 is a device that needs to be protected from an impact caused by a collision at the time of dropping, and is a device capable of handling the impact for that purpose. For example, a hard disk drive device. The control circuit 300 controls the device 301 based on the output signal of the fall detection device 100. For example, when a falling state signal is received from the fall detection device 100, the device 301 is controlled in preparation for an impact when dropped.

特許文献1の加速度センサの出力が1からほぼ0に変化する様子を示す図である。It is a figure which shows a mode that the output of the acceleration sensor of patent document 1 changes from 1 to substantially zero. 第1の実施形態に係る落下検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the fall detection apparatus which concerns on 1st Embodiment. 落下開始前後において加速度センサ60のX軸の検出値の時間経過の例を示す図である。It is a figure which shows the example of the time passage of the detected value of the X-axis of the acceleration sensor 60 before and after the fall start. 図3に示したものと同じ加速度検出値を基にして、落下中状態と衝撃との判別を行うための値Axyzの時間経過の例を示す図である。It is a figure which shows the example of the time passage of the value Axyz for determining a falling state and an impact based on the same acceleration detection value as what was shown in FIG. 図2に示した制御部74がA/Dコンバータ72の出力値を基にして行う、第1段階での処理内容を示すフローチャートである。3 is a flowchart showing the contents of processing in a first stage performed by the control unit 74 shown in FIG. 2 based on an output value of an A / D converter 72. 図2に示した制御部74がA/Dコンバータ72の出力値を基にして行う、第2段階での処理内容を示すフローチャートである。3 is a flowchart showing the content of processing in a second stage performed by the control unit 74 shown in FIG. 2 based on the output value of the A / D converter 72. 図2に示した制御部74がA/Dコンバータ72の出力値を基にして行う、第3段階での処理内容を示すフローチャートである。3 is a flowchart showing the contents of processing in a third stage performed by the control unit 74 shown in FIG. 2 based on an output value of an A / D converter 72. 落下開始前後において加速度センサ60の各軸の検出値の時間経過の例を示す図である。It is a figure which shows the example of the time passage of the detected value of each axis | shaft of the acceleration sensor 60 before and after the fall start. 図2に示した制御部74がA/Dコンバータ72の出力値を基にして落下中状態の判定を行う処理手順を表すフローチャートである。3 is a flowchart illustrating a processing procedure in which a control unit 74 illustrated in FIG. 2 determines a falling state based on an output value of an A / D converter 72. 第2の実施形態に係る、ハードディスクドライブ装置等の磁気ディスク装置の構成を示すブロック図である。It is a block diagram which shows the structure of magnetic disk apparatuses, such as a hard disk drive apparatus, based on 2nd Embodiment. 第3の実施形態に係る、ハードディスクドライブ装置を内蔵したノートパソコンや音楽・映像再生装置等の携帯電子機器の構成を示すブロック図である。It is a block diagram which shows the structure of portable electronic devices, such as a notebook personal computer incorporating a hard disk drive device, and a music and video reproduction device, according to the third embodiment.

符号の説明Explanation of symbols

60…加速度センサ
72…A/Dコンバータ
74…制御部
100…落下検知装置
205…インタフェース
ax…X軸方向の加速度の検出値
ay…Y軸方向の加速度の検出値
az…Z軸方向の加速度の検出値
60 ... acceleration sensor 72 ... A / D converter 74 ... control unit 100 ... fall detection device 205 ... interface ax ... detected value of acceleration in the X-axis direction ay ... detected value of acceleration in the Y-axis direction az ... acceleration of acceleration in the Z-axis direction Detected value

Claims (5)

加速度センサの出力信号を基に落下検知を行う落下検知装置であって、
互いに直交する3軸方向の加速度に応じた検出値を求める加速度検出手段と、
前記3軸方向のそれぞれについて、前記検出値の時間経過に伴う加速度の変化量を求めるとともに、当該加速度変化量の絶対値が第1のしきい値と、第1のしきい値より高い第2のしきい値との間の値を採る条件を満たすか否かを判定する第1の条件判定手段と、
第1の条件を満足した後に、前記加速度変化量の絶対値が第2のしきい値以上の第3のしきい値に達する条件を満たすか否かを判定する第2の条件判定手段と、
第2の条件を満足した後に、前記加速度変化量の絶対値が第3のしきい値より低い第4のしきい値を下回る条件を満たすか否かを判定する第3の条件判定手段と、
前記3軸方向のうち少なくとも1つが前記第3の条件を満たすとき、前記3軸方向のうち異なった軸方向の検出値間の差分値に基づいて、落下中状態であるか否かの判定を行う落下中状態判定手段と、を設けた落下検知装置。
A fall detection device that performs fall detection based on an output signal of an acceleration sensor,
Acceleration detecting means for obtaining a detection value according to acceleration in three axial directions orthogonal to each other;
For each of the three axis directions, an acceleration change amount with the passage of time of the detected value is obtained, and an absolute value of the acceleration change amount is a first threshold value and a second value higher than the first threshold value. First condition determination means for determining whether or not a condition for taking a value between the threshold value and
Second condition determination means for determining whether or not a condition that an absolute value of the acceleration change amount reaches a third threshold value equal to or greater than a second threshold value after satisfying the first condition;
Third condition determining means for determining whether or not a condition that an absolute value of the acceleration change amount falls below a fourth threshold value lower than a third threshold value is satisfied after satisfying the second condition;
When at least one of the three axial directions satisfies the third condition, it is determined whether or not the vehicle is in a falling state based on a difference value between detection values in different axial directions of the three axial directions. A fall detection device comprising: a falling state determination means to perform.
前記第1の条件を満たしてから前記第2の条件を満たすまでの時間、または前記第2の条件を満たしてから前記第3の条件を満たすまでの時間が規定値以内であることを判定する第4の条件判定手段を設けた請求項1に記載の落下検知装置。   It is determined that the time until the second condition is satisfied after the first condition is satisfied, or the time until the third condition is satisfied after the second condition is satisfied is within a specified value. The fall detection device according to claim 1 provided with the 4th condition judging means. 前記加速度検出手段により検出された3軸方向の検出値のうち、異なった軸方向の検出値の差の絶対値の和が、重力加速度状態で得られる値より所定量高く設定されたしきい値を超えるか否かによって、落下開始と衝撃との判別を行う手段を設けた請求項1または2に記載の落下検知装置。   A threshold value in which the sum of absolute values of differences between detected values in different axial directions among the detected values in three axial directions detected by the acceleration detecting means is set higher by a predetermined amount than the value obtained in the gravitational acceleration state The drop detection device according to claim 1 or 2, further comprising means for discriminating between a drop start and an impact depending on whether or not the difference is exceeded. 請求項1〜3のいずれかに記載の落下検知装置と、磁気ディスクに対してデータの記録または読み出しを行うヘッドと、前記落下検知装置が前記落下中状態と判定したとき、前記ヘッドを退避領域に退避させるヘッド退避手段とを備えた磁気ディスク装置。   A drop detection device according to any one of claims 1 to 3, a head for recording or reading data on a magnetic disk, and when the drop detection device determines that the device is in the falling state, the head is retracted. A magnetic disk apparatus comprising a head retracting means for retracting the head. 請求項1〜3のいずれかに記載の落下検知装置と、衝撃対策処理可能なデバイスとを備えた携帯電子機器であって、前記落下検知装置が前記落下中状態と判定したとき、前記デバイスに対して衝撃対策処理を施す衝撃対策処理手段とを備えた携帯電子機器。   A portable electronic device comprising the drop detection device according to any one of claims 1 to 3 and a device capable of handling an impact, and when the fall detection device determines that the device is falling, the device A portable electronic device comprising impact countermeasure processing means for performing impact countermeasure processing.
JP2008242169A 2008-09-22 2008-09-22 Fall detection device, magnetic disk device, and portable electronic device Expired - Fee Related JP5024250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242169A JP5024250B2 (en) 2008-09-22 2008-09-22 Fall detection device, magnetic disk device, and portable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242169A JP5024250B2 (en) 2008-09-22 2008-09-22 Fall detection device, magnetic disk device, and portable electronic device

Publications (2)

Publication Number Publication Date
JP2010071916A true JP2010071916A (en) 2010-04-02
JP5024250B2 JP5024250B2 (en) 2012-09-12

Family

ID=42203832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242169A Expired - Fee Related JP5024250B2 (en) 2008-09-22 2008-09-22 Fall detection device, magnetic disk device, and portable electronic device

Country Status (1)

Country Link
JP (1) JP5024250B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241442A (en) * 1999-02-22 2000-09-08 Sharp Corp Protective mechanism and portable device for drop detection mechanism and magnetic disk device
JP2007087469A (en) * 2005-09-21 2007-04-05 Sony Corp Information processing apparatus, imaging apparatus, information processing method, and computer program
JP2007095182A (en) * 2005-09-29 2007-04-12 Tdk Corp Falling detection method, falling detector and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241442A (en) * 1999-02-22 2000-09-08 Sharp Corp Protective mechanism and portable device for drop detection mechanism and magnetic disk device
JP2007087469A (en) * 2005-09-21 2007-04-05 Sony Corp Information processing apparatus, imaging apparatus, information processing method, and computer program
JP2007095182A (en) * 2005-09-29 2007-04-12 Tdk Corp Falling detection method, falling detector and computer program

Also Published As

Publication number Publication date
JP5024250B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US8676532B2 (en) Fall detection device, magnetic disk drive, and portable electronic apparatus
US8164847B2 (en) Fall detection device, magnetic disk device, and portable electronic apparatus
JP5064235B2 (en) System and method for fall detection
US7979235B2 (en) Method and device for detecting anomalous events for an electronic apparatus, in particular a portable apparatus
US7350394B1 (en) Zero-g offset identification of an accelerometer employed in a hard disk drive
US20080174444A1 (en) Dual acceleration sensor system
US7451057B2 (en) System and method for detection of freefall with spin using two tri-axis accelerometers
US7551388B2 (en) Fall detection device and magnetic disk drive
JP5067257B2 (en) Information device to detect fall
JP2009192417A (en) Fall detector and mobile device with the same
CN105827847A (en) Fall protection method of mobile terminal, and mobile terminal
WO2007148246A1 (en) A sensor for sensing accelerations
JP2000241442A (en) Protective mechanism and portable device for drop detection mechanism and magnetic disk device
KR101057912B1 (en) How to prevent damage to electronic devices and electronic devices
JP2007178295A (en) Fall detection device and fall detection method
JP2006292690A (en) System and method for determination of falling
JP2007257808A (en) Fall detector
US20110261482A1 (en) Information processing apparatus and head evacuation processing method therefor
JP4905592B2 (en) Fall detection device, magnetic disk device, and portable electronic device
JP5024250B2 (en) Fall detection device, magnetic disk device, and portable electronic device
JP2007095182A (en) Falling detection method, falling detector and computer program
JP2007101406A (en) Fall detecting method and portable terminal apparatus
JP2005037300A (en) Portable equipment having acceleration history recording function, and acceleration sensor device used for the same
JP6174048B2 (en) Shock protection for mobile devices
KR100817603B1 (en) Method and system for preventing falling recognition error of portable device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees