JP2010071834A - Water channel exploration method - Google Patents

Water channel exploration method Download PDF

Info

Publication number
JP2010071834A
JP2010071834A JP2008240282A JP2008240282A JP2010071834A JP 2010071834 A JP2010071834 A JP 2010071834A JP 2008240282 A JP2008240282 A JP 2008240282A JP 2008240282 A JP2008240282 A JP 2008240282A JP 2010071834 A JP2010071834 A JP 2010071834A
Authority
JP
Japan
Prior art keywords
exploration
fan
seismic
water channel
survey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240282A
Other languages
Japanese (ja)
Other versions
JP5030107B2 (en
Inventor
Sai Tsukamoto
斉 塚本
Masahiko Makino
雅彦 牧野
Tatsuya Sumita
達哉 住田
Shiro Watanabe
史郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008240282A priority Critical patent/JP5030107B2/en
Publication of JP2010071834A publication Critical patent/JP2010071834A/en
Application granted granted Critical
Publication of JP5030107B2 publication Critical patent/JP5030107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water channel exploration method, capable of readily identifying water channels existing in a crystalline rock distribution region, with high accuracy. <P>SOLUTION: The water channel exploration method includes: a fan-shoot seismic exploration step of arranging vibration reception points along a plurality of exploration lines traversing an exploration object region; measuring and analyzing a refracted wave of an elastic wave generated at a vibration generation point distanced not less than a predetermined value in a direction orthogonal to each exploration line by a fan-shoot seismic exploration method; and identifying the peripheral area, including the thickest part T, having a total maximum thickness of a surface deposit 8 and a strongly weathered part 6 of a crystalline rock, and a step of conducting a gravity exploration on the peripheral area and identifying a position of the thickest part T. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水みち探査方法に関し、より詳しくは、結晶質岩の分布地域に存在する水みちを探査する水みち探査方法に関する。   The present invention relates to a water path search method, and more particularly to a water path search method for searching for a water path existing in a crystalline rock distribution area.

花崗岩などの結晶質岩が分布する中山間地においては、表層堆積物は一般に薄く、浅層地下水系は結晶質岩の表層風化部に主に発達している。花崗岩などの結晶質岩の強風化部と、結晶質岩の弱風化部(ないしは新鮮岩部)では、透水係数が数桁程度異なるため、その境界部が浅層地下水系の基底となる。地下に伏在する結晶質岩の強風化部と、結晶質岩の弱風化部(ないしは新鮮岩部)との境界は一様ではなく、局所的な凹凸が存在し、局所的な凹部が周辺の浅層地下水系を集水するような構造を形成するため、それらの構造が連続したものが浅層地下水系の水みちとなる構造となる。中山間地における家庭用水源など極小規模な地下水開発を除いた一定規模以上の地下水開発においては、谷底平野周辺に発達する浅層地下水系の水みちを探査し、揚水井を作井することが従来から検討されている。   In mid-mountainous areas where crystalline rocks such as granite are distributed, surface sediments are generally thin, and shallow groundwater systems are mainly developed in weathered areas of crystalline rocks. The permeability of the strong weathered part of crystalline rock such as granite and the weakly weathered part (or fresh rock part) of crystalline rock differ by several orders of magnitude, so the boundary becomes the base of the shallow groundwater system. The boundary between the strongly weathered part of the crystalline rock and the weakly weathered part of the crystalline rock (or fresh rock part) is not uniform, there are local irregularities, and the local concave parts In order to form a structure that collects the shallow groundwater system, a structure in which those structures are continuous becomes a water channel of the shallow groundwater system. In the development of groundwater above a certain scale, excluding extremely small-scale groundwater development, such as household water sources in hilly and mountainous areas, exploration of the shallow groundwater system that develops around the valley bottom plain and creating a pumping well. It has been studied from the past.

谷底平野周辺に発達する浅層地下水系の水みちの位置を特定する方法として、屈折法や反射法による地震探査が従来から知られているが、谷底平野と山地との境界部の地形急変点の処理が困難なこと、また探査対象深度の少なくとも4倍以上必要とされる探査測線長が十分確保できず探査精度が十分でないことから、浅層地下水系の開発に屈折法や反射法による地震探査が適用されることはなかった。   Seismic exploration by refraction and reflection methods is conventionally known as a method to identify the location of water paths in the shallow groundwater system that develops around the valley bottom plain, but the sudden topography change point at the boundary between the valley bottom plain and the mountainous area In addition, the seismic refraction method and the reflection method are used for the development of shallow groundwater systems because the survey line length required at least four times the depth of the survey is not sufficient and the survey accuracy is not sufficient. Exploration was never applied.

また、非特許文献1及び2には、電気探査方法の一種である比抵抗映像法を利用して、比抵抗二次元探査により地下水の流れを探査する方法が示されているが、この方法も地表から測定する場合に十分な探査確度が得にくいことから浅層地下水開発の失敗例が多く、ボーリングポイントが多数になることでコストや時間の浪費を招くおそれがあった。
「応用地質 第31巻 第1号」、日本応用地質学会、1990年、pp. 12-18;竹内 睦雄・長江 亮二、電気探査による地下水流動モニター法の研究 「応用地質 第33巻 第1号」、日本応用地質学会、1992年、pp. 1-6;長江 亮二・竹内 睦雄、電気探査による地下水流動モニター法の研究(その2)
Non-Patent Documents 1 and 2 show a method of exploring the flow of groundwater by a two-dimensional resistivity search using a resistivity imaging method, which is a kind of electrical exploration method. Since it is difficult to obtain sufficient exploration accuracy when measuring from the ground surface, there have been many cases of shallow groundwater development failure, and there were fears that cost and time were wasted due to the large number of boring points.
"Applied Geology Vol.31 No.1", Japan Society of Applied Geology, 1990, pp. 12-18; Takeo Tatsuo, Ryoji Nagae, Study on groundwater flow monitoring method by electrical exploration "Applied Geology Vol.33 No.1", Japan Society of Applied Geology, 1992, pp. 1-6; Ryoji Nagae, Ikuo Takeuchi, Study on groundwater flow monitoring method by electrical exploration (Part 2)

そこで、本発明は、結晶質岩の分布地域に存在する水みちを簡便に精度良く特定することができる水みち探査方法の提供を目的とする。   Therefore, an object of the present invention is to provide a water channel search method that can easily and accurately specify a water channel existing in a crystalline rock distribution area.

本発明の前記目的は、結晶質岩の分布地域に存在する水みちを探査する方法であって、探査対象地域を横断する複数の探査測線に沿って受振点を配置し、前記各探査測線と直交方向に所定以上の離間距離を持った起振点で発生させた弾性波の屈折波を扇射法地震探査手法により測定解析して、表層堆積物及び結晶質岩の強風化部の合計厚みが最も大きい最厚部を含む周辺領域を特定する扇射法地震探査ステップと、前記周辺領域に対して重力探査を行い、前記最厚部の位置を特定する重力探査ステップとを備える水みち探査方法により達成される。   The object of the present invention is a method for exploring a water channel existing in a crystalline rock distribution area, wherein a receiving point is arranged along a plurality of exploration survey lines crossing the exploration target area, The total thickness of surface sediments and strong weathered parts of crystalline rocks are measured and analyzed by the seismic exploration method using the seismic reflection method of elastic waves generated at an excitation point with a predetermined separation distance in the orthogonal direction. A water path exploration step comprising: a fan seismic exploration step for identifying a peripheral region including the thickest part having the largest thickness; and a gravitational exploration step for performing a gravitational exploration on the peripheral region to identify a position of the thickest part Achieved by the method.

この水みち探査方法において、前記扇射法地震探査ステップは、複数の前記受振点を間隔が1m以下となるように配置することが好ましい。   In this water path exploration method, it is preferable that the fan method seismic exploration step arranges the plurality of receiving points so that the interval is 1 m or less.

また、前記重力探査ステップは、重力変化の検出精度が10ngal程度であることが好ましい。   The gravity exploration step preferably has a gravitational change detection accuracy of about 10 ngal.

本発明の水みち探査方法によれば、結晶質岩の分布地域に存在する水みちを簡便に精度良く特定することができる。   According to the water path exploration method of the present invention, it is possible to easily and accurately identify a water path existing in the crystalline rock distribution area.

以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る水みち探査方法を説明するための模式図である。
本実施形態の水みち探査方法は、花崗岩などの結晶質岩が分布する中山間地において、探査対象地域である谷底平野に存在する水みちを特定するものである。
Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram for explaining a water path exploration method according to an embodiment of the present invention.
The water path exploration method of this embodiment specifies a water path that exists in the valley bottom plain that is the exploration target area in an intermediate and mountainous area where crystalline rocks such as granite are distributed.

図1に示すように、結晶質岩の地質断面は、風化の程度に応じて新鮮岩部2、弱風化部4および強風化部6に区分され、それぞれの積層構造となっている。強風化部6には、表層堆積物8が薄く堆積している。強風化部6においては透水係数が大きく、地下水が動き易い一方、弱風化部4および新鮮岩部2においては、透水係数が小さく、地下水が動き難く層内で飽和した状態となっているため、浅層地下水系は、弱風化部4と強風化部6との境界で主に発達する。このような結晶質岩に断層・節理Fなどが存在すると、断層・節理Fに沿って風化が進行し、差別的な侵食が起こり、谷底平野などが形成される。谷底平野の地下では、断層・節理Fに沿って風化が進行しているため弱風化部4の表面が局所的に凹んだような構造となり,周辺の浅層地下水を集水するため、このような構造が連続することで水みちWが形成される。   As shown in FIG. 1, the geological section of the crystalline rock is divided into a fresh rock part 2, a weakly weathered part 4 and a strong weathered part 6 according to the degree of weathering, and has a laminated structure. A thin surface layer deposit 8 is deposited on the strong weathering portion 6. In the strong weathering section 6, the permeability coefficient is large and the groundwater is easy to move. On the other hand, in the weak weathering section 4 and the fresh rock section 2, the permeability coefficient is small and the groundwater is difficult to move and is saturated in the layer. The stratum groundwater system develops mainly at the boundary between the weakly weathered part 4 and the strongly weathered part 6. When a fault / joint F exists in such a crystalline rock, weathering proceeds along the fault / joint F, and differential erosion occurs to form a valley bottom plain. In the basement of the valley bottom plain, weathering is progressing along the fault / joint F, so that the surface of the weakly weathered part 4 has a locally concave structure and collects the surrounding shallow groundwater. A water path W is formed by the continuous structure.

このように、水みちWの形成位置は、強風化部6及び表層堆積物8の合計厚みが最も大きい最厚部Tであると考えられる。本実施形態の水みち探査方法は、この最厚部Tを特定するために、まず扇状法地震探査ステップを行う。   Thus, the formation position of the water channel W is considered to be the thickest portion T where the total thickness of the strong weathering portion 6 and the surface layer deposit 8 is the largest. In order to identify the thickest portion T, the water path exploration method of the present embodiment first performs a fan method seismic exploration step.

すなわち、谷底平野を横断する複数の探査測線に沿って受振点(地震計など)を一定間隔で配置する。複数の探査測線は、例えば、図2に示すように互いに平行に配置されることが好ましい。   That is, receiving points (such as seismometers) are arranged at regular intervals along a plurality of survey lines crossing the valley bottom plain. The plurality of survey survey lines are preferably arranged in parallel to each other as shown in FIG. 2, for example.

そして、各探査測線と直交方向に所定以上の離間距離をあけて起振点(震源)を設置する。図3は、ある探査測線Lと起振点10との位置関係を示しており、両者の離隔距離Eは、起振点10からの直接波が屈折波よりも先に受振点12に到達しない一定以上の距離に設定することが好ましい。   And an excitation point (seismic source) is installed with a predetermined distance or more in the direction orthogonal to each survey survey line. FIG. 3 shows the positional relationship between a certain surveying line L and the excitation point 10, and the separation distance E between them is such that the direct wave from the excitation point 10 does not reach the receiving point 12 before the refracted wave. It is preferable to set the distance above a certain distance.

起振点10で弾性波を発生させると、この弾性波は、表層堆積物8及び結晶質岩の強風化部6を直進し、結晶質岩の弱風化部4(ないしは新鮮岩部2)との境界で屈折し、その後受振点12の近傍で再屈折し、表層堆積物8及び結晶質岩の強風化部6を直進し、受振点12に至る。表層堆積物8及び強風化部6と、弱風化部4(ないしは新鮮岩部2)とでは、弾性波速度が著しく異なり、表層堆積物8及び強風化部6の弾性波速度の方が著しく遅いため、表層堆積物8および強風化部6の合計厚みによって、屈折波の初動到達時間が変化する。   When an elastic wave is generated at the oscillation point 10, the elastic wave goes straight through the surface sediment 8 and the strong weathered portion 6 of the crystalline rock, and the weakly weathered portion 4 (or the fresh rock 2) of the crystalline rock. Refracted at the boundary, then re-refracted in the vicinity of the receiving point 12, goes straight through the surface sediment 8 and the strong weathering portion 6 of crystalline rock, and reaches the receiving point 12. The surface sediment 8 and the strongly weathered portion 6 and the weakly weathered portion 4 (or the fresh rock portion 2) have significantly different elastic wave velocities, and the elastic wave velocities of the surface sediment 8 and the strongly weathered portion 6 are significantly slower. The initial arrival time of the refracted wave varies depending on the total thickness of the surface layer deposit 8 and the strong weathering portion 6.

例えば、図4(a)に示すように、起振点10から受信点12までの強風化部6の厚みが9mで、起振点10から受信点12までの距離が30mである場合(説明を簡略化するため、厚みの薄い表層堆積物8は考慮していない)、弱風化部4および強風化部6の弾性波速度をそれぞれ3.0km/sec、1.5km/secとすると、初動到達時間I1は、
I1=10.39/1.5 + 19.61/3.0 + 10.39/1.5 = 20.39 (msec) となる。
For example, as shown in FIG. 4A, the thickness of the strong weathering portion 6 from the excitation point 10 to the reception point 12 is 9 m, and the distance from the excitation point 10 to the reception point 12 is 30 m (explanation) For the sake of simplicity, the thin surface layer deposit 8 is not considered), and the initial wave arrival time is assumed when the elastic wave velocities of the weakly weathered portion 4 and the strongly weathered portion 6 are 3.0 km / sec and 1.5 km / sec, respectively. I1 is
I1 = 10.39 / 1.5 + 19.61 / 3.0 + 10.39 / 1.5 = 20.39 (msec).

一方、図4(b)に示すように、起振点10の強風化部6の厚みは9mだが受信点12の強風化部6の厚みが1m増加して10mに変化する場合、初動到達時間I2は、
I2=10.38/1.5 + 19.02/3.0 + 11.54/1.5 = 20.95 (msec) となる。
On the other hand, as shown in FIG. 4B, when the thickness of the strong weathering portion 6 at the oscillation point 10 is 9 m, but the thickness of the strong weathering portion 6 at the receiving point 12 is increased by 1 m and changed to 10 m, the initial movement arrival time. I2 is
I2 = 10.38 / 1.5 + 19.02 / 3.0 + 11.54 / 1.5 = 20.95 (msec).

このように、受信点12における初動到達時間は、受信点12近傍に存在する表層堆積物8および強風化部6の層厚の合計に依存する部分が大きいため、この初動到達時間である走時と起振点10からの距離との関係を示す走時曲線を作成し、各受振点12における初動到達時間を標準走時曲線と比較すると、標準走時曲線からの初動到達時間の遅れが最も大きい受振点12の近傍に、表層堆積物8及び強風化部6の層厚の合計が最も大きい領域(最厚部T)が存在することがわかる。   Thus, the initial movement arrival time at the reception point 12 is largely dependent on the total layer thickness of the surface layer deposit 8 and the strong weathering portion 6 present in the vicinity of the reception point 12, so the travel time that is the initial movement arrival time is The travel time curve showing the relationship between the distance from the oscillation point 10 and the initial travel arrival time at each receiving point 12 is compared with the standard travel time curve. It can be seen that there is a region (thickest portion T) where the total sum of the layer thicknesses of the surface layer deposit 8 and the strong weathered portion 6 exists in the vicinity of the large receiving point 12.

図5は、図2の探査測線1)における扇射法地震探査データの解析結果の一例を示すものであり、起振点10を固定した状態で示していることから、起振点10から遠い受振点12ほど初動到達時間が長くなり、また起振点10で発生した震源の衝突音のグラフが双曲線状を呈している。   FIG. 5 shows an example of the analysis result of the fan seismic survey data in the exploration survey line 1) of FIG. 2 and shows the state where the excitation point 10 is fixed, so that it is far from the excitation point 10. The initial arrival time becomes longer at the receiving point 12, and the graph of the impact sound of the epicenter generated at the starting point 10 shows a hyperbola.

図6は、図5の初動到達時間に起振点10と受振点12との間の距離の差を補正した結果であり、補正後の初動到達時間が最も遅い受振点12は、探査測線位置43m及び45mに存在することがわかる。   FIG. 6 shows the result of correcting the difference in distance between the excitation point 10 and the receiving point 12 in the initial movement arrival time of FIG. 5. The corrected receiving point 12 with the latest initial movement arrival time is the survey line position. It can be seen that it exists at 43m and 45m.

最厚部Tが連続する構造は、複数の探査測線により把握することができ、例えば、谷底平野を横断する3探査測線以上の各探査測線における標準走時曲線からの初動到達時間の遅れが最も大きい受振点が直線状に配列している場合や、谷底平野を横断する2探査測線における標準走時曲線からの初動到達時間の遅れが最も大きい受振点が谷筋と平行に配列している場合に、最厚部Tが連続しているとみなすことができる。   The structure in which the thickest part T is continuous can be grasped by a plurality of survey survey lines. For example, the delay in the initial movement arrival time from the standard travel time curve in each of the three or more survey survey lines crossing the valley bottom plain is the most. When large receiving points are arranged in a straight line, or receiving points with the longest delay in initial movement arrival time from the standard travel time curve in two exploration survey lines crossing the valley bottom plain are arranged parallel to the valley Moreover, it can be considered that the thickest portion T is continuous.

本実施形態の水みち探査方法は、谷底平野の地下に伏在する数m〜5m程度の幅の狭い水みち構造を探査するため、従来の扇状法地震探査とは異なり、各受信点12の間隔S(図3参照)を稠密に設定することが好ましい。具体的には、受信点間隔Sを1m以下に設定することが好ましく、50cm以下とすることがより好ましい。図5に示すデータは、受信点間隔Sを50cmに設定したものである。   Unlike the conventional fan-type seismic survey, the water channel search method of this embodiment searches for a narrow water channel structure with a width of about several meters to 5 m that is buried underground in the valley bottom plain. It is preferable to set the interval S (see FIG. 3) densely. Specifically, the reception point interval S is preferably set to 1 m or less, and more preferably 50 cm or less. The data shown in FIG. 5 is obtained by setting the reception point interval S to 50 cm.

このような扇射法地震探査ステップにより得られた最厚部Tの位置精度は原理的に低く、実際には標準走時曲線からの初動到達時間の遅れが最も大きい受振点直下に最厚部Tが存在するとは限らず、その近傍数m程度の範囲に最厚部Tが存在することを示すのみである。すなわち、扇射法地震探査ステップにより特定されるのは、最厚部Tそのものではなく、最厚部Tおよびその近傍領域を含む周辺領域である。   The position accuracy of the thickest part T obtained by such a fan seismic exploration step is low in principle, and in fact, the thickest part is just below the receiving point where the delay in the initial movement arrival time from the standard travel time curve is the largest. It does not necessarily indicate that T exists, but merely indicates that the thickest portion T exists in a range of about several m in the vicinity thereof. That is, it is not the thickest portion T itself but the peripheral region including the thickest portion T and its neighboring region that is specified by the fan method seismic exploration step.

そこで、浅層地下水開発のための揚水井の掘削地点を正確に決定するため、最厚部Tを含む周辺領域に対して精密な重力探査を行う重力探査ステップを行い、最厚部Tの位置を高い精度で求める。   Therefore, in order to accurately determine the excavation point of the pumping well for the development of shallow groundwater, a gravity exploration step is performed to perform a precise gravity exploration on the peripheral region including the thickest portion T, and the position of the thickest portion T is determined. Is determined with high accuracy.

重力探査においては、各測点の重力値が直下に存在する物質の密度と存在量の積の総和に比例する性質を利用する。すなわち、表層堆積物8、強風化部6、弱風化部4、及び新鮮岩部2の密度はそれぞれ異なり、表層堆積物8や強風化部6の密度が相対的に低く、弱風化部4から新鮮岩部2へと密度が増加することから、測点直下の表層堆積物8及び強風化部6の層厚合計が大きいほど重力値が小さくなる。したがって、重力値が最小を示す位置を、最厚部Tとして求めることができる。   Gravity exploration uses the property that the gravity value at each station is proportional to the sum of the product of the density and abundance of the material present immediately below. That is, the density of the surface sediment 8, the strong weathering part 6, the weak weathering part 4, and the fresh rock part 2 are different from each other, and the density of the surface sediment 8 and the strong weathering part 6 is relatively low. Since the density increases to the rock part 2, the gravity value decreases as the total layer thickness of the surface sediment 8 and the strong weathering part 6 immediately below the measurement point increases. Therefore, the position where the gravity value shows the minimum can be obtained as the thickest portion T.

重力探査ステップにおいても、谷底平野の地下に伏在する幅数m〜5m程度の浅層地下水系の水みちとなる構造を探査するため、測点間隔が稠密であることが好ましく、具体的には、測点間隔を1m以下に設定することが好ましく、50cm以下とすることがより好ましい。   Even in the gravity exploration step, it is preferable that the station intervals are dense in order to explore the structure that becomes the water channel of the shallow groundwater system with a width of about 5m to 5m under the valley bottom plain. Is preferably set to 1 m or less, more preferably 50 cm or less.

重力探査ステップでは、谷底平野の地下に伏在する強風化部6、弱風化部4,新鮮岩部2などの風化構造における深度差数m〜数10m程度による重力値の変動を検出する必要がある。このため、重力探査の検出精度には高い精度が要求され、具体的には、10ngal程度の重力値の変化を検出できる手法・機器を用いることが好ましい。   In the gravity exploration step, it is necessary to detect changes in gravity values due to depth differences of several meters to several tens of meters in weathered structures such as the strong weathered part 6, the weakly weathered part 4 and the fresh rock part 2 that lie beneath the valley bottom plain. . For this reason, high accuracy is required for the detection accuracy of gravity exploration, and specifically, it is preferable to use a method / apparatus that can detect a change in gravity value of about 10 ngal.

重力探査ステップで測定された重力値については、原則として重力計の経時的なドリフトや潮汐・測点高度・地形効果などの補正を行った上で重力値を比較し、重力値の最低値を示す測点を最厚部Tとみなすことにより、その測点位置を浅層地下水系の水みちの通過点とみなすことができる。この結果、浅層地下水開発のための揚水井の掘削地点を容易且つ高精度に特定することができる。   For the gravity value measured in the gravity exploration step, in principle, the gravity value is compared after correcting the drift over time of the gravimeter, tide, station height, topographic effect, etc. By considering the indicated station as the thickest portion T, the station position can be regarded as a passing point of the water path of the shallow groundwater system. As a result, the excavation point of the pumping well for the development of shallow groundwater can be identified easily and with high accuracy.

なお、谷底平野を横断するような探査測線のうち、田圃の畦道など、ほぼ平坦で測点高度・地形効果などの補正を考慮しないでよいような探査測線においては、重力計のドリフトが一定値以下であることを前提に、重力計の読み取り値の最低値を示す測点を、最厚部Tとみなすことができる。   Of the survey lines that cross the valley bottom plains, such as rice fields, flat roads that do not require consideration of corrections such as station height and topographic effects, the gravimeter drift has a constant value. On the premise of the following, the measuring point indicating the lowest value of the reading of the gravimeter can be regarded as the thickest portion T.

図7は、重力探査ステップにより生成された図2の探査測線1)(図5及び6と同じ探査測線)における精密重力探査データの一例を示すものであり、重力値が最も小さい位置Aを、最厚部Tの位置として特定することができる。なお,位置Aは図2の探査測線1)の42m地点であり、扇射法地震探査データの解析により初動到達時間が最も遅いとされた探査測線1)の43m地点とは1m程度の位置ずれが生じている。一方、位置Bは、従来の非抵抗法2次元探査に基づいて水みちと特定された位置であり、両者の間には30m程度の位置ずれが生じている。   FIG. 7 shows an example of precision gravity exploration data in the exploration survey line 1) of FIG. 2 (the same survey survey line as in FIGS. 5 and 6) generated by the gravity exploration step. It can be specified as the position of the thickest portion T. Position A is the 42m point of the exploration survey line 1) in Fig. 2, and the position shift is about 1m from the 43m point of the exploration survey line 1), which was determined to be the latest arrival time by analyzing the seismic survey data. Has occurred. On the other hand, the position B is a position specified as a water path based on a conventional non-resistance method two-dimensional exploration, and a positional shift of about 30 m occurs between the two.

位置A及びBにそれぞれ揚水井を形成し、限界揚水量を測定した結果を表1に示す。本実施形態の水みち探査法により特定された位置Aにおいては、位置Bと比較して、顕著に高い揚水量が得られている。   Table 1 shows the results of forming the wells at positions A and B and measuring the limit yield. In the position A specified by the water path exploration method of the present embodiment, a significantly higher pumping amount is obtained as compared with the position B.

Figure 2010071834
Figure 2010071834

本発明の一実施形態に係る谷底平野の水みち探査方法を説明するための模式図である。It is a schematic diagram for demonstrating the water path search method of the valley bottom plain which concerns on one Embodiment of this invention. 前記水みち探査方法における扇射法地震探査の探査測線の設定例を示す図である。It is a figure which shows the example of a setting of the survey line of the fan method seismic survey in the said water path search method. 扇射法地震探査の測定状況を示す平面図である。It is a top view which shows the measurement condition of a fan method seismic exploration. 扇射法地震探査を行った際の屈折波の経路の差による初動の遅れを示す説明図である。It is explanatory drawing which shows the delay of the initial movement by the difference in the path | route of a refracted wave at the time of a fan method seismic survey. 扇射法地震探査データの解析記録の一例を示す図である。It is a figure which shows an example of the analysis record of fan method seismic exploration data. 扇射法地震探査データから得られた屈折波の初動到達時間を示す図である。It is a figure which shows the initial time arrival time of the refracted wave obtained from the fan method seismic exploration data. 精密重力探査データから推定された浅層地下水系の水みちの位置を示す説明図である。It is explanatory drawing which shows the position of the water path of the shallow groundwater system estimated from the precise gravity exploration data.

符号の説明Explanation of symbols

2 新鮮岩部
4 弱風化部
6 強風化部
8 表層堆積物
10 起振点
12 受振点
L 探査測線
2 Fresh rock part 4 Lightly weathered part 6 Strongly weathered part 8 Surface sediment 10 Excitation point 12 Receiving point L Exploration survey line

Claims (3)

結晶質岩の分布地域に存在する水みちを探査する方法であって、
探査対象地域を横断する複数の探査測線に沿って受振点を配置し、前記各探査測線と直交方向に所定以上の離間距離を持った起振点で発生させた弾性波の屈折波を扇射法地震探査手法により測定解析して、表層堆積物及び結晶質岩の強風化部の合計厚みが最も大きい最厚部を含む周辺領域を特定する扇射法地震探査ステップと、
前記周辺領域に対して重力探査を行い、前記最厚部の位置を特定する重力探査ステップとを備える水みち探査方法。
A method for exploring water paths in crystalline rock distribution areas,
Place receiving points along multiple survey lines that cross the survey area, and refract the elastic wave refracted waves generated at the excitation points that have a predetermined distance or more in the direction orthogonal to each of the survey lines. A fan seismic exploration step for measuring and analyzing by the seismic exploration method to identify the peripheral region including the thickest part having the largest total thickness of the surface sediment and the strong weathered part of the crystalline rock,
A water path exploration method comprising: a gravitational exploration step for performing gravitational exploration on the peripheral region and identifying a position of the thickest portion.
前記扇射法地震探査ステップは、複数の前記受振点を間隔が1m以下となるように配置する請求項1に記載の水みち探査方法。 2. The water channel exploration method according to claim 1, wherein in the fan method seismic exploration step, the plurality of receiving points are arranged so that an interval is 1 m or less. 前記重力探査ステップは、重力変化の検出精度が10ngal程度である請求項1または2に記載の水みち探査方法。 3. The water path search method according to claim 1 or 2, wherein the gravity search step has a gravity change detection accuracy of about 10 ngal.
JP2008240282A 2008-09-19 2008-09-19 Water path exploration method Expired - Fee Related JP5030107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240282A JP5030107B2 (en) 2008-09-19 2008-09-19 Water path exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240282A JP5030107B2 (en) 2008-09-19 2008-09-19 Water path exploration method

Publications (2)

Publication Number Publication Date
JP2010071834A true JP2010071834A (en) 2010-04-02
JP5030107B2 JP5030107B2 (en) 2012-09-19

Family

ID=42203758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240282A Expired - Fee Related JP5030107B2 (en) 2008-09-19 2008-09-19 Water path exploration method

Country Status (1)

Country Link
JP (1) JP5030107B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547035A (en) * 2016-12-09 2017-03-29 铁道第三勘察设计院集团有限公司 A kind of solid exploring equipment in situ and its exploitation method
CN107797160A (en) * 2017-09-01 2018-03-13 上海交通大学 Elastic wave and Electromagnetic CT survey data Conjoint Analysis system and method
CN112782066A (en) * 2021-02-07 2021-05-11 贵州省交通规划勘察设计研究院股份有限公司 Device and method for high-precision measurement of rock weathering rate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088557A (en) * 1996-09-10 1998-04-07 Ohbayashi Corp Estimating method for execution quantity for each soil character using gravity prospecting
JP2002156459A (en) * 2000-09-06 2002-05-31 Fujita Corp Geologic survey method for existent tunnel and maintaining and managing method for existent tunnel using the same
JP2003302465A (en) * 2002-04-08 2003-10-24 Kajima Corp Underground radar exploration method, device and program of frequency variable system
JP2006322747A (en) * 2005-05-17 2006-11-30 Takuwa Corp Device for measuring underground sound and method for exploring water channel by using this device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088557A (en) * 1996-09-10 1998-04-07 Ohbayashi Corp Estimating method for execution quantity for each soil character using gravity prospecting
JP2002156459A (en) * 2000-09-06 2002-05-31 Fujita Corp Geologic survey method for existent tunnel and maintaining and managing method for existent tunnel using the same
JP2003302465A (en) * 2002-04-08 2003-10-24 Kajima Corp Underground radar exploration method, device and program of frequency variable system
JP2006322747A (en) * 2005-05-17 2006-11-30 Takuwa Corp Device for measuring underground sound and method for exploring water channel by using this device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547035A (en) * 2016-12-09 2017-03-29 铁道第三勘察设计院集团有限公司 A kind of solid exploring equipment in situ and its exploitation method
CN107797160A (en) * 2017-09-01 2018-03-13 上海交通大学 Elastic wave and Electromagnetic CT survey data Conjoint Analysis system and method
CN112782066A (en) * 2021-02-07 2021-05-11 贵州省交通规划勘察设计研究院股份有限公司 Device and method for high-precision measurement of rock weathering rate
CN112782066B (en) * 2021-02-07 2023-08-01 贵州省交通规划勘察设计研究院股份有限公司 Device and method for high-precision measurement of rock mass weathering rate

Also Published As

Publication number Publication date
JP5030107B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
Sjogren Shallow refraction seismics
Berger et al. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland
Nardin et al. Stratigraphic architecture of a large-scale point-bar complex in the McMurray Formation: Syncrude's Mildred Lake Mine, Alberta, Canada
Gosar Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors
Chávez-García et al. Site effects in a volcanic environment: A comparison between HVSR and array techniques at Colima, Mexico
Cunningham Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA
CN104199109B (en) Method and equipment for determining apparent dip angles of target layers of drill wells
Khan et al. A geophysical investigation of the active Hockley Fault System near Houston, Texas
CN106324682A (en) Surface structure investigation method applied to permafrost regions
Ezersky et al. Identification of sinkhole origin using surface geophysical methods, Dead Sea, Israel
JP5030107B2 (en) Water path exploration method
Egger et al. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone
CN102236101A (en) Method and device for predicting multilayer cracks
Barnaba et al. The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis
Jaiswal et al. Seismic characterization of a gas hydrate system in the Gulf of Mexico using wide-aperture data
Ofomola Uphole Seismic refraction survey for low velocity layer determination over Yom field, South east Niger Delta
von Ketelhodt et al. Elastic parameters from compressional and shear wave tomographic survey: A case study from Kuala Lumpur, Malaysia
Catchings et al. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater
Hecker et al. Detailed mapping and rupture implications of the 1 km releasing bend in the Rodgers Creek fault at Santa Rosa, Northern California
Brady et al. Surface-gravity monitoring of the gas cap water injection project, Prudhoe Bay, Alaska
Wyller Spatio-temporal development of a joint network and its properties: a case study from Lilstock, UK
Opara et al. Near-surface seismic velocity model building from first arrival travel-times-a case study from an onshore, Niger Delta Field
Catchings et al. Near-surface location, geometry, and velocities of the Santa Monica fault zone, Los Angeles, California
Lin et al. Improved seismic profiling by minimally invasive multimodal surface wave method with standard penetration test source (MMSW-SPT)
Lunt A three-dimensional, quantitative depositional model of gravelly braided river sediments with special reference to the spatial distribution of porosity and permeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees